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ON ATTRACTIVITY AND ASYMPTOTIC STABILITY
OF SOLUTIONS OF A QUADRATIC VOLTERRA

INTEGRAL EQUATION OF FRACTIONAL ORDER

Beata Rzepka

Abstract. We study the existence of solutions of a nonlinear quadratic
Volterra integral equation of fractional order. In our considerations we

apply the technique of measures of noncompactness in conjunction with

the classical Schauder fixed point principle. The mentioned equation is
considered in the Banach space of real functions defined, continuous and

bounded on an unbounded interval. We will show that solutions of the

investigated integral equation are locally attractive.

1. Introduction

Differential and integral equations of fractional order play a very important
role in describing some real world problems. For example, these equations can
be used to describe some problems occurring in physics and mechanics (cf. [8],
[11], [13], [14], [17], for example).

The theory of differential and integral equations of fractional order consti-
tutes a significant branch of nonlinear analysis, which has been rapidly developed.
In recent years numerous research papers and monographs devoted to differen-
tial and integral equations of fractional order have been published, which contain
a lot of various type existence results (cf. [1], [3], [7], [9], [11]–[17]).
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In this paper we will study the existence of solutions of nonlinear quadratic
Volterra integral equation of fractional order in the space of real functions de-
fined, continuous and bounded on the interval R+ = [0,∞). Moreover, we will
study locally attractivity and asymptotic stability of solutions of examine equa-
tion.

The result obtained in the paper create generalization of a lot of ones obtained
previously (cf. [3]–[7], [9], [16], [17], for example).

2. Notation, definitions and auxiliary facts

This section contains some definitions and auxiliary facts which will be
needed in further considerations.

At the beginning we recall some basic facts concerning measures of noncom-
pactness [2].

Assume that E is an infinite dimensional Banach space with the norm ‖ · ‖
and zero element θ. Denote by B(x, r) the closed ball centered at x and with
radius r. The symbol Br stands for the ball B(θ, r). If X is a subset of E we
write X, Conv X to denote the closure and the convex closure of X, respectively.

Further, denote by ME the family of all nonempty and bounded subsets of
E and by NE its subfamily consisting of all relatively compact sets.

We accept the following definition of the notion of a measure of noncompact-
ness [2].

Definition 2.1. A mapping µ:ME → R+ = [0,∞) is said to be a measure
of noncompactness in E if it satisfies the following conditions:

(a) The family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and kerµ ⊂ NE ,
(b) X ⊂ Y ⇒ µ(X) ≤ µ(Y ),
(c) µ(X) = µ(X),
(d) µ(Conv X) = µ(X)
(e) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1]
(f) If (Xn) is a sequence of closed sets from ME such that Xn+1 ⊂ Xn

(n = 1, 2, . . . ) and if limn→∞ µ(Xn) = 0, then the intersection X∞ =⋂∞
n=1 Xn is nonempty.

The family kerµ described in (a) is said to be the kernel of the measure of
noncompactness µ. Note that the intersection set X∞ from (f) belongs to kerµ.
Indeed, since µ(X∞) ≤ µ(Xn) for any n then we conclude that µ(X∞) = 0, so
X∞ ∈ ker µ. This simple observation will be essential in our further considera-
tions.

Other facts concerning measures of noncompactness and their properties may
be found in [2].
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Our considerations will be placed in the Banach space BC(R+) consisting of
all real functions defined, continuous and bounded on the interval R+ = [0,∞)
which is equipped with the standard norm

‖x‖ = sup{|x(t)| : t ≥ 0}.

In our paper we will use a measure of noncompactness in the space BC(R+)
which was introduced in [2]. In order to recall the definition of this measure
let us fix a nonempty, bounded subset X of the space BC(R+) and a positive
number T > 0. For x ∈ X and ε ≥ 0 denote by ωT (x, ε) the modulus of
continuity of the function x on the interval [0, T ], i.e.

ωT (x, ε) = sup{|x(t)− x(s)| : t, s ∈ [0, T ], |t− s| ≤ ε}.

Further, let us put

ωT (X, ε) = sup{ωT (x, ε) : x ∈ X},
ωT

0 (X) = lim
ε→0

ωT (X, ε),

ω0(X) = lim
T→∞

ωT
0 (X).

If t ∈ R+ is a fixed number, we denote

X(t) = {x(t) : x ∈ X}

and
diam X(t) = sup{|x(t)− y(t)| : x, y ∈ X}.

Finally, consider the mapping µ defined on the family MBC(R+) by the formula

(2.1) µ(X) = ω0(X) + lim sup
t→∞

diam X(t).

It can be shown that the mapping µ is a measure of noncompactness in the
space BC(R+) [2]. The kernel kerµ of this measure consists of nonempty and
bounded sets X such that functions from X are locally equicontinuous on R+

and the thickness of the bundle formed by functions belonging to X tends to
zero at infinity. This property can be applied to characterize solutions of the
integral equation considered in the next section.

Now we recall definitions of the concepts of global attractivity, local attrac-
tivity and asymptotic stability of solutions. Those definitions may be found in
the papers [3]–[6], [12].

Assume that Ω is a nonempty subset of the space BC(R+) and Q is an
operator acting from Ω into BC(R+). Let us consider the following operator
equation

(2.2) x(t) = (Qx)(t), t ∈ R+.
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Definition 2.2. The solution x = x(t) of the equation (2.2) is said to be
globally attractive if for each solution y = y(t) of the equation (2.2) we have that

(2.3) lim
t→∞

(x(t)− y(t)) = 0.

Other words we may say that solutions of the equation (2.2) are globally attrac-
tive if for arbitrary solutions x(t) and y(t) of this equation the condition (2.3) is
satisfied.

Definition 2.3. We say that solutions of the equation (2.2) are locally at-
tractive if there exists a ball B(x0, r) in the space BC(R+) such that for arbitrary
solutions x(t) and y(t) of (2.2) belonging to B(x0, r)∩Ω the condition (2.3) does
hold.

In the case when the limit (2.3) is uniform with respect to the set B(x0, r)∩Ω,
i.e. when for each ε > 0 there exists T > 0 such that

(2.4) |x(t)− y(t)| ≤ ε

for all solutions x(t), y(t) of the equation (2.2) from B(x0, r) ∩ Ω and for any
t ≥ T , we will say that solutions of the equation (2.2) are uniformly locally
attractive.

Observe that the global attractivity of solutions imply local attractivity.

Definition 2.4. We say that solutions of the operator equation are asymp-
totic stable if there exists a ball B(x0, r) such that for each ε > 0 there exists
T > 0 such that if x = x(t), y = y(t) are arbitrary solutions of considered
equation and x, y ∈ B(x0, r), then (2.4) holds for any t ≥ T .

The concept of uniform local attractivity of solutions is equivalent to the
concept of asymptotic stability of solutions (introduced in the paper [4] (cf.
also [5])).

3. Main result

In this section we will consider the following quadratic Volterra integral equa-
tion of fractional order

(3.1) x(t) = p(t) +
f(t, x(t))

Γ(α)

∫ t

0

u(t, s, x(s))
(t− s)1−α

ds,

where t ∈ R+ and α is a fixed number, α ∈ (0, 1). Here Γ(α) denotes the classical
Euler gamma function. Let us mention that the term “quadratic” used above
has a mainly historical meaning.

We will investigate the equation (3.1) under the following assumptions:

(i) The function p: R+ → R is continuous and bounded on R+.
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(ii) The function f : R+×R → R is continuous and there exists a continuous
function m: R+ → R+ such that

|f(t, x)− f(t, y)| ≤ m(t)|x− y|

for any t ∈ R+ and for all x, y ∈ R.
(iii) The function u(t, s, x) = u : R+×R+×R → R is continuous. Moreover,

there exist a function n: R+ ×R+ → R+ being continuous on R+ ×R+

and a function Φ: R+ → R+ which is continuous and nondecreasing on
R+ with Φ(0) = 0 and such that

|u(t, s, x)− u(t, s, y)| ≤ n(t, s)Φ(|x− y|)

for all t, s ∈ R+ such that s ≤ t and for all x, y ∈ R.
(iv) The functions a, b, c, d: R+ → R+ defined by the formulas

a(t) = m(t)
∫ t

0

n(t, s)
(t− s)1−α

ds, b(t) = m(t)
∫ t

0

|u(t, s, 0)|
(t− s)1−α

ds,

c(t) = |f(t, 0)|
∫ t

0

n(t, s)
(t− s)1−α

ds, d(t) = |f(t, 0)|
∫ t

0

|u(t, s, 0)|
(t− s)1−α

ds

are bounded on R+ and the functions a(t) and c(t) vanish at infinity
i.e. limt→∞ a(t) = limt→∞ c(t) = 0.

Taking into account the above assumption we may define the following finite
constants:

A = sup{a(t) : t ∈ R+}, B = sup{b(t) : t ∈ R+},
C = sup{c(t) : t ∈ R+}, D = sup{d(t) : t ∈ R+}.

Now we formulate our last assumption.

(v) There exists a positive solution r0 of the inequality

‖p‖+
1

Γ(α)
(ArΦ(r) + Br + CΦ(r) + D) ≤ r

such that AΦ(r0) + B < Γ(α).

The main result of the paper is contained in the below given theorem.

Theorem 3.1. Under the assumptions (i)–(v) the integral equation (3.1) has
at least one solution x = x(t) in the space BC(R+). Moreover, solutions of the
equation (3.1) are uniformly locally attractive.
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Proof. Consider the operators F , U , V defined on the space BC(R+) by
the formulas

(Fx)(t) = f(t, x(t)),

(Ux)(t) =
1

Γ(α)

∫ t

0

u(t, s, x(s))
(t− s)1−α

ds,

(V x)(t) = p(t) + (Fx)(t)(Ux)(t).

Observe that on the basis of our assumptions, for any function x ∈ BC(R+) the
function Fx is continuous on R+.

Now we show that the same assertion holds also for the operator U . Let
us take an arbitrary function x ∈ BC(R+) and fix T > 0 and ε > 0. Assume
that t1, t2 ∈ [0, T ] are such that |t2 − t1| ≤ ε. Without loss of generality we can
assume that t1 < t2. So, taking into account our assumptions, we get:

(3.2) |(Ux)(t2)− (Ux)(t1)| ≤
1

Γ(α)

∣∣∣∣ ∫ t1

0

u(t2, s, x(s))
(t2 − s)1−α

ds

+
∫ t2

t1

u(t2, s, x(s))
(t2 − s)1−α

ds−
∫ t1

0

u(t1, s, x(s))
(t1 − s)1−α

ds

∣∣∣∣
≤ 1

Γ(α)

∣∣∣∣ ∫ t1

0

u(t2, s, x(s))
(t2 − s)1−α

ds−
∫ t1

0

u(t1, s, x(s))
(t2 − s)1−α

ds

∣∣∣∣
+

1
Γ(α)

∣∣∣∣ ∫ t1

0

u(t1, s, x(s))
(t2 − s)1−α

ds−
∫ t1

0

u(t1, s, x(s))
(t1 − s)1−α

ds

∣∣∣∣
+

1
Γ(α)

∣∣∣∣ ∫ t2

t1

u(t2, s, x(s))
(t2 − s)1−α

ds

∣∣∣∣
≤ 1

Γ(α)

∫ t1

0

|u(t2, s, x(s))− u(t1, s, x(s))|
(t2 − s)1−α

ds

+
1

Γ(α)

∫ t1

0

|u(t1, s, x(s))|
[

1
(t1 − s)1−α

− 1
(t2 − s)1−α

]
ds

+
1

Γ(α)

∫ t2

t1

|u(t2, s, x(s))|
(t2 − s)1−α

ds

≤ 1
Γ(α)

∫ t1

0

ωT
1 (u, ε, ‖x‖) 1

(t2 − s)1−α
ds

+
1

Γ(α)

∫ t1

0

[|u(t1, s, x(s))− u(t1, s, 0)|+ |u(t1, s, 0)|]

·
[

1
(t1 − s)1−α

− 1
(t2 − s)1−α

]
ds

+
1

Γ(α)

∫ t2

t1

|u(t2, s, x(s))− u(t2, s, 0)|+ |u(t2, s, 0)|
(t2 − s)1−α

ds

≤ ωT
1 (u, ε, ‖x‖)

Γ(α)
· tα2 − (t2 − t1)α

α
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+
1

Γ(α)

∫ t1

0

[n(t1, s)Φ(|x(s)|) + |u(t1, s, 0)|]

·
[

1
(t1 − s)1−α

− 1
(t2 − s)1−α

]
ds

+
1

Γ(α)

∫ t2

t1

n(t2, s)Φ(|x(s)|) + |u(t2, s, 0)|
(t2 − s)1−α

ds

≤ ωT
1 (u, ε, ‖x‖)
Γ(α + 1)

tα1 +
n(T )Φ(‖x‖) + u(T )

Γ(α + 1)
[tα1 − tα2 + (t2 − t1)α]

+
n(T )Φ(‖x‖) + u(T )

Γ(α + 1)
(t2 − t1)α

≤ 1
Γ(α + 1)

{tα1 ωT
1 (u, ε, ‖x‖) + 2(t2 − t1)α[n(T )Φ(‖x‖) + u(T )]

+ (t2 − t1)α[n(T )Φ(‖x‖) + u(T )]},

where we denoted

ωT
1 (u, ε, ‖x‖) = sup{|u(t2, s, y)− u(t1, s, y)| :

s, t1, t2 ∈ [0, T ], s ≤ t1, s ≤ t2, |t2 − t1| ≤ ε, |y| ≤ ‖x‖},

n(T ) = sup{n(t, s) : t, s ∈ [0, T ], s ≤ t},
u(T ) = sup{|u(t, s, 0)| : t, s ∈ [0, T ], s ≤ t}.

Clearly, owing to the uniform continuity of the function u(t, s, y) on the set
[0, T ] × [0, T ] × [−‖x‖, ‖x‖] we have that ωT

1 (u, ε, ‖x‖) → 0 as ε → 0. Thus, in
view of the estimate (3.2) we have

ωT (Ux, ε) ≤ 1
Γ(α + 1)

{TαωT
1 (u, ε, ‖x‖) + 3εα[n(T )Φ(‖x‖) + u(T )]}.

From the above inequality we deduce that the function Ux is continuous on the
inerval [0, T ] for any T > 0. This yields the continuity of Ux on R+. Finally we
infer that the function V x is continuous on R+.

Now, let us take an arbitrary function x ∈ BC(R+). Using our assumptions,
for a fixed t ∈ R+ we obtain:

(3.3) |(V x)(t)| ≤ |p(t)|+ 1
Γ(α)

[|f(t, x(t))− f(t, 0)|+ |f(t, 0)|]

·
∫ t

0

|u(t, s, x(s))− u(t, s, 0)|+ |u(t, s, 0)|
(t− s)1−α

ds

≤‖p‖+
m(t)|x(t)|+ |f(t, 0)|

Γ(α)

∫ t

0

n(t, s)Φ(|x(s)|) + |u(t, s, 0)|
(t− s)1−α

ds

≤‖p‖+
m(t)‖x‖Φ(‖x‖)

Γ(α)

∫ t

0

n(t, s)
(t− s)1−α

ds

+
Φ(‖x‖)|f(t, 0)|

Γ(α)

∫ t

0

n(t, s)
(t− s)1−α

ds
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+
m(t)‖x‖

Γ(α)

∫ t

0

|u(t, s, 0)|
(t− s)1−α

ds +
|f(t, 0)|
Γ(α)

∫ t

0

|u(t, s, 0)|
(t− s)1−α

ds

≤‖p‖+
1

Γ(α)
[‖x‖Φ(‖x‖)a(t) + ‖x‖b(t) + Φ(‖x‖)c(t) + d(t)].

Thus, in virtue of assumption (iv) we conclude that the function V x is bounded
on R+. This assertion in conjunction with the continuity of V x on R+ allows us
to infer that V x ∈ BC(R+). Besides, from estimate (3.3) we obtain

‖V x‖ ≤ ‖p‖+
1

Γ(α)
[A‖x‖Φ(‖x‖) + B‖x‖+ CΦ(‖x‖) + D].

Joining this estimate with assumption (v) we deduce that there exists r0 > 0
such that the operator V transforms the ball Br0 into itself.

In what follows, let us take a nonempty set X ⊂ Br0 . Then, for x, y ∈ X

and for an arbitrarily fixed t ∈ R+, in view of assumptions (ii)–(iv) we get:

|(V x)(t) − (V y)(t)|

≤
∣∣∣∣f(t, x(t))

Γ(α)

∫ t

0

u(t, s, x(s))
(t− s)1−α

ds− f(t, y(t))
Γ(α)

∫ t

0

u(t, s, y(s))
(t− s)1−α

ds

∣∣∣∣
≤ 1

Γ(α)
|f(t, x(t))− f(t, y(t))|

∫ t

0

|u(t, s, x(s))|
(t− s)1−α

ds

+
|f(t, y(t))|

Γ(α)

∫ t

0

|u(t, s, x(s))− u(t, s, y(s))|
(t− s)1−α

ds

≤ m(t)|x(t)− y(t)|
Γ(α)

∫ t

0

|u(t, s, x(s))− u(t, s, 0)|+ |u(t, s, 0)|
(t− s)1−α

ds

+
|f(t, y(t))− f(t, 0)|+ |f(t, 0)|

Γ(α)

∫ t

0

n(t, s)Φ(|x(s)− y(s)|)
(t− s)1−α

ds

≤ m(t)|x(t)− y(t)|
Γ(α)

∫ t

0

n(t, s)Φ(|x(s)|) + |u(t, s, 0)|
(t− s)1−α

ds

+
m(t)|y(t)|+ |f(t, 0)|

Γ(α)

∫ t

0

n(t, s)Φ(|x(s)|+ |y(s)|)
(t− s)1−α

ds

≤ m(t)(|x(s)|+ |y(s)|)Φ(r0)
Γ(α)

∫ t

0

n(t, s)
(t− s)1−α

ds

+
m(t)|x(t)− y(t)|

Γ(α)

∫ t

0

|u(t, s, 0)|
(t− s)1−α

ds

+
m(t)r0Φ(2r0)

Γ(α)

∫ t

0

n(t, s)
(t− s)1−α

ds +
|f(t, 0)|Φ(2r0)

Γ(α)

∫ t

0

n(t, s)
(t− s)1−α

ds

≤ 2r0Φ(r0)
Γ(α)

a(t) +
1

Γ(α)
b(t) diam X(t) +

r0Φ(2r0)
Γ(α)

a(t) +
Φ(2r0)
Γ(α)

c(t).

From the above estimate we derive the following inequality:

diam(V X)(t)≤ 2r0Φ(r0)
Γ(α)

a(t)+
r0Φ(2r0)

Γ(α)
a(t)+

Φ(2r0)
Γ(α)

c(t)+
1

Γ(α)
b(t) diam X(t).
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Hence, by assumption (iv) we have

(3.4) lim sup
t→∞

diam(V X)(t) ≤ k lim sup
t→∞

diam X(t),

where we denoted k = [AΦ(r0) + B]/Γ(α). Evidently, on account of assump-
tion (v) we have that k < 1.

Further, let us take arbitrary numbers T > 0 and ε > 0. Next, fix arbitrarily
a function x ∈ X and t1, t2 ∈ [0, T ] such that |t2 − t1| ≤ ε. Without loss of
generality we may assume that t1 < t2. Then, in view of our assumptions and
the preceding obtained estimate (3.2) we obtain:

(3.5) |(V x)(t2)− (V x)(t1)|
≤ |p(t2)− p(t1)|+ |(Fx)(t2)(Ux)(t2)− (Fx)(t1)(Ux)(t2)|

+ |(Fx)(t1)(Ux)(t2)− (Fx)(t1)(Ux)(t1)|

≤ωT (p, ε) + |f(t2, x(t2))− f(t1, x(t1))|
1

Γ(α)

∫ t2

0

|u(t2, s, x(s))|
(t2 − s)1−α

ds

+
|f(t1, x(t1))|

Γ(α + 1)
{TαωT

1 (u, ε, r0) + 3εα[n(T )Φ(r0) + u(T )]}

≤ωT (p, ε) +
[
|f(t2, x(t2))− f(t2, x(t1))|

Γ(α)
+
|f(t2, x(t1))− f(t1, x(t1))|

Γ(α)

]
·
∫ t2

0

|u(t2, s, x(s))− u(t2, s, 0)|+ |u(t2, s, 0)|
(t2 − s)1−α

ds

+
|f(t1, x(t1))− f(t1, 0)|+ |f(t1, 0)|

Γ(α + 1)

· {TαωT
1 (u, ε, r0) + 3εα[n(T )Φ(r0) + u(T )]}

≤ωT (p, ε) +
m(t2)|x(t2)− x(t1)|+ ωT

1 (f, ε)
Γ(α)

·
∫ t2

0

n(t2, s)Φ(|x(s)|) + |u(t2, s, 0)|
(t2 − s)1−α

ds

+
m(t1)|x(t1)|+ |f(t1, 0)|

Γ(α + 1)
{TαωT

1 (u, ε, r0) + 3εα[n(T )Φ(r0) + u(T )]}

≤ωT (p, ε) +
m(t2)ωT (x, ε) + ωT

1 (f, ε)
Γ(α)

·
( ∫ t2

0

n(t2, s)Φ(r0)
(t2 − s)1−α

ds +
∫ t2

0

|u(t2, s, 0)|
(t2 − s)1−α

ds

)
+

m(T )r0 + f(T )
Γ(α + 1)

{TαωT
1 (u, ε, r0) + 3εα[n(T )Φ(r0) + u(T )]}

≤ωT (p, ε) +
(

Φ(r0)m(t2)
Γ(α)

∫ t2

0

n(t2, s)
(t2 − s)1−α

ds

+
m(t2)
Γ(α)

∫ t2

0

|u(t2, s, 0)|
(t2 − s)1−α

ds

)
ωT (x, ε)
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+
ωT

1 (f, ε)
Γ(α + 1)

(n(T )Φ(r0) + u(T ))tα2

+
m(T )r0 + f(T )

Γ(α + 1)
{TαωT

1 (u, ε, r0) + 3εα[n(T )Φ(r0) + u(T )]}

≤ωT (p, ε) +
(

Φ(r0)a(t2)
Γ(α)

+
b(t2)
Γ(α)

)
ωT (x, ε)

+
ωT

1 (f, ε)
Γ(α + 1)

(n(T )Φ(r0) + u(T ))tα2

+
m(T )r0 + f(T )

Γ(α + 1)
{TαωT

1 (u, ε, r0) + 3εα[n(T )Φ(r0) + u(T )]}

≤ωT (p, ε) +
AΦ(r0) + B

Γ(α)
ωT (x, ε) +

ωT
1 (f, ε)

Γ(α + 1)
(n(T )Φ(r0) + u(T ))tα2

+
m(T )r0 + f(T )

Γ(α + 1)
{TαωT

1 (u, ε, r0) + 3εα[n(T )Φ(r0) + u(T )]},

where we denoted

ωT
1 (f, ε) = sup{|f(t2, x)− f(t1, x)| : t1, t2 ∈ [0, T ], |t2 − t1| ≤ ε, x ∈ [−r0, r0]},

m(T ) = max{m(t) : t ∈ [0, T ]}, f(T ) = max{|f(t, 0)| : t ∈ [0, T ]}.

Now, keeping in mind the uniform continuity of the function u = u(t, s, x) on the
set [0, T ]× [0, T ]× [−r0, r0] and the uniform continuity of the function f = f(t, x)
on the set [0, T ]× [−r0, r0], from the estimate (3.5) we derive the following one:

ωT
0 (V X) ≤ AΦ(r0) + B

Γ(α)
ωT

0 (X) = kωT
0 (X).

Consequently, we obtain:

(3.6) ω0(V X) ≤ kω0(X).

Finally, linking (3.4) and (3.6) and the definition of the measure of noncompact-
ness µ given by the formula (2.1), we derive the following inequality

(3.7) µ(V X) ≤ kµ(X).

Further on, let us put B1
r0

= Conv V (Br0), B2
r0

= Conv V (B1
r0

) and so on.
Consider the sequence of sets (Bn

r0
). Observe that this sequence is decreasing i.e.

Bn+1
r0

⊂ Bn
r0

for n = 1, 2, . . . Moreover, the sets of this sequence are nonempty,
closed and convex. Hence, in view of (3.7) we obtain

µ(Bn
r0

) ≤ knµ(Br0)

for n = 1, 2, . . . This yields that limn→∞ µ(Bn
r0

) = 0, because k < 1 (cf. as-
sumption (v)). Thus, keeping in mind Definition 2.1 we infer that the set
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Y =
⋂∞

n=1 Bn
r0

is nonempty, bounded, closed and convex. So, the set Y be-
longs to the kernel kerµ. In particular, we get

(3.8) lim sup
t→∞

diam Y (t) = lim
t→∞

diam Y (t) = 0.

Let us also note that the operator V transforms the set Y into itself.
Next we show that the operator V is continuous on the set Y . To prove

this let us fix a number ε > 0 and take arbitrary functions x, y ∈ Y such that
‖x− y‖ ≤ ε. Using (3.8) and the fact that V Y ⊂ Y we obtain that there exists
T > 0 such that for an arbitrary t ≥ T we get

(3.9) |(V x)(t)− (V y)(t)| ≤ ε.

Furthermore, let us assume that t ∈ [0, T ]. Then, employing the imposed
assumptions and estimating similarly as above, we have

(3.10) |(V x)(t) − (V y)(t)|

≤ 1
Γ(α)

∣∣∣∣f(t, x(t))
∫ t

0

u(t, s, x(s))
(t− s)1−α

ds− f(t, y(t))
∫ t

0

u(t, s, x(s))
(t− s)1−α

ds

+ f(t, y(t))
∫ t

0

u(t, s, x(s))
(t− s)1−α

ds− f(t, y(t))
∫ t

0

u(t, s, y(s))
(t− s)1−α

ds

∣∣∣∣
≤ 1

Γ(α)
|f(t, x(t))− f(t, y(t))|

∫ t

0

|u(t, s, x(s))|
(t− s)1−α

ds

+
|f(t, y(t))|

Γ(α)

∫ t

0

|u(t, s, x(s))− u(t, s, y(s))|
(t− s)1−α

ds

≤ m(t)|x(t)− y(t)|
Γ(α)

∫ t

0

|u(t, s, x(s))− u(t, s, 0)|+ |u(t, s, 0)|
(t− s)1−α

ds

+
|f(t, y(t))− f(t, 0)|+ |f(t, 0)|

Γ(α)

∫ t

0

n(t, s)Φ(|x(s)− y(s)|)
(t− s)1−α

ds

≤ m(t)ε
Γ(α)

∫ t

0

n(t, s)Φ(|x(s)|) + |u(t, s, 0)|
(t− s)1−α

ds

+
m(t)|y(t)|+ |f(t, 0)|

Γ(α)

∫ t

0

n(t, s)Φ(ε)
(t− s)1−α

ds

≤ εΦ(r0)
Γ(α)

a(t) +
ε

Γ(α)
b(t) +

r0Φ(ε)
Γ(α)

a(t) +
Φ(ε)
Γ(α)

c(t)

≤ AΦ(r0) + B

Γ(α)
ε +

Ar0 + C

Γ(α)
Φ(ε).

Now, linking (3.9) and (3.10) and the assumption (iv) we deduce that the oper-
ator V transforms continuously the set Y into itself.

Finally, let us observe that taking into account all facts concerning the set Y

and the operator V :Y → Y and applying the classical Schauder fixed point
principle we infer that V has at least one fixed point x belonging to the set Y .
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Obviously the function x = x(t) is a solution of the integral equation (3.1). Since
Y ∈ ker µ we conclude that all solutions of the equation (3.1) are uniformly
locally attractive in the sense of Definition 2.3. This completes the proof. �

4. An example

In this section our aim is to illustrate main result contained in Theorem 3.1.

Example4.1. Consider the following quadratic Volterra integral equation of
fractional order

(4.1) x(t) = t2e−4t+
L(x + 1)

(t2 + 1)Γ(1/2)

∫ t

0

√
t3 3

√
x2(s)/(

√
t− s + 1)+t2e−

√
t−s

(t− s)1/2
ds,

where t ∈ R+ and L is a positive constant.
Observe that the above equation is a special case of equation (3.1). Indeed,

putting α = 1/2 and

p(t) = t2e−4t, f(t, x) =
L(x + 1)
t2 + 1

, u(t, s, x) =

√
t3

3
√

x2

√
t− s + 1

+ t2e−
√

t−s,

we can easily see that there are satisfied the assumptions of Theorem 3.1. In
fact, we have that p is continuous and bounded on R+ and ‖p‖ = 0.03383382 . . .

This shows that assumption (i) is satisfied.
Next, observe that the function f(t, x) satisfies assumption (ii) with m(t) =

L/(t2 + 1) and f(t, 0) = L/(t2 + 1).
Further notice that the function u(t, s, x) satisfies assumption (iii), where

n(t, s) =
√

t3/(
√

t− s + 1), Φ(r) = 3
√

r2 and u(t, s, 0) = t2e−
√

t−s.
In order to check that assumption (iv) is satisfied let us notice that the

functions a, b, c, d appearing in that assumption have form

a(t) =
L t3/2

t2 + 1

∫ t

0

ds√
t− s(

√
t− s + 1)

= 2L
t3/2 ln(

√
t + 1)

t2 + 1
,

b(t) =
L t2

t2 + 1

∫ t

0

e−
√

t−s

√
t− s

ds = 2L
t2(1− e−

√
t)

t2 + 1
,

c(t) =
L t3/2

t2 + 1

∫ t

0

ds√
t− s(

√
t− s + 1)

= 2L
t3/2 ln(

√
t + 1)

t2 + 1
,

d(t) =
L t2

t2 + 1

∫ t

0

e−
√

t−s

√
t− s

ds = 2L
t2(1− e−

√
t)

t2 + 1
.

Now, let us observe that a(t) → 0 as t → ∞. Moreover, applying the standard
inequality

ln(
√

t + 1) ≤
√

t

for t ≥ 0 we infer that A ≤ 2L.
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Further on, we have that b(t) is bounded on R+ and B = 2L. Moreover, it
is easy to check that c(t) → 0 as t → ∞ and (similarly as above) we have that
C ≤ 2L. Finally, we can also verify that d(t) is bounded on R+ and D = 2L.

Now, let us consider the inequality from assumption (v) which has the form

(4.2) ‖p‖+
1

Γ(1/2)
(Ar

3
√

r2 + Br + C
3
√

r2 + D) ≤ r.

Observe that taking into account that Γ(1/2) =
√

π (cf. [10]) and keeping in
mind the above obtained estimates of the constants ‖p‖ , A, B, C, D we deduce
that the number r0 = 1 is a solution of the inequality (4.2) for L ≤ 0.214. It is
easily seen that AΦ(r0)+B ≤ 2L[Φ(r0)+1] = 2L[Φ(1)+1] = 4L < Γ(1/2). Thus,
in view of Theorem 3.1 we conclude that the equation (4.1) has a solution in the
space BC(R+) belonging to the ball B1. Moreover, all solutions of equation (4.1)
which belongs to B1 are uniformly locally attractive in the sense of Definition 2.3.
This means that for arbitrary solutions x(t) and y(t) of equation (4.1) belonging
to B1 we have that

lim
t→∞

(x(t)− y(t)) = 0

uniformly with respect to the ball B1.
It is also worthwhile mentioning that the equation (3.1) is considered in [3],

where in assumption (iii) the authors take into account the function n depending
on t and continuous on R+. We assume in (iii) that exists the function n = n(t, s)
which depends on two variables t, s and is continuous on R+×R+. Thus the result
contained in our Theorem 3.1 creates an essential generalization of that from [3],
where the function n depends on the variable t only. It can be checked that
functions involved in equation (4.1) do not satisfy assumptions of the existence
result proved in [3].
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