
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 30, 2007, 235–249

EXISTENCE OF SOLUTIONS
FOR p(x)-LAPLACIAN PROBLEM
ON AN UNBOUNDED DOMAIN

Fu Yongqiang

Abstract. In this paper we study the following p(x)-Laplacian problem:

−div(a(x)|∇u|p(x)−2∇u) + b(x)|u|p(x)−2u = f(x, u) x ∈ Ω,

u = 0 on ∂Ω,

where 1 < p1 ≤ p(x) ≤ p2 < n, Ω ⊂ Rn is an exterior domain. Applying

Mountain Pass Theorem we obtain the existence of solutions in W
1,p(x)
0 (Ω)

for the p(x)-Laplacian problem in the superlinear case.

1. Introduction

After Kovacik and Rakosnik first discussed the Lp(x) space and W k,p(x) space
in [20], a lot of research have been done concerning this kind of variable exponent
spaces, see for example [1]–[3], [6], [7], [11]–[13] and [16]–[18] and the references
therein. We don’t want to list all the works in this field here. In [22] Ruzicka pre-
sented the mathematical theory for the application of variable exponent spaces
in electro-rheological fluids.

Inspired by their works, we want to study the p(x)-Laplacian problem:

(1.1)
−div(a(x)|∇u|p(x)−2∇u) + b(x)|u|p(x)−2u = f(x, u), x ∈ Ω,

u = 0 on ∂Ω,
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where Ω is an exterior domain in Rn, i.e. Ω is the complement of a bounded
domain, 0 < a0 ≤ a(x) ∈ L∞(Ω), 0 < b0 ≤ b(x) ∈ L∞(Ω) , p is Lipschitz
continuous on Ω and satisfies

(1.2) 1 < p1 ≤ p(x) ≤ p2 < n.

Our object is to obtain sufficient conditions on f for (1.1) to admit nontrivial
and nonnegative solutions in the general case of the following prototype:

(1.3) f(x, u) = g(x)uα(x), p(x)− 1 < α(x) < p∗(x)− 1

where p∗(x) = np(x)/(n− p(x)).
When p(x) is a constant function, there are a lot of studies. For the case of

bounded domains, see for example [4], [9], [10], [14] and [19] and the references
therein. For the case of unbounded domains, there are also many studies, see
for example [5], [8], [21], [24] and [25]. It is beyond our ability to write out
all the works in this direction here. When p(x) is a variable function, Fan and
Zhang [17] studied the p(x)-Laplacian problems on bounded domains. Under
some conditions, they established some results on the existence of solutions. For
unbounded domains, Fan and Han [15] investigated the existence of solutions for
p(x)-Laplacian equations. In this paper we discuss the p(x)-Laplacian problem
in the case of unbounded domain. Our method is a bit different from that in
[15] and [17] and in some sense we discuss the p(x)-Laplacian problem in a more
general setting than that in [15] and [17] as well.

2. Preliminaries

In this section we first recall some facts on variable exponent spaces Lp(x)(Ω)
and W k,p(x)(Ω). For the details see [20] and [16].

Let P(Ω) be the set of all Lebesgue measurable functions p: Ω → [1,∞].

ρp(f) =
∫

Ω\Ω∞
|f(x)|p(x) dx + inf

Ω∞
|f(x)|,(2.1)

‖f‖p = inf{λ > 0 : ρp(f/λ) ≤ 1},(2.2)

where Ω∞ = {x ∈ Ω : p(x) = ∞}. The variable exponent Lebesgue space
Lp(x)(Ω) is the class of all functions f such that ρp(λf) < ∞ for some λ =
λ(f) > 0. Lp(x)(Ω) is a Banach space endowed with the norm (2.2). ρp(f) is
called the modular of f in Lp(x)(Ω).

For a given p(x) ∈ P(Ω) we define the conjugate function p′(x) as:

p′(x) =


∞ if x ∈ Ω1 = {x ∈ Ω : p(x) = 1},
1 if x ∈ Ω∞,

p(x)
p(x)− 1

for other x ∈ Ω.
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Theorem 2.1. Let p ∈ P(Ω). Then the inequality∫
Ω

|f(x)g(x)| dx ≤ rp‖f‖p‖g‖p′

holds for every f ∈ Lp(x)(Ω) and g ∈ Lp′(x)(Ω) with the constant rp depending
on p(x) and Ω only.

Theorem 2.2. The topology of the Banach space Lp(x)(Ω) endowed by the
norm (2.2) coincides with the topology of modular convergence if and only if
p ∈ L∞(Ω).

Theorem 2.3. The dual space to Lp(x)(Ω) is Lp′(x)(Ω) if and only if p ∈
L∞(Ω). The space Lp(x)(Ω) is reflexive if and only if

(2.3) 1 < inf
Ω

p(x) ≤ sup
Ω

p(x) < ∞.

Next we assume that Ω ⊂ Rn is a nonempty open set, p ∈ P(Ω) and k is a
given natural number.

Given a multiindex α = (α1, . . . , αn) ∈ Nn, we set |α| = α1 + . . . + αn and
Dα = Dα1

1 . . . Dαn
n , where Di = ∂/∂xi is the generalized derivative operator.

The generalized Sobolev space W k,p(x)(Ω) is the class of all functions f on
Ω such that Dαf ∈ Lp(x)(Ω) for every multiindex α with |α| ≤ k, endowed with
the norm

(2.4) ‖f‖k,p =
∑
|α|≤k

‖Dαf‖p.

By W
k,p(x)
0 (Ω) we denote the subspace of W k,p(x)(Ω) which is the closure of

C∞
0 (Ω) with respect to the norm (2.4).

Theorem 2.4. The space W k,p(x)(Ω) and W
k,p(x)
0 (Ω) are Banach spaces,

which are reflexive if p satisfies (2.3).

We denote the dual space of W
k,p(x)
0 (Ω) by W−k,p′(x)(Ω), then we have

Theorem 2.5. Let p ∈ P(Ω) ∩ L∞(Ω). Then for every G ∈ W−k,p′(x)(Ω)
there exists a unique system of functions {gα ∈ Lp′(x)(Ω) : |α| ≤ k} such that

G(f) =
∑
|α|≤k

∫
Ω

Dαf(x)gα(x) dx, f ∈ W
k,p(x)
0 (Ω).

The norm of W
−k,p′(x)
0 (Ω) is defined as

‖G‖−k,p′ = sup
{
|G(f)|
‖f‖k,p

: f ∈ W
k,p(x)
0 (Ω)

}
.
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Theorem 2.6. If Ω is a bounded domain with cone property, p(x) ∈ C(Ω)
satisfies (1.2) and q(x) is any Lebesgue measurable function defined on Ω with
p(x) ≤ q(x) a.e. on Ω and infx∈Ω{p∗(x) − q(x)} > 0, then there is a compact
embedding W 1,p(x)(Ω) → Lq(x)(Ω).

Theorem 2.7. Let Ω be a domain with cone property. If p: Ω → R is Lip-
schitz continuous and satisfies (1.2), and q(x) ∈ P(Ω) satisfies p(x) ≤ q(x) ≤
p∗(x) a.e. on Ω, then there is a continuous embedding W 1,p(x)(Ω) → Lq(x)(Ω).

For the p(x)-Laplacian problem (1.1) we define two functionals K(u) and
J(u) on Ω:

K(u) =
∫

Ω

F (x, u) dx, J(u) =
∫

Ω

1
p(x)

(a(x)|∇u|p(x) + b(x)|u|p(x)) dx−K(u)

where F (x, t) =
∫ t

0
f(x, s) ds.

Next we discuss the properties of K(u) in the case (1.3). We assume that f

satisfies the following conditions:

(H1) f ∈ C(Ω × R), f(x, t) > 0 in Ω0 × (0,∞) for some nonempty open set
Ω0 ⊆ Ω and f(x, t) = 0 for all x ∈ Ω and t ≤ 0.

(H2) |f(x, t)| ≤ g(x)|t|α(x), α + 1 ∈ P(Ω) is uniformly continuous on Ω with
â = infx∈Ω{α(x)−p(x)+1} > 0 and a = infx∈Ω{p∗(x)−α(x)− 1} > 0,
0 6≡ g ∈ L∞(Ω) ∩ Lp0(Ω) where

p0(x) =
np(x)

np(x)− (α(x) + 1)(n− p(x))
.

(H3) There exists µ > p(x) with infx∈Ω{µ− p(x)} > 0 such that µF (x, t) ≤
tf(x, t) for (x, t) ∈ Ω× R.

Lemma 2.8. Suppose that α(x) satisfies the conditions in (H2). Let r be
a positive constant. Then, if |u(x)| ≥ r,

lim
‖u‖1,p→0

‖u‖α+1

‖u‖p∗
= 0.

Proof. For any 0 < ε < 1, we have∫
Ω

(
|u|

ε‖u‖p∗

)α(x)+1

dx =
∫

Ω

(
|u|

ε‖u‖p∗

)p∗(x)(
ε‖u‖p∗

|u|

)p∗(x)−α(x)−1

dx

≤
∫

Ω

(
|u|
‖u‖p∗

)p∗(x)(‖u‖p∗

r

)p∗(x)−α(x)−1(1
ε

)α(x)+1

dx.

As a = infx∈Ω{p∗(x)−α(x)−1} > 0, we can choose ‖u‖p∗ sufficiently small such
that ∫

Ω

(
|u|

ε‖u‖p∗

)α(x)+1

dx ≤
∫

Ω

(
|u|
‖u‖p∗

)p∗(x)

dx ≤ 1
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and further

‖u‖α+1 ≤ ε‖u‖p∗ .

By Theorem 2.7 we know ‖u‖p∗ → 0 as ‖u‖1,p → 0. �

Theorem 2.9. Suppose that f satisfies (H1) and (H2), then K(u) is weakly
continuous on W

1,p(x)
0 (Ω).

Proof. Let Ωk = {x ∈ Ω : |x| ≤ k} where k is a natural number. Let
uj → u weakly in W

1,p(x)
0 (Ω). We have

|K(uj)−K(u)| ≤
∫

Ωk

|F (x, uj)− F (x, u)| dx

+ C‖g‖p0,Ω\Ωk
(‖|uj |α+1‖(α+1)−1p∗ + ‖|uj |α+1‖(α+1)−1p∗).

As {uj} is bounded in W
1,p(x)
0 (Ω), {uj} is bounded in W 1,p(x)(Ωk) for fixed k as

well. By Theorem 2.6 there is a compact embedding W 1,p(x)(Ωk) → Lα(x)+1(Ωk)
and further there exists a subsequence of {uj} (still denote the subsequence by
{uj}) such that uj → u in Lα(x)+1(Ω) and by Theorem 2.2 uj → u in modular
as well. From (H2) we get

|F (x, t)| ≤ 1
α(x) + 1

g(x)|t|α(x)+1.

Then by Vitali Theorem, after subtracting a subsequence if necessary, for fixed
k we have ∫

Ωk

F (x, uj) dx →
∫

Ωk

F (x, u) dx as j →∞.

Let χΩ\Ωk
be the characteristic function of Ω\Ωk. Denote α = supΩ α(x). From∫

Ω

(
|uj |α(x)+1

(1 + ‖uj‖p∗)α+1

)(α(x)+1)−1p∗(x)

dx

=
∫

Ω

(
|uj |

((1 + ‖u‖p∗)α+1)(α(x)+1)−1

)p∗(x)

dx

≤
∫

Ω

(
|uj |

((1 + ‖u‖p∗)α+1)(α+1)−1

)p∗(x)

dx =
∫

Ω

(
|uj |

1 + ‖u‖p∗

)p∗(x)

dx,

we have

‖|uj |α+1‖(α+1)−1p∗ ≤ (1 + ‖uj‖p∗)α+1.

Furthermore, by Theorem 2.7,

‖|uj |α+1‖(α+1)−1p∗ ≤ C(1 + ‖uj‖1,p)α+1.

Similarly

‖|u|α+1‖(α+1)−1p∗ ≤ C(1 + ‖u‖1,p)α+1.
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As g ∈ Lp0(x)(Ω), we know∫
Ω

gp0(x) dx < ∞ and
∫

Ω\Ωk

gp0(x) dx =
∫

Ω

(gχΩ\Ωk
)p0(x) dx → 0

as k →∞. By Theorem 2.2 ‖gχΩ\Ωk
‖p0 = ‖g‖p0,Ω\Ωk

→ 0 as k →∞. �

Theorem 2.10. Suppose that f satisfies (H1) and (H2), then K(u) is dif-
ferentiable on W

1,p(x)
0 (Ω) with

K ′(u)φ =
∫

Ω

f(x, u)φdx, for all φ ∈ W
1,p(x)
0 (Ω)

and K ′(u) is a continuous and compact mapping from W
1,p(x)
0 (Ω) to W−1,p′(x)(Ω).

Proof. For differentiability of K, we will show that for any ε > 0, there
exists a δ = δ(ε, u) > 0 such that∣∣∣∣K(u + φ)−K(u)−

∫
Ω

f(x, u)φdx

∣∣∣∣
=

∣∣∣∣ ∫
Ω

F (x, u + φ)− F (x, u)− f(x, u)φ dx

∣∣∣∣ < ε‖φ‖1,p

for all φ ∈ W
1,p(x)
0 (Ω) with ‖φ‖1,p < δ.

Let Ωk = {x ∈ Ω : |x| ≤ k}, Ωk1 = {x ∈ Ωk : |u(x)| ≥ β}, Ωk2 = {x ∈
Ωk : |φ(x)| ≥ r}, Ωk3 = {x ∈ Ωk : |u(x)| < β and |φ(x)| < r} where k, β, r are
constant which will be determined later. First on Ω \ Ωk we have∣∣∣∣ ∫

Ω\Ωk

F (x, u + φ) − F (x, u)− f(x, u)φ dx

∣∣∣∣
≤

∫
Ω\Ωk

g((|u|+ |φ|)α(x)|φ|+ |u|α(x)|φ|) dx

≤C

∫
Ω\Ωk

g(|u|α(x)|φ|+ |φ|α(x)+1) dx

since

(|u|+ |φ|)α(x) ≤ 2α(x)(|u|α(x) + |φ|α(x)) ≤ 2α(|u|α(x) + |φ|α(x)).

Observe that∫
Ω\Ωk

g|u|α(x)|φ| dx ≤ C‖g|u|α(x)‖(p∗)′,Ω\Ωk
‖φ‖p∗ ≤ C‖g|u|α(x)‖(p∗)′,Ω\Ωk

‖φ‖1,p.

As

(p∗(x))′ =
np(x)

np(x)− (n− p(x))
<

np(x)
np(x)− (α(x) + 1)(n− p(x))

= p0(x),

we have∫
Ω\Ωk

(g|u|α(x))(p
∗(x))′ dx ≤ C‖g(p∗)′‖p0/(p∗)′,Ω\Ωk

‖|u|α(p∗)′‖(p0/(p∗)′)′ .
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Since, by Theorems 2.2 and 2.8,∫
Ω

(|u|α(x)(p∗(x))′)(p0(x)/(p∗(x))′)′ dx =
∫

Ω

|u|p
∗(x) dx < ∞,

we get ‖|u|α(p∗)′‖(p0/(p∗)′)′ < ∞ by applying Theorem 2.2 once more. In view of∫
Ω\Ωk

(g(p∗(x))′)p0(x)/(p∗(x))′ dx =
∫

Ω

(gχΩ\Ωk
)p0(x) dx → 0

as k →∞, from Theorem 2.2 we obtain

‖g(p∗)′‖p0/(p∗)′,Ω\Ωk
→ 0 as k →∞.

Similarly we can deal with the term
∫
Ω\Ωk

g|φ|α(x)+1 dx. Therefore we conclude

(2.5)
∣∣∣∣ ∫

Ω\Ωk

F (x, u + φ)− F (x, u)− f(x, u)φdx

∣∣∣∣ <
ε

2
‖φ‖1,p

for sufficiently large k and ‖φ‖1,p ≤ 1.
On Ωk we have∣∣∣∣ ∫
Ωk

F (x, u + φ)− F (x, u)− f(x, u)φdx

∣∣∣∣
≤

3∑
i=1

∫
Ωki

|F (x, u + φ)− F (x, u)− f(x, u)φ| dx.

Second similar to the above∣∣∣∣ ∫
Ωk1

F (x, u+φ)−F (x, u)− f(x, u)φdx

∣∣∣∣ ≤ C

∫
Ωk1

g(|u|α(x)|φ|+ |φ|α(x)+1) dx

≤ C

∫
Ωk1

(|u|α(x)|φ|+ |φ|α(x)+1) dx = I1 + I2.

For I1 we have

I1 ≤ C‖|u|α‖(p∗)′,Ωk1‖φ‖p∗ ≤ C‖|u|α‖(p∗)′,Ωk1‖φ‖1,p.

As α(x)(p∗(x))′ = α(x)p∗(x)/(p∗(x)− 1) < α(x) + 1, we have∫
Ωk1

|u|α(x)(p∗(x))′ dx ≤ ‖|u|α(p∗)′‖(α+1)/α(p∗)′,Ωk1‖χΩk1‖((α+1)/α(p∗)′)′ .

In view of∫
Ω

(χΩk1)
((α(x)+1)/α(x)(p∗(x))′)′ dx = meas Ωk1 ≤ meas Ωk < ∞,

by Theorem 2.2
‖χΩk1‖((α+1)/α(p∗)′)′ < ∞.

Because u ∈ W 1,p(x)(Ω), we can get

(2.6) ∞ >

∫
Ωk1

|u|p(x) dx ≥
∫

Ωk1

βp(x) dx ≥ min{βp1 , βp2}meas Ωk1.
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From (2.6), meas Ωk1 → 0 as β →∞. In view of∫
Ωk1

|u|α(x)(p∗(x))′((α(x)+1)/α(x)(p∗(x))′) dx =
∫

Ωk1

|u|α(x)+1 dx

and by Theorem 2.6 we conclude∫
Ωk1

|u|α(x)+1 dx =
∫

Ω

|uχωk1 |α(x)+1 dx → 0

as β →∞ and ‖uα(p∗)′‖(α+1)/α(p∗)′,Ωk1 → 0 as β →∞. Therefore∫
Ωk1

|u|α(x)(p∗(x))′ dx → 0 as β →∞

and, by Theorem 2.2, we can choose β so large that

I1 ≤
ε

12
‖φ‖1,p.

Similarly for I2 we can also show for sufficiently large β

I2 ≤
ε

12
‖φ‖1,p

and therefore

(2.7)
∣∣∣∣ ∫

Ωk1

F (x, u + φ)− F (x, u)− f(x, u)φ dx

∣∣∣∣ <
ε

6
‖φ‖1,p.

Third from f ∈ C(Ω× R) we have F ∈ C1(Ω× R). For any ε1, β > 0, there
exists r > 0 such that

(2.8) |F (x, ξ + h)− F (x, ξ)− f(x, ξ)h| < ε1|h|

whenever x ∈ Ωk, |ξ| ≤ β and |h| < r. From (2.8) we have∫
Ωk3

|F (x, u + φ)− F (x, u)− f(x, u)φ| dx ≤ ε1‖φ‖p‖χΩk
‖p′ .

Choose ε1 such that ε1‖χΩk
‖p′ < ε/6, then

(2.9)
∫

Ωk3

|F (x, u + φ)− F (x, u)− f(x, u)φ| dx ≤ ε

6
‖φ‖1,p.

Here ‖χΩk
‖p′ < ∞ because

∫
Ω
(χΩk

)p′(x) dx = meas Ωk < ∞.
Fourth similar to the above we have∣∣∣∣ ∫
Ωk2

F (x, u + φ)− F (x, u)− f(x, u)φdx

∣∣∣∣ ≤ C

∫
Ωk2

|u|α(x)|φ|+ |φ|α(x)+1 dx

≤ C(‖|u|α‖(α+1)/α,Ωk2 + ‖|φ|α‖(α+1)/α,Ωk2)‖φ‖α+1,Ωk2 .

By Theorem 2.8 ‖φ‖α+1,Ωk2 ≤ ε2‖φ‖p∗ ≤ Cε2‖φ‖1,p for sufficiently small ‖φ‖1,p.
From u ∈ W 1,p(x)(Ω) and Theorem 2.6, u ∈ Lα(x)+1(Ωk), so∫

Ωk2

(|u|α(x))(α(x)+1)/α(x) dx < ∞
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and further ‖|u|α‖(α+1)/α,Ωk2 <∞. Similarly ‖|φ|α‖(α+1)/α,Ωk2 <∞ if ‖φ‖1,p≤1.
Choose ε2 such that

(2.10)
∫

Ωk2

|F (x, u + φ)− F (x, u)− f(x, u)φ| dx ≤ ε

6
‖φ‖1,p.

From (2.5), (2.7), (2.9) and (2.10) we conclude that K(u) is differentiable on
W

1,p(x)
0 (Ω) with

K ′(u)φ =
∫

Ω

f(x, u)φ dx for all φ ∈ W
1,p(x)
0 (Ω).

Next we consider the continuity of K ′(u). From

|K ′(uj)φ−K ′(u)φ|

≤
∫

Ωk

|f(x, uj)− f(x, u)||φ| dx +
∫

Ω\Ωk

|f(x, uj)− f(x, u)||φ| dx

≤ C(‖f(x, uj)− f(x, u)‖(p∗)′,Ωk
‖φ‖p∗ + ‖g(|uj |α + |u|α)‖(p∗)′,Ω\Ωk

‖φ‖p∗)

≤ C(‖f(x, uj)− f(x, u)‖(p∗)′,Ωk
+ ‖g(|uj |α + |u|α)‖(p∗)′,Ω\Ωk

)‖φ‖1,p,

we have

‖K ′(uj)−K ′(u)‖−1,p′

≤ C(‖f(x, uj)− f(x, u)‖(p∗)′,Ωk
+ ‖g(|uj |α + |u|α)‖(p∗)′,Ω\Ωk

).

Similarly to the differentiability of K(u) we get the result.
At last we show the compactness of K ′(u) by the diagonal method. Let

{uj} be a bounded sequence in W
1,p(x)
0 (Ω). For each k the compactness of

the embedding W 1,p(x)(Ωk) → Lq(x)(Ωk), where q(x) satisfies the conditions in
Theorem 2.6, and the boundedness of {uj} in W 1,p(x)(Ωk) imply that {uj} has
a Cauchy subsequence {ujk} in Lq(x)(Ωk). By taking q(x) = α(x)+1, similar to
the above we can choose j and k sufficiently large such that

‖f(x, ujj)− f(x, uii)‖(p∗)′,Ωk
+ ‖g(|ujj |α + |uii|α)‖(p∗)′,Ω\Ωk

< ε.

Then {K ′(ujj)} is a Cauchy sequence in W−1,p′(x)(Ω) and the compactness of
K ′ follows immediately. �

3. Existence of solutions

The critical points u of J(u), i.e.

(3.1) J ′(u)(φ) =
∫

Ω

a(x)|∇u|p(x)−2∇u∇φ + b(x)|u|p(x)−2uφ− f(x, u)φdx = 0

for all φ ∈ W
1,p(x)
0 (Ω) are weak solutions of

−div(a(x)|∇u|p(x)−2∇u) + b(x)|u|p(x)−2u = f(x, u).

So next we need only to consider the existence of nontrivial critical points of J(u).
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In the following we study the general case of the prototype (1.3).

Theorem 3.1. Under conditions (H1)–(H3) the p(x)-Laplacian problem (1.1)
has a nontrivial and nonnegative solution u ∈ W

1,p(x)
0 (Ω).

Proof. By condition (H2),

J(u) ≥
∫

Ω

a0

p(x)
|∇u|p(x) +

b0

p(x)
|u|p(x) dx−

∫
Ω

1
α(x) + 1

g(x)|u|α(x)+1 dx

≥ 1
p2

∫
Ω

a0|∇u|p(x) + b0|u|p(x) − C|u|α(x)+1 dx.

By Theorem 2.7 we have ‖u‖α+1 ≤ C‖u‖1,p. If ‖u‖1,p < 1 is sufficiently small
such that C‖u‖1,p < 1, then ‖u‖α+1 < 1. As α(x) and p(x) are uniformly
continuous on Ω, for any ε > 0 there exists δ > 0 such that

|p(x)− p(y)| < ε and |α(x)− α(y)| < ε

whenever x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Ω satisfy |yi − xi| < δ, i =
1, . . . , n. Take ε = â/4 and define u(x) = 0 on Rn \Ω. Divide Rn into countable
open hypercubes {Qj}∞j=1 with edges parallel to the coordinate axes, the length of
each edge is δ/2, {Qj}∞j=1 mutually have no common points and Rn =

⋃∞
j=1 Qj .

It is obvious that
αj1 + 1− pj2 >

â

2
where pj2 = supx∈Qj∩Ω{p(x)} and αj1 = infx∈Qj∩Ω{α(x)}. By [11]

(3.2)
∫

Qj∩Ω

|u|α(x)+1 dx ≤ (C‖u‖1,p,Qj∩Ω)αj1+1.

As ‖u‖1,p = ‖u‖p + ‖∇u‖p < 1, we have

(3.3)
∫

Qj∩Ω

(|u|p(x) + |∇u|p(x)) dx ≥ ‖u‖pj2
p,Qj∩Ω + ‖∇u‖pj2

p,Qj∩Ω ≥ C‖u‖pj2
1,p,Qj∩Ω.

From (3.2) and (3.3) we have

1
p2

∫
Qj∩Ω

a0|∇u|p(x) + b0|u|p(x) − C|u|α(x)+1 dx

≥C2‖u‖
pj2
1,p,Qj∩Ω − C1‖u‖

αj1+1
1,p,Qj∩Ω

=C2‖u‖
pj2
1,p,Qj∩Ω

(
1− C1

C2
‖u‖αj1+1−pj2

1,p,Qj∩Ω

)
≥C2‖u‖p2

1,p,Qj∩Ω

(
1− C1

C2
‖u‖ba/2

1,p,Qj∩Ω

)
> 0

if ‖u‖1,p,Qj∩Ω < (C2/C1)2/ba. So, if u 6=0 and ‖u‖1,p≤d=min{1/2, (C2/2C1)2/ba},
then

J(u) ≥
∞∑

j=1

C2‖u‖p2
1,p,Qj∩Ω

(
1− C1

C2
‖u‖ba/2

1,p,Qj∩Ω

)
> 0.
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Set Sd = {u ∈ W
1,p(x)
0 (Ω) : ‖u‖1,p = d}, Bd = {u ∈ W

1,p(x)
0 (Ω) : ‖u‖1,p ≤ d}.

Next we show infu∈Sd
J(u) > 0. Otherwise infu∈Sd

J(u) = 0 and there exists
{un} ⊂ Sd such that J(un) → 0. As Bd is weakly compact, there exist a
subsequence of {un} (still denote it by {un}) and u ∈ Bd such that un → u

weakly in W
1,p(x)
0 (Ω). As J(u) + K(u) is convex and differentiable, it is weakly

semicontinuous and then J(u) ≤ lim infn→∞ J(un) = 0 in view of Theorem 2.9.
If u 6= 0, we have J(u) > 0 and so u = 0. But similar to (3.3)

J(un) + K(un) =
∫

Ω

a(x)|∇un|p(x) + b(x)|un|p(x)dx ≥ C‖u‖p2
1,p = Cdp2 > 0,

we know J(un) 6→ 0 as K(un) → 0, which is a contradiction. By (H1) and (H3)
we have F (x, t) ≥ a1t

µ − a2 where (x, t) ∈ Ω0 × R and a1, a2 > 0 are constant.
Pick x0 ∈ Ω0 and B2R(x0) = {x : |x − x0| < 2R} ⊂ Ω0 with 2R < 1. Let

φ ∈ C∞
0 (B2R(x0)) such that φ ≡ 1, x ∈ BR(x0); 0 ≤ φ(x) ≤ 1 and |∇φ| ≤ 1/R.

Denote l = infx∈Ω{µ− p(x)}. Then, for s > 1,

J(sφ) ≤
∫

B2R(x0)

sp(x)

p(x)
(a(x)|∇φ|p(x) + b(x)|φ|p(x)) dx

−
∫

B2R(x0)

sµa1|φ|µ dx + a2meas B2R(x0)

≤C

(
1

Rp2
+ 1

) ∫
B2R(x0)

sp(x) dx

− sµa1

∫
B2R(x0)

|φ|µ dx + a2meas B2R(x0)

=
∫

B2R(x0)

sp(x)

(
C

Rp2
+ C − Csµ−p(x)

)
dx + a2meas B2R(x0)

≤
∫

B2R(x0)

sp(x)

(
C

Rp2
+ C − Csl

)
dx + a2meas B2R(x0) < 0

if s is sufficiently large. Here C = (
∫

B2R(x0)
a1|φ|µ dx)/meas B2R(x0).

Next we show that the (PS) condition holds. Suppose that {ui} ⊂ W
1,p(x)
0 (Ω)

is a sequence such that J(ui) ≤ C and J ′(ui) → 0 in W−1,p′(x)(Ω). By (H3) we
have

J(ui) ≥
∫

Ω

a(x)
p(x)

|∇ui|p(x) +
b(x)
p(x)

|ui|p(x) dx−
∫

Ω

1
µ

f(x, ui)ui dx

=
∫

Ω

(
1

p(x)
− 1

µ

)
(a(x)|∇ui|p(x) + b(x)|ui|p(x)) dx

+
1
µ

∫
Ω

(a(x)|∇ui|p(x) + b(x)|ui|p(x) − f(x, ui)ui) dx

≥ l

µp2

∫
Ω

a0|∇ui|p(x) + b0|ui|p(x) dx− 1
µ
‖J ′(ui)‖−1,p′‖ui‖1,p.



246 Fu Yongqiang

We consider four cases to show that {ui} is bounded in W 1,p(x)(Ω).

Case 1. If ‖ui‖p ≤ 1 and ‖∇ui‖p ≤ 1, it is immediate that ‖ui‖1,p ≤ C.

Case 2. If ‖ui‖p > 1 and ‖∇ui‖p > 1, then

‖ui‖1,p ≤
∫

Ω

|ui|p(x) + |∇ui|p(x) dx.

For i sufficiently large we have

1
µ
‖J ′(ui)‖−1,p′ <

l

2µp2
min{a0, b0}

and then ∫
Ω

|∇ui|p(x) dx ≤ C and
∫

Ω

|ui|p(x) dx ≤ C,

and furthermore, by Theorem 2.2, ‖ui‖1,p ≤ C.

Case 3. If ‖ui‖p > 1 and ‖∇ui‖p ≤ 1, then

J(ui) ≥
lb0

µp2

∫
Ω

|ui|p(x) dx− 1
µ
‖J ′(ui)‖−1,p′‖ui‖p −

1
µ
‖J ′(ui)‖−1,p′ .

If i is sufficiently large
1
µ
‖J ′(ui)‖−1,p′ <

lb0

2µp2
,

by ‖ui‖p ≤
∫
Ω
|ui|p(x) dx we know

∫
Ω
|ui|p(x) dx ≤ C and ‖ui‖1,p ≤ C.

Case 4. If ‖ui‖p ≤ 1 and ‖∇ui‖p > 1, we can get ‖ui‖1,p ≤ C similar to
Case 3.

From Cases 1–4 we conclude that {ui} is bounded in W 1,p(x)(Ω) and by
Theorem 2.10 there exists a subsequence of {ui} (we still denote it by {ui}) such
that K ′(ui) is a Cauchy sequence in W−1,p′(x)(Ω).

Divide Ω into two parts: Ω1 = {x ∈ Ω : p(x) < 2}, Ω2 = {x ∈ Ω : p(x) ≥ 2}.
From (3.1) it is easy to get

(3.4)
∫

Ω

a(x)(|∇ui|p(x)−2∇ui − |∇uj |p(x)−2∇uj)(∇ui −∇uj)

+ b(x)(|ui|p(x)−2ui − |uj |p(x)−2uj)(ui − uj) dx

≤ |J ′(ui)(ui − uj)|+ |J ′(uj)(ui − uj)|

+
∣∣∣∣ ∫

Ω

(f(x, ui)− f(x, uj))(ui − uj) dx

∣∣∣∣
≤C(‖J ′(ui)‖−1,p′ + ‖J ′(uj)‖−1,p′ + ‖K ′(ui)−K ′(uj)‖−1,p′) → 0.
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On Ω1 we have∫
Ω1

|∇ui −∇uj |p(x) + |ui − uj |p(x) dx

≤
∫

Ω1

((|∇ui|p(x)−2∇ui − |∇uj |p(x)−2∇uj)(∇ui −∇uj))p(x)/2

× (|∇ui|p(x) + |∇uj |p(x))(2−p(x))/2 dx

+
∫

Ω1

((|ui|p(x)−2ui − |uj |p(x)−2uj)

× (ui − uj))p(x)/2(|ui|p(x) + |uj |p(x))(2−p(x))/2 dx

≤‖((|∇ui|p(x)−2∇ui − |∇uj |p(x)−2∇uj)(∇ui −∇uj))p(x)/2‖2/p,Ω1

× ‖(|∇ui|p(x) + |∇uj |p(x))(2−p(x))/2‖2/(2−p),Ω1

+ ‖((|ui|p(x)−2ui − |uj |p(x)−2uj)

× (ui − uj))p(x)/2‖2/p,Ω1‖(|ui|p(x) + |uj |p(x))(2−p(x))/2‖2/(2−p),Ω1 .

From (3.4) and Theorem 2.2 we get

‖((|∇ui|p(x)−2∇ui − |∇uj |p(x)−2∇uj)(∇ui −∇uj))p(x)/2‖2/p,Ω1 → 0,(3.5)

‖((|ui|p(x)−2ui − |uj |p(x)−2uj)(ui − uj))p(x)/2‖2/p,Ω1 → 0.(3.6)

As ∫
Ω1

(|∇ui|p(x) + |∇uj |p(x))((2−p(x))/2)·(2/(2−p(x))) dx

and ∫
Ω1

(|ui|p(x) + |uj |p(x))((2−p(x))/2)·(2/(2−p(x))) dx

are all bounded, by Theorem 2.2, (3.5) and (3.6), we have

(3.7)
∫

Ω1

|∇ui −∇uj |p(x) + |ui − uj |p(x) dx → 0.

On Ω2, by (3.4) we have∫
Ω2

|∇ui −∇uj |p(x) + |ui − uj |p(x) dx(3.8)

≤C

∫
Ω2

(|∇ui|p(x)−2∇ui − |∇uj |p(x)−2∇uj)(∇ui −∇uj)

+ (|ui|p(x)−2ui − |uj |p(x)−2uj)(ui − uj) dx → 0.

Combining (3.7) with (3.8) and by Theorem 2.2 we conclude ‖ui − uj‖1,p → 0.
Thus the (PS) condition holds.

The Mountain Pass Theorem guarantees that J has a nontrivial critical
point u. Let φ = max{−u(x), 0} in (3.1) we arrive at the conclusion that u ≥ 0
in Ω. �
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