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CHINESE MATHEMATICS FOR NONLINEAR OSCILLATORS

Ling Zhao

Abstract. Ancient Chinese mathematicians made dramatic progress to-

ward answering one of the oldest, most fundamental problem of how to solve

approximately a real root of a nonlinear algebra equation in about 2nd cen-
tury BC. The idea was further extended to nonlinear differential equations

by J. H. He in 2002. In this paper, J. H. He’s frequency-amplitude forma-
tion is used to find periodic solution of a pure nonlinear oscillator (without

a linear term). The obtained result is of remarkable accuracy.

1. Introduction

In this paper, we consider the following nonlinear oscillator,

(1.1) u′′ + εu3, u(0) = A, u′(0) = 0.

No linear term is included in the above equation, and the classical perturbation
method becomes invalid even when ε� 1.

Recently, many new approaches to nonlinear oscillators have been proposed.
For example, the variational iteration method [3], [11], [15], the homotopy per-
turbation method [1], [5], [6], [12], [13], [16], the parameter-expanding method
[7], [14], exp-function method [10], [17], [18]. A review on recently developed
analytical methods is available in papers [7] and [8]. In this paper we will use
an ancient Chinese method to solve the problem.
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2. An ancient Chinese method

Jiu Zhang Suan Shu, “Nine Chapters on the Art of Mathematics”, comprised
of nine chapters and hence its title, is the oldest and most influential work in
the history of Chinese mathematics. The Chapter 7 of the “Nine Chapters” is
the Ying Buzu Shu (literally “Method of Surplus and Deficiency”) [4], [9], an
ancient Chinese algorithm, which is the oldest method for approximating real
roots of a nonlinear equation in about the 2nd century B.C. known as the rule
of double false position in the West after 1202 A.D.

To illustrate the basic idea of the method, we consider an algebraic equation,

f(x) = 0.

Let x1 and x2 be the approximate solutions of the equation, which lead to the
remainders and, respectively, the ancient Chinese algorithm leads to the result

x =
x2f(x1)− x1f(x2)

f(x1)− f(x2)
.

Figure 1. εA2 = 0.1

3. He’s frequency-amplitude relationship

We consider a generalized nonlinear oscillator in the form

u′′ + f(u) = 0, u(0) = A, u′(0) = 0.

We use two trial functions u1(t)A cos t and u2 = A cos ωt, which are, respectively,
the solutions of the following linear oscillator equations (see [7])

u′′ + ω2
1u = 0, ω2

1 = 1 and u′′ + ω2
2u = 0, ω2

2 = ω2
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Figure 2. εA2 = 100

Figure 3. εA2 = 5000

where ω is assumed to be the frequency of the nonlinear oscillator. The residuals
are

R1(t) = −cost + f(A cos t), R2(t) = −ω2 cos t + f(A cos ωt).

According to the ancient Chinese method, we have (see [7]):

ω2 =
ω2

1R2(T2/N)− ω2
2R1(T1/N)

R2(T2/N)−R1(T1/n)

where T1 = 2π and T2 = 2π/ω, N ∈ (0,∞). In practice, the value of N is chosen
as N = 12.

For equations (1.1), we have

R1(t) = εA3 cos3 t−A cos t, R2(t) = −Aω2 cos ωt + εA3 cos3 ωt.
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Using frequency formulation, and setting N = 12 (see [2]), we have

ω2 =
ω2

1R2(T2/12)− ω2
2R1(T1/12)

R2(T2/12)−R1(T1/12)
= frac3εA24

or

ω =

√
3εA2

4
which has high accurancy for all A > 0.

Figures 1–3 show comparison of the approximate solution u = A cos wt of the
equation above with the exact one. Exact solution is denotet by —; approximate
solution by - - -.

4. Conclusion

The present work is a short note on He’s frequency-amplitude formation. It
is obvious that the formulation is a unifying framework for finding approximately
periodic solutions of nonlinear oscillators. We conjecture that in the future He’s
formulation will be playing a major role.
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