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ALMOST HOMOCLINIC SOLUTIONS
FOR THE SECOND ORDER HAMILTONIAN SYSTEMS

JOANNA JANCZEWSKA

ABSTRACT. The second order Hamiltonian system ¢ + V,(t,q) = f(¢),
where t € R and ¢ € R", is considered. We assume that a potential
V € CH(R x R™,R) is of the form V(t,q) = —K(t,q) + W(t,q), where K
satisfies the pinching condition and Wy (¢, q) = o(|q|), as |¢| — O uniformly
with respect to t. It is also assumed that f € C'(R,R™) is non-zero and suf-
ficiently small in L?(R,R™). In this case ¢ = 0 is not a solution. Therefore
there are no orbits homoclinic to 0 in a classical sense. However, we show
that there is a solution emanating from 0 and terminating at 0. We are to
call such a solution almost homoclinic to 0. It is obtained here as a weak
limit in W1 2(R, R™) of a sequence of almost critical points.

1. Introduction

In this paper the existence of almost homoclinic orbits for some time-depen-

dent Hamiltonian systems will be studied. Consider

(1.1) G+ Vq(t,q) = f(1),
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where t € R, ¢ € R™ and functions V:R x R" — R and f:R — R" satisfy the
following conditions:
(Hy) V(t,q) = —K(t,q) + W(t,q), where K, W:R x R" — R are C'-maps,
and f is non-zero and continuous,
(Hz2) there are constants by, be > 0 such that for all (¢,¢q) € R x R,

bilg]* < K(t,q) < ba|ql?,

(Hs) K,4(t,q) is Lipschitzian in ¢ in a neighbourhood of 0 € R™ uniformly
with respect to t,
(Hq) Wy(t,q) = o(|q]), as |g| — 0 uniformly with respect to ¢,
(Hs) there are M > 0, > 2 and p > 0 such that for every t € R and
0<lgl <o
0 < Wi(t,q) < Mlgl".

Here and subsequently, (-, - ):R™ x R” — R denotes the standard inner product
in R™ and | - |: R™ — [0, 00) is the induced norm. Set

by :=min{1,2b;} and r:=min{l,o}.

Finally, suppose that
(Hg) by —2M > 0 and f satisfies the inequality:

(/m|ﬂoﬁa)w2<ffmm_2My

— 00

As an easy example of K and W satisfying conditions (Hy)—(Hs) and such that
K is not a quadratic function, we can take W(t,z) = 2*/16 and K(t,x) =
22 + In(1 + 2?), where t,z € R. One can immediately check that in this case
by =1,by =2, u =4 and M = 1/16. Another example is the following. W is as
above and K is given by

<1+ 1+1m2)x2 if >0,
(1+ 2 )ﬁ if z <0.
1+ 22
Then by =1 and by, = 3.

The existence of homoclinic orbits both for the second order Hamiltonian

K(t,z) =

systems and for the first order ones has been studied by many authors and the
literature on this subject is vast. In particular, the second order systems were
considered in [1], [2], [4], [5], [11], [12], and those of the first order in [3], [6],
[7], [13], [14]. This work joins up with our earlier ones written together with
M. Izydorek (see [8] and [9]). We studied there the system (1.1) with a potential
V which was T-periodic in t.
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The Hamiltonian system (1.1) does not possess a solution homoclinic to 0 in
a classical meaning, because ¢ = 0 is not a solution of this system. However,
we can still ask about the existence of solutions of (1.1) emanating from 0 and
terminating at 0. We will call such solutions almost homoclinic (to 0).

DEFINITION 1.1. We will say that a solution ¢:R — R™ of (1.1) is almost
homoclinic (to 0) if ¢(t) — 0, as t — Fo0.

Our main theorem states as follows.

THEOREM 1.2. If the assumptions (Hy1)—(Hg) are satisfied then the Hamil-
tonian system (1.1) possesses an almost homoclinic solution qo € W12(R,R")
such that

Go(t) — 0, ast— +oo.

This result is proved in Section 2 by studying the corresponding to (1.1)
action functional I: W12(R,R") — R. Applying Ekeland’s principle we get
a sequence {qx }ren such that {I(qx)}ren is bounded and I'(gr) — 0, as k — oc.
We show that {qx}ren has a weakly convergent subsequence and its weak limit
is a desired almost homoclinic solution.

The author wishes to express her thanks to the referee for helpful comments
and suggestions.

2. Proof of Theorem 1.2

Let E be the Sobolev space W12(R, R™) with the standard norm

lalls = ( | tawp+ |q<t>|2>dt)1/2.

— 00

We first recall some auxiliary properties of functions from F.

FACT 2.1. Let ¢:R — R™ be a continuous mapping such that ¢ € L2 (R, R™).

loc

For every t € R the following inequality holds

t+1/2 1/2
(2.1) lg(t)] < ﬁ</t (la(s)* + Id(S)Iz)dS) :

—1/2
The proof of Fact 2.1 can be found in [8]. (See Fact 2.8, p. 385.)
Fact 2.2. For each q € E,

(2.2) lgll 2= (& zm) < V2|4l -

Fact 2.2 is a direct consequence of the inequality (2.1).
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FacT 2.3. For each q € E, if p € [2,00), then

llallrmrn) < 2(=2)/CP)|1g| 5.

Moreover, if ||q|| o ®rn) < 1, then
(2'4) HQHLp R,R™) < HqH%?(R,]R")'

PrOOF. Applying (2.2) we get

o0

> -2
Jall 2y = | meﬁsmwwmm/’mmPﬁ

< (V2llqll5)" 2 llalIFe @z < 27722 ldll,
which completes the proof. O

Remark that £ C LP(R,R™) for 2 < p < co and the embedding is continuous.
Let I: E — R be given by

= [ |FOP - vt + (G0.a0)]

— 00

Then, by (Hs) and (Hy), I € CY(E,R) and it is easy to verify that

Igw = /Oo [(4(2), w(t)) = (Vg (t, q(2)), w(t)) + (f(2), w(t))] dt

and any critical point of I on E is a classical solution of (1.1) with ¢(+o0) = 0.
From the pinching condition (Hy), for every ¢ € E we have

17 oo
(2:5) I(q) = 5hallall */ W(t, q(t)) dt — || fll 2 e ll4ll -

Assume that ||q||g < (v2/2)r. It follows from (2.2) that ||g||pe@rn) < 7
Using (Hs) and (2.4), we get

20 [ witawar< [ Mgl de=Mlalf g ) < Mlal}

and therefore by (2.5) and (2.6), we receive

(2.7) I(q) = %”(JHE[(El —2M)llqllz = 201 1l 2]

Hence I is bounded from below on a disc {g € E:||q|lz < (v2/2)7}.
Let
2
amﬁamwwEgér}smmu
Furthermore, by (2.7) and (Hg),

V2 V2

(q) > T |:2'I"<b1 — 2M> — 2||fHL2(RR" :| =a > 07
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if |q/|z = (v/2/2)r. Hence, by Ekeland’s variational principle (see Theorem 4.2
n [10]) there exists a sequence {qx }ren C {q € E:|lq||rz < (v/2/2)r} such that

(2.8) I(gr) — ¢ and I'(qx) — 0,

as k — 0o. Since {¢;}ren is a bounded sequence in a reflexive Banach space E,
it possesses a weakly convergent subsequence.

Let gp denote a weak limit of a weakly convergent subsequence of {gx }ren.
Without loss of generality, we will write

(2.9) gk = ¢o inE,
as k — oo. This implies that ¢, — go in L{S.(R,R™), as k — oo.
LEMMA 2.4. qo given by (2.9) is an almost homoclinic solution of (1.1).

PROOF. Since qg € E, by Fact 2.1, qo(t) — 0, as t — oo. Therefore, it is
sufficient to show that I'(¢o) = 0. Fix w € C§°(R,R"™) and assume that for some
A >0, supp(w) C [-A, A]. We have

A
I'(ge)w = /_A[(dk(t)»w(t)) — (Va(t, qr (1)), w(t)) + (f(8), w(t))] dt

for each k € N. From (2.8), it follows that I'(gx)w — 0, as k — oo. On the

other hand,
A A
/ (dx(8), ()t — / (o(t), (1)) dt,
—A —A
as k — oo, by (2.9), and
A
/_A<v (£, qu(t)), w(t)) dt ﬁ/ (b ao(t)). w(t)) d,

as k — 0o, because gy — go uniformly on [—A, A]. Thus I’(gx)w — I'(go)w, as
k — oo, and, in consequence, I'(go)w = 0. Since C§°(R,R™) is dense in F, we
get I'(qo) = 0. O

LEMMA 2.5. Let qo be given by (2.9). Then ¢o(t) — 0, as t — +oo.

PRrROOF. From Fact 2.1, we obtain

t+1/2 t+1/2
(B < 2 / ()2 ds + 2 / (ao(s)P? + ldo(s)[2) ds.
t

-1/2 t—1/2

For this reason, it suffices to notice that

r+1
/ lo(s)[? ds — 0,
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as r — too. Since g satisfies (1.1), we have

r+1 r41
/ i) ? ds = / Vi, a0(3)? + |£()[?) ds

r4+1
2 / (Va(5,00(5)), £(5)) ds.

From this, we get

r+1 r+1
/ lio(s)? ds < 2 / (Va5 a0(s))* + 1 £(5)I2) ds.

(Hg) implies,

r+1
/ |f(s)]?ds — 0, asr — =+oo.

Take € > 0. By (Hs) and (Hy), there is 7 > 0 such that for each s € R, if

lg| <m, then |V,(s,q)| < e. Moreover, there is 6 > 0 such that, if |s| > d, then
lgo(s)] < n. Hence, if |r| > § + 1, then

r+1
/ Vi (s, q0(s)) P ds < &2,

which completes the proof. O
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