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GLOBAL AXIALLY SYMMETRIC SOLUTIONS
WITH LARGE SWIRL TO THE NAVIER–STOKES EQUATIONS

Wojciech M. Zajączkowski

Abstract. Long time existence of axially symmetric solutions to the Na-

vier–Stokes equations in a bounded cylinder and with boundary slip con-
ditions is proved. The axially symmetric solutions with nonvanishing az-

imuthal component of velocity (swirl) are examined. The solutions are such
that swirl is small in a neighbourhood close to the axis of symmetry but it

is large in some positive distance from it. There is a great difference be-

tween the proofs of global axially symmetric solutions with vanishing and
nonvanishing swirl. In the first case global estimate follows at once but

in the second case we need a lot of considerations in weighted spaces to

show it.
The existence is proved by the Leray–Schauder fixed point theorem.

1. Introduction

We consider the motion of a viscous incompressible fluid described by Navier–
Stokes equations in a bounded cylinder Ω and with boundary slip conditions
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(see [18]):

(1.1)

v,t + v · ∇v − divT(v, p) = f in ΩT ≡ Ω× (0, T ),
div v = 0 in ΩT ,

v · n = 0 on ST = S × (0, T ),
νn · D(v) · τα = 0, α = 1, 2, on ST ,

v|t=0 = v(0) in Ω,

where v = v(x, t) = (v1(x, t), v2(x, t), v3(x, t)) ∈ R3 is the velocity of the fluid,
p = p(x, t) ∈ R the pressure, f = f(x, t) = (f1(x, t), f2(x, t), f3(x, t)) ∈ R3 the
external force field, n is the unit outward normal vector to S, τα, α = 1, 2, are
tangent vectors to S, ν > 0 is the constant viscosity coefficient.
By T(v, p) we denote the stress tensor of the form

(1.2) T(v, p) = νD(v)− pI,

where D(v) = {vi,xj + vj,xi}i,j=1,2,3 is the dilatation tensor and I is the unit
matrix. Finally, the dot describes the scalar product in R3.
To describe the domain Ω ⊂ R3 and the considered motion we introduce the

cylindrical coordinates r, ϕ, z by the relations x1 = r cosϕ, x2 = r sinϕ x3 = z,
where x1, x2, x3 are the Cartesian coordinates.
We assume that

Ω = {x ∈ R3 : r < R, −a < z < a, ϕ ∈ [0, 2π]}.

Then ∂Ω = S = S1 ∪ S2 where

S1 = {x ∈ R3 : r = R, −a < z < a, ϕ ∈ [0, 2π]},
S2 = {x ∈ R3 : r < R z = −a or z = a, ϕ ∈ [0, 2π]}.

Let u be any vector. We introduce the cylindrical coordinates of u by: ur = u·er,
uϕ = u · eϕ, uz = u · ez, where er = (cosϕ, sinϕ, 0), eϕ = (− sinϕ, cosϕ, 0),
ez = (0, 0, 1).

Definition 1.1. By an axially symmetric solution to problem (1.1) we mean
such a solution that the cylindrical components of v, f , v(0) and p do not depend
on ϕ.

The aim of this paper is to prove the existence of global and regular axially
symmetric solutions to problem (1.1). To this purpose we follow the consider-
ations from [18], [19]. Hence we need the following notation. We distinguish
the angular component of velocity by denoting vϕ = w. Let α = rot v be the
vorticity vector. Its cylindrical coordinates in the axially symmetric case assume
the form

(1.3) αr = −w,z, αϕ = vr,z − vz,r ≡ χ, αz =
w

r
+ w,r.
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From [19] we have

Lemma 1.2. Let v, w, Fϕ = (rot f)ϕ be given. Then χ is a solution to the
problem

(1.4)

χ,t + v · ∇χ+ (vr,r + vz,z)χ

− ν
[(
r

(
χ

r

)
,r

)
,r

+ χ,zz + 2
(
χ

r

)
,r

]
=
2
r
ww,z + Fϕ in ΩT ,

χ = 0 on ST ,

χ|t=0 = χ(0) in Ω.

From [19] we also have

Lemma 1.3. Let v and fϕ be given. Then w is a solution to the problem

(1.5)

w,t + v · ∇w +
vr
r
w − ν∆w + ν w

r2
= fϕ in ΩT ,

w,r =
1
R
w on ST1 ,

w,z = 0 on ST2 ,

w|t=0 = w(0) in Ω.

To show existence of global regular axially symmetric solutions to problem
(1.1) we follow the ideas from [9], [17]. In these papers axially symmetric solu-
tions with vϕ = 0, fϕ = 0 are considered. Therefore, problem (1.5) disappears
and also the first term on the r.h.s. of (1.4)1. Moreover, vector α takes the form
χeϕ, so it has only one nonvanishing component. Having χ, vector v = vrer+vzez
is calculated from the elliptic problem

(1.6′)

vr,z − vz,r = χ in Ω,

vr,r + vz,z = −
vr
r

in Ω,

vr|S1 = 0, vz|S2 = 0.

Utilizing problems (1.4), (1.6′) Ladyzhenskaya in [9] was able to get global esti-
mates guaranteeing existence of global regular solutions. Existence follows from
the Galerkin method applied to the equation for the stream function ψ described
by the relations: ψ,z = rvr, ψ,r = −rvz.
We have to underline that in this case the crucial global estimate for I =

‖χ/r‖V 02 (ΩT ) is at once derived, where V
0
2 (Ω

T ) is the energy norm for (1.1) (see
notation). In reality, it follows from multiplying (1.4)1 by χ/r2, integrating over
ΩT and utilizing initial and boundary conditions for χ.

The axially symmetric case with vϕ 6= 0 is totally different because we are
not able to obtain the above estimate for I because the norm J ≡ ‖w/r‖L4(ΩT )
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appears, which follows from∫
ΩT

2
r
ww,z

χ

r2
dx dt =

∫
ΩT

1
r2
(w2),z

χ

r
dx dt = −

∫
ΩT

w2

r2

(
χ

r

)
,z

dx dt ≡ I1,

so

|I1| ≤ ε1
∣∣∣∣(χr
)
,z

∣∣∣∣2
2,ΩT
+ c
(
1
ε1

)∣∣∣∣wr
∣∣∣∣4
4,ΩT

.

Further, we do not know how to estimate J without smallness assumptions on
data (see assumptions of Theorems 1 and 2, see also [18]).
Considering cylinder Ω with cutted of the axis of symmetry we have∥∥∥∥wr

∥∥∥∥
L4(ΩT )

≤ c‖w‖L4(ΩT ) ≤ c‖v‖V 02 (ΩT ),

so it is estimated in terms of the energy estimate for the weak solutions of (1.1)
and the fact that such domain can be treated as two-dimensional (for more
details see [19]).
We have to underline that axially symmetric weak solution to (1.1) behaves as

three-dimensional near the axis of symmetry (see Lemma 2.2). This is connected
with the fact that Jacobian rdrdz appears in the energy norm, so weighted
Sobolev spaces must be utilized.
For the axially symmetric case examined in this paper, vorticity vector has

three components (see (1.3)), so instead of (1.6′) we have

(1.6′′)

rot v = α in Ω,

div v = 0 in Ω,

v · n = 0 on S,

where α satisfies the compatibility condition divα = 0.
Since in our case we have three components of vorticity we need additional

problems for vorticity (comparing with (1.4)) to obtain regularity of v in a neigh-
bourhood of the axis of symmetry (see [18]). The above considerations suggest
that problem (1.1) should be examined in a different way in a neighbourhood of
the axis of symmetry and in a positive distance from it. Hence it is natural to
introduce a partition of unity connected with this separation (see Section 2).
In view of the above remarks we have to consider additional problems in a

neighbourhood of the axis of symmetry. First we have the problem for αr,

(1.7)

αr,t + v · ∇αr − (αrvr,r + αzvr,z)− ν∆αr + ν
αr
r2
= Fr in ΩT ,

αr,r = −
1
R
w,z on ST1 ,

αr = 0 on ST2 ,

αr|t=0 = αr(0) in Ω.
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Next the problem for αz,

(1.8)

αz,t + v · ∇αz − (αrvz,r + αzvz,z)− ν∆αz = Fz in ΩT ,

αz =
2
R
w on ST1 ,

αz,z = 0 on ST2 ,

αz|t=0 = αz(0) in Ω.

Finally, we consider problem for u = w,z,

(1.9)

u,t + v · ∇u+
vr
r
u− ν∆u+ ν u

r2

= −v,z · ∇w −
vr,z
r
w + fϕ,z in ΩT ,

u,r =
1
R
u on ST1 ,

u = 0 on ST2 ,

u|t=0 = u(0) in Ω.

Now, we formulate the main results and outline their proofs.

Let us introduce smooth functions ζ(i) = ζ(i)(r), i = 1, 2, 3, 4, which are such
that:

ζ(1)(r) = 1 for r ≤ r0, ζ(1)(r) = 0 for r ≥ r0 + δ1,
ζ(3)(r) = 1 for r ≤ r0 + δ1, ζ(3)(r) = 0 for r ≥ r0 + 2δ1,
ζ(2)(r) = 1 for r ≥ r0, ζ(2)(r) = 0 for r ≤ r0 − δ2,
ζ(4)(r) = 1 for r ≥ r0 − δ2, ζ(4)(r) = 0 for r ≤ r0 − 2δ2.

We assume that r0 > 2δ2 and r0 + 2δ1 < R. We denote that u(i) = uζ(i),
i = 1, . . . , 4, where u replaces any vector or function used in this paper.

Theorem 1.

(a) Assume that

f (1)ϕ ∈ L2,−1(ΩT ), f (3)ϕ ∈ L2(ΩT ), (rot f)(1)r , (rot f)(1)z ∈ L2(ΩT ),

v(1)ϕ,z ∈ L2,−δ(ΩT ), v(3)ϕ (0) ∈ H10 (Ω), (rot v)(1)r (0), (rot v)(1)z (0) ∈ L2(Ω),

(rot f)(1)ϕ ∈ L2(0, T ;L2,−1(Ω)), (rot f)(4)ϕ ∈ L2(ΩT ), f (2)ϕ ∈ L2(ΩT ),

f (4)ϕ ∈ L4(0, T ;L4/3(Ω)), (rot v)(1)ϕ (0) ∈ L2,−1(Ω), (rot v)(4)ϕ (0) ∈ L2(Ω),

v(4)ϕ (0) ∈ L4(Ω), v(2)ϕ (0) ∈ H1(Ω), δ =
1
2
+ ε0,

where ε0 > 0 is an arbitrary small number.
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(b) Let us introduce the quantities

X(T ) = ‖f (1)ϕ ‖L2,−1(ΩT ) + ‖f
(3)
ϕ ‖L2(ΩT ) + ‖(rot f)

(1)
r ‖L2(ΩT )

+ ‖(rot f)(1)z ‖L2(ΩT ) + ‖v
(1)
ϕ,z(0)‖L2,−δ(Ω) + ‖v

(3)
ϕ (0)‖H10 (Ω)

+ ‖(rot v)(1)r (0)‖L2(Ω) + ‖(rot v)
(1)
z (0)‖L2(Ω),

Y (T ) = ‖(rot f)(1)ϕ ‖L2(0,T ;L2,−1(Ω)) + ‖(rot f)
(4)
ϕ ‖L2(ΩT )

+ ‖f (4)ϕ ‖L4(0,T ;L4/3(Ω)) + ‖f
(2)
ϕ ‖L2(ΩT ) + ‖(rot v)

(1)
ϕ (0)‖L2,−1(Ω)

+ ‖(rot v)(4)ϕ (0)‖L2(Ω) + ‖v
(2)
ϕ (0)‖H1(Ω) + ‖v(4)ϕ (0)‖L4(Ω),

1
δ∗
=
1
δ1
+
1
δ2
+X(T ).

(c) Assume that v ∈W 2,15/2(Ω
T ).

(d) Assume that there exists a weak solution (see Lemma 2.1) such that

‖v(t)‖L2(Ω) ≤ d1, ‖v(t)‖L2(Ω) + ‖∇v‖L2(ΩT ) ≤ d2, t ∈ R+.

Then there exists a positive increasing function ϕ∗ such that

(1.10) ‖v‖L10(ΩT ) + ‖∇v‖L10/3(ΩT ) ≤ ϕ∗
(
1
δ∗
‖v‖W 2,15/2(ΩT ), d1, d2, Y

)
.

Theorem 2. Let the assumptions (a), (b), (d) of Theorem 1 be satisfied.

(a) Assume that v(0) ∈ W 6/55/2 (Ω), f ∈ L5/2(Ω
T ), vr,ϕ(0) = 0, vz,ϕ(0) = 0,

fr,ϕ = 0, fz,ϕ = 0.
(b) Assume that δ∗ is so large that there exists a positive constant A such
that

(1.11) c
[
ϕ∗

(
1
δ∗
A, d1, d2, Y (T )

)
+ Y
]2
+ c(‖f‖L5/2(ΩT ) + ‖v(0)‖W 6/55/2 (Ω)) ≤ A.

Then there exists a unique axially symmetric solution to problem (1.1) such that
v ∈W 2,15/2(Ω

T ) and
‖v‖W 2,15/2(ΩT ) ≤ A.

Moreover, the solution is such that

v(1)ϕ,z ∈ L∞(0, T ;L2,−δ(Ω)) ∩ L2(0, T ;H1−δ(Ω)),
1
r
(rot v)(1)ϕ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

v(1)ϕ ∈ L∞(0, T ;H10 (Ω)), (rot v)(1)r ∈ L2(0, T ;L2,−1(Ω)).

Theorem 1 is proved by a series of lemmas from Sections 3 and 4. Having
estimate (1.10) Theorem 2 follows from the Leray–Schauder fixed point theorem
in Section 5.
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The solution from Theorem 2 behaves in a different way in a neighbourhood
of the axis of symmetry and in a sufficiently large distance from it.
We have proved existence of such axially symmetric solutions that azimuthal

component of initial velocity must be sufficiently small in a neighbourhood of
the axis of symmetry. However, this neighbourhood must be sufficiently large.
We have shown the existence of solutions without restrictions on the existence

time T . However, we are not able to pass with T to infinity.
Since time integral norms of f , rot f , v appear in formulations of Theorems 1

and 2 we have strong restrictions on these functions for large T . To relax the
restrictions we tried to prove global existence step by step having local existence
on a fixed time interval [0, T ]. However, we have not been able to obtain the
same estimates on [kT, (k + 1)T ], k > 0, k ∈ N, as we have had on [0, T ].
Finally Lemma 2.2 implies that the axially symmetric solution behaves as

three-dimensional near the axis of symmetry.
At the end we recall results on existence of global regular solutions to 3d-Na-

vier–Stokes equations. They base on less-dimensional global regular solutions to
Navier–Stokes equations:

(1.12)

1. two-dimensional [10],

2. axially-symmetric [9], [17],

3. helically symmetric [12].

Global regular solutions close to (1.12)1 are shown in thin domain [14]–[16], [2],
[3], [7] and in cylindrical type domains [21], [23].
In [14]–[16] Raugel and Sell proved existence of global regular solutions to

Navier–Stokes equations in a thin domain Ωε = Ω′× ((0, ε), Ω′ ⊂ R2, ε — small
and with periodic boundary conditions by using semigroup technique. The result
was generalized by Avrin [2], [3], who proved also existence of global regular
solutions in the thin domain Ωε but with Dirichlet boundary conditions on ∂Ω′

and periodic conditions in the third direction. In his considerations the smallness
of ε was replaced by large first eigenvalue of — P∆, where P is the projection
operator on the divergence free vector fields. He used a fixed point argument.
A generalization of the above results was done by Iftimie and Raugel in [7] who
relax the conditions on the magnitude and regularity of v(0) and f .
In [21] global existence of regular solutions is proved by the Leray–Schauder

fixed point theorem in Besov spaces in the case of slip conditions on a cylindri-
cal boundary. In [23] there is considered Navier–Stokes motion in non-axially
symmetric cylinder with inflow and outflow on S2. The methods and spaces are
similar as in [21], however the proof is much more complicated because nonho-
mogeneous Dirichlet boundary conditions are considered. Results in [21], [23]
are such that derivatives of v and p in the direction x3 are sufficiently small.
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Existence of different global regular solutions close to (1.12)2 are shown by
the author (see [18]–[20], [22]). In [18] global existence of solutions to Navier–
Stokes equations in an axially symmetric cylinder with slip boundary conditions
is proved. The solution is close to the axially symmetric solution because deriva-
tives of cylindrical coordinates of velocity and pressure with respect to ϕ and vϕ
are small. Global existence follows because a time decay on the external force is
imposed.
In [20] global existence of solutions with slip boundary conditions and in

an arbitrary axially symmetric domain is proved. The solution is close to the
axially symmetric solutions in the similar way as in [18]. The energy estimate
for the azimuthal component of vorticity (αϕ) is the main estimate in [18] and
[20] (see also [9], [17]). To obtain such estimate we need homogeneous boundary
conditions for αϕ. Such boundary conditions are in [18] and also in [9]. However
in [20] we have nonhomogenous boundary conditions for αϕ because curvature
of the boundary is different from zero. This makes proof in [20] much more
complicated than in [18].
In [19] and [22] global existence of solutions is proved in a cylinder without

the axis of symmetry. Solutions in [19] and [22] have large swirl. In [19] we
proved existence of axially symmetric solutions but in [22] existence of solutions
which are close to axially symmetric.
Finally, in [4], [5] existence of solutions, which are some generalizations of

solutions from (1.12)3, is shown.

2. Notation and auxiliary results

To simplify considerations we introduce

|u|p,Q = ‖u‖Lp(Q), Q ∈ {Ω, S,ΩT , ST }, p ∈ [1,∞],
‖u‖s,Q = ‖u‖Hs(Q), Q ∈ {Ω, S}, s ∈ R+ ∪ {0},
‖u‖s,Q = ‖u‖W s,s/22 (Q), Q ∈ {ΩT , ST }, s ∈ R+ ∪ {0},

where ‖u‖0,Q = |u|2,Q, Hs(Q) =W s2 (Q).
We use weighted spaces Lp,µ(Q), Hsµ(Q),W

s
µ(Q), Q ∈ {Ω, S} with the norms

|u|p,µ,Q ≡ ‖u‖Lp,µ(Q) =
(∫
Q

|u|prpµdQ
)1/p

,

‖u‖s,µ,Q = ‖u‖Hsµ(Q) =
( ∑
|α|≤s

∫
Q

|Dαxu|2r2(µ−s+|α|)dQ
)1/2

,

|||u|||s,p,µ,Q ≡ ‖u‖W sp,µ(Q) =
( ∑
|α|≤s

∫
Q

|Dαxu|prpµdQ
)1/p

,
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where µ ∈ R, p ∈ [1,∞], s ∈ N ∪ {0} and W sp,0(Q) = W sp (Q), so |||u|||s,p,0,Q =
|||u|||s,p,Q.
We need also anisotropic Sobolev spaces

‖u‖s,µ,QT = ‖u‖Hs,s/2µ (QT ), Q ∈ {Ω, S},

|||u|||s,p,µ,QT = ‖u‖W s,s/2p,µ (QT ), Q ∈ {Ω, S},

where |||u|||s,p,0,QT = |||u|||s,p,QT and

‖u‖
H
s,s/2
µ (QT ) =

( ∑
|α|+2a≤s

T∫
0

∫
Q

|Dαx∂at u|2r2(µ−s+|α|+2a) dx dt
)1/2

,

‖u‖
W
s,s/2
p,µ (QT ) =

( ∑
|α|+2a≤s

T∫
0

∫
Q

|Dαx∂at u|prpµ dx dt
)1/p

.

Moreover, we introduce anisotropic Lebesque spaces

||u||p1,p2,QT = ‖u‖Lp2 (0,T ;Lp1 (Q)), Q ∈ {Ω, S},
||u||p1,p2,µ,QT = ‖u‖Lp2 (0,T ;Lp1,µ(Q)), Q ∈ {Ω, S}, µ ∈ R,

and p1, p2 ∈ [1,∞].
In the above definitions Ω is a cylinder with the axis of symmetry, S = ∂Ω

and r is the distance from the axis.

Let r0 ∈ (0, R), 0 < δi, i = 1, 2, such that r0 + 2δ1 < R and r0 − 2δ2 > 0
be given. Then we introduce a partition of unity {ζ(i)(r)}, i = 1, 2, such that
ζ(1)(r) = 1 for r ≤ r0 and ζ(1)(r) = 0 for r ≥ r0 + δ1, ζ(2)(r) = 1 for r ≥ r0 and
ζ(2)(r) = 0 for r ≤ r0 − δ2.
Moreover, Ωr0 = {x ∈ Ω : r < r0}, Ω̂r0 = {x ∈ Ω : r > r0}, Ω′(k) =

Ωr0+kδ1 \ Ωr0+(k−1)δ1 , Ω̂′(k) = Ω̂r0−kδ2 \ Ω̂r0−(k−1)δ2 , k ∈ N.
Introduce also a function ζ(3) = ζ(3)(r) such that

ζ(3)(r) = 1 for r ≤ r0 + δ1,
ζ(3)(r) = 0 for r ≥ r0 + 2δ1.

Finally we need a smooth function ζ(4) = ζ(4)(r) such that ζ(4)(r) = 1 for
r ≥ r0 − δ2 and ζ(4)(r) = 0 for r ≤ r0 − 2δ2.
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We use also the notation

‖u‖Lp,α(eΩ) =
(∫

eΩ

|u|prpα dr dz
)1/p

,

‖u‖Lp(Ω) =
(∫
Ω

|u|p dx
)1/p

,

‖u‖Lp,α(Ω) =
(∫
Ω

|u|prpα dx
)1/p

, where dx = r dr dz.

We need also,

Ωε = {x ∈ R3 : 0 < ε < r < R, −a < z < a},
Ωε(r0) = {x ∈ R3 : 0 < ε < r < r0 < R, −a < z < a}

Sε = {x ∈ S : 0 < ε < r}.

Considering problem (1.1) in Ωε we need additional boundary conditions

v · n|r=ε = vr|r=ε = 0.

Let u be any scalar or vector function. We introduce u(i) = uζ(i), i = 1, 2, 3, 4.
By c we denote generic constants. To distinguish a certain constant we denote

it by ck, k ∈ N. By ϕ we denote also generic increasing positive functions.
By l.h.s. (r.h.s.) we mean the left-hand side (right-hand side), respectively.
Finally, we do not distinguish scalar and vector-valued functions.
For the reader convenience we recall imbeddings and results utilized in this

paper.
Let V k2 (Ω

T ) be defined by the norm

‖u‖V k2 (ΩT ) = sup
t≤T
‖u(t)‖k,Ω +

( T∫
0

‖∇u(t)‖2k,Ω dt
)1/2

, k ∈ N ∪ {0}.

From [11, Chapter 2, Section 3] we have( T∫
0

‖u(t)‖rWkq (Ω)dt
)1/r

≤ c‖u‖V k2 (ΩT ), Ω ⊂ Rn,

where 2/r + n/q = n/2. Then imbedding W kq (Ω) ⊂ Lσ(Ω) implies( T∫
0

‖u(t)‖rLσ(Ω) dt
)1/r

≤ c‖u‖V k2 (ΩT ), Ω ⊂ Rn

for 2/r + 3/σ ≥ 3/2− k. From [13] the following imbedding

(2.1) ‖u‖V s
q,β+s−l+n/p−n/q(Ω)

≤ c‖u‖V lp,β(Ω), Ω ⊂ Rn,
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holds for s− l + n/p− n/q ≤ 0, where

‖u‖V sp,µ(Ω) =
( ∑
|α|≤s

∫
Ω

|Dαxu(x)|prp(µ−s+|α|) dx
)1/p

.

For weak solutions to problem (1.1) we have

Lemma 2.1. ([18], [19]). Assume that v(0) ∈ L2(Ω), f ∈ L∞(R+, L6/5(Ω)),∫
Ωt fη dx dt

′ ∈ L∞(R+), where fη = f · η, η = (−x2, x1, 0). Assume that T∗ > 0
is given. Then there exist constants

d21 =
c

ν1

[
(sup
t
|f(t)|6/5,Ω)2 +

(
sup
t

∫
Ωt

fη dx dt
′
)2
+
(∫
Ω

vη(0) dx
)2]
+ |v(0)|22,Ω,

d22(T ) = (3 + e
ν1T∗)d21,

where ν = ν1 + ν2, νi > 0, i = 1, 2, independent of k such that

|v(t)|2,Ω ≤ d1 for t > 0,(2.2)

|v(t)|22,Ω + ν2

t∫
kT∗

‖v(t′)‖21,Ω dt′ ≤ d22 for t ∈ [kT∗, (k + 1)T∗],(2.3)

where k ∈ N.

Now we show that axially symmetric weak solution to problem (1.1) behaves
as three-dimensional in a neighbourhood of the axis of symmetry. Let Ω̃ be
an intersection of Ω with the plane ϕ = const. In domain Ω̃ we introduce the
weighted spaces

‖u‖W sp,α(eΩ) =
( ∑
|α|≤s

∫
eΩ

|Dαx′u|prpα dr dz
)1/p

,

where x′ = (r, z), s ∈ N ∪ {0}, p ∈ [1,∞], α ∈ R.
From [8] the following theorems of imbedding

(2.4) ‖u‖Lq,β(eΩ) ≤ ε
1−κ‖Dlx′u‖Lp,α(eΩ) + cε

−κ‖u‖Lp,α(eΩ),

hold for 1 < p < q <∞, α ≥ β − 1/q, where

(2.5) κ =
(
1
p
− 1
q

)
2
l
+
1
l
(α− β) < 1.

In view of (2.4) the following interpolation inequality takes place

(2.6) ‖u‖Lq,β(eΩ) ≤ c‖D
l
x′u‖κLp,α(eΩ)‖u‖

1−κ
Lp,α(eΩ) + c‖u‖Lp,α(eΩ).
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Lemma 2.2. Assume that v is the axially symmetric weak solution to problem
(1.1) from Lemma 2.1. Then the following estimate

(2.7) ‖v‖Lσ(0,T ;Lp(Ω)) ≤ c‖v‖V 02 (ΩT ),

holds for

(2.8)
2
σ
+
3
p
=
3
2
.

Remark 2.3. Estimate (2.7), (2.8) is exactly the same as for arbitrary weak
solution to problem (1.1). Hence near the axis of symmetry axially symmetric
weak solution behaves as arbitrary weak solution.

Considering a neighbourhood in a positive distance from the axis of symmetry
(r ≥ R0 > 0), inequality (2.7) takes the form

‖v‖L4(ΩT ) ≤ c‖v‖V 02 (ΩT ),

so the estimate for two-dimensional regular solution holds.

Proof of Lemma 2.2. For the axially symmetric weak solution inequality
(2.3) takes the form

‖v‖V 02 (ΩT ) = (2π)
1/2
[
sup
t≤T
|v(t)|L2,1/2(eΩ) +

(
ν2

t∫
0

‖v(t′)‖2
W 12,1/2(

eΩ) dt
′
)1/2]

≤ d2.

To show (2.7) we look for (2.6) in the form

(2.9) ‖v‖Lp,1/p(eΩ) ≤ c‖∇v‖
κ
L2,1/2(eΩ)‖v‖

1−κ
L2,1/2(eΩ) + c‖v‖L2,1/2(eΩ),

which holds because (2.5) implies

κ =
3
2
− 3
p
< 1 for 2 < p < 6.

From (2.9) we get

(2.10)
( T∫
0

‖v(t)‖
2
κ
Lp,1/p(eΩ) dt

)κ/2
≤ c sup

t
‖v‖1−κ
L2,1/2(eΩ)

( T∫
0

‖∇v‖2
L2,1/2(eΩ) dt

)κ/2

+ cTκ/2 sup
t
‖v‖L2,1/2(eΩ) ≤ c(T )‖v‖V 02 (ΩT ).

The norm on the l.h.s. of (2.10) equals

c

( T∫
0

‖v(t)‖2/κLp(Ω)dt
)κ/2

.



Global Axially Symmetric Solutions to the Navier–Stokes Equations 307

Expressing the integral in the form ‖v‖Lσ(0,T ;Lp(Ω)) we have

2
σ
+
2
p
=
2
2/κ
+
2
p
= κ +

2
p
=
3
2
− 3
p
+
2
p
=
3
2
− 1
p
.

Hence (2.8) holds. This ends the proof. �

3. Estimates near the axis of symmetry

In this section we find some inequalities for solutions of problem (1.1) in a
neighbourhood of the axis of symmetry. The inequalities are necessary to find
an estimate for solutions to (1.1) and to prove the existence of solutions.

To obtain estimates in this section we follow the considerations from [18].
First we examine (1.4). Multiplying (1.4) by by ζ(1) we obtain

(3.1)

χ
(1)
,t + v · ∇χ(1) −

vr
r
χ(1) − ν∆χ(1) + ν χ

(1)

r2

= χv · ∇ζ(1) − ν(2∇ζ(1)∇χ+ χ∆ζ(1)) + 2
r
wu(1) + F (1)ϕ in ΩTε ,

χ(1) = 0 on STε ,

χ(1)|t=0 = χ(1)(0) in Ωε.

Lemma 3.1. Assume that v ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 13 (Ω)), w ∈
L∞(0, T ;H10 (Ωε(r0+δ1))), u

(1) ∈ L2(0, T ;L4,−3/4−ε0(Ωε)), where ε0 > 0 and

ε > 0 are arbitrary small. Assume that F (1)ϕ ∈ L2(0, T ;L2,−1(Ω)), χ(1)(0) ∈
L2,−1(Ω). Let

Y 21 (t) =

t∫
0

∣∣∣∣F (1)ϕ (t′)r

∣∣∣∣2
2,Ω

dt′ +
∣∣∣∣χ(1)(0)r

∣∣∣∣2
2,Ω
.

Then

(3.2)
∣∣∣∣χ(1)(t)r

∣∣∣∣2
2,Ωε

+ ν

t∫
0

∣∣∣∣∇χ(1)(t′)r

∣∣∣∣2
2,Ωε

dt′

≤ c

r20
|∇ζ(1)|2∞,Ω sup

t
|v|22,Ω

t∫
0

|||v(t′)|||21,3,Ω dt′

+ c sup
t
‖w‖21,0,Ωε(r0+δ1)

t∫
0

|u(1)(t′)|24,−3/4−ε0,Ωε dt
′ + cY 21 (t),

where t ≤ T .
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Proof. Multiplying (3.1)1 by χ(1)/r2 and integrating over Ωε implies

(3.3)
1
2
d

dt

∣∣∣∣χ(1)r
∣∣∣∣2
2,Ωε

+ ν
∣∣∣∣∇χ(1)r

∣∣∣∣2
2,Ωε

≤
∣∣∣∣ ∫
Ωε

vχ∇ζ(1)χ
(1)

r2
dx

∣∣∣∣
− ν
∫
Ωε

(2∇ζ(1)∇χ+ χ∆ζ(1))χ
(1)

r2
dx+ 2

∫
Ωε

w

r
u(1)

χ(1)

r2
dx+

∫
Ωε

F
(1)
ϕ

r

χ(1)

r
dx.

Now we examine the particular terms on the r.h.s. of (3.3). We estimate the first
term by

ε1

∣∣∣∣χ(1)r
∣∣∣∣2
2,Ωε

+ c
(
1
ε1

)∣∣∣∣vχ∇ζ(1)r

∣∣∣∣2
6/5,Ωε

,

where the second integral is bounded by

c|v|22,Ω′(1)

∣∣∣∣χr∇ζ(1)
∣∣∣∣2
3,Ωε

.

Integrating by parts the second term on the r.h.s. of (3.3) takes the form

ν

∫
Ωε

|∇ζ(1)|2

r2
χ2 dx− 2ν

∫
Ωε

∇ζ(1)ζ(1)∇rχ2

r3
dx,

where the second integral is estimated by

ε2

∣∣∣∣χ(1)r
∣∣∣∣2
2,Ωε

+ c
(
1
ε2

)∣∣∣∣∇ζ(1) χr2
∣∣∣∣2
2,Ωε

.

The third term on the r.h.s. of (3.3) is bounded, by the Hölder and Young
inequalities, by

ε3

∣∣∣∣ χ(1)r2−ε0

∣∣∣∣2
2,Ωε

+ c
(
1
ε3

)∫
Ω

∣∣∣∣wr
∣∣∣∣2∣∣∣∣u(1)rε0

∣∣∣∣2 dx,
where ε0 > 0 is an arbitrary small number. Further, we estimate the second
integral by

c|w|24,−1/4,Ωε(r0+δ1) |u
(1)|24,−3/4−ε0,Ωε ≤ c‖w‖

2
1,0,Ωε(r0+δ1)

|u(1)|24,−3/4−ε0,Ωε

Finally the last term on the r.h.s. of (3.3) is estimated by

ε4

∣∣∣∣χ(1)r
∣∣∣∣2
2,Ωε

+ c
(
1
ε4

)∣∣∣∣F (1)ϕr
∣∣∣∣2
2,Ωε

.
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Utilizing the above estimates in (3.3) and assuming that ε1 − ε4 are sufficiently
small we obtain

d

dt

∣∣∣∣χ(1)r
∣∣∣∣2
2,Ωε

+ ν
∣∣∣∣∇χ(1)r

∣∣∣∣2
2,Ωε

(3.4)

≤ c|∇ζ(1)|2∞,Ω
(
|v|22,Ω′(1)

∣∣∣∣χr
∣∣∣∣2
3,Ω′(1)

+
∣∣∣∣ χr2
∣∣∣∣2
2,Ω′(1)

)

+ c‖w‖21,0,Ωε(r0+δ1) |u
(1)|24,−3/4−ε0,Ωε + c

∣∣∣∣F (1)ϕr
∣∣∣∣2
2,Ωε

.

Integrating (3.4) with respect to time and using that∣∣∣∣χr
∣∣∣∣2
2,Ω′(1)

+
∣∣∣∣χr
∣∣∣∣2
3,Ω′(1)

≤ c

r20
|||v|||21,3,Ωr0+δ1 ,

we obtain (3.2). �

To estimate the second factor of the second term on the r.h.s. of (3.2) we
localize problem (1.9) by multiplying it by ζ(1). Hence we have

u
(1)
,t + v · ∇u(1) +

vr
r
u(1) − vu∇ζ(1) + v,z · ∇wζ(1) +

vr,z
r
wζ(1)

− ν∆u(1) + ν(2∇u∇ζ(1) + u∆ζ(1)) + ν u
(1)

r2
= f (1)ϕ,z in ΩTε ,

(3.5) u(1),r = 0 on ST1ε,

u(1) = 0 on ST2ε,

u(1)|t=0 = u(1)(0) in Ω.

Let

(3.6)

X1(t) = |f (1)ϕ |2,−δ,Ωt + |u(1)(0)|2,−δ,Ω,
b1(t) = ||v||∞,2,Ωt ,
b2(t) = ||v,x||q,2,Ωt + ||v,x||3,2,Ωt + ||v||3,∞,Ωt ,

where 0 < δ ≤ 1− 3/q. Then for solutions of (3.5) we have

Lemma 3.2. Assume that

v ∈ L2(0, T ;W 1q (Ω)) ∩ L2(0, T ;W 13 (Ω)) ∩ L∞(0, T ;L3(Ω)),

w(1) ∈ L∞(0, T ;H10 (Ω)),
f (1)ϕ ∈ L2,−δ(ΩT ), u(1)(0) ∈ L2,−δ(Ω), 0 < δ < 1− 3/q.

Then solutions of (3.5) satisfy the inequality

(3.7) |u(1)(t)|22,−δ,Ωε + |u
(1)
,x |22,−δ,Ωtε + |u

(1)|22,−(1+δ),Ωtε

≤ c exp(cb21(t))
[
b22 sup

t
‖w(1)‖21,0,Ωε +

d22
r2δ0
|∇ζ(1)|2∞,Ω(b22(t) + 1) +X21 (t)

]
.
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Proof. Multiplying (3.5)1 by u(1)r−2δ, δ > 0, and integrating over Ωε yields

(3.8)
1
2
d

dt
|u(1)|22,−δ,Ωε + ν

(
1− ε∗
2

)
|u(1),x |22,−δ,Ωε + ν

(
1− 2δ

2

ε∗

)
|u(1)|22,−(1+δ),Ωε

= −
∫
Ωε

v · ∇u(1)u(1)r−2δ dx−
∫
Ωε

vr
r
|u(1)|2r−2δ dx

+
∫
Ωε

vu∇ζ(1)u(1)r−2δ dx−
∫
Ωε

(
v,z · ∇w +

vr,z
r
w

)
ζ(1)u(1)r−2δ dx

− ν
∫
Ωε

(2∇u∇ζ(1) + u∆ζ(1))u(1)r−2δ dx+
∫
Ωε

f (1)ϕ,zu
(1)r−2δ dx.

Now we have to examine the particular terms on the r.h.s. of (3.8). We
examine the first term in the way

−1
2

∫
Ωε

v · ∇|u(1)|2r−2δ dx = −δ
∫
Ωε

v · ∇r|u(1)|2r−2δ−1 dx

and the last expression is bounded by

ε1|u(1)|22,−(1+δ),Ωε + c(1/ε1)|v|
2
∞,Ωr0+δ1

|u(1)|22,−δ,Ωε ≡ I1.

The second term on the r.h.s. of (3.8) is also bounded by I1.
The third term on the r.h.s. of (3.8) is restricted by

ε2

∣∣∣∣u(1)rδ
∣∣∣∣2
6,Ωε

+ c
(
1
ε2

)
1
r2δ0
|∇ζ(1)|2∞,Ω|v|23,Ω|u|22,Ω′(1) .

We bound the fourth term on the r.h.s. of (3.8) by

ε3|u(1)|22q/(q−2),−2δ,Ωε + c
(
1
ε3

)
|v,z|2q,Ωr0+δ1‖w

(1)‖21,0,Ωε

+ c
∣∣∣∣ ∫
Ωε

v,zw · ∇ζ(1)u(1)r−2δ dx
∣∣∣∣ ≡ I2,

where q ∈ (2,∞). Choosing q sufficiently large, estimate (2.1) implies

|u(1)|2q/(q−2),−2δ,Ωε ≤ c‖u
(1)‖1,−δ,Ωε ,

with δ ≤ 1− 3/q.
Finally the last integral in I2 is bounded by

ε4

∣∣∣∣u(1)rδ
∣∣∣∣2
6,Ωε

+ c
(
1
ε4

)
1
r2δ0
|∇ζ(1)|2∞,Ω|v,z|23,Ω|w|22,Ω′(1) .

The fifth term on the r.h.s. of (3.8) takes the form

ν

∫
Ω

[u2|∇ζ(1)|2r−2δ − 2δu2ζ(1)∇ζ(1) · ∇rr−2δ−1] dx,
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where the second integral is bounded by

c

r2δ+10

|∇ζ(1)|2∞,Ω|u|22,Ω′(1) .

Integrating by parts and utilizing (3.5)3, the last term on the r.h.s. of (3.8) takes
the form

−
∫
Ωε

f (1)ϕ u(1),z r
−2δ dx

and it is restricted, by the Hölder and Young inequalities, by

ε5|u(1),z |22,−δ,Ωε + c
(
1
ε5

)
|f (1)ϕ |22,−δ,Ωε .

Utilizing the above estimates in (3.8) and assuming that ε1 − ε5 are sufficiently
small yields

(3.9)
1
2
d

dt
|u(1)|22,−δ,Ωε +

[
ν

(
1− ε∗
2

)
− ε
]
|u(1),x |22,−δ,Ωε

+
[
ν

(
1− 2δ

2

ε∗

)
− ε
]
|u(1)|22,−(1+δ),Ωε

≤ c
(
1
ε

)
[|v|2∞,Ωr0+δ1 |u

(1)|22,−δ,Ωε + |v,z|
2
q,Ωr0+δ1

‖w(1)‖21,0,Ωε

+
1
r2δ0
|∇ζ(1)|2∞,Ω(|v,z|23,Ω|w|22,Ω′(1) + |v|

2
3,Ω|u|22,Ω′(1) + |u|

2
2,Ω′(1)
)

+ |f (1)ϕ |22,−δ,Ωε ],

where ε ≥
∑5
i=1 εi.

Taking ε∗ < 2, δ < 1 and choosing ε sufficiently small we obtain that the
coefficients near the second and third norm on the l.h.s. of (3.9) are positive.
Then integrating (3.9) with respect to time yields

|u(1)(t)|22,−δ,Ωε + |u
(1)
,x |22,−δ,Ωtε + |u

(1)|22,−(1+δ),Ωtε

≤ ce
c||v||2∞,2,Ωt

r0+δ1

[
sup
t
‖w(1)‖21,0,Ωε ||v,z||

2
q,2,Ωtr0+δ1

+
1
r2δ0
|∇ζ(1)|2∞,Ω

(
sup
t
|w|22,Ω′(1) ||v,z||

2
3,2,Ωt + ||v||23,∞,Ωt |u|22,Ω′t(1)

+ |u|22,Ω′t(1)

)
+ |f (1)ϕ |22,−δ,Ωtε + |u

(1)(0)|22,−δ,Ωε
]
.

Utilizing that v is the weak solution to problem (1.1) we obtain (3.7). �
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To estimate supt ‖w(1)‖1,0,Ωε in (3.7) we localize problem (1.5). Multiplying
(1.5) by ζ(1) we get

(3.10)

w
(1)
,t + v · ∇w(1) − vw · ∇ζ(1) +

vr
r
w(1) − ν∆w(1)

+ ν(2∇w∇ζ(1) + w∆ζ(1)) + ν w
(1)

r2
= f (1)ϕ in ΩT ,

w(1),r = 0 on ST1 ,

w(1),z = 0 on ST2 ,

w(1)|t=0 = w(1)(0) in Ω.

Let us introduce the quantities

(3.11)
X2(t) = ‖w(1)(0)‖1,0,Ω + |w(1)(0)|2,Ω + |f (1)ϕ |2,Ωt ,

b3(t) = |v|5,Ωt .

Employing proofs of Lemmas 6.3.2–6.3.4 from [18] we obtain

Lemma 3.3. Assume that v is the weak solution to problem (1.1). Assume
that v ∈ L2(0, T ;L∞(Ω)) ∩ L5(ΩT ), f (1)ϕ ∈ L2(ΩT ), w(1)(0) ∈ H10 (Ω). Then
solutions of (3.10) satisfy the following inequality

(3.12) |w(1)(t)|22,Ωε + ‖w
(1)(t)‖21,0,Ωε + e

−t
t∫
0

|w(1),x (t′)|22,Ωεe
t′ dt′

≤ cecb
2
1(t)
[
e−t

t∫
0

|w(1)(t′)|22,Ωεe
t′ dt′

+ (|∇ζ(1)|2∞,Ω + |∇2ζ(1)|2∞,Ω)(d22 + b23(t)) +X22 (t)
]
.

Proof. Multiplying (3.10)1 by w(1) and integrating over Ωε implies

(3.13)
1
2
d

dt
|w(1)|22,Ωε + ν|∇w

(1)|22,Ωε + ν|w
(1)|22,−1,Ωε

−
∫
Ωε

vw∇ζ(1)w(1) dx+
∫
Ωε

vr
r
|w(1)|2 dx

+ ν
∫
Ωε

(2∇w∇ζ(1) + w∆ζ(1))w(1) dx =
∫
Ωε

f (1)ϕ w(1) dx.

The fourth term on the l.h.s. of (3.13) can be treated in the way∣∣∣∣ ∫
Ωε

vw∇ζ(1)w(1) dx
∣∣∣∣ ≤ c|w|210/3,Ω′(1) |w(1)|22,Ωε + c|∇ζ(1)|2∞,Ω|v|25,Ω′(1) .
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We estimate the fifth term on the l.h.s. of (3.13) by

ε1|w(1)|22,−1,Ωε + c(1/ε1)|vr|
2
∞,Ω|w(1)|22,Ωε .

The last term on the l.h.s. of (3.13) equals −ν
∫
Ωε
w2|∇ζ(1)|2 dx so it is bounded

by c|∇ζ(1)|2∞,Ω|w|22,Ω′(1) . Finally the r.h.s. is estimated by

ε2|w(1)|22,−1,Ωε + c(1/ε2)|fϕ|
2
2,1,Ωε .

In view of above considerations (3.13) takes the form

(3.14)
1
2
d

dt
|w(1)|22,Ωε + ν|∇w

(1)|22,Ωε + (ν − ε∗)|w
(1)|22,−1,Ωε

≤ c(|∇ζ(1)|2∞,Ω|v|25,Ω′(1) + |w|
2
10/3,Ω|w

(1)|22,Ωε)

+ c
(
1
ε∗

)
(|vr|2∞,Ω|w(1)|22,Ωε + |fϕ|

2
2,1,Ωε) + c|∇ζ

(1)|2∞,Ω|w|22,Ω′(1) ,

where ε∗ = ε1 + ε2. Multiplying (3.10)1 by w
(1)
,t and integrating over Ωε yields

|w(1),t |22,Ωε +
∫
Ωε

v · ∇w(1)w(1),t dx−
∫
Ωε

vw∇ζ(1)w(1),t dx

+
∫
Ωε

vr
r
w(1)w

(1)
,t dx− ν

∫
Ωε

∆w(1)w(1),t dx+ ν
∫
Ωε

w(1)w
(1)
,t

r2
dx

+ ν
∫
Ωε

(2∇w∇ζ(1) + w∆ζ(1))w(1),t dx =
∫
Ωε

f (1)ϕ w
(1)
,t dx.

Continuing, we have

(3.15)
1
2
|w(1),t |22,Ωε +

ν

2
d

dt
(|∇w(1)|22,Ωε + |w

(1)|22,−1,Ωε)

≤ c|v|2∞,Ωε‖w
(1)‖21,0,Ωε + c

∫
Ωε

v2w2|∇ζ(1)|2 dx

+ c
∫
Ωε

(|∇w|2|∇ζ(1)|2 + |w|2|∆ζ(1)|2) dx+ c|f (1)ϕ |22,Ωε .

Adding (3.14) and (3.15) yields

(3.16)
d

dt
|w(1)|22,Ωε + ν

d

dt
‖w(1)‖21,0,Ωε + ν‖w

(1)‖21,0,Ωε + ν|w
(1)
,x |22,Ωε + |w

(1)
,t |22,Ωε

≤ c|v|2∞,Ω‖w(1)‖21,0,Ωε + c(|w|
2
10/3,Ω + |v|

2
∞,Ω)|w(1)|22,Ωε

+ c|∇ζ(1)|2∞,Ω|v|25,Ω′(1) + c|∇
2ζ(1)|2∞,Ω|w|22,Ω′(1)

+ c|∇ζ(1)|2∞,Ω|∇w|22,Ω′(1) + c|f
(1)
ϕ |22,Ωε .
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Multiplying (3.16) by et−c
R t
0 |v(t

′)|2∞,Ωdt
′
and using that |w|10/3,Ω ≤ c|v|∞,Ω gives

(3.17)
d

dt
(|w(1)|22,Ωεe

t−c
R t
0 |v(t

′)|2∞,Ω dt
′
) + ν

d

dt
(‖w(1)‖21,0,Ωεe

t−c
R t
0 |v(t

′)|2∞,Ω dt
′
)

+ ν|w(1),x |22,Ωεe
t−c

R t
0 |v(t

′)|2∞,Ωdt
′

≤ |w(1)|22,Ωεe
t−c

R t
0 |v(t

′)|2∞,Ω dt
′
+ c(|∇ζ(1)|2∞,Ω|v|25,Ω′(1)

+ |∇ζ(1)|2∞,Ω|∇w|22,Ω′(1) + |∇
2ζ(1)|2∞,Ω|w|22,Ω′(1))e

t−c
R t
0 |v(t

′)|2∞,Ω dt
′

+ c|f (1)ϕ |22,Ωεe
t−c

R t
0 |v(t

′)|2∞,Ω dt
′
.

Integrating (3.17) with respect to time yields

|w(1)(t)|22,Ωεe
t−c

R t
0 |v(t

′)|2∞,Ω dt
′
+ ν‖w(1)(t)‖21,0,Ωεe

t−c
R t
0 |v(t

′)|2∞,Ω dt
′

+ ν

t∫
0

|w(1),x (t′)|22,Ωεe
t′−c

R t′
0 |v(t

′′)|2∞,Ω dt
′′
dt′

≤ c
t∫
0

|w(1)(t′)|22,Ωεe
t′−c

R t′
0 |v(t

′′)|2∞,Ωdt
′′
dt′ + c(|∇ζ(1)|2∞,Ω

+ |∇2ζ(1)|2∞,Ω)
t∫
0

(|v|25,Ω′(1) + ‖w‖
2
1,Ω′(1)
)et

′−c
R t′
0 |v(t

′′)|2∞,Ωdt
′′
dt′

+ c

t∫
0

|fϕ(t′)|22,Ωεe
t′−c

R t′
0 |v(t

′′)|2∞,Ωdt
′′
dt′ + |w(1)(0)|22,Ωε + ν‖w

(1)(0)‖21,0,Ωε .

Simplifying we obtain

(3.18) |w(1)(t)|22,Ωε + ν‖w
(1)(t)‖21,0,Ωε + νe

−t
t∫
0

|w(1),x (t′)|22,Ωεe
t′ dt′

≤ cec||v||
2
∞,2,Ωt

[
e−t

t∫
0

|w(1)(t′)|22,Ωεe
t′ dt′

+ (|∇ζ(1)|2∞,Ω + |∇2ζ(1)|2∞,Ω)(|v|5,Ω′t(1) + |w,x|
2
2,Ω′t(1)

+ |w|22,Ω′t(1)
)

+ |fϕ|22,Ωtε + |w
(1)(0)|22,Ωε + ‖w

(1)(0)‖21,0,Ωε

]
.

Utilizing (3.6)2 and (3.11) in (3.18) implies (3.12). �

Let

(3.19) b4(t) = ||v||3,2,ΩT .

To estimate the first term on the r.h.s. of (3.12) we need
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Lemma 3.4. Assume that v is a weak solution to problem (1.1). Assume that
v ∈ L2(0, T ;L∞(Ω)) ∩ L4(0, T ;L3(Ω)), f (1)ϕ ∈ L2(ΩT ), w(1)(0) ∈ L2(Ω). Then
solutions of problem (3.10) satisfy

(3.20) |w(1)(t)|22,Ωε + ν‖w
(1)(t)‖21,0,Ωε
≤ c exp(cb21(t))[|∇ζ(1)|2∞,Ω(b24(t) + 1)d22 +X22 (t)].

Proof. Multiplying (3.10)1 by w(1) and integrating over Ωε implies

(3.21)
1
2
d

dt
|w(1)|22,Ωε + ν(|∇w

(1)|22,Ωε + |w
(1)|22,−1,Ωε)

= −
∫
Ωε

vr
r
|w(1)|2 dx+

∫
Ωε

vw∇ζ(1)w(1) dx

− ν
∫
Ωε

(2∇w∇ζ(1) + w∆ζ(1))w(1) dx+
∫
Ωε

f (1)ϕ w(1) dx.

We estimate the first term on the r.h.s. by

ε1|w(1)|22,−1,Ωε + c(1/ε1)|vr|
2
∞,Ω|w(1)|22,Ωε .

The second term on the r.h.s. of (3.21) is bounded by

ε2|w(1)|26,Ωε + c(1/ε2)|∇ζ
(1)|2∞,Ω|v|23,Ω′(1) |w|

2
2,Ω′(1)

.

The third term on the r.h.s. of (3.21) takes the form

ν

∫
Ω

w2|∇ζ(1)|2 dx ≤ c|∇ζ(1)|2∞,Ω|w|22,Ω′(1) .

Finally, the last term on the r.h.s. of (3.21) is bounded by

ε3|w(1)|22,−1,Ωε + c(1/ε3)|f
(1)
ϕ |22,1,Ωε .

Utilizing the above estimates in (3.21) and assuming that ε1− ε3 are sufficiently
small we obtain

(3.22)
d

dt
|w(1)|22,Ωε + ν|∇w

(1)|22,Ωε + ν|w
(1)|22,−1,Ωε ≤ c|vr|

2
∞,Ω|w(1)|22,Ωε

+ c|∇ζ(1)|2∞,Ω(|v|23,Ω′(1) |w|
2
2,Ω′(1)

+ |w|22,Ω′(1)) + c|f
(1)
ϕ |22,1,Ωε .

Integrating (3.22) with respect to time yields

(3.23) |w(1)(t)|22,Ωε + ν‖w
(1)‖21,0,Ωε ≤ c exp(c ||v||

2
∞,2,Ωt)

· [|∇ζ(1)|2∞,Ω(||v||23,2,Ωt + 1)|w|22,Ωt + |f (1)ϕ |22,1,Ωt + |w(1)(0)|22,Ω].

In view of (3.6)2, (3.11)1, (3.19) and the fact v is the weak solution we obtain
(3.20) from (3.23). �
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We estimate the first term under the square brackets on the r.h.s. of (3.12)
by

(3.24) e−t sup
t
|w(1)(t)|22,Ωε

t∫
0

et
′
dt′ ≤ sup

t′≤t
|w(1)(t′)|22,Ωε

≤ c exp(cb21(t))[|∇ζ(1)|2∞,Ω(1 + b24(t))d22 +X22 (t)],

where (3.20) was employed. Utilizing (3.24) in (3.12) yields

(3.25) |w(1)(t)|22,Ωε + ‖w
(1)(t)‖21,0,Ωε

≤ cecb
2
1 [|∇ζ(1)|2∞,Ω + |∇2ζ(1)|2∞,Ω) · (d22 + b23 + b24d22) +X22 ].

Repeating the considerations leading to (3.25) for the function w(3) = wζ(3) we
obtain

(3.26) |w(3)(t)|22,Ωε + ‖w
(3)(t)‖21,0,Ωε

≤ cecb
2
1 [(|∇ζ(3)|2∞,Ω + |∇2ζ(3)|2∞,Ω)(d22 + b23 + b24d22) +X23 ],

where X3(t) = ‖w(3)(0)‖1,0,Ω + |w(3)(0)|2,Ω + |f (3)ϕ |2,Ωt . From (3.25) and (3.26)
we have

(3.27)
∑
i=1,3

(|w(i)(t)|22,Ωε + ‖w
(i)(t)‖21,0,Ωε)

≤ cecb
2
1

[ ∑
i=1,3

(|∇ζ(i)|2∞,Ω + |∇2ζ(i)|2∞,Ω)(d22 + b23 + b24d22) +X22 +X23
]
.

Using that

sup
t
‖w(t)‖1,0,Ωε(r0+δ1) ≤ sup

t
‖w(3)(t)‖1,0,Ωε

and applying (3.27) in (3.2) we get

(3.28)
∣∣∣∣χ(1)(t)r

∣∣∣∣2
2,Ωε

+ ν

t∫
0

∣∣∣∣∇χ(1)(t′)r

∣∣∣∣2
2,Ωε

dt′ ≤ c

r20
|∇ζ(1)|2∞,Ωb45(t)

+ cecb
2
1 [
∑
i=1,3

(|∇ζ(i)|2∞,Ω + |∇2ζ(i)|2∞,Ω)(d22 + b23 + b24d22) +X22 +X23 ]

·
t∫
0

|u(1)(t′)|24,−3/4−ε0,Ωε dt
′ + cY 21 (t),

where b5(t) = ‖v‖L∞(0,t;L2(Ω)) + ‖v‖L2(0,T ;W 13 (Ω)).
Finally, we have to estimate the expression

I =

t∫
0

|u(1)(t′)|24,−3/4−ε0,Ωε dt
′.
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Using imbedding (2.1) in the form |u|4,−(δ+1/4),Ω ≤ c‖u‖1,−δ,Ω, we obtain for
δ = 1/2 + ε0, ε0 > 0 arbitrary small,

|u(1)|4,−(3/4+ε0),Ωε ≤ c‖u
(1)‖1,−(1/2+ε0),Ωε .

Hence

I ≤ c
t∫
0

‖u(1)(t′)‖21,−(1/2+ε0),Ωε dt
′ ≡ I1,

which is estimated by (3.7) with δ = 1/2 + ε0. Then 1/2 + ε0 = 1 − 3/q, so
q = 6/(1− 3ε0).
Now, in view of (3.7) and (3.20) we have

I1 ≤ c exp(cb21)[|∇ζ(1)|2∞,Ωd22(1 + b22 + b22b24) + b22X22 +X21 ].

Utilizing the above estimates in (3.28) yields

(3.29)
∣∣∣∣χ(1)(t)r

∣∣∣∣2
2,Ωε

+ ν

t∫
0

∣∣∣∣∇χ(1)(t′)r

∣∣∣∣2
2,Ωε

dt′ ≤ c

r20
|∇ζ(1)|2∞,Ωb45

+ c exp(cb21)
[ ∑
i=1,3

(|∇ζ(i)|2∞,Ω + |∇2ζ(i)|2∞,Ω)(d22 + b23 + b24d22) +X22 +X23
]

· [|∇ζ(1)|2∞,Ωd22(1 + b22 + b22b24) + b22X22 +X21 ] + cY 21 .

Now we shall obtain estimates for the vorticity vector. First we localize
problem (1.7),

(3.30)

α
(1)
r,t + v · ∇α(1)r − v · ∇αr∇ζ(1) − (α(1)r vr,r + α(1)z vr,z)

− ν∆α(1)r + ν
α
(1)
r

r2
+ ν(2∇αr∇ζ(1) + αr∆ζ(1)) = F (1)r in ΩT ,

α(1)r = 0 on ST ,

α(1)r |t=0 = α(1)r (0) in Ω.

Next, localizing (1.8) we have

(3.31)

α
(1)
z,t + v · ∇α(1)z − vαz∇ζ(1) − (α(1)r vz,r + α(1)z vz,z)

− ν∆α(1)z + ν(2∇αz∇ζ(1) + αz∆ζ(1)) = F (1)z in ΩT ,

α(1)z = 0 on ST1 ,

α(1)z,z = 0 on ST2 ,

α(1)z |t=0 = α(1)z (0) in Ω.

For solutions of problems (3.30) and (3.31) we obtain
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Lemma 3.5. Assume that α′=(αr, αz), F ′=(Fr, Fz), v ∈ L2(0, T ;L∞(Ω)),
v,x∈L2(0, T ;L3(Ω)), F (1)

′ ∈L2(ΩT ), α(1)
′
(0) ∈ L2(Ω). Then

(3.32) |α(1)
′
(t)|22,Ωε + ν|α

(1)′
,x |22,Ωtε + ν|α

(1)
r |22,−1,Ωtε

≤ c exp(c||v,x||23,2,Ωt + c|v|2∞,2,Ωt)[d21|∇ζ(1)|2∞,Ω||α′||23,2,Ω′t(1)
+ |∇ζ(1)|2∞,Ω|α′|22,Ω′t(1)

+ |F (1)
′
|22,Ωtε + |α

(1)′(0)|22,Ωε ].

Proof. Multiplying (3.30) by α(1)r and integrating over Ωε gives

(3.33)
1
2
d

dt
|α(1)r |22,Ωε + ν|α

(1)
r,x|22,Ωε + ν|α

(1)
r |22,−1,Ωε

=
∫
Ωε

vαr∇ζ(1)α(1)r dx+
∫
Ωε

(α(1)r vr,r + α(1)z vr,z)α(1)r dx

− ν
∫
Ωε

(2∇αr∇ζ(1) + αr∆ζ(1))α(1)r dx+
∫
Ωε

F (1)r α(1)r dx.

We estimate the first term on the r.h.s. of (3.33) by

ε1|α(1)r |26,Ωε + c(1/ε1)|∇ζ
(1)|2∞,Ω|v|22,Ω|αr|23,Ω′(1) ,

and the second by

ε2|α(1)r |26,Ωε + c(1/ε2)|v,x|
2
3,Ω|α(1)

′
|22,Ωε .

The third term on the r.h.s. of (3.33) equals

ν

∫
Ωε

α2r|∇ζ(1)|2 dx.

Finally, we restrict the last term on the r.h.s. of (3.33) by

ε3|α(1)r |22,Ωε + c(1/ε3)|F
(1)
r |22,Ωε .

Utilizing the above estimates in (3.33), assuming that ε1 − ε3 are sufficiently
small and applying the Poincaré inequality we obtain

(3.34)
d

dt
|α(1)r |22,Ωε + ν‖α

(1)
r ‖21,0,Ωε ≤ c(|∇ζ

(1)|2∞,Ω|v|22,Ω|αr|23,Ω′(1)
+ |v,x|23,Ω|α(1)

′
|22,Ωε + |∇ζ

(1)|2∞,Ω|αr|22,Ω′(1) + |F
(1)
r |22,Ωε).
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Next we examine problem (3.31). Multiplying (3.31)1 by α
(1)
z and integrating

over Ωε yields

1
2
d

dt
|α(1)z |22,Ωε + ν|α

(1)
z,x|22,Ωε

=
∫
Ωε

vαz∇ζ(1)α(1)z dx+
∫
Ωε

(α(1)r vz,r + α(1)z vz,z)α(1)z dx

− ν
∫
Ωε

(2∇αz∇ζ(1) + αz∆ζ(1))α(1)z dx+
∫
Ωε

F (1)z α(1)z dx.

Repeating the similar considerations leading to (3.34), with difference∫
Ωε
(α(1)z )

2vz,z dx = −2
∫
Ωε
α(1)z α(1)z,zvz dx ≡ I,

where
|I| ≤ ε1|α(1)z,z|22,Ωε + c(1/ε1)|vz|

2
∞,Ω|α(1)z |22,Ωε

we obtain

(3.35)
d

dt
|α(1)z |22,Ωε + ν|α

(1)
z,x|22,Ωε ≤ c(|∇ζ

(1)|2∞,Ω|v|22,Ω|αz|23,Ω′(1)
+ ε1|α(1)r |26,Ωε + c(1/ε1)(|vz,r|

2
3,Ω + |vz|2∞,Ω)|α(1)z |22,Ωε
+ |∇ζ(1)|2∞,Ω|αz|22,Ωε + |F

(1)
z |22,Ωε).

Summing up inequalities (3.34) and (3.35) and assuming that ε is sufficiently
small yields

(3.36)
d

dt
|α(1)

′
|22,Ωε + ν|α

(1)′
,x |22,Ωε + ν|α

(1)
r |22,−1,Ωε

≤ c(|∇ζ(1)|2∞,Ω|v|22,Ω|α′|23,Ω′(1) + (|v,x|
2
3,Ω + |v|2∞,Ω)|α(1)

′
|22,Ωε

+ |∇ζ(1)|2∞,Ω|α′|22,Ω′(1) + |F
(1)′ |22,Ωε).

Integrating (3.36) with respect to time implies (3.32). �

Utilizing (3.19), (3.6)2 and assuming

X4(t) = |F (1)
′
(t)|2,Ωt + |α(1)

′
(0)|2,Ω

we simplify (3.32) to the following form

(3.37) |α(1)
′
(t)|22,Ωε + ν|α

(1)′
,x |22,Ωtε + ν|α

(1)
r |22,−1,Ωtε

≤ c exp(c(b21 + b24))[|∇ζ(1)|2∞,Ωb24(1 + d21) +X24 ].

Finally, we localize problem (1.6)

(3.38)

rot v(1) = v ×∇ζ(1) + α(1) in Ωε,
div v(1) = v · ∇ζ(1) in Ωε,

n · v(1)|S = 0 on Sε.
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For solutions of problem (3.38) we have

(3.39) ‖v(1)‖V 12 (Ωtε) ≤ c(d2(t) + ‖α
(1)‖V 02 (Ωtε)).

Now we have to find an estimate for the r.h.s. of (3.39). Simplifying (3.29)
yields

(3.40)
∣∣∣∣χ(1)(t)r

∣∣∣∣2
2,Ωε

+ ν

t∫
0

∣∣∣∣∇χ(1)(t′)r

∣∣∣∣2
2,Ωε

dt′

≤ ϕ(b, d1, d2)
[
1
δ21
+X21 +X

2
2 +X

2
3

]2
+ cY 21 ,

b = b1 + b2 + b3 + b4, and (3.37) takes the form

(3.41) ‖α(1)
′
‖2V 12 (Ωtε) ≤ ϕ(b, d1)

[
1
δ21
+X24

]
.

We need an additional estimate for χ(1). Multiplying (3.1)1 by χ(1) and inte-
grating over Ωtε we have

(3.42)
1
2
|χ(1)|22,Ωε + ν|∇χ

(1)|22,Ωtε + ν
∣∣∣∣χ(1)r

∣∣∣∣2
2,Ωtε

≤
∣∣∣∣ ∫
Ωtε

vr
r
(χ(1))2 dx dt′

∣∣∣∣+ ∣∣∣∣ ∫
Ωtε

χv · ∇ζ(1)χ(1) dx dt′
∣∣∣∣

+ ν
∣∣∣∣ ∫
Ωtε

(2∇ζ(1)∇χ+ χ∆ζ(1))χ(1) dx dt′
∣∣∣∣+ ∣∣∣∣ ∫

Ωt

2wu(1))
r

χ(1) dx dt′
∣∣∣∣

+
∣∣∣∣ ∫
Ωt

F (1)ϕ χ(1) dx dt′
∣∣∣∣+ 12 |χ(1)(0)|22,Ωε .

We estimate the first term on the r.h.s. of (3.42) by

t∫
0

dt′
∣∣∣∣ ∫
Ωε

vr
r
(χ(1))2 dx

∣∣∣∣ ≤
t∫
0

|vr|2,Ωε |χ(1)|6,Ωε
∣∣∣∣χ(1)r

∣∣∣∣
3,Ωε

≤ sup
t
|vr|2,Ωε

t∫
0

|χ(1)|6,Ωε
∣∣∣∣χ(1)r

∣∣∣∣
3,Ωε

dt′

≤ ε1

t∫
0

|χ(1)|26,Ωε dt
′ + c
(
1
ε1

)
d21

t∫
0

∥∥∥∥χ(1)(t′)r

∥∥∥∥2
1,Ωε

dt′.
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The second term on the r.h.s. of (3.42) is bounded by

|∇ζ(1)|∞,Ω
∫
Ωtε

|χvχ(1)| dx dt′ ≤ |∇ζ(1)|∞,Ω sup
t
|v|2,Ωε

t∫
0

|χ|3,Ωε |χ(1)|6,Ωε dt′

≤ ε2

t∫
0

|χ(1)(t′)|26,Ωε dt
′ + c
(
1
ε2

)
d21|∇ζ(1)|2∞,Ω

t∫
0

|χ|23,Ωε dt
′.

The third term on the r.h.s. of (3.42) equals

ν

∫
Ωtε

|∇ζ(1)|2χ2 dx dt′.

Integrating by parts in the fourth term on the r.h.s. of (3.42) yields∣∣∣∣ ∫
Ωtε

w

r
u(1)χ(1) dx dt′

∣∣∣∣ ≤ ε3||χ(1)||26,2,Ωtε + c(1/ε3) supt
∣∣∣∣wr
∣∣∣∣2
2,Ωε

||u(1)||23,2,Ωtε .

Finally, we estimate the fifth term on the r.h.s. of (3.42) by

ε4|χ(1)|22,Ωtε + c(1/ε4)|F
(1)
ϕ |22,Ωtε .

Utilizing the above estimates in (3.42) and assuming that ε1− ε4 are sufficiently
small implies

(3.43) |χ(1)(t)|22,Ωε + ν|∇χ
(1)|22,Ωtε + ν

∣∣∣∣χ(1)r
∣∣∣∣2
2,Ωtε

≤ cd21

t∫
0

∥∥∥∥χ(1)(t′)r

∥∥∥∥2
1,Ωε

dt′ + c(d21 + d
2
2)|∇ζ(1)|2∞,Ω

+ c sup
t

∣∣∣∣wr
∣∣∣∣2
2,Ωε

||u(1)||23,2,Ωtε + c|F
(1)
ϕ |22,Ωtε + |χ

(1)(0)|22,Ωε .

In view of (3.7), (3.26) and (3.40) inequality (3.43) takes the form

(3.44) |χ(1)(t)|22,Ωε + ν|∇χ
(1)|22,Ωtε + ν|χ

(1)/r|22,Ωtε
≤ ϕ(b, d1, d2)[1/δ21 +X21 +X22 +X23 ] + cY 21 .

Finally, from (3.41) and (3.44) we obtain

(3.45) ‖α(1)‖2V 02 (Ωtε) ≤ ϕ(b, d1, d2)[1/δ
2
1 +X

2
1 +X

2
2 +X

2
3 +X

2
4 ] + cY

2
1 .

Since the r.h.s. of (3.45) does not depend on ε we can pass with ε to 0 in (3.45)
and also in (3.39). Then by applying the properties of the cutoff functions we
obtain from (3.39) and (3.45) the inequality

(3.46) |v(1)|10,Ωt + |∇v(1)|10/3,Ωt ≤ c‖v(1)‖V 12 (Ωt)
≤ ϕ(b, d1, d2)(1/δ1 +X1 +X2 +X3 +X4) + c(d2 + Y1).
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4. Estimates in a positive distance from the axis of symmetry

In this section we follow the considerations from [19]. First we examine
problem (1.4). Multiplying (1.4) by (ζ(2))2 we obtain

(4.1)

χ
(2)′

,t + v · ∇χ(2)
′
− vr

r
χ(2)

′
− ν∆χ(2)

′
+ ν

χ(2)
′

r2
= vχ∇(ζ(2))2

− ν(2∇(ζ(2))2∇χ+ χ∆(ζ(2))2) + 2
r
w(2)w(2),z + F

(2)′
ϕ in ΩT ,

χ(2)
′
= 0 on ST ,

χ(2)
′
|t=0 = χ(2)

′
(0) in Ω,

where χ(2)
′
= χ(ζ(2))2, F (2)

′
= F (ζ(2))2, w(2) = wζ(2). Let

(4.2) Y2(t) = |F (2)ϕ |2,Ωt +
∣∣∣∣χ(2)(0)r

∣∣∣∣
2,Ω
, b6(t) = ‖v‖L2(0,t;W 13 (Ω)).

Lemma 4.1. Assume that v is the weak solution to problem (1.1). Assume
that v ∈ L2(0, T ;W 13 (Ω)), F

(2)
ϕ ∈ L2(ΩT ), χ(2)(0) ∈ L2(Ω). Then

∣∣∣∣χ(2)′(t)r

∣∣∣∣2
2,Ω
+ ν

t∫
0

∥∥∥∥∥χ(2)
′
(t′)
r

∥∥∥∥∥
2

1,Ω

dt′(4.3)

≤ c|∇ζ(2)|2∞,Ω(d22 + 1)b26 + c
∣∣∣∣w(2)r

∣∣∣∣4
4,Ωt
+ cY 22 (t).

Proof. Multiplying (4.1)1 by χ(2)
′
/r2 and integrating over Ω implies

1
2
d

dt

∣∣∣∣χ(2)′r
∣∣∣∣2
2,Ω
+ ν
∥∥∥∥χ(2)′r

∥∥∥∥2
1,Ω
≤
∫
Ω

∣∣∣∣χv · ∇(ζ(2))2χ(2)′r2

∣∣∣∣ dx(4.4)

− ν
∫
Ω

(2∇χ∇(ζ(2))2 + χ∆(ζ(2))2)χ
(2)′

r2
dx

+
∫
Ω

2
r
w(2)w(2),z

χ(2)
′

r2
dx+

∫
Ω

F
(2)′
ϕ χ(2)

′

r2
dx.

Now we shall estimate the particular terms on the r.h.s. of (4.4). We restrict the
first term by

ε1

∣∣∣∣χ(2)′r
∣∣∣∣2
6,Ω
+ c
(
1
ε1

)
|∇ζ(2)|2∞,Ω|v|22,bΩ′(1)

|χ|2
3,bΩ′(1)

.
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The second term on the r.h.s. of (4.4) equals

ν

∫
Ω

χ2∇(ζ(2))2∇ (ζ
(2))2

r2
dx

= ν
∫
Ω

χ2

r2
|∇(ζ(2))2|2 dx− 2ν

∫
Ω

∇(ζ(2))2(ζ(2))2∇rχ2

r3
dx,

where the second integral is estimated by

ε2

∣∣∣∣χ(2)′r
∣∣∣∣2
2,Ω
+ c
(
1
ε2

)∣∣∣∣∇ζ(2)χr2

∣∣∣∣2
2,Ω
.

The third term on the r.h.s. of (4.4) equals∫
Ω

(
|w(2)|2

r2

)
,z

χ(2)
′

r
dx = −

∫
Ω

|w(2)|2

r2

(
χ(2)

′

r

)
,z

dx = I.

Hence,

|I| ≤ ε3
∣∣∣∣(χ(2)′r

)
,z

∣∣∣∣2
2,Ω
+ c
(
1
ε2

)∣∣∣∣w(2)r
∣∣∣∣4
4,Ω
.

Finally, the last term on the r.h.s. of (4.4) is bounded by

ε4

∣∣∣∣χ(2)′r
∣∣∣∣2
2,Ω
+ c
(
1
ε4

)∣∣∣∣F (2)′ϕ

r

∣∣∣∣2
2,Ω
.

Utilizing the above estimates in (4.4) and assuming that ε1 − ε4 are sufficiently
small we obtain

(4.5)
d

dt

∣∣∣∣χ(2)′r
∣∣∣∣2
2,Ω
+ ν
∥∥∥∥χ(2)′r

∥∥∥∥2
1,Ω
≤ c
(
|∇ζ(2)|2∞,Ω|v|22,Ω|v,x|23,Ω

+
1

(r0 − δ2)2
|∇ζ(2)|2∞,Ω|v,x|22,Ω +

∣∣∣∣w(2)r
∣∣∣∣4
4,Ω
+

1
(r0 − δ2)2

|F (2)ϕ |22,Ω
)
.

Integrating (4.5) with respect to time and using (4.2) we get (4.3). �

To estimate the second term on the r.h.s. of (4.3) we need the following
localized version of problem (1.5)

(4.6)

w
(2)
,t + v · ∇w(2) − vw · ∇ζ(2) +

vr
r
w(2) − ν∆w(2)

+ ν(2∇w∇ζ(2) + w∆ζ(2)) + ν w
(2)

r2
= f (2)ϕ in ΩT ,

w(2),r =
1
R
w(2) on ST1 ,

w(2)|r=r0−δ2 = 0,
w(2),z = 0 on ST2 ,

w(2)|t=0 = w(2)(0) in Ω.
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Lemma 4.2. Assume that v is the weak solution to problem (1.1) satisfying
(2.2)–(2.3). Assume that v ∈ L4(ΩT ), f (2)ϕ ∈ L4(0, T ;L4/3(Ω)), w(2)(0) ∈ L4(Ω).
Then solutions of (4.6) satisfy

(4.7) |w(2)(t)|44,Ω + ν|∇|w(2)|2|22,Ωt + ν|w(2)|44,Ωt

≤ c(d1)d41T +
c

δ42
(1 + d41)|v|44,Ωt + c‖f (2)ϕ ‖44/3,4,Ωt + |w

(2)(0)|44,Ω.

Proof. Multiplying (4.6)1 by w(2)|w(2)|2, integrating over Ω and utilizing
boundary conditions implies

1
4
d

dt
|w(2)|24,Ω +

3
4
ν|∇|w(2)|2|22,Ω + ν

∣∣∣∣w(2)√r
∣∣∣∣4
4,Ω

(4.8)

≤
∫
Ω

∣∣∣∣vrr
∣∣∣∣|w(2)|4 dx+ ∫

Ω

|wv∇ζ(2)||w(2)|3 dx

− ν
∫
Ω

(2∇w∇ζ(2) + w∆ζ(2))w(2)|w(2)|2 dx

+
∫
Ω

|f (2)ϕ ||w(2)|3 dx+
1
R

∫
S1

|w(2)(R)|4 dS1.

We estimate the first term on the r.h.s. of (4.8), by the interpolation inequality
(see [6], Section 15), by

ε1|∇|w(2)|2|22,Ω + c(1/ε1, d1)|w(2)|2|21,Ω,

where estimate (2.2)–(2.3) was utilized and ε1 ∈ (0, 1). We restrict the second
term on the r.h.s. of (4.8) by

|wv · ∇ζ(2)|4/3,Ω|w(2)|212,Ω ≤ ε2|w(2)|412,Ω + c(1/ε2)|wv · ∇ζ(2)|44/3,Ω,

where ε2 ∈ (0, 1), the first norm is bounded by ε2c‖ |w(2)|2 ‖21,Ω ≤ ε2c(|∇|w(2)|2|2

+|w(2)/
√
r|44,Ω) and the second by c(1/ε2)|∇ζ(2)|4∞,Ω|v|42,bΩ(1) |w|

4
4,bΩ(1) .

The third term on the r.h.s. of (4.8) equals

− ν
∫
Ω

(∇w2∇ζ(2)ζ(2) + w2∆ζ(2)ζ(2))|w(2)|2 dx

= ν
∫
Ω

w2|∇ζ(2)|2|w(2)|2 dx+ ν
∫
Ω

w2∇ζ(2)ζ(2)∇|w(2)|2 dx ≡ I1 + I2,
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where

|I1| ≤
(∫
Ω

(w2|∇ζ(2)|2)6/5 dx
)5/6(∫

Ω

|w(2)|12 dx
)2/12

≤ ε3|w(2)|412,Ω + c
(
1
ε3

)
|∇ζ(2)|4∞,Ω|w|412/5,bΩ′(1)

,

|I2| ≤ ε4|∇|w(2)|2|22,Ω + c
(
1
ε4

)
|∇ζ(2)|2∞,Ω|w|44,bΩ′(1)

,

and ε3, ε4 ∈ (0, 1).
The fourth term on the r.h.s. of (4.8) is estimated, by the Hölder and Young

inequalities, by

ε5|w(2)|412,Ω + c(1/ε5)|f (2)ϕ |44/3,Ω,
where ε5 ∈ (0, 1).
Finally, the boundary term is bounded by

ε6|∇(w(2))2|22,Ω + c(1/ε6)| |w(2)|2 |21,Ω,

where ε6 ∈ (0, 1).
Utilizing the above inequalities in (4.8) and assuming that ε1 − ε6 are suffi-

ciently small we obtain

(4.9)
1
4
d

dt
|w(2)|44,Ω +

ν

2
|∇|w(2)|2|22,Ω + ν

∣∣∣∣w(2)√r
∣∣∣∣4
4,Ω

≤ c(d1)d41 + c|∇ζ2)|4∞,Ω(d41|w|44,bΩ′(1)
+ |w|412

5 ,
bΩ′(1)
+ |w|4

4,bΩ′(1)
) + c|f (2)ϕ |44/3,Ω.

The second term on the r.h.s. of (4.9) is estimated by

c

δ42
(1 + d41)(|v|44,Ω + |v|412/5,Ω).

Utilizing this in (4.9) and integrating the result with respect to time implies
(4.7). This concludes the proof. �

Next we consider the elliptic problem

(4.10)

vr,z − vz,r = χ,

vr,r + vz,z = −
vr
r
,

vr|S1 = 0, vz|S2 = 0.

Multiplying (4.10) by (ζ(2))2 yields

(4.11)

v(2)
′

r,z − v(2)
′

z,r = χ
(2)′ − vz((ζ(2))2),r,

v(2)
′

r,r + v
(2)′
z,z = −

1
r
v(2)

′

r + vr((ζ
(2))2),r,

v(2)
′

r |S1 = 0, v(2)
′

z |S2 = 0, v(2)
′

r |r=r0−δ2 = 0,
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where v(2)
′
= v(ζ(2))2, χ(2)

′
= χ(ζ(2))2. For solutions of (4.11) we have

(4.12) ‖v(2)
′
‖L∞(0,T ;H1(Ω)) + ‖v

(2)′‖L10/3(0,T ;W 110/3(Ω)) + ‖v
(2)′‖L2(0,T ;H2(Ω))

≤ c(‖χ(2)
′
‖L∞(0,T ;L2(Ω)) + ‖χ

(2)′‖L2(0,T ;H1(Ω))) + c(d1 + d2).

Let us introduce the notation

Y3(t) = ||f (2)ϕ ||4/3,4,Ωt + |w(2)(0)|4,Ω.

Then (4.7) takes the form

(4.13) |w(2)|4,Ω+|∇|w(2)|2|2,Ωt+|w(2)|4,Ωt ≤ c(d1)T+
c

δ2
(1+d1)|v|4,Ωt+cY3(t).

Utilizing (4.13) in (4.3) yields

(4.14) ‖χ(2)‖V 12 (Ωt) ≤
c

δ2
(1+d2)b6+

c

δ2
(1+d1)|v|4,Ωt+c(d1)T+c(Y2(t)+Y3(t)).

Employing (4.14) in (4.12) gives

(4.15) ‖v(2)
′
‖L∞(0,t;H1(Ω)) + ‖v

(2)′‖L10/3(0,t;W 110/3(Ω)) + ‖v
(2)′‖L2(0,t;H2(Ω))

≤ c

δ2
(1 + d1 + d2)(b6 + |v|4,Ωt) + c(d1)T + c(d1 + d2) + c(Y2(t) + Y3(t)).

Next we need

Lemma 4.3. Assume that w(4)(0) ∈ H1(Ω), f (4)ϕ ∈ L2(ΩT ), F (4)ϕ ∈ L2(ΩT ),
χ(4)(0) ∈ L2(Ω). Assume the v is a weak solution to problem (1.1) such that
v ∈ L2(0, T ;W 13 (Ω)) ∩ L4(ΩT ). Then solutions to problem (4.6) satisfy

(4.16) ‖w(2)‖2,Ωt ≤ ϕ(Z(t))d2

+ c
(
1
δ2
|v|24,Ωt + d2 + |f (2)ϕ |2,Ωt + ‖w(2)(0)‖1,Ω

)
≡ Z1(t),

where t ≤ T , Z(t) is defined by (4.18) and ϕ is a power function because it
follows from interpolation inequalities.

Proof. For solutions of problem (4.6) we obtain

(4.17) ‖w(2)‖2,Ωt ≤ c
(
|v′ · ∇′w(2)|2,Ωt + |v′w∇′ζ(2)|2,Ωt +

∣∣∣∣vrr w(2)
∣∣∣∣
2,Ωt

+ |2∇w∇ζ(2) + w∆ζ(2)|2,Ωt + |w(2)|2,Ωt

+ |f (2)ϕ |2,Ωt + ‖w(2)‖1/2,St1 + ‖w
(2)(0)‖1,Ω

)
.

Now we estimate the particular terms from the r.h.s. of (4.17). To estimate the
first term we need (4.15) for v(4)

′
, where v(4) = vζ(4). Therefore, repeating the
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considerations leading to (4.13)–(4.15) in the case where ζ(2) is replaced by ζ(4)

we obtain

|w(4)|4,Ω + |∇|w(4)|2|2,Ωt + |w(4)|4,Ωt ≤ c(d1)T +
c

δ2
(1 + d1)|v|4,Ωt + cY5(t),

where
Y5(t) = ||f (4)ϕ ||4/3,4,Ωt + |w(4)(0)|4,Ω.

Next, instead of (4.14) we have

‖χ(4)‖V 12 (Ωt) ≤
c

δ2
(1 + d1 + d2)(b6 + |v|4,Ωt) + c(d1)T + c(Y4(t) + Y5(t)),

where

Y4(t) = |F (4)ϕ |2,Ωt +
∣∣∣∣χ(4)(0)r

∣∣∣∣
2,Ω
.

Finally, (4.15) takes the form

‖v(4)
′
‖L∞(0,t;H1(Ω)) + ‖v

(4)′‖L10/3(0,t;W 110/3(Ω)) + ‖v
(4)′‖L2(0,t;H2(Ω))

≤ c

δ2
(1 + d1 + d2)(b6 + |v|4,Ωt) + c(d1)T + c(d1 + d2) + c(Y4(t) + Y5(t)).

The above inequality implies

(4.18) |v(4)
′
|10,Ωt + |∇v(4)

′
|10/3,Ωt ≤

c

δ2
(1 + d1 + d2)(b6 + |v|4,Ωt)

+ c(d1)T + c(d1 + d2) + c(Y4(t) + Y5(t)) ≡ Z(t),

where t ≤ T .
Applying the Hölder inequality we estimate the first term on the r.h.s. of

(4.17) by

|v′ · ∇′w(2)|2,Ωt ≤ |v′|10,bΩtr0−δ2
|∇′w(2)|5/2,Ωt ≤ |v(4)

′
|10,Ωt |∇′w(2)|5/2,Ωt

≤ ε1‖w(2)‖2,Ωt + ϕ(1/ε1, |v(4)
′
|10,Ωt)|w(2)|2,Ωt ≡ I1,

where in the last inequality some interpolation inequality is used (see [6, Chap-
ter 3, Section 10]) and ϕ is a positive increasing function.
In view of the energy estimate (2.2)–(2.3) and (4.18) we have

I1 ≤ ε1‖w(2)‖2,Ωt + ϕ(1/ε1, Z(t))d2.

By the Hölder inequality the second term on the r.h.s. of (4.17) is estimated by
c

δ2
|v′|4,Ωt |w|4,Ωt ≤

c

δ2
|v|24,Ωt .

Applying the Hölder inequality and some interpolation inequality (see [6, Chap-
ter 3, Section 10]) the third term on the r.h.s. of (4.17) is bounded by

c|vr|10,bΩtr0−δ2
|w(2)|5/2,Ωt ≤ c|v(4)

′
|10,Ωt |w(2)|5/2,Ωt

≤ ε2‖w(2)‖2,Ωt + ϕ(1/ε2, |v(4)
′
|10,Ωt)|w(2)|2,Ωt ≡ I2.



328 W. M. Zajączkowski

Utilizing the energy estimate (2.2)–(2.3) and (4.18) we obtain

I2 ≤ ε2‖w(2)‖2,Ωt + ϕ(1/ε2, Z(t))d2.

In view of (2.2)–(2.3) we estimate the fourth and fifth terms on the r.h.s. of
(4.17) by cd2.
By some interpolation inequality (see [6, Chapter 3, Section 10]) the seventh

term on the r.h.s. of (4.17) is bounded by

ε3‖w(2)‖2,Ωt + c(1/ε3)d2.

Utilizing the above estimates in (4.17) and assuming that ε1− ε3 are sufficiently
small we obtain (4.16). �

From (4.16) we have

(4.19) |w(2)|10,Ωt + |∇w(2)|10/3,Ωt ≤ cZ1(t), t ≤ T.

Inequalities (4.15) and (4.19) imply

(4.20) |v(2)|10,Ωt + |∇v(2)|10/3,Ωt ≤ cZ1(t), t ≤ T.

5. Local existence

To prove local existence of solutions to problem (1.1) we apply the Leray–
Schauder fixed point theorem. Let

M(ΩT ) =
{
v :

6∑
i=1

bi(T ) ≤ c(‖v‖L2(0,T ;L∞(Ω)) + ‖v‖L5(ΩT )

+ ‖v‖L∞(0,T ;L3(Ω)) + ‖v‖L2(0,T ;W 1q (Ω))) <∞,

3 ≤ q = 6
1− 3ε0

, ε0 > 0 arbitrary small number
}
.

Let
1
δ∗
=
1
δ1
+
1
δ2
+X(T ),

where
4∑
i=1

Xi(T ) ≤ c(|f (1)ϕ |2,−δ,ΩT + |f (3)ϕ |2,ΩT + |F (1)
′
|2,ΩT

+ |u(1)(0)|2,−δ,Ω + ‖w(3)(0)‖1,0,Ω + |α(1)
′
(0)|2,Ω) ≡ cX(T ),

and δ = 1/2 + ε0. Let Y (T ) be defined by

6∑
i=1

Yi(T ) ≤ c(‖F (1)ϕ ‖L2(0,T ;L2,−1(Ω)) + ‖χ
(1)(0)‖L2,−1(Ω)

+ ‖F (4)ϕ ‖L2(ΩT ) + ‖χ
(4)(0)‖L2(Ω) + ‖f

(4)
ϕ ‖L4(0,T ;L4/3(Ω))

+ ‖w(4)(0)‖L4(Ω) + ‖f
(2)
ϕ ‖L2(ΩT ) + ‖w

(2)(0)‖H1(Ω)) ≡ cY (T ).
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In view of the above notation inequalities (3.46) and (4.20) imply

(5.1) ‖v‖N(ΩT ) = |v|10,ΩT + |∇v|10/3,ΩT ≤ ϕ∗
(
1
δ∗
‖v‖M(ΩT ), d1, d2, Y

)
+ c1Y,

where ϕ∗ is an increasing positive function. Therefore (5.1) implies the transfor-
mation

Φ1:M(ΩT )→ N(ΩT ).

Next we introduce the transformation

Φ2:N(ΩT )→W 2,15/2(Ω
T )

defined by the problem

(5.2)

v,t − divT(v, p) = −λṽ · ∇ṽ + f in ΩT ,

div v = 0 in ΩT ,

v · n = 0 on ST ,

n · T(v, p) · τα = 0, α = 1, 2 on ST ,

v|t=0 = v(0) in Ω,

where λ ∈ [0, 1] and ṽ ∈ N(ΩT ). Solving (5.2) implies

W 2,15/2(Ω
T ) 3 v = Φ2(ṽ, λ).

Therefore a fixed point of the transformation Φ = Φ2◦Φ1 is a solution of problem
(1.1).
Now we check the assumptions of the Leray–Schauder fixed point theorem.

We have that

Φ:M(ΩT )× [0, 1]→W 2,15/2(Ω
T ) ⊂M(ΩT ),

where the last imbedding is compact and continuous. Therefore, the mapping

Φ:M(ΩT )× [0, 1]→M(ΩT )

is compact and uniformly continuous. For λ = 0 problem (5.2) has a unique
solution.
Now we shall find an estimate for a fixed point of mapping Φ.

Lemma 5.1. Assume that v is a weak solution to problem (1.1) described by
Lemma 2.1. Assume that X < ∞, Y < ∞ and δ∗ is so large that there exists
a constant A such that

(5.3) ϕ0

(
1
δ∗
A, d1, d2, Y

)
+ c(|f |5/2,ΩT + ‖v(0)‖6/5,5/2,Ω) ≤ A,

where ϕ0 is described below. Then

(5.4) ‖v‖2,5/2,ΩT ≤ A.
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Proof. Utilizing (5.1) we obtain for solutions of (5.2) the inequality (see [1])

‖v‖2,5/2,ΩT ≤ c
[
ϕ∗

(
c

δ∗
‖v‖2,5/2,ΩT , d1, d2, Y

)
+ cY
]2

(5.5)

+ c(|f |5/2,ΩT + ‖v(0)‖6/5,5/2,Ω)

≡ϕ0
(
1
δ∗
‖v‖2,5/2,ΩT , d1, d2, Y

)
+ c(|f |5/2,ΩT + ‖v(0)‖6/5,5/2,Ω).

Hence if (5.3) holds then (5.5) implies (5.4). �

In view of the above considerations we have

Theorem 5.2. Assume that v is a weak solution determined by Lemma 2.1.
Assume that X <∞, Y <∞, f ∈ L5/2(ΩT ), v(0) ∈W

6/5
5/2 (Ω). Assume that the

quantity δ∗ is so large that (5.3) holds. Then there exists at least one solution
to problem (1.1) such that v ∈ W 2,15/2(Ω

T ), ∇p ∈ L5/2(ΩT ) and estimate (5.4) is
valid.

References

[1] W. Alame, On existence of solutions for the nonstationary Stokes system with slip

boundary conditions, Appl. Math. 32 (2005), 195–223.

[2] J. D. Avrin, Large-eigenvalue global existence and regularity results for the Navier–

Stokes equations, J. Differential Equations 127 (1996), 365–390.

[3] , A one-point attractor theory for the Navier–Stokes equations via the truncation

method, Proc. Amer Math. Soc. 127 (1999), no. 3, 725–735.

[4] A. Babin, A. Mahalov and B. Nicolayenko, 3D Navier–Stokes and Euler equations

with initial data characterized by uniformly large vorticity, Indiana Univ. Math. J. 50

(2001), no. 1, 1–35.

[5] , Global regularity of 3D rotating Navier–Stokes equations for resonant domains,

Indiana Univ. Math. J. 48 (1999), no. 3, 1133–1176.

[6] O. V. Besov, V. P. Il’in and S. M. Nikol’skĭı, Integral Representation of Functions
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