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A NATURAL FAMILY
OF FACTORS FOR PRODUCT Z2-ACTIONS

Artur Siemaszko

Abstract. It is shown that if N and N ′ are natural families of factors (in

the sense of [5]) for minimal flows (X, T ) and (X′, T ′), respectively, then
{R ⊗ R′: R ∈ N , R′ ∈ N ′} is a natural family of factors for the product

Z2-action on X ×X′ generated by T and T ′.
An example is given showing the existence of topologically disjoint

minimal flows (X, T ) and (X′, T ′) for which the family of factors of the

flow (X × X′, T × T ′) is strictly bigger than the family of factors of the

product Z2-action on X ×X′ generated by T and T ′.
There is also an example of a minimal distal system with no nontrivial

compact subgroups in the group of its automorphisms.

By a topological flow we mean a triple (X, T ,U) where X is a compact metric
space, T is a topological group (with the discrete topology) and U : T ×X → X

is a continuous map such that

(1) U(e, x) = x (here e stands for the identity of T ) for x ∈ X;
(2) U(t,U(s, x)) = U(ts, x) for x ∈ X and s, t ∈ T .

We say that U is a T -action on X. If the acting group is understood we write
(X,U).
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In this note we focus on the case where T = Z or T = Z2. In the former
case the action U is generated by the single homeomorphism T :X → X defined
by U(n, x) = Tnx and the flow is denoted by (X,T ).
The latter case will be restricted to the following situation. Given two home-

omorphisms Ti:Xi → Xi, i = 1, 2, of compact metric spaces we consider a so
called product Z2-action U = U (T1,T2) on X1 ×X2:

U((n,m), (x1, x2)) = (Tn1 x1, Tm2 x2).

In such a situation we say that U is generated by (T1, T2).
The straightforward proof of the following lemma will be omitted.

Lemma 1. The action U (T1,T2) is minimal if and only if so are the homeo-
morphisms T1 and T2.

Following [3] we recall that disjointness of minimal Z-actions generated by
two homeomorphisms means that the product Z-action is minimal.
The following result is known and the reader may find it for instance in [1,

p. 155]. However the proof in [1] uses the elaborated algebraic Ellis theory of
minimal flows. Here a simple proof is presented that uses product Z2-actions.
Recall that a homomorphism π: (X,U1) → (Y,U2) is called proximal if Rπ =
{(x1, x2) ∈ X × X : π(x1) = π(x2)} consists od proximal pairs (i.e. for every
(x1, x2) ∈ Rπ there is a net (ui) ⊂ T and x ∈ X such that (uix1, uix2) converges
to (x, x)).

Proposition 2. Let πi: (Xi, Ti)→ (Yi, Si), i = 1, 2, be proximal homomor-
phisms between minimal Z-actions. Then topological disjointness of (Y1, S1) and
(Y2, S2) implies topological disjointness of (X1, T1) and (X2, T2).

Proof. Since π1× idY2 :X1×Y2 → Y1×Y2 is proximal and (Y1×Y2, S1×S2)
is minimal, (X1×Y2, T1×S2) possesses precisely one minimal set, say M . Then
(idX1 × S2)(M) = (T1 × idY2)(M) =M since idX1 × S2 and T1 × idY2 commute
with T1 × S2 and it follows that M is U (T1,S2)-invariant. Since, by Lemma 1,
U (T1,S2) is minimal, M = X1× Y2. It has been shown that (X1, T1) and (Y2, S2)
are disjoint.
The same reasoning applied to the homomorphism idX1 × π2 shows disjoint-

ness of (X1, T1) and (X2, T2). �

Borrowing some ideas from [6] the authors of [5] introduced the concept of
a natural family of factors for a minimal topological flow (see also [8]). Before
we state the definition we need the following lemma.
Let Ui, i = 1, 2, be T -actions on X and Y , respectively. Let M be a joining

of U1 and U2, i.e. a minimal subset of the product system that projects onto both
of coordinates (a self-joining is a joining of the system with itself).
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Lemma 3 ([5], [8]). There exist the smallest Ui-ICERs Ri(M), i = 1, 2, such
that

(π1 × π2)(M) = Graphφ,
where φ is some isomorphism between X/R1(M) and Y/R2(M).

In such a situation we say that M induces φ. Observe that in the case where
(X,U1) = (Y,U2) we have

R1(M) = 〈M ◦M−1〉 and R2(M) = 〈M−1 ◦M〉.

Here and in the sequel A ◦ B = {(x, y) ∈ X ×X; (x, z) ∈ A and (z, y) ∈ B for
some z ∈ X}, A−1 = {(x, y) ∈ X × X : (y, x) ∈ A} for A,B ⊂ X × X and
〈C〉 denotes the smallest invariant closed equivalent relation on X containing
C ⊂ X ×X.

Definition 4 ([5]). A family N of ICERs is said to be natural if

(a) ∆X ∈ N ;
(b) if {Rλ}λ∈Λ ⊂ N then

∨
λ∈ΛRλ ∈ N ;

(c) Ri(M) ∈ N for every self-joining M ;
(d) if Φ:X/R→ X/R′ is an isomorphism and R ∈ N then R′ ∈ N .

In (b) and in the sequel
∨
λ∈ΛRλ stands for 〈

⋃
λ∈ΛRλ〉.

Remark 5. (a) For any family of factor relations N satisfying conditions
(a) and (b) of Definition 4 and for each ICER R there exists a biggest ICER
R̃ ∈ N with R̃ ⊂ R.
(b) Since the intersection of natural families is obviously a natural family

and the family of all factors is natural, it follows that for any minimal U there
exists the smallest natural family of factors.

The term “natural” is explained by the following result.

Proposition 6 ([5], [8]. Let N be a natural family of ICERs for a minimal
flow (X,U). For each ICER R of (X,U) the homomorphism π:X/R̃ → X/R is
regular. Furthermore if π is distal then it is a group extension.

The second part of the above proposition is actually Glasner’s result that
may be considered as a topological version of a theorem of Veech.

Theorem 7 (Glasner, [4]). A regular and distal homomorphism between two
minimal systems is a group extension.

Recall that a homomorphism π: (X,U1) → (Y,U2) is called distal if Rπ is
a union of minimal sets and regular if every minimal subset of Rπ is a graph of
some element from the group of automorphisms of (X,U1). (In the sequel the
group of automorphisms of (X,U) will be denoted by Aut(U). Recall that this
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group is usually endowed with the topology of uniform convergence of homeo-
morphisms and their inverse that makes it a Polish group.) Recall also that π is
called a group extension if there is a compact subgroup G ⊂ Aut(U1) such that
the quotient system (X/G,U1/G) is conjugate to (Y,U2).

Remark 8. It is obvious that if T :X → X, S:X ′ → X ′ are homeomor-
phisms then (X ×X ′,U (T,S)) is distal iff (X,T ) and (X ′, S) are so.

Let (X × X ′,U) be a minimal Z2-action generated by homeomorphisms
T :X → X and S:X ′ → X ′. If A ⊂ X ×X and B ⊂ X ′ ×X ′ then put

A⊗B := {((x1, x′1), (x2, x′2)) ∈ (X ×X ′)2: (x1, x2) ∈ A, (x′1, x′2) ∈ B}.

Thus A⊗B is an image of A×B under the isomorphisms exchanging the second
and the third coordinate. We will need the following simple lemma.

Let M ⊂ (X ×X ′)2 be a U-self-joining.

Lemma 9. There are a T -self-joining N ⊂ X × X and an S-self-joining
N ′ ⊂ X ′ ×X ′ such that

M = N ⊗N ′.

Proof. Put N = Π1,3(M) and N ′ = Π2,4(M), where Πi,j denotes the
projection onto the i-th and the j-th coordinate. �

Let us consider a family of U-ICERs (so called product relations)

P = P(U) = {R⊗R′ : R is a T -ICER and R′ is an S-ICER}.

The following is a topological counterpart of some results from Section III of [2].

Proposition 10. The family P(U) of product ICERs of a product Z2-action
is natural.

Proof. (a) We have ∆X×X′ = ∆X ⊗∆X′ ∈ P.
(b) identify the algebra C(X ×X ′) of real continuous functions on X ×X ′

with the algebra C(X,C(X ′)) of continuous functions on X with values in the
Banach algebra C(X ′). The homeomorphic isomorphism is given by

(L(F )(x))(y) = F (x, y).

Let A(R) denote the subalgebra of C(X×X ′) that consists of functions constant
on co-sets of R. If R = R⊗R′, then L(A(R)) = A(R,A(R′)), where A(R,A(R′))
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stands for the subalgebra of C(X,C(X ′)) consisting of functions constant on co-
sets of R with values in the subalgebra A(R′). Now we have

L

(
A

(∨
i

(Ri ⊗R′i)
))
= L
(⋂
i

A(Ri ⊗R′i)
)
=
⋂
i

A(Ri, A(R′i))

=
⋂
i

A

(
Ri,
⋂
j

A(R′j)
)
=
⋂
i

A

(
Ri, A

(∨
j

R′j

))

= A
(∨
i

Ri, A

(∨
j

R′j

))

= L
(
A

((∨
i

Ri

)
⊗
(∨
i

R′i

)))
.

Since there is one-to-one correspondence between ICERsR and subalgebras A(R)
we have obtained

∨
i(Ri ⊗R′i) =

(∨
iRi
)
⊗
(∨
iR
′
i

)
∈ P.

(c) Using Lemma 9 for the third equality below and, for instance, Lemma 1
of [7] for the fifth one, we get

R1(M) = 〈M ◦M−1〉 = 〈M ◦M−1 ∪∆X×X′〉
= 〈(N ⊗N ′) ◦ (N ⊗N ′)−1 ∪∆X ⊗∆X′〉
= 〈(N ◦N−1 ∪∆X)⊗ (N ′ ◦ (N ′)−1 ∪∆X′)〉
= 〈(N ◦N−1 ∪∆X)〉 ⊗ 〈(N ′ ◦ (N ′)−1 ∪∆X′)〉
= 〈N ◦N−1〉 ⊗ 〈N ′ ◦ (N ′)−1〉 = R1(N)⊗R1(N ′) ∈ P.

The proof for R2(M) is analogous.
(d) It follows immediately from Corollary 11 below. �

Lemmas 3 and 9, and the proof of (c) of Proposition 10 yield the following.

Corollary 11. Let φ ∈ Aut(U). There exist φ ∈ Aut(T ) and φ′ ∈ Aut(S)
such that φ = φ× φ′.

Proof. Obviously M = Graphφ is a U-self-joining. Then

Ri(N)⊗Ri(N ′) = Ri(M) = ∆X×X′ = ∆X ⊗∆X′

so Ri(N) = ∆X and Ri(N ′) = ∆X′ . The result follows from Lemma 3. �

Remark 12. One may also show Corollary 11 independently on Lemmas 3
and 9, and (c) of Proposition 10.
Indeed, let (Xi ×X ′i,U i), i = 1, 2, be minimal product Z2-actions generated

by (Ti, Si), respectively, and let φ be an isomorphism between (X1×X ′1,U1) and
(X2 ×X ′2,U2). If φ(x, x′) = (φ1(x, x

′), φ
2
(x, x′)) then

(φ
1
(Tn1 x, S

m
1 x
′), φ

2
(Tn1 x, S

m
1 x
′) = (Tn2 (φ1(x, x

′)), Sm2 (φ2(x, x
′)))
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for every (n,m) ∈ Z2. By minimality of considered actions, φ
1 (2)
does not

depend on the second (first) coordinate and the result follows.

In fact the proof of Proposition 10 shows even stronger result.

Proposition 13. If N and N ′ are natural families of factors for minimal
flows (X,T ) and (X ′, T ′), respectively, then the family

{R⊗R′ : R ∈ N , R′ ∈ N}

is natural for U .

There is an interest in investigating natural families of product Z2-actions
U generated by two homeomorphisms because a product Z-action generated by
those homeomorphisms may have more factors than U as the following example
shows.

Example 14. Let (Ω, σ) denote the full shift over {0, 1}.
Let m and n be relatively prime positive integers. Consider two generalized

Morse systems generated by substitutions of constant length m and n. Precisely,
let ςi: {0, 1} → {0, 1}i, i = n,m, satisfy (ςi(0))j = (ςi(1))j + 1 (mod 2). Let η(i)

be a sequence generated by ςi and take any almost periodic bisequence ω(i) with
ω
(i)
j = η

(i)
j for j ≥ 0.

Let X(i) be the orbit closure of ω(i). It is well-known that (X(i), σ) factors
on the odometer Z(i) through the so called Morse–Toepliz system (Y (i), σ) in
the way that the latter system is an almost 1–1 (hence proximal) extension of
Z(i). Now Proposition 2 assures that (Y (m), σ) and (Y (n), σ) are topologically
disjoint since Z(m) and Z(n) also are.
We describe the factor maps (X(i), σ)→ (Y (i), σ). Let ψ: Ω→ Ω be defined

by ψ(u)j = uj + uj+1 and put ρ(i):X(i) → Y (i), ρ(i) = ψ|X(i) .
Put φ: Ω × Ω → Ω, (φ(u(1), u(2)))j = u

(1)
j + u

(2)
j (mod 2). We need to show

that φ restricted to Y (m) × Y (n) is not a bijection.
For this let us define two bisequences ω̆(i), i = 1, 2, by

ω̆
(i)
j =

{
ω
(i)
j if j ≥ 0,

ω
(i)
j + 1 (mod 2) if j < 0.

It is easy to check that ω̆(i) ∈ Xi (both ω(i) and ω̆(i) are almost periodic and the
pair (ω(i), ω̆(i)) is asymptotic) and that

(1) y(i) = ρi(ω(i)) 6= ρi(ω̆(i)) =: y̆(i).

Moreover,
φ(ω(m), ω(n)) = φ(ω̆(m), ω̆(n)),

hence φ(y(m), y(n)) = φ(y̆(m), y̆(n)) and this, together with (1), implies that
φ|Y (m)×Y (n) is not a bijection.
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Now we see that φ|Y (m)×Y (n) defines a nontrivial factor of Z-action on Y (m)×
Y (n) generated by σ×σ that is not a factor of a product Z2-action generated by
(σ, σ).

In [2] the Z2 version of Furstenberg’s filtering problem from [3] is considered.
In the rest of the present note it is shown how to apply Proposition 10 to obtain
some analogous result in topological dynamics.
Following [2] we define a topological counterpart of a univalence property

and universal filtering.

Definition 15. The function F :X × X ′ → R has T -pointwise univalence
property if for any distinct x1, x2 ∈ X there exists n ∈ Z such that

F (Tnx1, · ) 6= F (Tnx2, · ).

Consider two equivalence relations on X ×X ′:

RX = {((x, x′1), (x, x′2)) : x ∈ X, x′1, x′2 ∈ X ′},
RF = {((x1, x′1), (x2, x′2)) : F (x1, x′1) = F (x2, x′2)}.

The former one is already an ICER. Since the latter one need not be an ICER
we consider

R̂F =
∨
{R ⊂ RF : R is a U-ICER}.

The factor of U generated by RX is of course a Z2-action. Nevertheless one may
naturally identify it as a Z-action generated by T .

Definition 16. We say that the distal minimal system (X,T ) is distally
filtered if for every minimal distal system (X ′, S)

R̂F ⊂ RX ,

for any continuous function F :X × X ′ → R that has T -pointwise univalence
property.

Proposition 17. Assume that there are no nontrivial compact subgroups in
the group of automorphisms of a distal minimal system (X,T ). Then (X,T ) is
distally filtered.

Proof. Let T :X → X and S:X ′ → X ′ be two distal minimal homeomor-
phisms. Let U be a product Z2-action generated by (T, S) and F :X ×X ′ → R
be a continuous function with the T -pointwise univalence property. Put R =
R̂F and, applying Proposition 13, let R̃ = R ⊗ R′. Let π:X → X/R and
π′:X ′ → X ′/R′ be canonical factor maps. First we show that R = ∆X . In-
deed, if x1, x2 ∈ X, x1 6= x2 then, by univalence property of F , there are n ∈ Z
and x′ ∈ X ′ such that F (Tnx1, x′) 6= F (Tnx2, x′). Since R × R′ ⊂ R̂F ⊂ RF ,
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the function f :X → R, f(x) = F (Tnx, x′) belongs to the algebra A(R) and
f(x1) 6= f(x2). Therefore A(R) separates points of X, so R = ∆X .
By the distality assumption, Remark 8 and Proposition 10 the extension

X ×X ′/R̃→ X ×X ′/R

is a group, say G-extension. We intend to show that this extension is actually
trivial, i.e. G is a trivial group.
Using Corollary 11 one may represent G in Aut(T ). We only need to know

that φ′ = idX′/R′ , whenever idX × φ′ ∈ G. Since

∆X ⊗ 〈(π′)−1(Graphφ′)〉 = 〈∆X ⊗ (π′)−1(Graphφ′)〉
= 〈(π × π′)−1(Graph idX × φ′)〉 ⊂ R,

(π′)−1(Graphφ′) ⊂ R′, hence (π′)−1(Graphφ′) = R′. Thus Graphφ′ = ∆X′/R′ ,
so φ′ = idX′/R′ .
Since there are no nontrivial compact subgroups in Aut(T ),

G = {idX×X′/ eR}.

It follows that R̂F = R̃ = ∆X ⊗R′ ⊂ RX . �

Here is an example of a minimal distal system with no compact subgroups
in the group of its automorphisms. I thank Eli Glasner for turning my attention
to the homeomorphism presented below.
First we state the following simple lemma.

Lemma 18. There are no nontrivial compact subgroups in the topological
group (ZN,⊕), where

((k1, k2, . . . )⊕ (k′1, k′2, . . . ))n =
n∑
l=0

kn−lk
′
l,

for n = 1, 2, . . . , k0 = k′0 = 1.

Proof. Let K ⊂ ZN be a compact subgroup and Πn denote the projec-
tion onto the n’th coordinate. Since Π1:ZN → Z is a continuous group homo-
morphism, Π1(K) = {0}, hence K ⊂ {k ∈ ZN : k1 = 0}. Assume now that
K ⊂ {k ∈ ZN : k1 = . . . = kn−1 = 0}. Then Πn|K is a continuous group homo-
morphism and it follows that K ⊂ {k ∈ ZN : k1 = . . . = kn = 0}. By induction
K = {(0, 0, . . . )}. �

Example 19. Let T = {z ∈ C : |z| = 1}. Put T :TN → TN,

T (z1, . . . , zn, . . . ) = (uz1, z1z2, . . . , zn−1zn, . . . ),

where u ∈ T is not a root of the unity.
We will show that (Aut(T ), ◦) as a topological group is equal to (ZN,⊕).
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Consider the restriction of T to the first n coordinates:

Tn(z1, . . . , zn) = (uz1, z1z2, . . . , zn−1zn).

Since each factor Tn is canonical, every S ∈ Aut(T ) leaves it invariant. Let Sn
denote a restriction of S to Tn. We show, using the induction with respect to n,
that for every S ∈ Aut(T ) and n ∈ N there exist un ∈ T and k1, . . . , kn−1 ∈ Z
such that

(2) Sn(z1, . . . , zn)

= (uk1z1, uk2z
k1
1 z2, . . . , u

kn−1z
kn−2
1 . . . zk1n−2zn−1, unz

kn−1
1 . . . zk1n−1zn).

Observe that every Tn is a cocycle extension of Tn−1. From results of [8] or [9]
it follows that in case n = 2

S2(z1, z2) = (u1z1, f(z1)υ(z2)),

for some continuous function f :T→ T and a continuous T-automorphism υ. Let
f(z) =

∑
amz

m be a Fourier series of f . Assume first that υ(z) = z−1. Since S2
and T2 commutes, we have f(uz) = u1z

2f(z), hence |am| = |am−2|. It follows
that f ≡ 0, a contradiction. Thus υ = idT.
Now we have f(uz) = u1f(z), hence umam = u1am for every m ∈ Z. Since

u is not a root of the unity there is k1 ∈ Z such that am = 0 for m 6= k1, ak1 6= 0
and u1 = uk1 . We have got

S2(z1, z2) = (uk1z1, u2z
k1
1 z2).

Assume now that (2) holds for n − 1. From the same results of [8] or [9] as
above we know that

Sn(z1, . . . , zn)

= (uk1z1, uk2z
k1
1 z2, . . . , un−1z

kn−2
1 . . . zk1n−2zn−1, f(z1, . . . , zn−1)υ(zn)),

for some continuous function f :Tn−1 → T and a continuous T-automorphism υ.
If υ(z) = z−1 then

f(uz1, . . . , zn−2zn−1) = un−1z
kn−2
1 z

kn−3
2 . . . zk1n−2z

2
n−1f(z1, . . . , zn−1),

hence∑
am1,... ,mn−1u

m1zm1+m21 zm2+m32 . . . z
mn−2+mn−1
n−2 z

mn−1
n−1

=
∑

am1,... ,mn−1un−1z
m1+kn−2
1 z

m2+kn−3
2 . . . z

mn−2+k1
n−2 z

mn−1+2
n−1 .

We see that

|am1−m2+...−mn−1,... ,mn−2−mn−1,mn−1 | = |am1−kn−2,... ,mn−2−k1,mn−1−2|,
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for every m1, . . . ,mn−1 ∈ Z. It follows that f ≡ 0, a contradiction. Now we
have υ = idZ, so

f(uz1, . . . , zn−2zn−1) = un−1z
kn−2
1 z

kn−3
2 . . . zk1n−2f(z1, . . . , zn−1),

hence∑
m1,... ,mn−2

am1,... ,mn−1u
m1zm1+m21 zm2+m32 . . . z

mn−2+mn−1
n−2

=
∑

m1,... ,mn−2

am1,... ,mn−1un−1z
m1+kn−2
1 z

m2+kn−3
2 . . . z

mn−2+k1
n−2 ,

for every mn−1 ∈ Z. If mn−1 6= k1 then

|am1−m2+...−mn−1,... ,mn−2−mn−1,mn−1 | = |am1−kn−2,... ,mn−2−k1,mn−1 |,

and it follows that am1,... ,mn−2,mn−1 = 0 for every m1, . . . ,mn−2 ∈ Z and
mn−1 ∈ Z \ {k1}. If mn−1 = k1, repeating our consideration for mn−2 and
k2 we get that am1,... ,mn−2,k1 = 0 for every m1, . . . ,mn−3 ∈ Z and mn−2 ∈
Z \ {k2}. After n − 2 steps we obtain that am1,... ,mn−1 = 0 for every m1 ∈ Z
and (m2, . . . ,mn−1) ∈ (Z × . . . × Z) \ {(kn−2, . . . , k1)}. Also we have that
um1am1,kn−2,... ,k1 = un−1am1,kn−2,... ,k1 for every m1 ∈ Z. This forces that
am1,kn−2,... ,k1 6= 0 for precisely one m1 = kn−1 and that un−1 = ukn−1 . We
have shown (2) with un = akn−1,... ,k1 .

The formula (2) allows us to establish a bijection J :ZN → Aut(T ) that is
obviously a group isomorphism between (ZN,⊕) and (Aut(T ), ◦). It is easy to
see that J is continuous. For inverse take an integer N > 1 and let 0 < δ <

1/2N . Assume that D(S, S) < δ, where J−1(S) = (k1, k2, . . . ) and J−1(S) =
(k1, k2, . . . ). If S = S then kn = kn and we are done.

If S 6= S then put l = min{n: kn 6= kn} and suppose that l < N . Then we
have

δ >D(S, S) =
ρ(ukl , ukl)
2l

+ sup
z1,z2,...∈T

∞∑
n=l+1

ρ(uknzkn−11 . . . zkln−l, u
knz
kn−1
1 . . . zkln−l)

2n

≥ ρ(u
kl , ukl)
2l

+
π

2l+1
>
1
2N
(ρ(ukl , ukl) + π) > δπ,

a contradiction. Therefore l ≥ N , hence kn = kn for n = 1, . . . , N − 1.

The author would like to express his gratitude to Mariusz Lemańczyk for his
interest and advice during the preparation of this note.
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[9] , A note on the centralizer of topological isometric extensions, Comment. Math.

Univ. Carolinae 46 (2005), 137–143.

Manuscript received May 12, 2006

Artur Siemaszko
Faculty of Mathematics and Computer Science

University of Warmia and Mazury in Olsztyn

Żołnierska 14A
10-561 Olsztyn, POLAND

E-mail address: artur@uwm.edu.pl

TMNA : Volume 32 – 2008 – No 1


