Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 32, 2008, 41–47

ON SINGULAR NONPOSITONE SEMILINEAR ELLIPTIC PROBLEMS

DINH DANG HAI

ABSTRACT. We prove the existence of a large positive solution for the boundary value problems $% \left({{{\rm{ABSTRACT}}} \right)$

$$\begin{aligned} -\Delta u &= \lambda (-h(u) + g(x, u)) & \text{in } \Omega, \\ u &= 0 & \text{on } \partial\Omega, \end{aligned}$$

where Ω is a bounded domain in \mathbb{R}^N , λ is a positive parameter, $g(x, \cdot)$ is sublinear at ∞ , and h is allowed to become ∞ at u = 0. Uniqueness is also considered.

1. Introduction

Consider the boundary value problems

(1.1)
$$\begin{aligned} -\Delta u &= \lambda (-h(u) + g(x, u)) \quad \text{in } \Omega, \\ u &= 0 \qquad \text{on } \partial \Omega \end{aligned}$$

where Ω is a bounded domain in \mathbb{R}^N with a smooth boundary $\partial\Omega$, $h: (0, \infty) \to [0, \infty), g: \overline{\Omega} \times [0, \infty) \to \mathbb{R}$, and λ is a positive parameter.

The existence and uniqueness of positive (1.1) when $f(x, u) \equiv -h(u)+g(x, u)$ is nonnegative and sublinear at ∞ have been studied extensively (see [2], [3], [5]–[9] and the references therein). We are interested here in studying positive solutions of (1.1) in the challenging case when f(x, u) becomes $-\infty$ at u = 0,

²⁰⁰⁰ Mathematics Subject Classification. 35J25, 35J65.

Key words and phrases. Positive solutions, singular BVP, nonpositone.

^{©2008} Juliusz Schauder Center for Nonlinear Studies

D. D. HAI

which does not appear to have been considered in the literature. Our main result, in particular, gives the existence of a large positive solution for the problem

$$-\Delta u = \lambda \left(\frac{-1}{u^{\alpha} \ln^{\beta} (1+u)} + u^{\gamma} + k(x) \right) \quad \text{in } \Omega,$$
$$u = 0 \qquad \qquad \text{on } \partial\Omega,$$

for λ large, where $\alpha, \beta \geq 0$, $\alpha + \beta < \min(1, 2/N)$, $0 < \gamma < 1$ and $k \in C(\overline{\Omega})$. Uniqueness in a class of large positive solutions is also obtained. Our approach is based on the Schauder Fixed Point Theorem.

2. Main results

We make the following assumptions:

- (A.1) $h: (0, \infty) \to [0, \infty)$ is of class C^1 , nonincreasing, $h(u) \to 0$ as $u \to \infty$, and there exists $p > \max(1, N/2)$ such that $h \in L^p(0, T)$ for all T > 0.
- (A.2) $g: \overline{\Omega} \times [0, \infty) \to \mathbb{R}$ is continuous and nondecreasing in u.
- (A.3) There exist positive numbers L, L_1 such that g(x, u) > 2L for $x \in \Omega$, $u > L_1$, and

$$\lim_{u \to \infty} \frac{g(x, u)}{u} = 0$$

uniformly for $x \in \Omega$.

- (A.4) There exists $q \in (0,1)$ such that $g(x,u)/u^q$ is nonincreasing for each $x \in \Omega$.
- (A.5) There exists a positive number m such that

$$\sup_{x\in\Omega}g(x,u)\leq m\inf_{x\in\Omega}g(x,u)\quad\text{for all }u>0.$$

Let ϕ be the solution of

$$-\Delta \phi = 1$$
 in Ω , $\phi = 0$ on $\partial \Omega$.

By a solution of (1.1), we mean a function $u \in C^1(\overline{\Omega})$ which satisfies (1.1) in the weak sense. Our main result is

THEOREM 2.1. Let (A.1)–(A.3) hold. Then there exists a positive number λ_0 such that for $\lambda > \lambda_0$, problem (1.1) has a solution u with $u \ge \lambda L\phi$ in Ω . If, in addition, (A.4) and (A.5) hold, then the solution is unique in this class.

LEMMA 2.2. Let (A.1) hold. Then $h(c\phi) \in L^p(\Omega)$ for all c > 0.

PROOF. By the maximum principle, there exists a constant $k_1 > 0$ such that $\phi \ge k_1 d$ in Ω , where $d(x) = d(x, \partial \Omega)$. Hence it suffices to prove the result with ϕ replaced by d. This is now obvious because near a point of $\partial \Omega$, we can choose local coordinates for Ω where a(x) is one of the co-ordinates (and the

other co-ordinates are co-ordinates of $\partial \Omega$). Note that there will be a Jacobian in the change of variables but this will be bounded.

LEMMA 2.3. Let (A.1)–(A.5) hold. Then there exist positive numbers λ^* , c_1 , c_2 such that, if u is a solution of (1.1) with $\lambda > \lambda^*$ and

$$u \ge \lambda L \phi \quad in \ \Omega$$

then

$$c_1 G^{-1}(\lambda)\phi \le u \le c_2 G^{-1}(\lambda)\phi$$
 in Ω ,

where

$$G(z) = \frac{z}{\widetilde{g}(z)}, \quad \widetilde{g}(z) = \inf_{x \in \Omega} g(x, z), \quad z > L_1.$$

PROOF. Note that G is increasing on $(0, \infty)$ and $G(z) \to \infty$ as $z \to \infty$, by (A.4). Let u be a solution of (1.1) satisfying $u \ge \lambda L\phi$ in Ω with $\lambda > \lambda^*$, where $\lambda^* > 0$ is to be chosen later. Define $\delta = \sup\{c > 0 : u \ge c\phi \text{ in } \Omega\}$. Then $\delta \ge \lambda L$ and $u \ge \delta\phi$ in Ω . Let v_{λ} satisfy

$$-\Delta v_{\lambda} = h(\delta \phi)$$
 in Ω , $v_{\lambda} = 0$ on $\partial \Omega$.

Since $h(\lambda L\phi) \to 0$ pointwise in Ω as $\lambda \to \infty$ and

$$h(\lambda L\phi) \le h(\lambda^* L\phi) \in L^p(\Omega),$$

by Lemma 2.2, it follows from the Lebesgue dominated convergence theorem that $||h(\lambda L\phi)||_{L^p} \to 0$ as $\lambda \to \infty$. Since $p > \max(1, N/2)$, we have that $v_\lambda \in C^1(\overline{\Omega})$ and

(2.1)
$$|v_{\lambda}|_{C^{1}} \leq M ||v_{\lambda}||_{W^{2,p}} \leq M_{1} ||h(\delta\phi)||_{L^{p}} \leq M_{1} ||h(\lambda L\phi)||_{L^{p}}$$

(see [1], [4]), and hence $|v_{\lambda}|_{C^1} \to 0$ as $\lambda \to \infty$.

Let K > 0 be such that

$$(2.2) g(x,u) \ge -K$$

for all $x \in \Omega$, u > 0. Then we have, for $\lambda^* > L_1/L|\phi|_{\infty}$,

$$-\Delta(u + \lambda v_{\lambda}) = \lambda(-h(u) + g(x, u)) + \lambda h(\delta \phi) \ge \lambda \widetilde{g}(\delta \phi)$$

$$= \lambda(\widetilde{g}(\delta \phi) \chi_{\{x:\phi(x) > L_{1}/\lambda L\}} - K \chi_{\{x:\phi(x) \le L_{1}/\lambda L\}})$$

$$= \lambda \left(\frac{\delta \phi}{G(\delta \phi)} \chi_{\{x:\phi(x) > L_{1}/\lambda L\}} - K \chi_{\{x:\phi(x) \le L_{1}/\lambda L\}}\right)$$

$$\ge \lambda \left[\frac{\delta \phi}{G(\delta |\phi|_{\infty})} - \left(\frac{\delta |\phi|_{\infty}}{G(\delta |\phi|_{\infty})} + K\right) \chi_{\{x:\phi(x) \le L_{1}/\lambda L\}}\right]$$

where χ_B denotes the characteristic function of B, i.e. $\chi_B(x) = 1$ if $x \in B$, 0 if $x \notin B$. This implies

$$u + \lambda v_{\lambda} \ge \lambda \left(\frac{\delta}{G(\delta|\phi|_{\infty})} \psi - \left(\frac{\delta|\phi|_{\infty}}{G(\delta|\phi|_{\infty})} + K \right) w_{\lambda} \right),$$

in Ω , where ψ and w_{λ} satisfy

$$-\Delta \psi = \phi \quad \text{in } \Omega, \qquad \psi = 0 \quad \text{on } \partial \Omega,$$

and

 $-\Delta w_{\lambda} = \chi_{\{x:\phi(x) \leq L_1/\lambda L\}} \quad \text{in } \Omega, \qquad w_{\lambda} = 0 \quad \text{ on } \partial \Omega,$

respectively. Note that $|w_{\lambda}|_{C^1} \to 0$ as $\lambda \to \infty$. Consequently, for λ^* large,

$$\begin{split} u &\geq \lambda \left(\frac{\delta}{G(\delta|\phi|_{\infty})} \psi - \left(\frac{\delta|\phi|_{\infty}}{G(\delta|\phi|_{\infty})} + K \right) w_{\lambda} - v_{\lambda} \right) \\ &\geq \lambda \left(\frac{\delta}{G(\delta|\phi|_{\infty})} \psi - \left(\frac{\delta|\phi|_{\infty}}{G(\delta|\phi|_{\infty})} + K \right) |w_{\lambda}|_{C^{1}} d - |v_{\lambda}|_{C^{1}} d \right) \\ &\geq \lambda \left(\frac{\delta k_{0}}{G(\delta|\phi|_{\infty})} - \left(\frac{\delta|\phi|_{\infty}}{G(\delta|\phi|_{\infty})} + K \right) k |w_{\lambda}|_{C^{1}} - |v_{\lambda}|_{C^{1}} k \right) \phi \geq \frac{\lambda \delta k_{0}}{2G(\delta|\phi|_{\infty})} \phi, \end{split}$$

where k and k_0 are positive numbers such that $\psi \ge k_0 \phi$, $d \le k \phi$ in Ω . Here we have used the fact that

$$\frac{\delta k_0}{G(\delta|\phi|_{\infty})} = \frac{k_0}{|\phi|_{\infty}} \widetilde{g}(\delta|\phi|_{\infty}) \ge \frac{k_0}{|\phi|_{\infty}} \widetilde{g}(L_1) > 0.$$

By the maximality of δ , we obtain $\lambda \delta k_0 / (2G(\delta |\phi|_{\infty})) \leq \delta$ or

$$\delta \ge \frac{1}{|\phi|_{\infty}} G^{-1} \left(\frac{\lambda k_0}{2}\right).$$

Using (A.4), it can be verified that for C > 0 and $\lambda > G(L_1) \max(1, C)$,

$$\frac{1}{\max(1, C^{-1/(1-q)})} G^{-1}(\lambda) \le G^{-1}(\lambda C) \le \max(1, C^{1/(1-q)}) G^{-1}(\lambda),$$

and hence $\delta \geq c_1 G^{-1}(\lambda) \phi$ in Ω , where c_1 is a positive constant depending only on $k_0, |\phi|_{\infty}$.

Next, using (A.5), we obtain

(2.3)
$$-\Delta u \le \lambda g(x, u) \le \lambda m \widetilde{g}(|u|_{\infty}),$$

which implies

$$u \le \lambda m \widetilde{g}(|u|_{\infty})\phi$$

in $\Omega.$ Hence

$$G(|u|_{\infty}) \le \lambda m |\phi|_{\infty},$$

or, equivalently,

$$u|_{\infty} \le G^{-1}(\lambda m |\phi|_{\infty}).$$

Using this in (2.3), we infer that

$$-\Delta u \le \lambda m \widetilde{g}(G^{-1}(\lambda m |\phi|_{\infty})),$$

and so

$$u \leq \lambda m \widetilde{g}(G^{-1}(\lambda m |\phi|_{\infty}))\phi = \frac{G^{-1}(\lambda m |\phi|_{\infty})}{|\phi|_{\infty}}\phi \leq c_2 G^{-1}(\lambda)\phi,$$

44

where c_2 is a positive constant depending only on m and $|\phi|_{\infty}$. This completes the proof of Lemma 2.3.

PROOF OF THEOREM 2.1. Let $\lambda > \lambda_0 > 0$ and define $\mathbf{K} = \{u \in C(\overline{\Omega}) : \lambda L\phi \leq u \leq c_{\lambda} \text{ in } \Omega\}$, where c_{λ} and λ_0 are large numbers to be chosen later. For $u \in \mathbf{K}$, we have $h(u) \leq h(\lambda L\phi)$ since h is nonincreasing. By Lemma 2.2, $h(u) \in L^p(\Omega)$ and so the problem

$$-\Delta v = \lambda(-h(u) + g(x, u)) \quad \text{in } \Omega,$$
$$v = 0 \qquad \qquad \text{on } \partial\Omega$$

has a unique solution $v = Au \in W_0^{2,p}(\Omega) \cap C^1(\overline{\Omega})$. We shall verify that $A: \mathbf{K} \to \mathbf{K}$ if λ_0 is large enough. Let v = Au for some $u \in \mathbf{K}$. Let z_{λ} satisfy

(2.4)
$$-\Delta z_{\lambda} = h(\lambda L \phi) \quad \text{in } \Omega, \qquad z_{\lambda} = 0 \quad \text{on } \partial \Omega,$$

and note that $|z_{\lambda}|_{C^1} \to 0$ as $\lambda \to \infty$. Then we have

(2.5)
$$-\Delta(v + \lambda z_{\lambda}) = -\lambda h(u) + \lambda g(x, u) + \lambda h(\lambda L\phi) \ge \lambda g(x, u)$$

in
$$\Omega$$
. By (A.2),

(2.6)
$$g(x, u) \ge 2L\chi_{\{x:u(x)>L_1\}} - K\chi_{\{x:u(x)\leq L_1\}} = 2L - (K+2L)\chi_{\{x:u(x)\leq L_1\}},$$

where K is defined in (2.2). Let ψ_{λ} satisfy

$$-\Delta\psi_{\lambda} = \chi_{\{x:u(x) < L_1\}} \quad \text{in } \Omega, \qquad \psi_{\lambda} = 0 \quad \text{on } \partial\Omega,$$

and note that

$$\{x \in \Omega : u(x) \le L_1\} \subseteq \{x \in \Omega : \phi(x) < L_1/(\lambda L)\}$$

and the Lebesgue measure of the latter set goes to 0 as λ goes to ∞ . Hence

$$||\chi_{\{x:u(x) < L_1\}}||_{L^p} \le ||\chi_{\{x:\phi(x) \le L_1/\lambda L\}}||_{L^p} \to 0 \quad \text{as } \lambda \to \infty$$

and therefore $|\psi_{\lambda}|_{C^1} \to 0$ as $\lambda \to \infty$. From (2.5), (2.6) and the comparison principle, we obtain

$$v + \lambda z_{\lambda} \ge 2\lambda L\phi - \lambda (K + 2L)\psi_{\lambda},$$

in Ω , which implies

$$\begin{split} v &\geq 2\lambda L\phi - \lambda z_{\lambda} - \lambda (K+2L)\psi_{\lambda} \\ &\geq 2\lambda L\phi - \lambda |z_{\lambda}|_{C^{1}}d - \lambda (K+2L)|\psi_{\lambda}|_{C^{1}}d \\ &\geq \lambda [2L - |z_{\lambda}|_{C^{1}}k - (K+2L)k|\psi_{\lambda}|_{C^{1}}]\phi \geq \lambda L\phi \end{split}$$

for λ large enough so that $|z_{\lambda}|_{C^1}k + (K+2L)k|\psi_{\lambda}|_{C^1} < L$, which is achieved if λ_0 is chosen so that

$$kM_1||h(\lambda_0 L\phi)||_{L^p} + k(K+2L)M_1||\chi_{\{x:\phi(x) < L_1/\lambda_0 L\}}||_{L^p} < L,$$

where M_1 is defined in (2.1).

Next, we have

$$-\Delta v \le \lambda g(x, u) \le \lambda m \widetilde{g}(|u|_{\infty}) \le \lambda m \widetilde{g}(c_{\lambda}),$$

where \tilde{g} is defined in Lemma 2.2. By the comparison principle and the fact that $\lim_{z\to\infty} \tilde{g}(z)/z = 0$, we infer that

$$v \le \lambda m \widetilde{g}(c_{\lambda}) \phi \le \lambda m \widetilde{g}(c_{\lambda}) |\phi|_{\infty} \le c_{\lambda}$$

in Ω if c_{λ} is large enough. Thus, for $\lambda > \lambda_0$, A maps **K** into itself and the Schauder fixed point theorem gives the existence of a solution u of (1.1) in **K**.

Next, suppose that (A.4), (A.5) hold and let u, u_1 be solutions of (1.1) satisfying $u \ge \lambda L \phi$ in Ω . By increasing λ_0 if necessary, we assume that $\lambda_0 > \lambda^*$, where λ^* is given by Lemma 2.2. By Lemma 2.2, $u \ge (c_1/c_2)u_1$ in Ω . Let τ be the maximum number such that $u \ge \tau u_1$ in Ω . Then $\tau \ge c_1/c_2 \equiv c_0$. Suppose that $\tau < 1$. We shall show that this leads to a contradiction. By (A.2) and (A.4),

$$\begin{aligned} -\Delta u &= \lambda (-h(u) + g(x, u)) \\ &\geq \lambda (-h(\tau u_1) + g(x, \tau u_1) \geq -\lambda h(\tau u_1) + \lambda \tau^q g(x, u_1), \end{aligned}$$

which implies

(2.7)
$$-\Delta(u-\tau^q u_1) \ge \lambda(\tau^q h(u_1) - h(\tau u_1)).$$

By the mean value theorem,

$$|(\tau^{q}h(u_{1}) - h(\tau u_{1}))| = (1 - \tau)|(u_{1}h'(cu_{1}) - qc^{q-1}h(u_{1}))|,$$

where c is between τ and 1. Since $th'(t) \leq h(t)$ for t > 0,

$$|u_1h'(cu_1) - qc^{q-1}h(u_1)| \le (c^{-1} + qc_0^{q-1})h(c_0u_1) \le (c_0^{-1} + qc_0^{q-1})h(\lambda Lc_0\phi),$$

it follows from (2.7) that

(2.8)
$$u - \tau^q u_1 \ge -\lambda(1-\tau)c_3 \widetilde{z}_\lambda$$

in Ω , where $c_3 = c_0^{-1} + q c_0^{q-1}$ and \tilde{z}_{λ} satisfies

$$-\Delta \widetilde{z}_{\lambda} = h(\lambda L c_0 \phi) \quad \text{in } \Omega, \qquad \widetilde{z}_{\lambda} = 0 \quad \text{on } \partial \Omega.$$

Since $\tau^q - \tau \ge \tau^q (1-q)(1-\tau)$ and $|\tilde{z}_{\lambda}|_{C^1} \to 0$ as $\lambda \to \infty$, it follows from (2.8) that

$$u - \tau u_1 = u - \tau^q u_1 + (\tau^q - \tau) u_1 \ge (\tau^q - \tau) u_1 - \lambda (1 - \tau) c_3 \widetilde{z}_\lambda$$

$$\ge \lambda (1 - \tau) [c_0^q L(1 - q) - c_3] \widetilde{z}_\lambda |_{C^1} k] \phi \ge \frac{\lambda (1 - \tau) c_0^q L(1 - q)}{2} \phi$$

46

for λ large enough, a contradiction with the maximality of τ . Thus $\tau \geq 1$, which completes the proof of Theorem 2.1.

Acknowledgements. The author thanks the referee for suggesting the short proof of Lemma 2.1.

References

- [1] H. BREZIS, Analyse Functionnelle, Theorie et Applications, second edition, Masson, Paris, 1983.
- [2] H. BREZIS AND L. OSWALD, Remarks on sublinear elliptic equations, Nonlinear Anal. 12 (1988), 1203–1219.
- E. N. DANCER, On the number of positive solutions of semilinear elliptic systems, Proc. London. Math. Soc. 53 (1986), 429–452.
- [4] D. GILBARG AND N. S. TRUNDINGER, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1977.
- [5] D. D. HAI AND R. C. SMITH, On uniqueness for a class of nonlinear boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), 779–784.
- [6] S. S. LIN, On the number of positive solutions for nonlinear elliptic equations when a parameter is large, Nonlinear Anal. 16 (1991), 283–297.
- P. L. LIONS, On the existence of positive solutions of semilinear elliptic equations, Siam Rev. 24 (1982), 441–467.
- [8] V. SCHUCHMAN, About uniqueness for nonlinear boundary value problems, Math. Ann. 267 (1984), 537–542.
- M. WIEGNER, A uniqueness theorem for some nonlinear boundary value problems with a large parameter, Math. Ann. 270 (1985), 401–402.

Manuscript received October 2, 2007

DINH DANG HAI Department of Mathematics Mississippi State University Mississippi State, MS 39762, USA *E-mail address*: dang@math.msstate.edu

TMNA : Volume 32 - 2008 - N° 1