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ASYMPTOTICALLY CRITICAL POINTS
AND MULTIPLE ELASTIC BOUNCE TRAJECTORIES

Antonio Marino — Claudio Saccon

Abstract. We study multiplicity of elastic bounce trajectories (e.b.t.’s)

with fixed end points A and B on a nonconvex “billiard table” Ω. As
well known, in general, such trajectories might not exist at all. Assuming

the existence of a “bounce free” trajectory γ0 in Ω joining A and B we

prove the existence of multiple families of e.b.t.’s γλ bifurcating from γ0 as
a suitable parameter λ varies. Here λ appears in the dynamics equation as

a multiplier of the potential term.

We use a variational approach and look for solutions as the critical
points of the standard Lagrange integrals on the space X(A, B) of curves

joining A and B. Moreover, we adopt an approximation scheme to obtain
the elastic response of the walls as the limit of a sequence of repulsive poten-

tials fields which vanish inside Ω and get stronger and stronger outside. To

overcome the inherent difficulty of distinct solutions for the approximating
problems covering to a single solutions to the limit one, we use the notion

of “asymptotically critical points” (a.c.p.’s) for a sequence of functional.

Such a notion behaves much better than the simpler one of “limit of crit-
ical points” and allows to prove multliplicity theorems in a quite natural

way.

A remarkable feature of this framework is that, to obtain the e.b.t.’s as
a.c.p.’s for the approximating Lagrange integrals, we are lead to consider

the L2 metric on X(A, B). So we need to introduce a nonsmooth version

of the definition of a.c.p. and prove nonsmooth versions of the multliplicity
theorems, in particular of the “∇-theorems” used for the bifurcation result.

To this aim we use several results from the theory of ϕ-convex functions.
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1. Introduction

When studying multiple trajectories of a point ball going from a point A to
a point B in a billiard table Ω, having rigid and perfectly elastic walls, it seems
spontaneous to ask oneself whether there exists a functional having the same
properties of the integral of the Lagrangian, that is a functional such that its
critical points (in some sense) on a suitable space of curves joining A and B, are
the expected elastic bounce trajectories. Roughly speaking one could wonder
whether there exists a Hamilton-like principle for the elastic bounce trajectories
from A to B in Ω.

If Ω is convex, a variational approach has been possible and fruitful, and
in [7] has allowed to prove the existence of infinitely many elastic bounce tra-
jectories joining two arbitrarily chosen points A and B in an arbitrarily chosen
time interval [0, T ], also in presence of a conservative force field. We can say that
the main idea for proving such a result is looking at the billiard table as a plate
“with two faces” Ω+ and Ω−, each one being a copy of Ω, joined through the
boundary ∂Ω, and noticing that the elastic bounce trajectories in Ω correspond
to the geodesics turnig around the plate, provided Ω is convex. In fact in [7]
an approximation approach is used to prove the result: the “plate” is approxi-
mated by a sequence of “biconvex lens like” manifolds, whose edges coincide with
∂Ω, getting flatter and flatter, and the desired trajectories are found as limits
of geodesics on such lenticular manifolds. In this case, for the approximating
manifolds, the functional is the usual integral of the Lagrangian.

If the billiard table is not convex this appoach fails since the curves obtained
with this method are not, in general, bounce trajectories anymore. In this case it
should be first pointed out that in general it is not true that even one trajectory
exists. As well known, (see [18]), if Ω is the “Penrose mushroom”, then no elastic
bounce trajectories exist for A and B chosen in an appropriate way.

For the nonconvex billiard table some interesting results were proved in [2],
[10], concerning the existence of bounce trajectories with few bounce points.
Other results, concerning the Cauchy problem, even in the case of Ω being a man-
ifold, possibly with nonsmooth boundary, are treated in [4], [19], [3].

In both these sets of papers the walls of the billiard table are approximated
by a suitable sequence of repulsive force fields, having potentials which are zero
in Ω and tend to ∞ outside Ω. The bounce trajectories are then found as limits
of solutions of the approximating dynamics equations. Notice that some care is
needed in the choice of the approximation, otherwise the resulting limits may
not be elastic bounce trajectories.

It must be pointed out that a difficulty arises whenever looking for multiple
solutions of some problem as limits of solutions of approximating problems. It
can indeed happen that distinct sequences of solutions of the approximating
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problems have the same limit. In the case where the approximating solutions are
obtained as critical points of a sequence of functionals converging to a limit one, it
is sometimes possible to individuate distinct sequences of solutions whose critical
values have distinct limits, making thus possible to distinguish the corresponding
limit solutions. This is actually the case in [7], [2], [10].

We as well have considered a sequence of potentials to approximate the elastic
reactions of the table walls, but in our main result (see (c) of Theorem 2.13),
it can happen that the critical values corresponding to distinct approximating
solutions converge to the same limit, and nevertheless more than one solution
is expected at that level. To get rid of this fact, following a method introduced
in [11], which was inspired by [9], [1], we have studied the “asymptotically critical
points” γ for the sequence of the approximating Lagrangian integrals fn, that
is the points obtained as limits of sequences (γn) such that γn → γ and the
“gradients” of fn at γn (are not necessarily zero, but) tend to zero. From [11]
we know that, under suitable assumptions, the multiplicity of such points is
precisely what the topological features of the sublevels of fn suggest.

Actually with this method another difficulty arises, since the asymptotically
critical points of fn with respect to the metric of W 1,2, which seems to fit natu-
rally the Lagrange integral, turn out not to be necessarily elastic bounce trajec-
tories, but more generally all those bounce trajectories obtained in presence of
an inelastic reaction of the billiard table wall (even plastic or hyperelastic).

But an interesting fact allows to overcome this difficulty: if the L2 metric is
considered, with respect to which, by contrast, the functionals are not smooth,
then the asymptotically critical points are really elastic bounce trajectories. No-
tice that the “L2-gradient” of fn has a much bigger L2 norm (possibly ∞) than
the corresponding W 1,2 norm of the W 1,2-gradient of fn.

We obtain some multiplicity results, of bifurcation type, which are contained
in Theorem 2.13. For this theorem we have employed, as we already did in
[14], [15], the “nabla theorems”, which we introduced in [14] and which we have
now extended to some classes of nonsmooth functions. Roughly speaking, these
theorems exploit certain properties the gradient of the functional has in some
problems. Such properties make it possible to introduce a “fictitious” constraint
which does not add critical points, but nevertheless makes the topology of the
sublevels richer, thus allowing to get the expected multiplicity of solutions. Since
the involved functionals are not smooth with respect to the L2 metric, to perform
such analysis on the constraints we have used the theory of φ-convex functions
(see [8], [17], [13]).

To conclude we wish to recall a nice problem which to our knowdlege is
completely open: if we assume for instance that there is no external force field
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and if the segment between the two points entirely lies in Ω, can one conclude
that there exist infinitely many elastic bounce trajectories joining A and B?

We finally describe briefly the layout of the sections of the paper. In Section 2
we introduce the problem and state the main results. In Section 3 we extend
the theory of the asymptotically critical points to a class of φ-convex functions
and we prove a multiplicity theorem. In Section 4 we study the properties of the
Lagrange integrals associated with the approximating potentials, in connection
with the properties required in Section 3. In Section 5 we extend a ∇-theorem
to the case of asymptotically critical points, for the class of φ convex functions
which is involved in our problem, while in Section 6 we study the conditions
required by that theorem in the concrete case. In Section 7 we perform the
proofs of the main theorems. Finally in the Appendix 8 we recall some concepts
and some properties of the φ convex functions used throughout the paper.

2. Assumptions and main results

Let Ω be a bounded open subset of RN with C2 boundary, A, B two points
in Ω and let us denote by ν: ∂Ω → RN the unit normal vector to Ω pointing
inwards. For what follows it is convenient to extend ν to the whole RN in such
a way that ν is of class C2, ‖ν(x)‖ ≤ 1 and ν(A) = ν(B) = 0.

Moreover, let a < b be two real numbers, and V (t, x) a given potential:
V : [0, T ]×Ω → R (as smooth as needed — we will be more precise in the specific
cases of the main results).

In the following ∇V (t, x) will denote the gradient of V (t, x) with respect
to x.

Definition 2.1. Let γ ∈ W 1,2(0, T ; RN ). We say that γ is an elastic bounce
trajectory from A to B in Ω with respect to the potential V (briefly an elastic
bounce trajectory in the following), if γ(t) ∈ Ω for all t in [0, T ], γ(0) = A,
γ(T ) = B, and

(a) there exists a Radon measure µ on ]0, T [ such that µ ≥ 0, the support
of µ is contained in the contact set C(γ) = {t ∈ [0, T ] | γ(t) ∈ ∂Ω}, and

(2.1) γ̈ +∇V (t, γ) = µ ν(γ);

(b) (energy conservation λw) the energy

E(t) =
1
2
|γ̇(t)|2 + V (t, γ(t))

veryfies:∫ T

0

E(t)ϕ̇(t) dt =
∫ T

0

(∇V (t), γ(t))γ̇(t) + V (t, γ(t))ϕ̇(t) dt
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for all ϕ in C∞(0, T, R), that is:∫ T

0

1
2
|γ̇|2ϕ̇ dt =

∫ T

0

∇V (t, γ)γ̇ϕ dt for all ϕ ∈ C∞(0, T, R).

We say that µ is the distribution of the scalar constraint reaction associated
with γ. If µ 6= 0 we say that γ is a true elastic bounce trajectory.

Remark 2.2. It is easy to see that the energy conservation (b) is not a con-
sequence of (a). We recall that (2.1) corresponds to

(2.2)
∫ T

0

γ̇ δ̇ dt−
∫ T

0

∇V (t, γ)δ dt +
∫ T

0

ν(γ)δ(γ) dµ = 0

for all δ in C∞
0 (0, T ; RN ). Moreover, it is not difficult to see that (2.2) is equiv-

alent to the following reversed variational inequality:

(2.3)
∫ T

0

γ̇ δ̇ dt−
∫ T

0

∇V (t, γ)δ dt ≤ 0

for all δ in W 1,2
0 (0, T ; RN ) such that ν(γ(t))δ(t) ≥ 0 for all t in C(γ).

The following characterization is easy to prove.

Remark 2.3. Let γ be a curve in W 1,2(0, T ; RN ) with γ([0, T ]) ⊂ Ω.

(a) If (a) of Definition 2.1 holds, then γ is of class C2 in ]0, T [ \ C(γ), γ̇

has bounded variation on (every compact subset of) ]0, T [, and γ̇ −
(γ̇ ν(γ)) ν(γ) is absolutely continuous on ]0, T [. We may think of γ as
a “bounce trajectory of either elastic or inelastic type”.

(b) If γ is an elastic bounce trajectory, then for any t0 in C(γ)

lim
t→t+0

γ̇(t)ν(γ(t)) = − lim
t→t−0

γ̇(t)ν(γ(t)) =
1
2
µ({t0});

in particular, if µ({t0}) > 0, then t0 is isolated in C(γ).

We also point out a compactness result.

Remark 2.4. Let (γn)n be a sequence of elastic bounce trajectories from A

to B. Then the following two facts are equivalent:

(a) (γn)n is bounded in W 1,2(0, T ; RN );
(b) the sequence (µn)n of the constraint reactions associated with (γn)n (as

in (a) of Definition 2.1) is bounded, that is (µn(]0, T [))n is bounded.

Moreover, if (a) (or (b)) holds, then (γn)n admits a subsequence which converges
in W 1,2(0, T ; RN ) to an elastic bounce trajectory from A to B.

Proof. (a) ⇒ (b) Notice that δ = ν(γn) is in W 1,2
0 (0, T ; RN ) since ν(A) =

ν(B) = 0. Using such a δ in (2.2) gives∫ T

0

(dν(γn)γ̇n)γ̇n dt−
∫ T

0

∇V (t, γn)ν(γn) dt + µn(]0, T [) = 0
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so (µn(]0, T [))n is bounded, whenever (γn)n is bounded in W 1,2(0, T ; RN ).
(b) ⇒ (a). From (2.2) one gets:∣∣∣∣∫ T

0

γ̇nδ̇ dt

∣∣∣∣ ≤ (‖∇V (t, γn)‖L1 + µn(]0, T [))‖δ‖L∞

for all δ in C∞0 (]0, T [; RN ). So if (µn(]0, T [))n is bounded it follows that (γ̇n)n is
bounded in BV , hence it is relatively compact in Lp for any p ≥ 1. In particular
(γn)n is bounded and relatively compact in W 1,2(0, T ; RN ). It is then clear that
every limit curve of (γn)n is an elastic bounce trajectory.

Now we consider an open nonempty interval of parameters Λ0 and a family of
potentials Vλ(t, x) = V (λ, t, x) where V : Λ0× [0, T ]×Ω → RN , which we assume
as smooth as needed in the following definitions. �

Definition 2.5. We say that λ in Λ0 is a transition value for the elastic
bounce problem in Ω, from A to B, with respect to V , if there exist a sequence
(λn)n in Λ0 converging to λ and a sequence (γn)n of elastic bounce trajecto-
ries with respect to the potentials Vλn

, such that the corresponding constraint
reactions µn converge to 0: µn(]0, T [) → 0.

The following remark is a consequence of Remark 2.4.

Remark 2.6. If λ is a transition value, then there exists a solution γ of the
problem

(2.4)

{
γ̈ +∇V (λ, t, γ) = 0,

γ(0) = A, γ(T ) = B,

such that γ([0, T ]) ⊂ Ω, γ([0, T ]) ∩ ∂Ω 6= ∅. More precisely, given any sequences
(λn)n in R converging to λ, (γn)n in W 1,2(0, T ; RN ) where γn are elastic bounce
trajectories with respect to Vλn

such that the corresponding constraint reac-
tions µn tend to zero, there exists a subsequence (γnk

)k which converges in
W 1,2(0, T ; RN ) to a trajectory γ with the properties stated above.

According to what we said in the introduction we now introduce the main
assumptions on Ω and on V .

(V) V (λ, t, x) = (λ/2)(β(t)x)x+x0(t)x for all λ in Λ0, all t in [0, T ] and all x in
Ω where β = (βij) is a symmetric N ×N matrix, βij ∈ L2(0, T ; R), β 6≡ 0
and x0 = (x0i) is an N vector, x0i ∈ L2(0, T ; R);

(Λ0) for every λ in Λ0 there exists a curve γ0,λ in W 1,2(0, T ; RN ) with

γ̈0,λ + λβ(t)γ0,λ + x0(t) = 0,

γ0,λ(0) = A, γ0,λ(T ) = B, γ0([0, T ]) ⊂ Ω

and the map λ 7→ γ0,λ is continuous from Λ0 to W 1,2(0, T ; RN ).
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The following remark is a simple consequence of Remark 2.6.

Remark 2.7. Assume that (V) and (Λ0) hold. If λ in Λ0 is a transition
value for the elastic bounce problem, then λ is an eigenvalue of the problem

(2.5)

{
δ̈ + λβ(t)δ = 0,

δ ∈ W 1,2
0 (0, T ; RN ), δ 6= 0.

The following remark follows using standard arguments.

Remark 2.8. There exists an unbounded interval I in Z such that for any
i in I there exist an eigenvalue λi and an eigenfunction ei of (2.5), that is:{

ëi + λiβ(t)ei = 0,

ei ∈ W 1,2
0 (0, T ; RN ), ei 6= 0,

with the properties λi ≤ λi+1 for all i, λi < 0 if i < 0 and λi > 0 if i ≥ 0, λi →∞
as i →∞ (provided sup I = ∞), λi → −∞ as i → −∞ (provided inf I = −∞);
moreover,∫ T

0

ėiėj dt = δij , W 1,2
0 (0, T ; RN ) = span{ei, i ∈ I} ⊕ E0,

where

(2.6) Eo = {δ ∈ W 1,2
0 (0, T ; RN ) | β(t)δ(t) = 0 q.o. t}.

In the following we use the notation: for any eigenvalue λi

Eλi = {δ ∈ W 1,2
0 (0, T ; RN ) | γ̈ + λiβ(t)γ = 0}.

Now we want to discuss the previous assumption (Λ0).

Remark 2.9. Let λi be an eigenvalue of (2.5).

(a) There exists a solution γ in W 1,2(0, T ; RN ) of

(2.7)

{
γ̈ + λiβ(t)γ + x0(t) = 0,

γ(0) = A, γ(T ) = B

if and only if

(2.8)
∫ T

0

x0e dt = ė(T )B − ė(0)A for all e in Eλi

(b) If a solution γ of (2.7) exists and if γ1 solves

(2.9)

{
γ̈1 + λβ(t)γ1 + x0(t) = 0,

γ1(0) = A, γ1(T ) = B,
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with λ 6= λi, then

(2.10)
∫ T

0

γ̇1ė dt−
∫ T

0

x0e dt =
∫ T

0

(β(t)γ1(t))e(t) dt = 0 for all e in Eλi

Proof. (a) Let γ0 be a smooth curve joining A to B. Then γ is a solution
of (2.7) if and only if δ = γ − γ0 is a solution of{

δ̈ + λiβ(t)δ = γ̈0 + λiβ(t)γo + x0,

δ ∈ W 1,2
0 (0, T ; RN ).

Such a solution may exists if and only if, for all e in Eλi

0 =
∫ T

0

(γ̈0 + λiβ(t)γ0 + x0)e dt ⇔ 0 = −[γ0(t)ė(t)]ba +
∫ T

0

x0e dt

which gives the conclusion.
(b) Let e ∈ Eλi . Multiplying (2.9) by e and integrating yields

(2.11) 0 =
∫ T

0

γ̇1ė dt− λ

∫ T

0

(β(t)γ1(t))e(t) dt−
∫ T

0

x0e dt

=
∫ T

0

γ̇1ė dt− λi

∫ T

0

(β(t)γ1(t))e(t) dt−
∫ T

0

x0e dt

+ (λi − λ)
∫ T

0

(β(t)γ1(t))e(t) dt

= [γ1(t)ė(t)]ba −
∫ T

0

x0e dt + (λi − λ)
∫ T

0

(β(t)γ1(t))e(t) dt.

Using (2.8) we get that
∫ T

0
(β(t)γ1(t))e(t) dt = 0; plugging such an equality in

(2.11) gives the whole (2.10). �

The following proposition explains the meaning of the assumpion (Λ0).

Proposition 2.10. Let λi be an eigenvalue of (2.5).

(a) Let (λ(n))n be a sequence in R such that λ(n) 6= λi, λ(n) → λi. If (γn)n

is a sequence in W 1,2(0, T ; RN ) such that for all n{
γ̈n + λ(n)β(t)γn + x0(t) = 0,

γn(0) = A, γn(T ) = B,

and γn → γ in W 1,2(0, T ; RN ). Then γ is a solution of (2.7) and

(2.12)
∫ T

0

γ̇ė dt−
∫ T

0

x0e dt =
∫ T

0

(β(t)γ(t))e(t) dt = 0 for all e in Eλi .

Notice that the last property means that γ minimizes the expression

(2.13) γ 7→ 1
2

∫ T

0

|γ̇|2 dt−
∫ T

0

x0γ dt
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(or alternatively γ 7→ λ
∫ T

0
(β(t)γ)γ dt) among all solutions γ of (2.7).

Such a condition individuates a unique γ since the above expression is
strictly convex and coercive in W 1,2(0, T ; RN ).

(b) Let β and x0 be such that a solution of (2.7) exists, i.e. let condition
(2.8) be fulfilled. Let γ be the minimal solution of (2.7), that is the
solution which minimizes the expression in (2.13). If γ([0, T ]) ⊂ Ω,
then assumption (Λ0) holds.

Proof. (a) It is clear that γ solves (2.7). Moreover, from Remark 2.9(b):∫ T

0

γ̇(n)ė dt−
∫ T

0

x0e dt =
∫ T

0

(β(t)γ(n)(t))e(t) dt = 0 for all e in Eλi

and going to the limit as n →∞ the conclusion follows.
(b) For λ 6= λi, λ close to λi there exist a unique solution γλ of{

γ̈ + λβ(t)γ + x0(t) = 0,

γn(0) = A, γn(T ) = B,

and γλ verifies (2.12). By Remark 2.4 and by the uniqueness of γ it follows that
γλ converges to γ as λ → λi in W 1,2(0, T ; RN ), hence in C0(0, T ; RN ). This
allows to define γ0,λ as in (Λ0). �

Definition 2.11. Given a continuous curve γ0: [0, T ] → Ω we say that Ω is
uniformly star-shaped with respect to Ω, if there exists ε > 0 such that

−ν(x)(x− z) ≥ ε for all x in ∂Ω and all z in γ0([0, T ]).

Remark 2.12. Assume that (V) and (Λ0) hold. Let λi be an eigenvalue
with λi ∈ Λ0 and suppose that Ω is uniformly star-shaped with respect to γ0,λi

.
Let λ(n) → λi, let γn be elastic bounce trajectories with respect to the poten-
tials Vn(t, x) := λ(n)β(t)(x) + x0(t) and let µn be the corresponding constraint
reactions. Let Qλ(δ) := (1/2)

∫ T

0
(δ̇2−λβ(t)δδ) dt. If Qλ(n)(γ−γ0,λ(n)) → 0, then

µn → 0.

Proof. Setting δn := γn − γ0,λ(n) we have, for all n,

δ̈n + λ(n)β(t)δn = µnν(γn).

Multiplying by δn and integrating over ]0, T [:

2Qλ(n)(δn) = −
∫

]0,T [

δnν(γn) dµn ≥
ε

2
µn(]0, T [)

for n large, hence the conclusion. �

We state now our main result.
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Theorem 2.13. Assume that (V) and (Λ0) hold. Then the following facts
are true.

(a) For every λ in Λ0 there exists a true elastic bounce trajectory γλ in Ω
joining A to B.

(b) If λi is an eigenvalue of (2.5) and λi ∈ Λ0, then there exists ε > 0 such
that for every λ in [λi− ε, λi[∩Λ0, in the case λi > 0 (resp. for every λ

in ]λi, λi + ε]∩Λ0, in the case λi < 0) there exists a second true elastic
bounce trajectory ηλ 6= γλ, joining A to B. Moreover, we can say that

(2.14)
1
2

∫ T

0

|γ̇λ|2 dt− λ

2

∫ T

0

β(t)(γλ)γλ dt−
∫ T

0

x0(t)γλ dt

<
1
2

∫ T

0

|η̇λ|2 dt− λ

2

∫ T

0

β(t)(ηλ)ηλ dt−
∫ T

0

x0(t)ηλ dt.

(c) If λi is an eigenvalue of (2.5) and λi ∈ Λ0, and if Ω is uniformly
star-shaped with respect to γ0,λi

, then there exists ε > 0 such that for
every λ in [λi − ε, λi[ ∩ Λ0, in the case λi > 0 (resp. for every λ in
]λi, λi + ε]∩Λ0, in the case λi < 0) there exist three distinct true elastic
bounce trajectories γ1,λ, γ2,λ, and ηλ such that (2.14) holds with γλ =
γ1,λ and γ = γ2,λ. Moreover, λi is a transition value: more precisely,
µh,λ(]0, T [) → 0 as λ → λi, where µh,λ denotes the scalar constraint
reaction associated with γh,λ, h = 1, 2.

Actually (c) is the most interesting point. Notice that (a) is contained in the
results of [10], but we state it here for completeness, as a simple consequence of
the proofs. The proof of Theorem 2.13 is accomplished in Section 5.

3. Asymptotically critical points and their multiplicity

As we said in the Introduction we are going to study the problem of the elastic
bounce in Ω by means of a sequence of approximating variational problems.
In this section we introduce the theoretical tools which will allow us to obtain
multiplicity results in spite of the fact that distinct solutions of the approximating
problems could, in principle, have the same limit. These tools are the concept of
asymptotical critical point for a sequence of functionals and a related multiplicity
theorem for such points.

These notions, which were inspired by [9], [1] were introduced in [11], [12]
for sequences of smooth functionals, however we need to extend them to the
case of sequences of nonsmooth functionals in a suitable class, more precisely in
the class of ϕ-convex function. For the reader’s convenience the definitions of
ϕ-convexity and subdifferential are recalled in the Appendix.

Let H be a Hilbert space with inner product 〈 · , · 〉 and norm ‖ · ‖. In the
sequel we consider a sequence (Wn)N of open subsets of H and a sequence of
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functions (fn)n with fn:Wn → R∪{∞}. We also consider a function f :D → R,
where D is a subset of H.

We remind that D(fn) := {u ∈ Wn | fn(u) < ∞} and that fc
n denotes the

set {u ∈ Wn | fn(u) ≤ c}, for any c in R.

Definition 3.1. We say that a point u in D is asymptotically critical for
((fn)n, f), if there exists a strictly increasing sequence (kn)n in N, a sequence
(αn)n in H, and a sequence αk in H such that

un → u, un ∈ D(fkn) for all n,

fkn(un) → f(u), αn ∈ ∂−fkn(un) for all n, αn → 0.

We also say that c is an asymptotically critical value for ((fn)n, f) if there exists
an asymptotically critical point u such that f(u) = c.

Definition 3.2. Let c be a real number. We say that a sequence (un)n in
H is a nabla sequence for ((fn)n, f) at level c, briefly a ∇(fn, f, c)-sequence, if
there exists a strictly increasing sequence (kn)n in N and a sequence (αn)n in H

such that:

un ∈ D(fkn
) for all n, fkn

(un) → c,

αn ∈ ∂−fkn
(un) for all n, αn → 0.

We say that ((fn)n, f) verifies the nabla property at level c, briefly ∇(fn, f, c)
holds, if every ∇(fn, f, c)-sequence admits a subsequence which converges to
some point u in D such that f(u) = c.

Notice that, by definition, such a u is an asymptotically critical point for
((fn)n, f).

The following remark is very easy to prove.

Remark 3.3. Let c be a real number, let ∇(fn, f, c) hold, and assume c not
to be a critical value for ((fn)n, f). Then there exists ε > 0 such that every c′

in [c− ε, c + ε] is not a critical value for ((fn)n, f).
For the multiplicity theorem we are going to prove, we also take an additional

sequence (Cn)n of subsets of H, and two real numbers a < b. We suppose that
the following assumptions hold:

(A) fn is lower semicontinuous and ϕn-convex of order 2 in Wn, for all n

in N,
(B) f−1

n ([a, b]) ⊂ Wn, f b
n ⊂ Cn for all n in N,

(C) for every u0 in D such that f(u0) ∈ [a, b] and u0 is an asymptotically
critical point for ((fn)n, f), there exist ρ > 0 and n in N such that
B(u0, ρ) ∩ f b

n is contractible in Cn for all n ≥ n.



362 A. Marino — C. Saccon

We recall now the definition of category, actually one of the possible defini-
tions, which is the most suited to our needs.

Definition 3.4. Let X be a topological space and (B,A) a topogical pair
in X, that is A ⊂ B ⊂ X, A and B are endowed with the topology induced
by X. We define the category of (B,A) in X, denoted by catX(B,A), as the
smallest integer n such that there exist n + 1 closed subsets U0, U1, . . . , Un in X

with the properties

(a) B ⊂
⋃n

i=0 Ui,
(b) U1, . . . , Un are contractible in X,
(c) A ⊂ U0 and A is a strong deformation retract in X of U0.

If there exist no n with these properties we agree that catX(B,A) = ∞.

Theorem 3.5 (Multiplicity). Assume that (A)–(C) hold and that ∇(fn, f, c)
holds for every c in [a, b]. Then

#{u ∈ D | u is an asymptotically critical point for ((fn)n, f)

f(u) ∈ [a, b]} ≥ lim sup
n→∞

catCn
(f b

n, fa
n).

Moreover, when the right hand side above is 1, there is no need for the local
contractibility assumption (C).

Proof. Suppose that the number of the asymptotically critical points in
f−1([a, b]) is finite: let a ≤ c1 < . . . < ck ≤ b be the critical values and let
ui,1, . . . , ui,hi be the critical points at level ci, for i = 1, . . . , k.

Using (C) we can find ρ > 0 and n in N such that

B(ui,j , 2ρ) ∩ f b
n is contractible in Cn for all n ≥ n, i = 1, . . . , k, j = 1, . . . , hi.

Let ε := min{ci − ci−1 | i = 2, . . . , k} c′i := (ci − ε) ∨ a, c′′i := (ci + ε) ∧ b. In
virtue of the nabla property, given i = 1, . . . , k, up to taking a bigger n we have

σi := inf
n≥n

j=1,...,hi

{‖α‖ | α ∈ ∂−fn(u), f(u) ∈ [c′i, c
′′
i ], ‖u− ui,j‖ ≥ ρ} > 0

Let

ε′i :=
ρσi

4
∨ (ci − c′i), ε′′i :=

ρσi

4
∨ (c′′i − ci),

and let

F1 := H \
⋃

j=1,...,hi

B(ui,j , 2ρ), F2 := H \
⋃

j=1,...,hi

B(ui,j , ρ).

By Lemma 8.7 we get that f
ci−ε′i
n is a strong deformation retract of f

ci+ε′′i
n ∩F1∪

f
ci−ε′i
n , for n ≥ n. By Lemma 8.6 (using again the nabla properties and possibly



Asymptotically Critical Points 363

enlarging n), f
ci+ε′′i−1
n is a strong deformation retract of f

ci−ε′i
n . It follows by the

properties of the category that

catCn(fci+ε′′i
n , fa

n) ≤ catCn(f
ci−1+ε′′i−1
n , fa

n) + hi

and finally

catCn
(f b

n, fa
n) ≤

k∑
i=1

hi. �

Remark 3.6. Using the same arguments of the proof of Theorem 3.5 one
can easily obtain the following version of the multiplicity theorem, which fits
better to our needs.

Assume that (A) and (C) hold and that ∇(fn, f, c) is verified for all c in
[a, b]. Then there exist ε > 0 and n in N such that for all n ≥ n and all a′ and
b′ such that a− ε ≤ a′ ≤ b′ ≤ b + ε and

f−1
n ([a′, b′]) ⊂ Wn, f b′

n ⊂ Cn,

one has

#{u ∈ D | u is an asymptotically critical point for ((fn)n, f), f(u) ∈ [a, b]}
≥ catCn(f b′

n , fa′

n ) for all n ≥ n.

This implies that (actually it is equivalent to) if (an)n and (bn)n are two se-
quences in R such that an ≤ bn and

lim inf
n→∞

an ≥ a, lim sup
n→∞

bn ≤ b

and if (kn)n is a sequence in N such that kn →∞ and

f−1
kn

([an, bn]) ⊂ Wkn
, f bn

kn
⊂ Ckn

then

#{u ∈ D | u is an asymptotically critical point for ((fn)n, f), f(u) ∈ [a, b]}
≥ lim sup

n→∞
catCkn

(f bn

kn
, fan

kn
).

Also the following remark can be proved with the arguments used so far.

Remark 3.7. Suppose that Cn ⊂ D(fn) for all n and denote by C∗
n the

space Cn endowed with the graph metric:

d∗n(u, v) := ‖v − u‖+ |fn(u)− fn(v)|.

Assume that (A) and (B) hold, and that (C) is replaced by

(C∗) for every u0 in D such that f(u0) ∈ [a, b] and u0 is an asymptotically
critical point for ((fn)n, f), there exist ρ > 0 and n in N such that
B(u0, ρ) ∩ f b

n is contractible in C∗
n for all n ≥ n.
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(Notice that B(u0, ρ) still denotes the ball in the metric of H.)
If ∇(fn, f, c) holds for every c in [a, b] then

#{u ∈ D | u is an asymptotically critical point for ((fn)n, f), f(u) ∈ [0, T ]}
≥ lim sup

n→∞
catC∗n(f b

n, fa
n).

As a simple consequence of Theorem 3.5 and Remark 3.6 we prove now an
asymptotic version of the Linking Theorem, in a little more general version which
we will use later (see the proof of (b) of Theorem 2.13, in Section 7. We start
by introducing some sets and notation.

Let X1 and X2 two closed subspaces of H such that H = X1 ⊕ X2 and
dim(X1) < ∞. Let e ∈ X2 \ {0}, ρ > 0, and let

P := {x1 + te | x1 ∈ X1, t ≥ 0}, S := {x2 ∈ X2 | ‖x2‖ = ρ}.

Moreover, let ∆ be a bounded subset of P such that ∆ is open in X1 ⊕ span{e}
and S ∩ P ⊂ ∆, and denote by Σ the boundary of ∆ in X1 ⊕ span{e}.

Theorem 3.8. Assume that (A) holds, that for n large ∆ ⊂ D(fn), and

(3.1) sup fn(Σ) < inf fn(S ∩Wn).

Moreover, if

a := lim inf
n→∞

inf fn(S ∩Wn), b := lim sup
n→∞

sup fn(∆),

suppose that a, b ∈ R and that there exists a sequence (an)n in R such that

(3.2) an < inf fn(S ∩Wn), f−1
n ([an, bn]) ⊂ Wn

where bn := sup fn(∆). Finally, let ∇(fn, f, c) hold for all c in [a, b]. Then there
exists an asymptotically critical point u with f(u) ∈ [a, b].

Proof. We may assume that sup fn(Σ) < an and that lim infn→∞ an = a.
By Remark 3.6 it suffices to prove that fan

n is not a retract of f bn
n for n large.

This is proved in the following lemma. �

Lemma 3.9. Let A and B be two subsets of H such that

Σ ⊂ A ⊂ B, ∆ ⊂ B, A ∩ S = ∅.

Then A is not a retract of B.

Proof. By contradiction suppose that there exists a retraction r from B

into A. It is not difficult to see that there exists a retraction π from H into
P such that π−1(S ∩ P ) ⊂ S. Since ∆ ⊂ B we can define Ψ:∆ → P by
Ψ(u) = π(r(u)). Such a Ψ is continuous, Ψ(u) = u whenever u ∈ Σ (because
Σ ⊂ A∩P ), and Ψ(∆)∩ (S ∩P ) = ∅ (because S ∩A = ∅). So Ψ is a continuous
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map from ∆ into P , which keeps the boundary of ∆ fixed, but whose image does
not cover ∆. This is impossible so the lemma is true. �

4. A variational setting
for the bounce problem with fixed end points

As announced in the introduction we now present a variational asymptotic
setting for the elastic bounce problem with fixed end points. We will introduce
a sequence of functionals and after verifying some of their differential properties,
in the nonsmooth sense, we will show that the asymptotically critical points for
such a sequence are elastic bounce trajectories, and that the ∇-property holds.

We remind that “the billiard table” Ω is a bounded subset of RN with C2

boundary and A, B are two given points in Ω. We also consider a time dependant
potential V : [0, T ] × Ω → R such that t 7→ V (t, x) is measurable for every x,
x 7→ V (t, x) is of class C2 for almost every t in [0, T ], and there exists a functor
C in L2(0, T ) such that for all x in Ω and all t in [0, T ]

(4.1) |V (t, x)|+
∑

i

∣∣∣∣ ∂

∂xi
V (t, x)

∣∣∣∣ +
∑
i,j

∣∣∣∣ ∂2

∂xixj
V (t, x)

∣∣∣∣ ≤ C(t).

For what follows is convenient to extend V as a map V : [0, T ]×RN → R in such
a way that V is C2 in x and (4.1) holds for all x in RN .

We can introduce a C2 function G : RN → R such that

(4.2) Ω = {x | G(x) < 0} and |∇G(x)| ≥ ε0 > 0 for all x in (∂Ω)η0

where (∂Ω)η0 denotes a metric neighbourhood of ∂Ω with radius η0 > 0. In this
way the inward normal ν (introduced in Section 2) verifies

ν(x) = −(∇G(x))/(|∇G(x)|) for x in ∂Ω.

We can also suppose that

ν(x) := −(∇G(x))/(|∇G(x)|) for x in (∂Ω)η0

(we remind that ν is defined everywhere and ν(A) = ν(B) = 0). We can also
assume that lim inf |x|→∞(G(x))/(|x|) > 0. Moreover, for a given p > 1 we set
U(x) := (G(x)+)p. We set

X(A,B) :={γ ∈ W1,2(0, 1; RN ) | γ(0) = A, γ(1) = B},
X(A,B) :={γ ∈ X(A,B) | γ([0, T ]) ⊂ Ω},

and for ω > 0, we define g, fω: L2(0, 1; RN ) → R ∪ {∞} and f∞:X(A,B) → R
by

g(γ) :=


∫ T

0

(
1
2
|γ̇|2 − V (t, γ)

)
dt if γ ∈ X(A,B),

∞ otherwise,
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fω(γ) := g(γ)− ω

∫ T

0

U(γ) dt for γ in L2(0, T ; RN ),

f∞(γ) := g(γ) for γ in X(A,B).

For technical reasons we also need another constraint: let R ∈ R; we set

XR(A,B) :={γ ∈ X(A,B) | g(γ) ≤ R},
XR(A,B) :={γ ∈ X(A,B) | g(γ) ≤ R},

and define fR,ω: L2(0, 1; RN ) → R ∪ {∞}, fR,∞: XR(A,B) → R by

fR,ω(γ) :=

{
fω(γ) if γ ∈ XR(A,B),

∞ otherwise,

fR,∞(γ) := f∞(γ) (for γ in XR(A,B)).

The main fact we are going to show now is that bounce trajectories are asymp-
totically critical points for ((fR,ω)ω, fR,∞). We emphasize again that the choice
of the L2 metric plays a fundamental role for this property to hold.

The following remark is a simple consequence of the assumption (4.1) on the
whole RN .

Remark 4.1. (a) For every R in R XR(A,B) is bounded in W 1,2(0, T ; RN ).
(b) The functional fR,ω is lower semicontinuous in L2(0, T ; RN ) for every ω

and R. Moreover, D(fR,ω) = XR(A,B).

Lemma 4.2. For every γ in XR(A,B) and for every δ in W 1,2
0 (0, T ; RN ):

g(γ + δ) ≥ g(γ) + g′(γ)(δ)− C‖δ‖2,
fω(γ + δ) ≥ fω(γ) + fω

′(γ)(δ)− C1‖δ‖2,

where C and C1 = C1(ω, R) are suitable constants.

Proof. Both inequalities are simple consequences of the Taylor expansion.
For the second one use

C1 := C + N2ω sup
i,j=1,...,N

|x|≤R

∣∣∣∣ ∂2

∂xixj
U(x)

∣∣∣∣
where R := supγ∈XR(A,B) ‖γ‖∞. �

Proposition 4.3. Let ω > 0 and R ∈ R. Let γ be a curve in XR(A,B)
such that either g(γ) < R or 0 /∈ ∂−g(γ) and let α ∈ L2(0, T ; RN ). Then
α ∈ ∂−fR,ω(γ) if and only if there exists λ ≥ 0 such that

(4.3) (1 + λ)
∫ T

0

(γ̇δ̇ −∇V (t, γ)δ) dt− ω

∫ T

0

∇U(γ)δ dt =
∫ T

0

αδ dt
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for all δ in W 1,2
0 (0, T ; RN ). Moreover, λ = 0, if g(γ) < R.

Proof. Let γ and α be as above. To prove the “only if” part we assume
that α ∈ ∂−fR,ω(γ). By the definition of the subdifferential we have

(4.4) fω
′(γ)(δ) ≥

∫ T

0

αδ dt

for all δ in W 1,2
0 (0, T ; RN ) such that γ+tδ ∈ XR(A,B) for t > 0 small enough. If

g(γ) < R all δ’s have such a property so (4.4) holds for all δ and (4.3) holds with
λ = 0. Suppose g(γ) = R; in this case (4.4) holds for all δ in W 1,2

0 (0, T ; RN )
such that g′(γ)(δ) < 0. Since we have 0 /∈ ∂−g(γ), then we can find δ0 in
W 1,2

0 (0, T ; RN ) such that g′(γ)(δ0) 6= 0 (if there were no such δ0, then γ would
be critical for g by the first row of Lemma 4.2). Using a simple linearity argument
it follows that there exists λ ≥ 0 such that

fω
′(γ)(δ)−

∫ T

0

αδ dt + λg′(γ)(δ) = 0

for all δ in W 1,2
0 (0, T ; RN ). This is equivalent to saying that (4.3) holds.

Conversely, assume that (4.3) holds for some λ ≥ 0 such that λ = 0, if
g(γ) < 0. Let δ be a curve in W 1,2

0 (0, T ; RN ) such that γ + δ ∈ XR(A,B). We
have:

fR,ω(γ + δ)−fR,ω(γ)−
∫ T

0

αδ dt = fω(γ + δ)− fω(γ)−
∫ T

0

αδ dt

≥ fω
′(γ)(δ)− C1‖δ‖2 − fω

′(γ)(δ)− λg′(γ)δ)

=− C1‖δ‖2 + λg′(γ)(δ) ≥ −C1‖δ‖2

− λ(g(γ)− g(γ + δ)− C‖δ‖2) = (∗).

If g(γ) < R, then λ = 0 so (∗) ≥ −C1‖δ‖2, otherwise (∗) ≥ −(C1 + λC)‖δ‖2. In
any case we conclude that α ∈ ∂−fR,ω(γ). �

Lemma 4.4. Assume that for all γ in X(A,B) with g(γ) = R one has 0 /∈
∂−g(γ). Then there exists η > 0 such that

(4.5) σ := inf{‖α‖ | α ∈ ∂−g(γ), g(γ) = R,distL2(γ, XR(A,B)) ≤ η} > 0.

Proof. By contradiction let (γn)n be a sequence in XR(A,B) such that
g(γn) = R and distL2(γn, XR(A,B) → 0). Let (αn) be a sequence in L2(0, T ; RN )
such that αn ∈ ∂−g(γn) for all n and αn → 0. By Remark 4.1 (γn)n is bounded
in W 1,2(0, T ; RN ) hence we may suppose that γn → γ weakly in W 1,2(0, T ; RN )
for a suitable curve γ. This implies that γn → γ uniforlmly, (and in L2) so we
get γ ∈ XR(A,B). By the first inequality in Lemma 4.2 we obtain:

(4.6) g(γ + δ) ≥ g(γn) + 〈αn, γ + δ − γn〉 − C‖γ + δ − γn‖2
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for all δ in W 1,2
0 (0, T ; RN ). Using (4.6) with δ = 0 gives g(γ) = R and going to

the limit as n →∞:

g(γ + δ) ≥ g(γ)− C‖δ‖2 for all δ in W 1,2
0 (0, T ; RN ),

hence 0 ∈ ∂−g(γ) and we have a contradiction. �

Proposition 4.5. Let R be a real number. Assume that for all γ in X(A,B)
with g(γ) = R one has 0 /∈ ∂−g(γ). Then there exists η > 0 such that for all
ω > 0 fR,ω is of class C(p, q) in W , where W is the η neighbourhood (with respect
to the L2 metric) of XR(A,B), and p = p(ω, R) and q = q(ω, R) are suitable
constants.

Proof. Let η be the number provided by Lemma 4.4 and σ as in (4.5). Let
γ ∈ W := XR(A,B)η, δ ∈ W 1,2

0 (0, T ; RN ) and suppose γ, γ + δ ∈ XR(A,B); let
α ∈ ∂−fR,ω(γ). By Lemma 4.4 and Proposition 4.3 there exists λ ≥ 0 such that
(4.3) holds. Moreover, λ = 0 if g(γ) < R. We have:

fR,ω(γ + δ)−fR,ω(γ)− 〈α, δ〉

= fR,ω(γ + δ)− fR,ω(γ)− (1 + λ)g′(γ)(δ) + ω

∫ T

0

∇U(γ)δ dt

= fω(γ + δ)− fω(γ)− fω
′(γ)(δ)− λg′(γ)(δ)

≥− C1‖δ‖2 − λ(g(γ + δ)− g(γ) + C‖δ‖2) ≥ −C1‖δ‖2 − λC‖δ‖2

because either g(γ) < R and λ = 0 or g(γ) = R and in that case g(γ + δ) ≤ g(γ)
(remind that λ ≥ 0). Now we want to estimate λ (in the case g(γ) = R). From
(4.3) we deduce that

α0 :=
ω∇U(γ) + α

1 + λ
∈ ∂−g(γ);

hence ‖α0‖ ≥ σ, by Lemma 4.4. This gives

1 + λ =
‖ω∇U(γ) + α‖

‖α0‖
≤ ωM + ‖α‖

σ

where M =
√

T maxx∈B(0,R) |∇U(x)| and R := supγ∈X(A,B) ‖γ‖∞. So we have:

(4.7) fR,ω(γ + δ) ≥ fR,ω(γ) + 〈α, δ〉 −
(

C1 +
CωM

σ
+

C

σ
‖α‖

)
‖δ‖2

for all γ in W ∩ XR(A,B), all δ in W 1,2
0 (0, T ; RN ), and all α in ∂−fR,ω(γ). �

Remark 4.6. The previous proposition shows that, given R in R, the func-
tionals fR,ω verify (A) of Section 3 on a fixed Wω = W .

Moreover, given a in R, it is simple to check that there exists ω such that

{γ ∈ XR(A,B) : fR,ω(γ) ≥ a} ⊂ W for all ω ≥ ω

so (B) of Section 3 holds for ω large.
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Now we study the asymptotically critical points of ((fR,ω)ω, fR,∞).

Lemma 4.7. Let (µn)n be a sequence of nonnegative real numbers, let (γn)n

be a sequence in X(A,B) such that (γn)n is bounded in W 1,2(0, T ; RN ) and
γn([0, T ]) ⊂ Ωη0 (η0 was given at the beginning of this section), and let (βn)n be
a bounded sequence in L1(0, T ; RN ) such that:

(4.8)
∫ T

0

βnδ dt =
∫ T

0

(γ̇nδ̇ −∇V (t, γn)δ) dt− µn

∫ T

0

∇U(γn)δ dt

for all δ in W 1,2
0 (0, T ; RN ). Then (γ̈n)n and (µn∇U(γn))n are bounded in

L1(0, T ; RN ) (and (4.8) holds for every δ in W1,1
0 (0, T ; RN )).

Proof. Since ν(A) = ν(B) = 0 we can take δ = ν(γn) in (4.8) and get∫ T

0

βnν(γn) dt =
∫ T

0

(dν(γn)(γ̇n)γ̇n −∇V (t, γn)ν(γn)) dt− µn

∫ T

0

|∇U(γn)| dt

Since dν is bounded in Ωη0 (due to the regularity of ∂Ω), then (µn|∇U(γn)|)n is
bounded in L1(0, T ; RN ). Since

γ̈n = −∇V (t, γn)− µn∇U(γn)

we get that (γ̈n)n is bounded in L1(0, T ; RN ) too. �

The following lemma is strictly related to Remark 2.4.

Lemma 4.8. Let (µn)n be a sequence of nonnegative real numbers. Let
(γn) be a sequence in X(A,B) which converges in W 1,2(0, T ; RN ) to a curve
γ in X(A,B). Let (βn)n be a sequence in L1(0, T ; RN ) such that βn → 0 in
L1(0, T ; RN ) and (4.8) holds. Then γ is an elastic bounce trajectory and

(4.9) lim
n→∞

µn

∫ T

0

U(γn) dt = 0.

Proof. Step 1. We first prove (4.9). By Lemma 4.7 µn

∫ T

0
|∇U(γn)| dt are

bounded. Moreover, since γn → γ uniformly we have that γn([0, T ]) ⊂ Ωη0 for
n large (η0 was given in (4.2)). Then, by (4.2):

µn

∫ T

0

U(γn) dt =µn

∫ T

0

(G(γn)+)p dt ≤ ‖G+(γn)‖∞µn

∫ T

0

(G(γn)+)p−1 dt

≤‖G+(γn)‖∞
µn

pε0

∫ T

0

|∇U(γn)| dt ≤ const ‖G+(γn)‖∞ → 0.

Step 2. We prove that (2.2) holds. We first take δ in W 1,2
0 (0, T ; RN ) such

that ν(γ(t)) · δ(t) > 0 for all t in C(γ). Since γn([0, T ]) ⊂ Ωη0 for n large, there
exist ε > 0 and n in N such that

ν(γn(t)) · δ(t) ≥ ε for all n ≥ n and all t in C(γ)ε.
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Up to shrinking ε, γ(C(γ)ε) ⊂ (∂Ω)η0 , so for n large γn(C(γ)ε) ⊂ (∂Ω)η0 and

t ∈ C(γ)ε ⇒ − ∇G(γn(t))
|∇G(γn(t))|

= ν(γn(t)),

t /∈ C(γ)ε ⇒ γn(t) ∈ Ω.

Then ∇U(γn) · δ ≤ 0 in [0, T ] for all n ≥ n. By (4.8) this implies∫ T

0

γ̇nδ̇ dt−
∫ T

0

∇V (t, γn)δ dt ≤
∫ T

0

βnδ dt ⇒
∫ T

0

γ̇δ̇ dt−
∫ T

0

∇V (t, γ)δ dt ≤ 0.

Finally, if δ is such that ν(γ(t)) · δ(t) ≥ 0, we can get the same conclusion by
means of an approximation argument.

Step 3. We prove the energy conservation law. If ϕ ∈ C∞0 (0, T ; R) let δ = γ̇nϕ.
We have δ̇ = γ̈nϕ + γ̇nϕ̇. Then δ ∈ W1,1

0 (0, T ; RN ) by Lemma 4.7, because
γn ∈ W2,1, and δ is an admissible test in (4.8). We obtain∫ T

0

(βn · γn)ϕ

=
∫ T

0

γ̇n(γ̈nϕ + γ̇nϕ̇) dt−
∫ T

0

((∇V (t, γn) + µn∇U(γn)) · γ̇n)ϕ dt

=
∫ T

0

(
1
2

d

dt
|γ̇n|2ϕ + |γ̇n|2ϕ̇

)
dt

+
∫ T

0

∇V (t, γn)γ̇nϕ dt−
∫ T

0

µn

(
d

dt
U(γn)

)
ϕ dt

=
∫ T

0

(
1
2
|γ̇n|2 + µnU(γn)

)
ϕ̇ dt +

∫ T

0

∇V (t, γn)γ̇nϕ dt.

Letting n →∞ we obtain, by (4.9)∫ T

0

(
1
2
|γ̇|2ϕ̇ +∇V (t, γ)γ̇ϕ

)
dt = 0 for all ϕ in ϕ ∈ C∞0 (0, T ; RN ),

that is (b) of Definition 2.1 holds. �

Remark 4.9. Notice that, in the previous statement, if (µn)n is bounded,
then µn

∫ T

0
|∇U(γn)| dt → 0 so γ is a solution of

(4.10) γ̈ +∇V (t, γ) = 0.

The following statements represent an “asymptotic” Hamilton principle for
the elastic bounce problem.

Theorem 4.10. Let γ in XR(A,B) be an asymptotically critical point for
((fR,ω)ω, fR,∞). Then γ is an elastic bounce trajectory in Ω joining A to B.

Proof. We can suppose 0 /∈ ∂−g(γ), otherwise the claim is true, because
γ solves (4.10). Let (ωn)n be a sequence in R such that ωn → ∞, let (γn)n
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be a sequence in XR(A,B) such that γn → γ in L2(0, T ; RN ) and fR,ωn
(γn) →

fR,∞(γ), and let (αn)n be a sequence in L2(0, T ; RN ) such that αn ∈ ∂−fωn(γn)
for all n, and αn → 0 in L2(0, T ; RN ). It is clear that for n large 0 /∈ ∂−g(γn).
Since γn ∈ XR(A,B) for all n, then (γn)n is bounded in W 1,2(0, T ; RN ), by
Remark 4.1. This implies that γn → γ uniformly, so eventually γn ∈ Ωη0 . By
Proposition 4.3 for every n there exists λn ≥ 0 such that

(4.11) (1 + λn)
∫ T

0

(γ̇nδ̇ −∇V (t, γn)δ) dt− ωn

∫ T

0

∇U(γn)δ dt =
∫ T

0

αnδ dt

for all δ ∈ W 1,2
0 (0, T ; RN ). Applying Lemma 4.7 with µn = 1/(1 + λn) and

βn = αn/(1 + λn) gives that (γ̈n)n is bounded in L1(0, T ; RN ). This implies
that γn → γ in W1,p, for all p > 1. The conclusion now follows by Lemma 4.8.�

Lemma 4.11. Let R be a real number such that:

for all γ in X(A,B) with g(γ) = R one has 0 /∈ ∂−g(γ).

Let c be a real number. Let (ωn)n be a sequence in R such that ωn → ∞, let
(γn)n be a sequence in XR(A,B) such that fR,ωn

(γn) → c, and let (αn)n be
a sequence in L2(0, T ; RN ) such that αn ∈ ∂−fωn(γn) for all n, and αn → 0
in L2(0, T ; RN ). Then there exist a strictly increasing sequence (kn)n in N and
a curve γ in XR(A,B) such that γkn

→ γ in W 1,2(0, T ; RN ). Moreover, either
g(γ) = R or fR,∞(γ) = c.

Proof. Step 1. By Proposition 4.3, for all n there exists λn ≥ 0 such that
(4.11) holds. By Lemma 4.7 with µn = 1/(1 + λn) and βn = αn/(1 + λn) we
have that (γ̈n)n is bounded in L1(0, T ; RN ) hence (γ̇n)n is relatively compact
in Lp for every p ≥ 1. So we can find (kn)n and γ such that γkn

→ γ in
W 1,2(0, T ; RN ).

Step 2. Since fR,ωn
(γn) is bounded we get that ωn

∫ T

0
U(γn) dt is bounded;

then
∫ T

0
U(γn) dt → 0 which in turn gives γ ∈ XR(A,B), because γkn

→ γ

uniformly.
Step 3. By Lemma 4.8 we get that γ is an elastic bounce trajectory and

ωn/(1 + λn)
∫ T

0
U(γn) dt → 0.

Step 4. Now we conclude by distinguishing two cases. If g(γkn) = R for
infinitely many n, then g(γ) = R. If this is not the case we can suppose g(γkn

) <

R for all n. Then λkn
= 0 for all n and ωkn

∫ T

0
U(γkn

) dt → 0. This implies
fR,ωkn

(γkn) → g(γ) = fR,∞(γ). �

The following result follows immediately from the previous lemma.

Proposition 4.12. Let R be a real number such that:

there are no elastic bounce trajectories γ in Ω such that g(γ) = R.
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Then the condition ∇(fR,ω, fR,∞, c) holds for all real numbers c.

5. Asymptotic ∇-theorems

In this section we present an asymptotic version of the∇-theorems introduced
in [14] and [15]. As we already said, we will use these theorems in the proof of
Theorem 2.13.

As in Section 3 let us consider a Hilbert space H with inner product 〈 · , · 〉
and norm ‖ · ‖. Throughout this section we also assign a closed subspace X of
H and a continuous linear projection Q having X as its kernel.

We introduce the map Φ:H \X → H defined by:

Φ(z) = z − Q(z)
‖Qz‖

and the set C given by C = {z ∈ H | ‖Q(z)‖ ≥ 1}.
The following notations will also turn useful: if z ∈ H \X we let

Qzw := Qw −
〈

Qw,
Qz

‖Qz‖

〉
Qz

‖Qz‖
for all w in H

and Xz := Ker(Qz) = X ⊕ span(z).
We first point out some properties of Φ whose proof can be accomplished in

a standard way.

Remark 5.1. The following facts are true.

(a) Φ is of class C∞(H \X) and, if z ∈ H \X,

dΦ(z)(w) = w − Qzw

‖Qz‖
for all w in H.

(b) Φ is a diffeomorphism from int(C) into H \X and for all u in H \X:

d(Φ−1)(u)(v) = v +
Quv

‖Qu‖
for all v in H.

For the notations used in the following lemma we refer to the Appendix.

Lemma 5.2. Let W be an open subset of Ω and f : W → R ∪ {∞} be
a function of class C(p, q). Assume that:

• X has a finite codimension;
• D(f) and X are not tangent at any u in D(f) ∩X.

Then the function g := f ◦ Φ + IC , which is defined in Φ−1(W ), is of class
C(p′, q′) for suitable p′ and q′. Moreover, for every z in D(g) = Φ−1(D(f)) ∩ C

(5.1) ∂−g(z) =

{
{dΦ(z)∗(α) | α ∈ ∂−f(Φ(z))} if z∈ int(C),

{dΦ(z)∗(α)− λQ∗Qz | α∈∂−f(Φ(z)), λ ≥ 0} if z∈∂C.
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Proof. We first consider the function g1: Φ−1(W ) → R ∪ {∞} defined by
g1 := f ◦ Φ (so that g = g1 + IC). Let z ∈ D(g1) and let u := Φ(z).

Step 1. We remark that (as one can easily see from the definitions)

{dΦ(z)∗α | α ∈ ∂−f(u)} ⊂ ∂−g1(z),(5.2)

if z /∈ ∂C, then {dΦ(z)∗α | α ∈ ∂−f(u)} = ∂−g1(z).(5.3)

Notice that (5.3) holds since Φ is a local diffeomorphism outside ∂C.
Step 2. We claim that

(5.4) if z ∈ ∂C and β ∈ ∂−g1(z)

then β ∈ ∂−(f + IXz )(u), 〈β, Qzw〉 = 0 for all w in H.

Indeed for the first claim notice that Φ|Xz :Xz → Xz is a translation in a neigh-
bourhood of z and its differential is the identity, so

β ∈ ∂−g1(z) ⇒ β ∈ ∂−(g1 + IXz )(z) ⇔ β ∈ ∂−(f + IXz )(u).

The second claim follows since Φ is constant over S := {u+Qw | w ∈ H, ‖Qw‖ =
1} and the tangent plane to S at z is {Qzw | w ∈ H}.

Step 3. Now we want to prove that, wherever z lies in D(g1)

(5.5) ∂−g1(z) = {dΦ(z)∗α | α ∈ ∂−f(u)}.

If z /∈ ∂C this was already proved in (5.3). So let z ∈ ∂C and let β ∈ ∂−g1(z).
In view of (5.2) it suffices to show that there exists α in ∂−f(u) such that
β = dΦ(z)∗α. By (5.4) β ∈ ∂−(f + IXz )(u). Using the nontangency between
D(f) and X we get that D(f) and Xz are not tangent too. By Theorem 8.9,
we obtain that β = α + ν for suitable α in ∂−f(u) and ν in Nu(Xz). Using this
decomposition and the second condition in (5.4) we have

〈β, w〉 = 〈β, dΦ(z)w + Qzw〉 = 〈β, dΦ(z)w〉 = 〈α, dΦ(z)w〉+ 〈ν, dΦ(z)w〉
= 〈α, dΦ(z)w〉+ 〈ν, w −Qzw〉 = 〈α, dΦ(z)w〉,

for all w in H, since w −Qzw ∈ Xz. This concludes the proof of (5.5).
From (5.5), with easy computations, it follows that g1 is of class C(p1, q1)

for suitable functions p1, q1.
Step 4. We claim now that C and D(g1) are not tangent at any point of their

intersection. Indeed, by Theorem 8.10, we derive that ID(f) is of class C(p, 0).
Therefore, noticing that ID(g1) = ID(f) ◦ Φ and using (5.5) with f replaced by
ID(f), we have

Nz(D(g1)) = ∂−ID(g1)(z) = {dΦ(z)∗α | α ∈ ∂−ID(f)(u)}
= {dΦ(z)∗ν | ν ∈ Nu(D(f))}.
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Now, assume that ν1 ∈ Nz(D(g1)) and −ν1 ∈ Nz(C); clearly we may suppose
that z ∈ ∂C (otherwise the conclusion is trivial). In particular ν1 is orthogonal
to X. Moreover, ν1 = dΦ(z)∗ν for a suitable ν in Nu(D(f)). It follows that, for
any v in X

0 = 〈ν1, v〉 = 〈dΦ(z)∗ν, v〉 = 〈ν, dΦ(z)v〉 = 〈ν, v〉

(dΦ(z) = id−Qz is the identity on X), so −ν ∈ Nu(X). Since D(f) and X are
not tangent, it follows ν = 0, hence ν1 = 0 and the proof of the claim is over.

Step 5. Using the previous step and Theorem 8.9 again we get that g = g1+IC

is of class C(p′, q′) for suitable p′, q′ and that ∂−g(z) = ∂−g1(z) + Nz(C). To
prove the formula (5.1) and conclude, it suffices to notice that, if z ∈ ∂C, then
Nz(C) = {−λQ∗Qz | λ ≥ 0}. �

From now on we consider a sequence (fn)n of functions, such that fn:Wn →
R ∪ {∞}, where Wn are open subsets of H, and a function f :D → R, D being
a subset of H.

We also use the following notation: given a closed supspace Y of H we denote
by ΠY the orthogonal projection ont Y .

Definition 5.3. Let c ∈ R.

(a) We say that a sequence (un)n in H is a ∇(fn, X, c) sequence if there
exist (kn) in N strictly increasing and (αn)n in H such that:
• for all n un ∈ D(fkn

), dist(un, X) → 0, fkn
(un) → c,

• for all n αn ∈ ∂−fkn(un), ΠX⊕span(un)αn → 0.
(b) We say that the∇(fn, X, c)-condition holds if any∇(fn, f, X, c)-sequen-

ce admits a subsequence converging to some point u in D such that
f(u) = c.

(c) We say that a point u in D∩X is an X-constrained asimptotically crit-
ical point for ((fn), f), if there exists a ∇(fn, X, f(u)) sequence which
converges to u.

Lemma 5.4. Assume that for all n fn is of class C(pn, qn), and D(fn) and
X are non tangent. Let W̃n := Φ−1(Wn) and define gn: W̃n → R ∪ {∞} by
gn := fn ◦ Φ + IC . Moreover, let D̃ := Φ−1(D) ∩ C and g : D̃ → R defined by
g := f ◦ Φ. Then the following facts are true.

(a) Let z in D̃ be an asymptotically critical point for ((gn)n, g). Then
(a1) if z ∈ int(C), then u := Φ(z) is an asymptotically critical point for

((fn)n, f);
(a2) if z ∈ ∂C, then u := Φ(z) is an X-constrained asymptotically

critical point for ((fn)n, f).
(b) Let c ∈ R. If ∇(fn, f, c) and ∇ (fn, f,X, c) hold, then ∇ (gn, g, c) holds.
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Proof. Let (zn)n be a sequence in C, (kn)n a strictly increasing sequence
in N and (βn)n a sequence in H such that

zn ∈ D(gn) for all n, βn ∈ ∂−gkn
(zn) for all n, βn → 0.

We claim that there exists (αn)n in H such that αn ∈ ∂−fkn
(Φ(zn)) for all n

and

if lim infn→∞ dist(zn, ∂C) > 0 then αn → 0,
if lim infn→∞ dist(zn, ∂C) = 0 then ΠX⊕span(Φ(zn))αn → 0.

Case 1. Suppose that inf dist(zn, ∂C) > 0. From Lemma 5.2 it follows that
αn := (dΦ(zn)∗)−1βn belongs to ∂−fkn(Φ(zn)) and from (b) of Remark 5.1 it
turns out that αn → 0, because

‖(dΦ(zn)∗)−1‖ = ‖dΦ(zn)−1‖ ≤ 1 +
‖QΦ(zn)‖
‖QΦ(zn)‖

and the last term is bounded due to the fact that dist(zn, ∂C) is far away from
zero.

Case 2. We can suppose that dist(zn, ∂C) → 0. Let un := Φ(zn). From
Lemma 5.2 we have that for any n there exist αn in ∂−fkn(un) and λn ≥ 0 such
that

βn = dΦ(zn)∗αn − λnQ∗Qzn.

Now, we distinguish the terms zn with zn ∈ int(C) and the terms with zn ∈ ∂C.
In the first case λn = 0 so

ΠX⊕span(zn)βn = (dΦ(zn)ΠX⊕span{zn})
∗αn = ΠX⊕span(un)αn

(because Qzn
ΠX⊕span(zn) = 0) and X⊕ span(zn) = X⊕ span(un), since un /∈ X.

In the second case ΠXQ∗Q = (QΠX)∗Q = 0, because X = Ker(Q), so we deduce
that ΠX⊕span(un)βn = ΠX⊕span(un)αn. In both cases we get ΠX⊕span(un)αn → 0.

From the claim it is easy to derive (a). To prove (b) just notice that, if
(Φ(zn))n converges, then (Qzn/(‖Qzn‖))n is relatively compact, hence (zn)n is
relatively compact. �

For the next theorem we consider three closed subspaces X1, X2, X3 of H

such that H = X1 ⊕X2 ⊕X3, and dim(X1 ⊕X2) < ∞. We also suppose that:

S is a sphere in X2 ⊕X3 centered at 0,
∆ is a compact subset of X1⊕X2 such that S∩(X1⊕X2) ⊂ intX1⊕X2(∆),
Σ := (∂X1⊕X2∆) ∪ (∆ ∩X1).

Theorem 5.5 (∇-Asymptotic Theorem). Assume that

(a) for all n fn is lower semicontinuous and is of class C(pn, qn) on Wn;
(b) for all n ∆ ⊂ D(fn) and

lim sup
n→∞

sup fn(Σ) < lim inf
n→∞

inf fn(S ∩Wn);
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(c) letting

a := lim inf
n→∞

inf fn(S ∩Wn), bn := sup fn(∆), b := lim sup
n→∞

bn,

then a ∈ R, b ∈ R and there exists a sequence (an)n such that for all n

an < inf fn(S ∩Wn) and f−1
n ([an, bn]) ⊂ Wn;

(d) for all n D(fn) and X1 ⊕X3 are not tangent;
(e) ∇(fn, f, c) and ∇(fn, f,X1 ⊕X3, c) hold for all c in [a, b].

Then

#{asymptotically critical points u for ((fn)n, f) | a ≤ f(u) ≤ b}
+ #{(X1 ⊕X3)-constrained a. c. p.’s u for ((fn)n, f) | a ≤ f(u) ≤ b} ≥ 2.

Proof. Let us denote by P1, P2, P3 the projections associated with the
decomposition H = X1 ⊕ X2 ⊕ X3. From now on we set X := X1 ⊕ X3,
Q := P1 + P3, and consider Φ and C defined as in the beginnig of this section,
with this choice of X and Q.

Moreover, we set W̃n := Φ−1(Wn), D̃ := Φ−1(D), and consider gn: W̃n →
R ∪ {∞} and g: D̃ defined as before.

Step 1. We first show that ((gn)n, g) fulfill the assumptions of the multiplic-
ity Theorem 3.5, more precisely of Remark 3.6, where CN = C for all n. By
(a) and (d), using Lemma 5.2, we get that gn is of class C(pn, qn) and lower
semicontinuous in W̃n. From (c) we deduce g−1

n ([an, bn]) ⊂ W̃n. It is also clear
that assumption (C) of Section 3, holds, since C is locally contractible. Finally,
from (a), (d), (e), using (b) of Lemma 5.4, we obtain that ∇(gn, g, c) holds for
any c in [a, b].

Step 2. At this point, in view of (a) of Lemma 5.4, it suffices to prove that
there exist two asimptotically critical points for ((gn)n, g) in g−1([a, b]). We shall
prove this fact by showing that for n large catC(gbn

n , gan
n ) ≥ 2 and by applying

Remark 3.6. It is clear that, up to getting closer to inf fn(S), we can suppose

an > sup fn(Σ), lim inf
n→∞

an = a.

For r1, r2 > 0 we set

D :={u ∈ X1 ⊕X2 | ‖P1u‖ ≤ r1, ‖P2u‖ ≤ r2}
T :=(∂X1⊕X2D) ∪ (D ∩X1).

We can choose r1 > 0 and r2 > 0 such that ∆ ⊂ intX1⊕X2(D). We also define

S :=Φ−1(S) ∩ C, D := Φ−1(D) ∩ C,

∆ :=Φ−1(∆) ∩ C, T := Φ−1(T ) ∩ C,

Σ :=Φ−1(Σ) ∩ C, Γ := S ∩D.
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It is clear that ∆ ⊂ X1 ⊕X2, Σ = ∂X1⊕X2∆, T = ∂X1⊕X2D and

D = {z ∈ H | ‖P1z‖ ≤ r1, 1 ≤ ‖P2z‖ ≤ r2 + 1, P3z = 0} ⊂ X1 ⊕X2.

We show now that for n large the assumptions of Lemma 5.6 are satisfied, with
the sets introduced above and with A := gan

n , B := gbn
n .

We first show that there exists a retraction π:C → D such that Π−1(Γ) ⊂ S.
Actually we can first define π1:C → (X1 ⊕X2) ∩ C by

π1(z) := P1z +
(

1 +
∥∥∥∥z − P1z −

P2z

‖P2z‖

∥∥∥∥)
P2z

‖P2z‖
.

It is clear that π1 is a retraction of C into (X1⊕X2)∩C, such that π−1(Γ) ⊂ S.
Now we can define π by composing π1 and π2, where

π2(z) :=
(

1 ∧ r1

‖P1z‖

)
P1z +

(
1 ∧ (r2 + 1)

‖P2z‖

)
P2z

(the first term being zero if P1z = 0).
It is clear that T ⊂ D \ Γ, because S ∩ (X1 ⊕X2) ⊂ intX1⊕X2(∆), and that

T is a deformation retract of D \ Γ in D. Then (a) and (b) of Lemma 5.6 are
verified. It is also evident that (c) holds too, and that, finally, for n large

sup gn(Σ) < an < inf gn(S), sup gn(∆) = bn,

hence gan
n ∩ S = ∅ and ∆ ⊂ gbn

n , Σ ⊂ gan
n , π(gan

n ) ∩ Γ = ∅.
Applying Lemma 5.6 we get catC(gbn

n , gan
n ) ≥ catD(D,T).

It is well known (see for instance in [14]) that catD(D,T) = 2, so the con-
clusion follows. �

Lemma 5.6. Let C be a topological space and let D be a closed subspace of C.
We assume that

(a) there exists a continuous retraction π : C → D;
(b) there exist two subset T and Γ of D such that T is closed, T ⊂ D \ Γ,

and T is a strong deformation retract in the space D of D \ Γ;
(c) there exist two other closed sets ∆ and Σ such that Σ ⊂ ∆ ⊂ D and

∂D∆ ⊂ Σ, T ∩ (∆ \Σ) = ∅, Γ ⊂ ∆.

Then, for any pair (B;A) of closed sets in C such that ∆ ⊂ B, Σ ⊂ A, π(A) ∩
Γ = ∅ we have

catC (B,A) ≥ catD(D,T).

Proof. Let U0, . . . Uk closed subsets of C, which we may suppose contained
in B, such that

B =
k⋃

i=0

Ui, U1, . . . , Uk are contractible in C,

A ⊂ U0, A is a strong deformation retract in C of U0.
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Let Vi := Ui ∩∆, if i = 1, . . . , k and V0 := (U0 ∩∆)∪ (D \∆). It is trivial that
D =

⋃k
i=0 Vi, since ∆ ⊂ B, and that V1, . . . , Vk are closed. It is also easy to

check that they are contractible in D, by using the retraction π.
Now we notice that, since Σ ⊂ A ∩∆ ⇒ Σ ⊂ U0 ∩∆, then

V0 = (U0 ∩∆) ∪Σ ∪ (D \∆) = (U0 ∩∆) ∪ (D \ (∆ \Σ)).

Furthermore ∆ \Σ is open in D, since ∂D∆ ⊂ Σ, hence D \ (∆ \Σ) is closed,
so V0 is closed. It is also clear that T ⊂ V0. We want to show that T is a strong
deformation retract of V0.

Composing the strong deformation of U0 with π we can find a deformation
η : U0 ∩ ∆ × [0, 1] → D such that E := η(U0 ∩ ∆, 1) ⊂ π(A) and η(x, t) = x

whenever x ∈ A ∩∆ (in particular if x ∈ Σ). Since

(U0 ∩∆) ∩ (D \ (∆ \Σ)) = (U0 ∩∆) ∩ ((D \∆) ∪Σ) = (U0 ∩∆) ∩Σ = Σ,

we can extend η to V0 × [0, 1] in such a way that η(x, t) = x whenever x ∈
(D \ (∆ \ Σ)) and in particular η(x, t) = x if x ∈ T ⊂ (D \ (∆ \ Σ)). In this
way η(V0, 1) = E ∪ (D \∆).

Since E ⊂ π(A) we have E ∩ Γ = ∅. Moreover, (D \ ∆) ∩ Γ = ∅, so by
(b) one can deform E ∪ (D \∆) in D to T keeping T fixed. Glueing the two
deformations one can finally see that T is a strong deformation retract in D of
V0 and the conclusion follows. �

6. Constrained bounce trajectories in a star-shaped domain

Let Ω, ν, V , A, and B be as in Section 4. Let γ0 ∈ X(A,B) be such that
γ0([0, T ]) ⊂ Ω and let us assume that Ω is uniformly star-shaped with respect
to Ω. Let X be a closed subspace of L2(0, T ; RN ) with finite codimension.

We remind that ΠY denotes the orthogonal L2 projection on a closed sub-
space Y of L2.

Lemma 6.1. Let (γn)n be a sequence of curves in X(A,B) such that (γn)n

is bounded in W 1,2(0, T ; RN ) and

lim
n→∞

sup
t∈[0,T ]

dist(γn(t),Ω) = 0.

Suppose that (µn)n is a sequence of positive numbers and (βn)n is a sequence in
L2(0, T ; RN ) such that

(6.1) γ̈n +∇V (t, γn) + µn(U(γn)) = βn

and ΠX⊕span(γn−γ0)βn are bounded in L1(0, T ; RN ). Then

(a) (γ̈n)n and (µn∇U(γn))n are bounded in L1(0, T ; RN );
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(b) if ΠX⊕span(γn−γ0)βn → 0 in L1(0, T ; RN ), then there exists a subse-
quence (γnk

)k such that γnk
→ γ in W 1,2(0, T ; RN ), for a suitable curve

γ in X(A,B) with the properties

(6.2)


there exists a nonnegative measure µ such that∫ T

0
(γ̇δ̇ −∇V (t, γ)δ) dt +

∫ T

0
ν(γ)δ dµ = 0

for all δ in X ∩W 1,2
0 (0, T ; RN ),

spt(µ) ⊂ {t ∈ [0, T ] | γ(t) ∈ ∂Ω}.

Proof. Step 1. Since Ω is uniformly star-shaped we have

∇U(γn(t))(γn(t)− γ0(t)) ≥
ε

2
|∇U(γn(t))| for all t in [0, T ],

for n large enough. Multiplying (6.2) by γn − γ0, we get∫ T

0

γ̇n(γ̇n − γ̇0) dt−
∫ T

0

∇V (t, γn)(γn − γ0) dt +
∫ T

0

βn(γn − γ0) dt

= µn

∫ T

0

∇U(γn)(γn − γ0) dt ≥ µn
ε

2

∫ T

0

|∇U(γn)| dt.

Since ∫ T

0

βn(γn − γ0) dt =
∫ T

0

ΠX⊕span(γn−γ0)βn(γn − γ0) dt

we get that µn∇U(γn) is bounded in L1(Ω).
Step 2. Let Y be a finite dimensional subspace of W 1,2

0 (0, T ; RN ) such that
L2(0, T ; RN ) = X ⊕ Y (such a subspace exists since W 1,2

0 (0, T ; RN ) is dense in
L2(0, T ; RN )). If δ ∈ X ∩W 1,2

0 (0, T ; RN ), multiplying (6.1) by δ yields∫ T

0

γ̇nδ̇ dt =
∫ T

0

∇V (t, γn)δ dt + µn

∫ T

0

∇U(γn)δ dt−
∫ T

0

ΠXβnδ dt.

Then ∣∣∣∣∫ T

0

γ̇nδ̇ dt

∣∣∣∣ ≤ K1‖δ‖∞ for all δ in X ∩W 1,2
0 (0, T ; RN )

for a suitable constant K1. On the other hand if δ ∈ Y∫ T

0

γ̇nδ̇ dt ≤ ‖γn‖W ‖δ‖W ≤ K2‖δ‖∞ for all δ in Y

for another constant K2 (since Y is finite dimensional).
Step 3. Denote by P and Q the projections of L2(0, T ; RN ) onto X and Y

respectively. It is clear that the restriction of Q to W 1,2
0 (0, T ; RN ) is continuous

as a map from W 1,2
0 (0, T ; RN ) into Y with respect to the norm ‖ · ‖∞ (since Y

is finite dimensional). By difference also the restriction of P to W 1,2
0 (0, T ; RN ),
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as a map from W 1,2
0 (0, T ; RN ) to X ∩W 1,2

0 (0, T ; RN ), is continuous with respect
to ‖ · ‖∞. Then for any δ in W 1,2

0 (0, T ; RN )

∫ T

0

γ̇nδ̇ dt =
∫ T

0

γ̇n(Pδ + Qδ)′ dt ≤ K1‖Pδ‖∞ + K2‖Qδ‖∞ ≤ K‖δ‖∞

for a suitable constant K. This concludes the proof of the first claim.
Step 4. To prove the second claim we first notice that, since (µn∇U(γn))n

and (γ̈n)n are bounded in L1(0, T ; RN ), then there exists (nk)k such that γnk
→ γ

in W 1,2(0, T ; RN ), for a suitable γ in X(A,B) and µnk
∇U(γnk

) converge weakly
to a nonnegative measure µ (in the dual of C0

0(]0, T [)). Since γnk
→ γ uniformly

it is clear that the support of µ is contained in {t | γ(t) ∈ ∂Ω}. If we multiply
by δ in (6.1) and pass to the limit we get the conclusion. �

Now let R > g(γ0) and consider the functionals f̃R,ω:L2(0, T ; RN ) → R∪{∞}
defined by f̃R,ω(δ) := fR,ω(γ0+δ)−fR,ω(γ0) and the functional f̃R,∞:D∞,R → R
defined by f̃R,∞(δ) := fR,∞(γ0 + δ)− fR,∞(γ0), where D∞,R := XR(A,B)− γ0.

Proposition 6.2. Suppose that there are no γ’s in XR(A,B) ∩ (γ0 + X)
such that g(γ) = R and 0 ∈ ∂−g(γ).

(a) If δ ∈ D∞,R ∩X, δ is an X-constrained asymptotical critical point for
((f̃R,ω)ω, fR,∞), then γ := γ0 + δ belongs to XR(A,B) ∩ (X + γ0) and
verifies (6.2).

(b) If in addition there exist no γ’s in X(A,B) ∩ (X + γ0) with g(γ) = R

such that (6.2) holds, then ∇(f̃R,ω, f̃R,∞, X, c) holds for every c in R.

Proof. We prove the first claim. Let δ be an X-constrained asymptot-
ical critical point for ((f̃R,ω)ω, fR,∞); then there exist a sequence (ωn)n such
that ωn → ∞ and a ∇(f̃R,ωn

, f̃R,∞, X, c)-sequence (δn)n such that δn → δ in
L2(0, T ; RN ). Let γn := γ0 + δn; we claim that (γn)n verifies the assumptions of
Lemma 6.1. We have indeed:

Step 1. (γn)n is bounded in W 1,2(0, T ; RN ), since γn ∈ XR(A,B) for all n

and XR(A,B) is bounded in W 1,2(0, T ; RN );
Step 2. ωn

∫ T

0
U(γn) dt are bounded, since fR,ωn

(γn) are bounded below;
hence

sup
t∈[0,T ]

dist(γn(t),Ω) → 0;

it follows, by the assumption, that there exists n in N such that for all n ≥ n it
cannot happen that g(γn) = R and 0 ∈ ∂−g(γn);

Step 3. Let (αn)n be a sequence in L2(0, T ; RN ) such that αn ∈ ∂−f̃R,ωn
(δn)

= ∂−fR,ωn
(γn) for all n and ΠX⊕span(δn)αn → 0; by Proposition 4.3 there exists
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a sequence (λn)n in R such that

(6.3)

{
γ̈n +∇V (t, γn) +

ωn

1 + λn
∇U(γn) +

1
1 + λn

αn = 0,

λn ≥ 0, λn = 0 if g(γn) = R.

By Lemma 6.1, up to a subsequence, we have that γn → γ in W 1,2(0, T ; RN ) for
a curve γ verifying (6.2). It is clear that γ ∈ X + γ0 and that γ = γ0 + δ so the
first conclusion is true.

To prove the second claim let (ωn)n and (δn)n be as before. Arguing as
above we can find (λn)n such that (6.3) holds and a curve γ such that γ0 +
δn → γ in W 1,2(0, T ; RN ), up to passing to a subsequence. It is also clear
that γ ∈ X(A,B) ∩ (γ0 + X); to get the conclusion we just need to show that
f̃R,∞(γ − γ0) = c. We claim that (λn)n is bounded; if not we would have
g(γn) = R for n large, hence g(γ) = R which is not allowed by the assumptions.
Since (λn)n bounded we have ωn

∫ T

0
U(γn) dt → 0 because

ωn

∫ T

0

U(γn) dt ≤ ωn

p
‖G(γn)‖∞

∫ T

0

∇U(γn) dt ≤ const‖G(γn)‖∞

by Lemma 6.1. Then fR,ωn(γn) → fR,∞(γ) that is f̃R,ωn(δn) → f̃R,∞(γ − γ0).�

7. Proofs of the main results

Throughout this section we assume that (V) and (Λ0) of Section 2 hold, for
suitable β and x0. For the sake of convenience we assume that V (λ, t, x, ) =
(λ/2)β(t)(x)x + x0(t)x for all λ in Λ0, t in [0, T ] and x in a neighbourhood
Ω1 of Ω. We also use all the auxiliary definitions and notations introduced in
Section 4. Moreover, we denote by ‖ · ‖ the L2-norm while, when needed, we
denote by ‖ · ‖W the norm in W 1,2(0, T ; RN ).

For ω > 0, λ in Λ0, and R ≥ g(γ0,λ) we consider again the functionals
f̃R,ω:L2(0, T ; RN ) → R ∪ {∞} defined by

f̃R,ω(δ) := fR,ω(γ0,λ + δ)− fR,ω(γ0,λ),

and

D∞ :={δ ∈ W 1,2
0 (0, T ; RN ) | γ0,λ + δ ∈ X(A,B)},

DR,∞ :={δ ∈ W 1,2
0 (0, T ; RN ) | γ0,λ + δ ∈ XR(A,B)}.

It is easy to check that, if γ0,λ + δ ∈ XR(A,B), (γ0,λ + δ)([0, T ]) ⊂ Ω1, then

f̃R,ω(δ) = Qλ(δ)− ω

∫ T

0

U(γ0,λ + δ) dt.

where

Qλ(δ) :=
1
2

∫ T

0

|δ̇|2 dt− λ

2

∫ T

0

β(t)(δ)δ dt for δ in W 1,2
0 (0, T ; RN ).
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Finally we define f̃R,∞:DR,∞ → R by

f̃R,∞(δ) := Qλ(δ) for all δ in DR,∞.

Notice that all these definitions depend on λ, which we do not write explicitly
to keep the notation simpler.

Given λi eigenvalue of (2.5) we set

X−λi
:= span(ej | 0 ∧ λi ≤ λj ≤ 0 ∨ λi),

X+
λi

:=
{

δ ∈ W 1,2
0 (0, T ; RN )

∣∣∣∣ ∫ T

0

δ̇ė dt = 0 for all e ∈ X−λi

}
.

Remark 7.1. Let λi be an eigenvalue of (2.5). Then (remind (2.6)):

(a) X+
λi

is the W 1,2(0, T ; RN )-closure of span(ej | λj /∈ [λi ∧ 0, λi ∨ 0])⊕E0;
(b) Qλ(δ) ≤ 0 for δ in X−λi

, whenever either λ ≥ λi > 0 or λ ≤ λi < 0;
(c) if λ ∈ R, then

Qλ(δ) ≥ cλ

∫ T

0

|δ̇|2 dt ≥ cλS‖δ‖2 for all δ in X+
λi

where

cλ := min
{

1
2

(
1− λ

λj

) ∣∣∣∣ ej ∈ X+
λi

}
, S := inf

{∫ T

0

|δ̇|2 dt

∣∣∣∣ ∫ T

0

|δ|2 dt = 1
}

;

moreover, if either λ−1 < λ < λi+1 and λi+1 > λi > 0, or λ0 > λ > λi+1

and λi−1 < λi < 0, then cλ > 0;
(d) we have

L2(0, T ; RN ) = X−λi
⊕ X+

λi

(of course the closure is taken in L2(0, T ; RN )); equivalently, the projec-
tions onto X−λi

and X+
λi

with respect to W 1,2
0 (0, T ; RN ), which we may

denote by P−
λi

and P+
λi

, are well defined and continuous with respect to
the L2(0, T ; RN )-norm.

Proof. We prove (d). Let B(δ) := (1/2)
∫ T

0
β(t)(δ)δ dt; it is easy to see that

B(δ) > 0 (resp. B(δ) < 0) for δ in X−λi
\ {0}, if λi > 0 (resp. if λi < 0).

Furthermore, B is L2-continuous and B′(δ1)(δ2) = 0, whenever δ1 ∈ X−λi
and

δ2 ∈ X+
λi

. It follows that, if δ ∈ X−λi
∩ X+

λi
, we have B(δ) = 2B′(δ)(δ) = 0.

Moreover, P−
λi

(δ) =
∑

j|ej∈X−
λi

λjB′(ej)(δ)ej which is continuous with respect to

the L2 norm (since β ∈ L2(0, T ; RN2
)). By difference, the same is true for the

complementary projection P+
λi

. �
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Let λi be an eigenvalue of (2.5) and let e = e(λi) be an element of (X+
λi
\

{0})∩X−λk
, where λi = λk−1 < λk, if 0 < λi, or λi = λk+1 > λk, if 0 > λi. Given

ρ > 0 and σ > 0 we set:

P (λi) := {δ + te | δ ∈ X−λi
, t ≥ 0},

∆(λi) := P (λi) ∩ D∞, ∆σ(λi) := {δ ∈ P (λi) \ Xλi | distL2(δ,∆(λi)) < σ},

Σσ(λi) := ∂X−λi
⊕span(e)∆σ(λi), Sρ(λi) := {δ ∈ X+

λi
| ‖δ‖ = ρ}.

Lemma 7.2. Let λi be an eigenvalue of (2.5). Then ∆(λi) is bounded and
the following facts hold.

(a) Given λ in Λ0 we have:
(a1) for any R > sup g(γ0,λ + ∆(λi)) there exists σ(λ, R) > 0 such that

for every σ in ]0, σ(λ, R)]

sup g(γ0,λ + ∆σ(λi)) < R

and therefore

lim
ω→∞

sup f̃R,ω(∆σ(λi)) = supQλ(∆(λi)),

lim
ω→∞

sup f̃R,ω(Σσ(λi)) = supQλ(D∞ ∩ X−λi
);

if (λ/λi) ≥ 1 we can be more explicit in the last equality and say

(7.1) sup f̃R,ω(Σσ(λi)) = 0 for ω large enough;

(a2) for any R in R there exists ρ = ρ(λ, R) > 0 such that ∅ 6= Sρ(λi)∩
P (λi) ⊂ ∆(λi) and such that every curve γ in (γ0,λ + Sρ(λi))∩
XR(A,B) verifies γ([0, T ]) ⊂ Ω; it follows that

(7.2) inf Qλ(Sρ(λi)) ≤ inf f̃R,ω(Sρ(λi)) for all ω.

(b) Let λ ∈ Λ0 and R > sup g(γ0,λ +∆(λi)). If either 0 < λi ≤ λ < λi+1 or
λi−1 < λ ≤ λi < 0, then for 0 < σ ≤ σ(λ, R) and ρ = ρ(λ, R) we have

(7.3) sup f̃R,ω (Σσ(λi)) = 0 < inf Qλ(Sρ(λi)) ≤ inf f̃R,ω(Sρ(λi)) for ω large.

Proof. (a1) The existence of σ such that the first property holds is trivial
since ∆σ(λi) is compact. Concerning the two limits notice that, if γ ∈ XR(A,B)
and γ − γ0,λ ∈ P (λi) \∆(λi), then

lim
ω→∞

f̃R,ω(γ − γ0,λ) = −∞;

moreover, if (λ/λi) ≥ 1, the last conclusion follows from

f̃R,ω(γ − γ0,λ) ≤ 0 for all γ in XR(A,B) such that γ − γ0,λ ∈ X−λi
.
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(a2) The existence of ρ(λ, R) follows from the interpolation

‖δ‖L∞ ≤ const‖δ̇‖1/2‖δ‖1/2 ≤ const1(R)‖δ‖1/2 if γ0,λ + δ ∈ XR(A,B)

(using Remark 4.1 and the fact that V is bounded). From this (7.2) follows
immediately.

(b) To get the conclusion it suffices to combine (7.1) and (7.2), noticing that
(λ/λi) ≥ 1, that the constant cλ in (c) of Remark 7.1 is positive, and that
inf QλSρ(λi)) ≥ S(cλ/2)ρ2. �

Lemma 7.3. Let λi be an eigenvalue of (2.5) with λi in Λ0. Then there exists
ε > 0 such that [λi − ε, λi + ε] ⊂ Λ0 and for every λ in [λi − ε, λi + ε] one has

(7.4) supQλ(D∞ ∩ X−λi
) < inf

|R|≤R(λ)+1
Qλ(Sρ(λ,R)(λi))

where R(λ) := sup g(γ0,λ + ∆(λi)). Then for such λ it turns out that for all R

in ]R(λ), R(λ) + 1] and all σ in ]0, σ(λ, R)]

(7.5) sup f̃R,ω(Σσ(λi)) < inf f̃R,ω(Sρ(λ,R(λi)) for ω large.

Proof. By continuity we have

lim inf
λ→λi

inf{Qλ(Sρ(λ,R)(λi)) | |R| ≤ R(λ) + 1} > 0

since
lim inf
λ→λi

inf{ρ(λ, R) | |R| ≤ R(λ) + 1} > 0.

Moreover,
lim

λ→λi

supQλ(D∞ ∩ X−λi
) = 0.

Then for λ close to λi (7.4) holds; finally if we fix R in ]R(λ), R(λ)+1] we derive
(7.5) from (a1) of Lemma 7.2 and from (7.2). �

From now on we denote by ε(λi) the number ε provided by Lemma 7.3.

Lemma 7.4. Let λi be an eigenvalue of (2.5) with λi in Λ0. We can suppose
λi+1 > λi > 0 (or λi−1 < λi < 0). Then, for every λ in [λi − ε(λi), λi+1[ ∩ Λ0

(resp. in ]λi−1, λi + ε(λi)] ∩ Λ0), there exist ρ > 0 and a true elastic bounce
trajectory γλ,λi

such that

(a) if λi = λj+1 > λj > 0 (resp. λi = λj−1 < λj < 0) we have

0 ≤ supQλ(∆(λj)) ≤ supQλ(D∞ ∩ X−λi
)(7.6)

< Qλ(γλ,λi
− γ0,λ) ≤ supQλ(∆(λi));

(b) if λi = λ0 (resp. λi = λ−1) then (7.6) holds with ∆(λj) replaced by

∆∗ := {te∗ | t ≥ 0, te∗ ∈ D∞}

where e∗ is any nontrivial eigenvector with eigenvalue λi.
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Proof. To prove the first claim we consider for example λi+1 > λi > 0. Let
λ be in [λi − ε(λi), λi+1[ ∩ Λ0. We remind that R(λ) = sup g(γ0,λ + ∆(λi)).

Step 1. Suppose that for every R in ]R(λ), R(λ) + 1] there exists an elastic
bounce trajectory γR such that g(γR) = R. Then, by Remark 2.4, there exists
an elastic bounce trajectory γ such that g(γ) = R(λ), that is

Qλ(γ − γ0,λ) = supQλ(∆(λi)).

Now, let ρ := ρ(λ, R(λ)), it follows Sρ ∩∆(λi) 6= ∅, hence

supQλ(∆(λi)) = Qλ(γ − γ0,λ) ≥ inf Qλ(Sρ(λi)) > supQλ(D∞ ∩ X−λi
)

by (7.4) in the case λ ∈ [λ− ε(λi), λi], or by (b), (c) of Remark 7.1, if λi ≤ λ <

λi+1. If λ ∈ [λi, λi+1[. On the other hand, since

∆(λj) ⊂ X−λi
∩ D∞, if λi = λj+1 > λj > 0 (∆∗ ⊂ X−λi

∩ D∞, if λi = λ0),

we have

(7.7)
supQλ(∆(λj)) ≤ supQλ(D∞ ∩ X−λi

),

(supQλ(∆∗) ≤ supQλ(D∞ ∩ X−λi
))

and the proof is over, in this case.
Step 2. From now on we can take R in ]R(λ), R(λ)+1] such that there are no

elastic bounce trajectories γ with g(γ) = R. By Proposition 4.5 we can find an L2

metric neighbourhood W of D∞ such that for all ω f̃R,ω is lower semicontinuous
and of class C(p(ω), q(ω)). Now we want to employ Theorem 3.8 in the case
where fR,ω play the role of fn, f is f̃R,∞, Wn are all equal to W , D is DR,∞, and
where ∆ = ∆σ(λi), Σ = Σσ(λi) with σ in ]0, σ(λ, R)], S = Sρ(λ,R)(λi) (σ(λ, R)
and ρ(λ, R) were defined in Lemma 7.2). We have just proved that Assumption
(A) of Section 3 is fulfilled.

Step 3. Up to shrinking σ we can suppose that

∆σ(λi) ⊂ W ∩ (XR(A,B)− γ0,λ) = D(f̃R,ω).

We claim that the linking assumpion (3.1) is verified. If λ ∈ [λi, λi+1[ this follows
from (7.3); if λ ∈ [λi − ε(λi), λi[ this follows from (7.5).

Step 4. As in Theorem 3.8 we set

a := lim inf
ω→∞

inf f̃R,ω(Sρ(λi) ∩W ),

b := lim sup
ω→∞

bω where bω := sup f̃R,ω(∆σ(λi)).

By Lemma 7.2 it turns out that

(7.8) b = supQλ(∆(λi)), a ≥ inf Qλ(Sρ(λi))
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and setting (for instance) aω = 0 for all ω, we have

aω < inf Qλ(Sρ(λi)) ≤ inf f̃R,ω(Sρ(λi) ∩W ) for all ω

by (c) of Remark 7.1 and (7.2). Using Remark 4.6

f̃−1
R,ω([aω, bω]) ⊂ W for ω large enough.

So also Assumption (3.2) of Theorem 3.8 holds.
Step 5. By Proposition 4.12 and the way R has been choosen, we derive

that ∇((f̃R,ω)ω, f̃R,∞, c) holds for every c in R. Then we can apply Theorem 3.8
to obtain that there exists an asymptotically critical point δ such that a ≤
f̃R,∞(δ) ≤ b. By Theorem 4.10 γλ,λi

:= γ0,λ + δ is an elastic bounce trajectory.
By (7.4) we have supQλ(D∞ ∩ X−λi

) < a, therefore by (7.7) we get (7.6).
Step 6. Finally we notice that γλ,λi

is a true bounce trajectory since Qλ(γλ,λi

−γ0,λ) > 0. It is indeed trivial to see that any solution γ of the “free equation”:

δ̈ + λβ(t)δ = 0, δ ∈ W 1,2
0 (0, T ; RN )

satisfies Qλ(δ) = 0. �

With the same arguments one can also prove the following result.

Lemma 7.5. If λ ∈]λ−1, λ0[∩Λ0 and e∗ ∈ W 1,2(0, T ; RN ), there exists an
elastic bounce trajectory γ∗λ such that

(7.9) 0 < Qλ(γ∗λ − γ0,λ) ≤ supQλ(∆∗)

where ∆∗ = {te∗ | t ≥ 0, te∗ ∈ D∞}.

Now we are in position to prove the first two statements of the main theorem.

Proof of (a) and (b) of Theorem 2.13. (a) Let λ ∈ Λ0. If λ /∈]λ−1, λ0],
we can take λi such that either 0 < λi ≤ λ < λi+1 or λi−1 < λ ≤ λi < 0.
Then the curve γλ,λi found in Lemma 7.4 is a true elastic bounce trajectory. If
λ−1 < λ < λ0 the desired trajectory can be found using Lemma 7.5.

(b) We consider ε = ε(λi) the positive number ε found in Lemma 7.4. Assume
for instance that λi > 0. If λi > λ0 let j be such that λi = λj+1 > λj > 0: if we
take λ ∈ [λi − ε, λi[ we can set γλ := γλ,λj and ηλ := γλ,λj . Using (7.6), since
λ ∈ [λj , λj+1[, we get

Qλ(γλ − γ0,λ) ≤ supQλ(∆(λj)) < Qλ(ηλ − γ0,λ),

so γλ 6= ηλ. In the case λi = λ0 we set γλ := γ∗λ (as in Lemma 7.5, with e∗

choosen to be any eigenfunction with eigenvalue λ0) and ηλ := γλ,λ0 . Then by
(7.6) and (7.9)

Qλ(γλ − γ0,λ) ≤ supQλ(∆∗) < Qλ(ηλ − γ0,λ). �
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Lemma 7.6. Let λi be an eigenvalue of (2.5) and λi ∈ Λ0. Assume that Ω
is uniformly star-shaped with respect to γ0,λi . Then there exists σ = σ(λi) > 0
such that for every λ in ]λi−σ, λi[∩Λ0 if λi > 0 (for every λ in ]λi, λi +σ[∩Λ0

if λi < 0) the following alternative holds:

• either there exists ε > 0 such that for every c with

0 ≤ c− supQλ(X−λi
∩ D∞ ≤ ε

there is a true elastic bounce trajectory γ with Qλ(γ − γ0,λ) = c,
• or there exist two distinct true bounce trajectories γ1,λ,λi

, γ2,λ,λi
such

that

(7.10) 0 < Qλ(γh,λ,λi
− γ0,λ) ≤ supQλ(X−λi

∩ D∞) ≤ supQλ(∆(λi))

for h = 1, 2 and for ρ > 0 small enough.

Proof. We consider, for instance, the case λi > 0 and we take j such that
λj < λj+1 = λi; we can also suppose λi < λi+1.

Step 1. Let ε0 > 0 be the number provided by (b) of Lemma 7.7, relative to
σ0 = (1/2)(λi − λj) ∧ (λi+1 − λi). Since

lim
λ→λ−i

supQλ(X−λi
∩ D∞) = 0,

then there exists σ = σ(λi) such that σ0 > σ > 0 and for every λ in [λi − σ, λi[
one has

supQλ(X−λi
∩ D∞) < ε0.

We can also suppose that σ(λi) ≤ ε(λi) (ε(λi) was defined in the previous Lemma
7.3) and that Ω is uniformly star-shaped with respect to γ0,λ, for all λ’s in
[λi − σ, λi]. From now on let λ be fixed in ]λi − σ, λi[.

Step 2. If the first altenative doesn’t hold we can find c in [supQλ(X−λi
∩

D∞), ε0] such that there are no true elastic bounce trajectories γ with g(γ) =
g(γ0,λ) + c. Since c > 0 then there are also no free solutions γ with g(γ) =
g(γ0,λ) + c, so there are no elastic bounce trajectories with such a property.
Moreover, using Remark 2.4, we can suppose that c > supQλ(X−λi

∩ D∞).
Step 3. Let

X1 :=

{
X−λj

if λi > λ0,

{0} if λi = λ0,
X2 := span(eh | λh = λi), X3 := X+

λi

(the closure being in L2(0, T ; RN ) as usual). We have that L2(0, T ; RN ) =
X1 ⊕ X2 ⊕ X3, by (d) of Remark 7.1. Furthermore we set R := g(γ0,λ) + c
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and consider the functionals f̃R,ω and f̃R,∞. Given ρ, σ > 0 we set

∆ :={δ ∈ X−λi
| dist(δ,D∞) ≤ σ},

Σ :=(∂X−
λi

∆) ∪ (X1 ∩∆),

S :=

{
Sρ(λj) if λi > λ0,

{δ ∈ L2(0, T ; RN ) | ‖δ‖ = ρ} if λi = λ0.

Step 4. We verify the assumptions of Theorem 5.5.
(a) By Proposition 4.5 every functional f̃R,ω is lower semicontinuous and of

class C(p(ω), q(ω)) in a fixed L2 metric neighbourhood W of D∞.
(b) If σ is small enough we have sup g(γ0,λ + ∆) < R, hence ∆ ⊂ D(f̃R,ω).

Moreover, for ω large enough, sup f̃R,ω(Σ) = 0, because sup f̃R,ω(∂X−
λi

∆) → −∞
as ω → ∞ and fR,ω(δ) ≤ 0 for δ in X1 ∩∆. Furthermore, for ρ > 0 sufficently
small we have S ∩ (X1 ⊕X2) ⊂ intX1⊕X2(∆) and S ∩ (XR(A,B)− γ0,λ) ⊂ D∞.
It follows that, for all ω,

inf f̃R,ω(S ∩W ) = inf Qλ(S ∩ (XR(A,B)− γ0,λ)) =: a ≥ inf Qλ(S) > 0.

Then
lim sup

ω→∞
sup f̃R,ω(Σ) < lim inf

ω→∞
inf f̃R,ω(S ∩W ) = a.

(c) We set bω := sup f̃R,ω(∆). It is clear that

lim
ω→∞

bω = supQλ(D∞ ∩ X−λi
) =: b ∈ R.

Moreover, setting aω := a/2, it is straightforward that (see Remark 4.6)

f̃−1
R,ω([aω, bω]) ⊂ W for ω large enough.

(d) We show that D(f̃R,ω) and X1 ⊕X3 are not tangent. Notice that

D(f̃R,ω) = {δ ∈ W 1,2
0 (0, T ; RN ) | Qλ(δ) ≤ c}

and that δ ∈ D(fR,ω), w ∈ Nδ(D(f̃R,ω)) if and only if
there exists θ ≥ 0 such that

〈w, δ1〉 = θQ′(δ)(δ1) for all δ1 in W 1,2
0 (0, T ; RN ) if Qλ(δ) = c,

w = 0 if Qλ(δ) < c.

By contradiction, assume D(f̃R,ω) and X1 ⊕X3 to be tangent at some point δ

in D(f̃R,ω) ∩ (X1 ⊕X3), that is there exists w 6= 0 such that w ∈ Nδ(D(f̃R,ω)),
−w ∈ Nδ(X1 ⊕X3). Then for a positive θ

0 = 〈−w, δ〉 = −θQ′
λ(δ)(δ) = −2θQλ(δ) < 0

leading to a contradiction.
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(e) By Proposition 4.12 ∇(f̃R,ω, f̃R,∞, c) holds for any real number c, since
there are no elastic bounce trajectories γ with g(γ) = R. For what follows
we show that there are no curves γ such that (6.2) holds, where γ0 = γ0,λ,
X = X1 ⊕ X3, with the condition g(γ0,λ) < g(γ) ≤ R. Equivalently we show
that there exist no δ in X1⊕X3 such that (7.11) holds, for a suitable nonnegative
Radon measure µ on ]0, T [, and 0 < Qλ(δ) ≤ c. Indeed for any such δ we would
get δ = 0, by (b) of Lemma 7.7, because Qλ(δ) ≤ ε0 since we chose c ≤ ε0 in
Step 2. But Qλ(δ) > 0, so we have a contradiction.

The property above implies that ∇(f̃R,ω, f̃R,∞, X1⊕X3, c) holds for any real
number c, as a consequence of Proposition 6.2.

Step 5. Using again the arguments in (e) of the previous step we also derive
that there are no (X1 ⊕ X3)-constrained asymptotically critical points δ for
((f̃R,ω)ω, f̃R,∞) such that 0 < fR,∞(δ) ≤ ε0, by (a) of Proposition 6.2, since
0 < a < b ≤ c.

Using Theorem 5.5 we find two distinct asymptotically critical points δ1 and
δ2 such that a ≤ f̃R,∞(δi) ≤ b, for i = 1, 2. Letting γ1,λ,λi

= γ0,λ + δ1 and
γ2,λ = γ0,λ,λi + δ2 we obtain two elastic bounce trajectories verifying (7.6). �

Lemma 7.7. Let λi be an eigenvalue of (2.5) and assume that λ−1 ≤ λj <

λj+1 ≤ λi < λi+1 in the case λi > 0 (resp. λi−1 < λi ≤ λj−1 < λj ≤ λ0 in the
case λi < 0). We set

X :=

{
X−λj

⊕ X+
λi

if λiλj > 0,

X+
λi

if λiλj < 0.

Moreover, let γ0 ∈ X(A,B) and suppose

γ0([0, T ]) ⊂ Ω, Ω uniformly star-shaped with respect to γ0.

Then for every σ0 > 0 the following facts hold:

(a) There exist C1, C2 ≥ 0 such that for every λ in [λj + σ0, λi+1 − σ0], for
every δ in X and for every Radon measure µ on ]0, T [ such that

(7.11)


(γ0 + δ)([0, T ]) ⊂ Ω, µ ≥ 0,

spt(µ) ⊂ {t ∈ ]0, T [ | (γ0 + δ)(t) ∈ ∂Ω},∫ T

0

δ̇η̇ dt− λ

∫ T

0

β(t)δη dt +
∫

]0,T [

ν(γ0 + δ)η dµ = 0 for all η in X

the following inequalities hold:

(7.12) ‖δ‖W 1,2 ≤ C1µ(]0, T [) ≤ C2Qλ(δ);

(b) There exists ε0 > 0 such that for every λ in [λj +σ0, λi+1−σ0] if λi > 0
(for every λ in [λi−1 +σ0, λj −σ0]if λi < 0), for every δ in X such that
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there exists a Radon measure µ on ]0, T [ verifying (7.11) one has

Qλ(δ) ≤ ε0 ⇒ δ = 0.

Proof. We consider for instance λi > 0. Let

Lλ:W 1,2
0 (0, T ; RN ) → W 1,2

0 (0, T ; RN )

be the linear operator defined by

〈Lλδ, η〉W =
∫ T

0

δ̇η̇ dt− λ

∫ T

0

β(t)δη dt.

Clearly Lλ maps X into itself. Since λ is far away from λj and from λi+1, there
exists a constant K1 > 0 such that

‖Lλδ‖W ≥ K1‖δ‖W for all δ in X.

Conversely, it is clear that there exists another constant K2 such that

‖Lλδ‖W ≤ K2µ(]0, T [) for every (δ, µ) in X verifying (7.11).

Taking η = δ in (7.11) and using the fact that Ω is uniformly star-shaped with
respect to γ0 yields

2Qλ(δ) = −
∫

]0,T [

ν(γ0 + δ)δ dµ ≥ εµ(]0, T [)

for a suitable ε > 0. Therefore (7.12) holds. To prove (b) just notice that, if
Qλ(δ) < (K2

√
T )−1 dist(γ0([0, T ]), ∂Ω) then ‖δ‖∞ < dist(γ0([0, T ]), ∂Ω), which

in turn gives (γ0 + δ)([0, T ]) ⊂ Ω, hence µ = 0 and finally δ = 0. �

Proof of (c) of Theorem 2.13. Let, for instance, λi > 0 and let λ ∈
[λi−σ(λi), λi[. By Lemma 7.4 we can find an elastic bounce trajectory ηλ := γλ,λi

such that, by (7.6),

supQλ(X−λi
∩ D∞) < Qλ(ηλ − γ0,λ).

By Lemma 7.6 in both alternatives of its conclusion there exist two distinct
elastic bounce trajectories, γ1,λ,λi

and γ2,λ,λi
such that

Qλ(γh,λ,λi
− γ0,λ) < Qλ(ηλ − γ0,λ) h = 1, 2

(if the first alternative occurs this is trivial, otherwise we use (7.10)). By Re-
mark 2.12 λi is a transition value. The conclusion is thus proved. �
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8. Appendix

In this section we recall briefly the properties of the Φ-convex functions which
we used throughout the paper. For more details and for the proofs we refer the
reader to [8], [5], [6], [17] and [13].

Let H be a Hilbert space with inner product 〈 · , · 〉 and norm ‖ · ‖. Let W

be an open subset of H and let f :W → R ∪ {∞} be a function. We define the
domain of f as the set D(f) := {u ∈ W | f(u) ∈ R}. Moreover, for any real
number c we use the standard notation fc := {u ∈ D(f) | f(u ≤ c}.

Definition 8.1. Let u ∈ D(f). We introduce the Frechét subdifferential of
f at u, denoted by ∂−f(u), as the set of all α’s in H such that

lim inf
v→u

f(v)− f(u)− 〈α, v − u〉
‖v − u‖

≥ 0.

It is easy to see that ∂−f(u) is a closed convex subset of H (possibly empty). If
∂−f(u) 6= ∅, we can define the subgradient of f at u, denoted by grad− f(u), as
the the element α0 in ∂−f(u) such that ‖α0‖ ≤ ‖α‖ for all α’s in ∂−f(u).

We say that u in D(f) is a (lower) critical point for f , if 0 ∈ ∂−f(u).

Definition 8.2. Let φ:D(f)2 × R3 → R be a continuous function.

(a) We say that f is φ-convex if

(8.1) f(v) ≥ f(u) + 〈α, v − u〉 − φ(u, v, f(u), f(v), ‖α‖)‖v − u‖2

for all u, v in D(f), for all α in ∂−f(u) (notice that the previous property
holds true whenever ∂−f(u) = ∅).

(b) Let r be a nonnegative number. We say that f is φ-convex of order r, if
it is φ-convex and there exists a continuous function φ0:D(f)2×R2 → R
such that

φ(u, v, f(u), f(v), ‖α‖) ≤ φ0(u, v, f(u), f(v))(1 + ‖α‖r)

for all u, v in D(f), for all α in ∂−f(u).
(c) Let p, q:D(f) → R be two continuous functions. We say that f is of

class C(p, q) if f is φ convex and

φ(u, v, f(u), f(v), ‖α‖) ≤ p(u)‖α‖+ q(u)

for all u, v in D(f), for all α in ∂−f(u).

Definition 8.3. Let E be a subset of H. We define the indicator function
of E, IE :H → R ∪ {∞}, by

IE(u) :=

{
0 if u ∈ E,

∞ if u /∈ E.
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If u ∈ E we define the normal cone to E at u, denoted by Nu(E), by Nu(E) :=
∂−IE(u). An element ν in Nu(E) will be called a normal to E at u.

With the above definitions we study a function f on a constraint E by study-
ing the constrained function f + IE . In particular the critical points of f + IE

will be called critical points for f on E.
As an example it is not difficult to see that, if h: RN → R is a convex

function, g: RN → R is a C2 function, and M is a C2 submanifold of RN , then
f := h + g + IM is of class C(p, q), for suitable p and q.

Now we give an account of two fundamental theorems concerning φ-convex
functions which are quite relevant in our paper.

Theorem 8.4 (curves of maximal slope). Let f :W → R ∪ {∞} be lower
semicontinuous and φ-convex of order two.

(a) For every u in D(f) there exist T > 0 and a unique curve U : [0, T [→
D(f) such that U(0) = u and

(8.2)


U and f ◦ U are absolutely continuous in [0, T [ and locally Lipschitz

continuous in ]0, T [, moreover, if t ∈ ]0, T [ ∂−f(U(t)) 6= ∅ and

U ′+(t) = − grad− f(U(t)), (f ◦ U)′+(t) = −‖ grad− f(U(t))‖2.

We call U a curve of maximal slope for f starting from u.
(b) Given u0 in D(f) and c ≥ f(u0), there exist ρ > 0 and T > 0 such that

for every u in fc ∩B(u0, ρ) the curve of maximal slope U starting from
u is defined on [0, T ]. If we denote by Φ(u) such a curve, then, letting
u → u in fc ∩B(u0, ρ), we have that Φ(u) converges to Φ(u) uniformly
on [0, T ], while f ◦Φ(u) converges to f ◦Φ(u) uniformly on any compact
subinterval of ]0, T ].

The following remark related to the maximal interval of existence is easy to
prove.

Remark 8.5. Let U : [0, T [ → D(f) be a curve of maximal slope for f (i.e.
let (8.2) be verified for U). If T < ∞ and inf0≤t<T f ◦ U(t) > −∞, then there
exists limt→T− U(t).

The following Deformation Lemmas were used in the proof of the multiplicity
Theorem 3.5. They can be easily obtained from Lemma 8.4 and Remark 8.5,
using standard arguments along with the assumption on W .

Lemma 8.6(First Deformation Lemma). Let f :W → R ∪ {∞} be a lower
semicontinuos φ-convex function of order two and let a, b be two real numbers
such that a < b,

(8.3) f−1([a, b]) ⊂ W
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and inf{‖α‖ | α ∈ ∂−f(u), a ≤ f(u) ≤ b} > 0. Then fa is a strong deformation
retract of f b in f b.

Lemma 8.7 (Second Deformation Lemma). Let f :W → R∪{∞} be a lower
semicontinuos φ-convex function of order two. Let c′, c′′, and c be real numbers
such that c′ ≤ c ≤ c′′ and

(8.4) f−1([c′, c′′]) ⊂ W.

Moreover, let F1 and F2 be two closed subsets of H such that

(8.5)
σ := inf{‖α‖ | α ∈ ∂−f(u), u ∈ f−1([c′, c′′]) ∩ F2} > 0,

ρ := dist(F1,H \ F2) > 0.

Then, for every ε′, ε′′ such that 0 ≤ ε′ < (ρσ/2), 0 ≤ ε′′ < (ρσ/2) and c′ ≤
c − ε′ ≤ c + ε′′ ≤ c′′, the set fc−ε′ is a strong deformation retract of (fc+ε′′ ∩
F1) ∪ fc−ε′ in fc+ε′′ .

In view of the proof of Lemma 5.2, we recall now a result about contrained
functions. For the proof we refer the reader to [6] and to [13]. We first need
a definition.

Definition 8.8. Let V1 and V2 be two subsets of H and let u ∈ V1 ∩ V2.
We say that V1 and V2 are (externally) tangent at u if

Nu(V1) ∩ (−Nu(V2)) 6= {0}.

Theorem 8.9. Let f :W → R ∪ {∞} be a lower semicontinuous function
of class C(p, q), for two suitable functions p and q. Let M be a C2 submanifold
of H with finite codimension (possibly with boundary). If D(f) and M are not
tangent at any u in D(f) ∩M , then

∂−(f + IM )(u) = ∂−f(u) + Nu(M) for all u in D(f) ∩M.

Moreover, f + IM is of class C(p, q) for suitable p, q:D(f) → R.

While proving Lemma 5.2 we used the following result.

Theorem 8.10. Let f :W → R ∪ {∞} be a lower semicontinuous function
of class C(p, q). Then ID(f) is of class C(p, 0), that is

(8.6) 〈ν, v − u〉 ≤ p(u)‖ν‖‖v − u‖2

for all u, v in D(f) and all ν in Nu(D(f)).

Proof. Let u ∈ D(f) and ν ∈ Nu(D(f)).
Step 1. We claim that there exist a strictly increasing sequence (nk)k in N

and sequences (uk)k in D(f), (αk)k in H such that

uk → u, αk → ν, kαk ∈ ∂−f(uk) for all k.
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If not, defining gn:W → R∪{∞}, by gn(v) := (1/n)f(v)−〈ν, v−u〉, there would
exist n in N, R, σ > 0 such that inf f(B(u, R)) > −∞ and

n ≥ n, v ∈ B(u, R), α ∈ ∂−gn(v) ⇒ ‖α‖ ≥ σ.

It follows that for all n ≥ n and for all ρ < R there exists un,ρ such that

‖un,ρ − u‖ = ρ, gn(un,ρ) ≤ gn(u)− σρ.

Indeed let us denote by Un the curve of maximal slope for gn starting from u. If
t is such that U(τ) ∈ B(u, R) for all τ in [0, t], then

gn(Un(t))− gn(u) ≤ −
∫ t

0

‖U ′n(τ)‖2 dτ ≤

{
−σ2t,

−σ‖U(t)− u‖.

Since gn is bounded below in B(u, R), it follows that there exists tn such that
‖Un(tn)−u‖ = ρ. As a consequence gn(Un(tn)) ≤ gn(u)−ρσ. Then un,ρ := U(tn)
is the desired point. In particular

f(uρ,n)− f(u)
n

+ ρσ ≤ 〈ν, un,ρ − u〉.

So for n large
σ

2
‖u− un,ρ‖ =

ρσ

2
≤ 〈ν, un,ρ − u〉.

This contradicts the fact that ν ∈ Nu(D(f)), i.e. 〈ν, v − u〉 ≤ o(‖v − u‖) for v

in D(f).
Step 2. Since f is of class C(p, q) we get that for all v in D(f):

f(v) ≥ f(uk) + 〈nkαk, v − uk〉 − (nk‖αk‖p(uk) + q(uk)) ‖v − uk‖2.

Dividing by nk and letting k →∞ gives (8.6). �
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