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EXISTENCE AND CONCENTRATION
OF NODAL SOLUTIONS

TO A CLASS OF QUASILINEAR PROBLEMS

Claudianor O. Alves — Giovany M. Figueiredo

Abstract. The existence and concentration behavior of nodal solutions

are established for the equation −εp∆pu+V (z)|u|p−2u = f(u) in Ω, where

Ω is a domain in RN , not necessarily bounded, V is a positive Hölder

continuous function and f ∈ C1 is a function having subcritical growth.

1. Introduction

In this paper we are concerned with the existence and concentration of nodal
solutions for the problem

(Pε)

{
−εp∆pu + V (z)|u|p−2u = f(u) in Ω,

u = 0 on ∂Ω,

where ε > 0, 1 < p < N , ∆pu is the p-Laplacian operator defined as

∆pu =
N∑

i=1

∂

∂xi

(
|∇u|p−2 ∂u

∂xi

)
,
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Ω is a domain in RN containing the origin, not necessarily bounded, with empty
or smooth boundary, V : RN → R is a Hölder continuous function satisfying:

(V1) The set M = {z ∈ RN : V (z) = V0} is bounded and compactly con-
tained in Ω, where

V0 = inf
z∈RN

V (z) > 0.

(V2) There exists an open and bounded domain Λ, compactly contained in
Ω, such that

V0 = inf
z∈Λ

V (z) < min
z∈∂Λ

V (z).

With relation the function f , we assume the following conditions:

(f1) f ∈ C1(R) and lims→0|f(s)|/|s|p−1 = 0.
(f2) There exists q ∈ (p, p∗), where p∗ = Np/(N − p) such that

lim
|s|→∞

|f(s)|
|s|q−1

= 0.

(f3) There exists θ ∈ (p, q) such that 0 < θF (s) ≤ sf(s), for all s 6= 0, where
F (s) =

∫ s

0
f(t) dt.

(f4) The function s 7→ f(s)/|s|p−1 is an increasing in R \ {0}.
For the case p = 2, equation (Pε) is equal to

(P∗) −ε2∆u + V (z)u = f(u) in Ω,

and this type of equation arises in some important mathematical models. For
example, when f(s) = |s|q−2s, 2 < q < 2∗ = 2N/(N − 2), these equations
are related with the existence of standing waves of the nonlinear Schrödinger
equation

(NLS) ih
∂Ψ
∂t

= −h2∆Ψ + (V (z) + E)Ψ− f(Ψ) for all z ∈ Ω.

A standing wave of (NLS) is a solution of the form Ψ(z, t) = exp(−iEt/h)u(z),
where u is a solution of (P∗).

Still for the case p = 2, existence of nodal solutions for general semilinear
elliptic equations with superlinear nonlinearity have been established by Bartsch
and Wang in [7], [8], by Bartsch, Chang and Wang in [9] and by Bartsch, Weth
and Willem in [10]. Moreover, the existence and concentration of positive so-
lutions for (P∗) have been extensively studied in recent years, see for example,
Floer and Weinstein [11], Oh [18], [19], Rabinowitz [20], Wang [22], Alves and
Souto [1], del Pino and Felmer [13], Alves, do Ó and Souto [4], and the references
therein. For the case involving nodal solutions we cite the works of Noussair and
Wei [16], [17] and Alves and Soares [5].

For the general case p ≥ 2, some results of existence and concentration for
(Pε) were proved by Alves and Figueiredo [2], [3].
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In this work, motivated by paper [5] and by some ideas employed in [2]
and [3], we prove the existence and concentration of nodal solutions to (Pε). To
get these nodal solutions we adapt some arguments developed in [10], [13] and
in [16], [17], and to prove the concentration of the solutions, we use the same
type of ideas found in [5]. However, for our case, we ought to use a different
approach of that explored in [5], [13] and [16], [17], since we are working with
the p-Laplacian operator and some estimates for this type of operator can not be
obtained using the same type of ideas explored for the case p = 2. For example,
results involving convergences in the C2 sense do not hold for the p-Laplacian.
To overcome these difficulties, we use the same type of arguments developed by
the authors in the papers [2], [3] and make a careful analysis of the estimates
proved in [5].

Our main result is the following:

Theorem 1.1. Suppose that f and V satisfy (f1)–(f4) and (V1)–(V2), re-
spectively. Then, there exists ε0 > 0 such that (Pε) possesses a nodal solution
uε ∈ W 1,p

0 (Ω), for every ε ∈ (0, ε0). Moreover, if P 1
ε ∈ Ω is a positive global

maximum point of uε and P 2
ε ∈ Ω is a negative global minimum point of uε, we

have that P i
ε ∈ Λ and V (P i

ε) → V0, for i = 1, 2.

This paper is organized as follows: in Section 2, we work with an auxiliary
problem, which is used to show the existence of the nodal solution to (Pε). In
Section 3, we state some lemmas and propositions used in the proof of main
result. In Section 4, we prove Theorem 1.1. In Section 5 we prove the technical
lemmas and propositions stated in the Section 3.

2. An auxiliary problem

In this section we will work with an auxiliary problem, which is related in
some sense with problem (Pε).

2.1. Preliminaries and notations. In this section we fix some notations
and prove some lemmas which are key points in our arguments.

Hereafter, let us omit the symbol “dx” in all integrals.
We recall that the weak solutions of (Pε) are the critical points of the func-

tional

Jε(u) =
1
p

∫
Ω

εp|∇u|p +
1
p

∫
Ω

V (z)|u|p −
∫

Ω

F (u)

where F (t) =
∫ t

0
f(s) ds, and Jε(u) is defined for u in the Banach space

W =
{

u ∈ W 1,p
0 (Ω) :

∫
Ω

V (z)|u|p < ∞
}
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endowed with the norm

‖u‖ =
( ∫

Ω

|∇u|p +
∫

Ω

V (z)|u|p
)1/p

.

To establish the existence of nodal solution, we will adapt for our case, an
argument explored by del Pino and Felmer [13] (see also [3] and [5]), which
consists in considering a modified problem. To this end, we need to fix some
notations.

Let θ be the number given in (f3), and a, k1, k2 > 0 be constants satisfying
k1, k2 > (θ/θ − p), (f(a)/ap−1) = (V0/k1) and (f(−a)/ap−1) = −(V0/k2), where
V0 appears in (V1). Using the above numbers, let us define the functions

f̃(s) =


f(s) if |s| ≤ a,

V0

k1
|s|p−2s if s > a,

V0

k2
|s|p−2s if s < −a,

g(z, s) = χΛ(z)f(s) + (1− χΛ(z))f̃(s),

and the auxiliary problem

(Pε)a

{
−εp∆pu + V (z)|u|p−2u = g(z, u) in Ω,

u = 0 on ∂Ω,

where χΛ is the characteristic function of the set Λ. It is easy to check that
(f1)–(f4) imply that g is a Carathéodory function and for z ∈ Ω, the function
s → g(z, s) satisfies the following conditions, uniformly for z ∈ Ω:

lim
|s|→0

g(z, s)
|s|p−1

= 0,(g1)

lim
|s|→∞

g(z, s)
|s|q−1

= 0,(g2)

(g3)i 0 ≤ θG(z, s) ≤ g(z, s)s,

for all z ∈ Λ and all s 6= 0, and

(g3)ii 0 < pG(z, s) ≤ g(z, s)s ≤ 1
k

V (z)|s|p,

for all z 6∈ Λ and all s 6= 0, where k = min{k1, k2} and G(z, s) =
∫ s

0
g(z, t) dt.

The function

(g4) s → g(z, s)
|s|p−1

is nondecreasing for each z ∈ Ω and all s 6= 0.

Remark 2.1. Note that if u is a nodal solution of (Pε)a with |u(z)| ≤ a for
every z ∈ Ω \ Λ, then u is also a nodal solution of (Pε).
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2.2. Existence of ground state nodal solution for (Pε)a. In this sec-
tion, we adapt some arguments found in Bartsch, Weth and Willem [10], Alves
and Figueiredo [3] and Alves and Soares [5] to establish the existence of ground
state nodal solution for problem (Pε)a.

Hereafter, let us denote by Iε the functional

Iε(u) =
1
p

∫
Ω

εp|∇u|p +
1
p

∫
Ω

V (z)|u|p −
∫

Ω

G(z, u)

and by Mε the set

Mε = {u ∈ W : u± 6= 0 and I ′ε(u
±)u± = 0},

where
u+(z) = max{u(z), 0} and u−(z) = min{u(z), 0}.

It is easy to check that there exists µ∗ > 0 such that

(2.1)
∫

Λ

|u±|q > µ∗ for all u ∈Mε.

Hereafter, we will denote by cε the following real number

cε = inf
Mε

Iε.

Theorem 2.2. cε is achieved by some uε ∈ Mε. Moreover, uε is a nodal
solution of (Pε)a.

Proof. It is easy to check that Iε is bounded from below onMε since, using
the definition of Mε, there exists C > 0 such that

(2.2) Iε(u) ≥ C‖u‖p for all u ∈Mε.

Thus, there exists a sequence {vn} ⊂ Mε verifying Iε(vn) → cε as n →∞ which
is bounded by (2.2). Since W is reflexive, there exists v ∈ W such that vn ⇀ v

in W . By (2.1) and by the Sobolev imbedding, we have∫
Λ

|v±|q > µ∗,

showing that v± 6= 0. By the weak convergence of the sequence and condition
(g3), it follows that

‖v±‖p ≤
∫

Ω

g(z, v±)v±.

The above inequalities imply that there exist t+, t− ∈ (0, 1] such that

‖t±v±‖p = g(z, t±v±),

which implies that w = t+v+ + t−v− is an element of Mε.
Since

Iε(t±v±) =
∫

Ω

[
1
p
g(z, t±v±)t±v± −G(z, t±v±)

]
,
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using Fatou’s lemma, it follows that

Iε(t±v±) ≤ lim inf
n→∞

∫
Ω

[
1
p
g(z, t±v±n )t±v±n −G(z, t±v±n )

]
.

For each n, conditions (f4) and (g4) imply that the function

t 7→
∫

Ω

[
1
p
g(z, tv±n )tv±n −G(z, tv±n )

]
is increasing and thus

Iε(t±v±) ≤ lim inf
n→∞

∫
Ω

[
1
p
g(z, v±n )v±n −G(z, v±n )

]
= lim inf

n→∞
Iε(v±n ).

From the last inequality, it follows that

Iε(w) = Iε(t+v+) + Iε(t−v−) ≤ lim inf
n→∞

Iε(vn) = cε.

Since w ∈ Mε, the above inequality implies that Iε(w) = cε, and thus cε is
achieved. Now, from [3, Proposition 3.1] (see also [14]) the functional Iε satisfies
the Palais–Smale at all c ∈ R and hence, we can repeat the same arguments
found in [10, Proposition 3.1] to conclude that cε is a critical level, that is, there
exists uε ∈Mε such that

Iε(uε) = cε and I ′ε(uε) = 0. �

Remark 2.3. The nodal solution found in Theorem 2.2 satisfies the follow-
ing properties:

(a) If Ω is bounded, the function uε belongs to C(Ω) (see [12]).
(b) If Ω is unbounded, the function uε is a continuous function and verifies

lim|z|→∞ uε(z) = 0 (see [15]).

3. Statement of lemmas and propositions

Hereafter, let us denote by w ∈ W 1,p(RN ) a least energy solution of the
problem

−∆pw + V0|w|p−2w = f(w).

Consequently, w satisfies

cV0 = JV0(w) = inf
v∈W1,p(RN )

v 6=0

sup
τ≥0

JV0(τv),

where JV0 is defined as

JV0(v) =
1
p

∫
RN

(|∇v|p + V0|v|p)dx−
∫

RN

F (v) dx,

for all v ∈ W 1,p(RN ) (see [1]).



Nodal Solutions to a Class of Quasilinear Problems 285

Let us denote by uε the nodal solution of (Pε)a obtained in Theorem 2.2.
Adapting the same type of argument explored in [5, Lemma 2.1], it is easy to
check that

(3.1) lim sup
ε→0

ε−NIε(uε) ≤ 2cV0 .

The next lemma shows a situation where we have convergence on compacts
sets.

Lemma 3.1. Let {xn} ⊂ Λ and let {εn} be a sequence of positive numbers
such that εn → 0 as n → ∞. If we set vn(x) = uεn

(εnx + xn), then {vn}
converges uniformly on compact subsets of RN .

Proof. See Section 5. �

The next result establishes a first information about the localization of max-
imum and minimum points of uε.

Lemma 3.2. Let {εn} ⊂ (0,∞) be a sequence with εn → 0 and P 1
n , P 2

n be,
respectively, a maximum and minimum point of the function uεn

. Then, there
exist δ∗ > 0 and a subsequence, still denoted by {uεn}, such that {P i

n}, i = 1, 2,
are convergent sequences, uεn

(P 1
n) ≥ δ∗ and uεn

(P 1
n) ≤ −δ∗.

Proof. See Section 5. �

The next result is a key point to prove the existence of nodal solution to the
original problem. A version of this result for p = 2 can be found in [5].

Proposition 3.3. If P 1
ε is a maximum point of u+

ε and P 2
ε is a minimum

point of u−ε , then ∣∣∣∣P 1
ε − P 2

ε

ε

∣∣∣∣ →∞ as ε → 0.

Proof. See Section 5. �

In order to use the Remark 2.1, the lemmas below are important in our
arguments to prove that the family {uε} satisfies the estimate |uε(z)| ≤ a, for
z ∈ Ω \ Λ when ε is sufficiently small.

Lemma 3.4. Let {εn} be a sequence of positive number with εn → 0 as
n →∞ and let {zi

n} ⊂ Λ, i = 1, 2, be a sequence such that uεn
(z1

n) ≥ b > 0 and
uεn

(z2
n) ≤ −b < 0. Then,

lim
n→∞

V (zi
n) = V0 for i = 1, 2.

Proof. See Section 5. �

Lemma 3.5. If m+
ε = max∂Λ uε and m−

ε = min∂Λ uε, then limε→0 m±
ε = 0.

Proof. This Lemma follows directly from Lemma 3.4. �
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4. Proof of Theorem 1.1

By Theorem 2.2, we have that problem (Pε)a has a nodal solution uε, for all
ε ∈ (0, ε). By Lemma 3.5, m+

ε < a, for all ε ∈ (0, ε) and then (uε − a)+(z) = 0
for a neighbourhood of ∂Λ. Hence (uε − a)+ ∈ W 1,p

0 (Ω \ Λ) and the function Ψ
given by Ψ(z) = 0, if z ∈ Λ and Ψ(z) = (uε − a)+(z), if z ∈ Ω \ Λ belongs to
W 1,p

0 (Ω). Using Ψ as a test function, we have∫
Ω\Λ

εp|∇Ψ(z)|p +
∫

Ω\Λ

[
V (z)|uε|p−2 − g(z, uε)

uε

]
|Ψ(z)|2

+
∫

Ω\Λ

[
V (z)|uε|p−2 − g(z, uε)

uε

]
t0Ψ(z) = 0.

The last equality implies

Ψ(z) = 0, a.e. in z ∈ Ω \ Λ.

Hence uε(z) ≤ a, for z ∈ Ω \ Λ. Since we can assume m−
ε ≥ −a for ε ∈ (0, ε),

working with the function (uε + a)−, it is possible to prove that uε(z) ≥ −a for
z ∈ Ω \ Λ. This fact implies that |uε(z)| ≤ a for z ∈ Ω \ Λ, and the existence
of a nodal solution follows from Remark 2.1. The concentration of the nodal
solutions follows from Lemmas 3.2, 3.4 and 3.5 �

5. Proofs of lemmas and propositions

In this section, we will prove the lemmas and propositions established in
Section 3.

Proof of Lemma 3.1. First of all, note that the sequence {vn} satisfies
the following problem

(Pn)

{
−∆pvn + V (xn + εnx)|vn|p−2vn = g(xn + εnx, vn) in Ω̂εn

,

vn = 0 on ∂Ω̂εn
,

where Ω̂εn = ε−1
n {Ω − xn}. From (3.1), it follows that {vn} is bounded in

W 1,p(RN ) and adapting some arguments explored in [3, Lemma 4.1], we have
that the sequences v+

n and v−n are bounded in L∞(RN ). Thus, there exists
a subsequence, still denoted by {vn}, such that for each compact subset K of
RN , there exists a constant CK > 0 with |∇vn|∞,K ≤ CK , for n sufficiently
large. Therefore {vn} converges uniformly on compact subsets of RN . �

Proof of Lemma 3.2. Firstly, we will show that there exist δ∗ > 0 and
n0 ∈ N such that

uεn
(P 1

n) ≥ δ∗ and uεn
(P 2

n) ≤ −δ∗ for n ≥ n0.
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Assume, by contradiction, that there exists a subsequence, still denoted by {uεn
},

such that
uεn

(P 1
n) = ‖u+

εn
‖L∞(RN ) → 0.

Defining hn(x) = uεn(εnx), we have that ‖h+
n ‖L∞(RN ) → 0. For a fixed r = V0/2,

it follows by (f1) that there exists n0 ∈ N such that

f(‖h+
n ‖L∞(RN ))

‖h+
n ‖p−1

L∞(RN )

< r for n ≥ n0.

Hence,∫
RN

|∇h+
n |p +

∫
RN

V0|h+
n |p ≤

∫
RN

f(‖h+
n ‖L∞(RN ))

‖h+
n ‖p−1

L∞(RN )

|h+
n |p ≤ r

∫
RN

|h+
n |p,

thus ‖h+
n ‖W 1,p(RN ) = 0 for n ≥ n0, which is impossible, because h+

n 6= 0, for all
n ∈ N. Then, there exists δ∗ > 0 and n1 ∈ N such that ‖u+

εn
‖L∞(RN ) ≥ δ∗, for all

n ≥ n1. Repeating these arguments, we find n2 ∈ N such that ‖u−εn
‖L∞(RN ) ≥ δ∗,

for all n ≥ n2. Choosing n0 = max{n1, n2}, we have that

uεn(P 1
n) ≥ δ∗ and uεn(P 2

n) ≤ −δ∗, for all n ≥ n0.

On the other hand, the function hn satisfies the following problem

(P1
n)

{
−∆phn + V (εnx)|hn|p−2hn = g(εnx, hn) in Ωεn

,

hn = 0 on ∂Ωεn

where Ωεn
= Ω/εn. Since V0 = infz∈RN V (z) and lim supεn→0(ε−N

n Iεn
(uεn

)) ≤
2cV0 , defining

J1
n(v) =

1
p

∫
Ωεn

(|∇v|p + V (εnx)|v|p) dx−
∫

Ωεn

G(εnx, v) dx

we have that J1
n(hn) = ε−N

n Iεn(uεn) and consequently

J1
n(h+

n ) → cV0 with h+
n ∈ Nεn

,

where Nεn
= {u ∈ Wn \ {0} : J1

n
′(u)u = 0}.

Using [2, Lemma 4.3] and [3, Proposition 3.3], there exists a sequence {ỹn} ⊂
RN , such that h̃n(x) = h+

n (x+ỹn) converges strongly to a function h ∈ W 1,p(RN )
\{0}. Moreover, the sequence {yn} given by yn = εnỹn, has a subsequence, still
denoted by yn, such that yn → y ∈ M . Now, to adapt some arguments explored
in [2, Lemma 4.5], let us consider, for each n ∈ N and L > 0, the functions

vL,n(x) =

{
h̃n(x) if h̃n(x) ≤ L,

L if h̃n(x) ≥ L,

and
zL,n = ηpv

p(β−1)
L,n h̃n and wL,n = ηh̃nvβ−1

L,n
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with β > 1 to be picked up later. Remarking that the function ĥn(x) = hn(x+ỹn)
is a critical point of the functional

T (v) =
1
p

∫
eΩεn

(|∇v|p + V (εnx + yn)|v|p) dx−
∫
eΩεn

G(εnx + yn, v) dx

where Ω̃εn
= ε−1

n {Ω− yn}. Taking zL,n as a test function, it is possible to prove
that, for a fixed γ ∈ (0, δ), there exists R > 0 such that

‖h̃n‖L∞(|x|≥R) < γ for all n ∈ N.

Consequently,

(5.1) u+
εn

(εnx + yn) < γ, for all n ∈ N and |x| ≥ R.

If P 1
n denotes a maximum point of uεn , we have that

(5.2) uεn
(P 1

n) ≥ δ∗ for all n ∈ N.

So, if P 1
n = εnQn + yn it follows from (5.1) and (5.2) that |Qn| ≤ R. Using the

fact that {yn} converges to y1 ∈ M , we can conclude that {P 1
n} also converges

to y1 ∈ M and therefore
lim

n→∞
V (P 1

n) = V0.

Using similar arguments we can prove that the sequence {P 2
n} also converges to

some y2 ∈ M . �

Proof of Proposition 3.3. Assume by contradiction that there exists
a sequence {εn} with εn → 0 verifying∣∣∣∣P 1

n − P 2
n

εn

∣∣∣∣ → β < ∞,

where P 1
n = P 1

εn
and P 2

n = P 2
εn

.
Defining vn(x) = uεn

(P 1
n + εnx), it is easy to check that vn is a solution of

the problem

(P′n) −∆pvn + V (P 1
n + εnx)|vn|p−2vn = g(P 1

n + εnx, vn) in Ω1
εn

, vn = 0∂Ω1
εn

where Ω1
εn

= ε−1
n {Ω−P 1

n}, that the function vn is a critical point of the functional

J(v) =
1
p

∫
Ω1

εn

(|∇v|p + V (εnx + P 1
n)|v|p) dx−

∫
Ω1

εn

G(εnx + P 1
n , v) dx

and that J(vn) = ε−N
n Iεn(uεn). Using the fact that J ′(vn)(vn) = 0, from (3.1),

we have that {vn} is a bounded sequence in W 1,p(RN ). Using the same type
of arguments explored in the proof of Lemma 3.1, there exists a function v ∈
W 1,p(RN ) such that {vn} converges uniformly on compact subsets of RN . For
each fixed compact subset K ⊂ RN , there exists CK > 0 such that |∇vn|∞,K ≤
CK , for all x ∈ K. Moreover, the sequence of functions χn(y) = χΛ(εny+P 1

n) can
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be assumed to converge weakly on compacts subsets in any Lr(RN ) to a function
0 ≤ χ ≤ 1 and the function v satisfies the problem

(PL) −∆pv + V (P )|v|p−2v = g(x, v) in RN ,

where
g(z, s) = χ(z)f(s) + (1− χ(z))f̃(s) and P = lim

n→∞
P 1

n .

Suppose that β = 0. By Lemma 3.2 and the Mean Value Inequality, we have

(5.3) 2δ ≤ |vn(0)− vn(Zε)| ≤ |∇vε(Qn)||Zn|,

where Zn = (P 1
n − P 2

n)/εn and Qn = tnZn, for some tn ∈ [0, 1]. Using the
hypothesis that β = 0, we have that the sequence {Qn} ⊂ B1(0). Hence, there
exists C > 0 such that |∇vn(Qn)| ≤ C, for all n ∈ N. Using the last inequality
in (5.3), we obtain the inequality

(5.4) 2δ ≤ |vn(0)− vn(Zε)| ≤ C|Zn|,

leading to a contradiction with the fact that limn→∞ Zn = 0. Therefore, β > 0
and P = limn→∞ Zn 6= 0. To conclude the proof, taking a subsequence if
necessary, vn converges on compacts to a function v ∈ W 1,p(RN ). As vn(0) =
uεn

(P 1
n) ≥ δ∗ and vn(Zn) = uεn

(P 2
n) ≤ −δ∗ < 0, it follows that v(0) > 0 and

v(P ) < 0, i.e. v is a nodal function of (PL). Associated to (PL) we have the
functional J :W 1,p(RN ) → R defined by

J(u) =
1
p

∫
RN

(|∇u|p + V (P )|u|p) dx−
∫

RN

G(z, u) dx, u ∈ W 1,p(RN )

where G(z, s) =
∫ s

0
g(z, t) dt and P = limn→∞ P 1

n . Then, v is a critical point
of J . Thus, J ′(v)ϕ = 0 for every ϕ ∈ W 1,p(RN ). In particular, J ′(v)v± = 0,
which implies v ∈ MV (z), where

MV (z) =
{

u ∈ W 1,p
0 (Ω) : u± 6≡ 0,∫

Ω

(|∇u±|p + V (z)|u±|p) dx =
∫

Ω

g(z, u±)u± dx

}
.

Since J(vn) = ε−N
n Iεn(uεn), it follows that

J((vn)+), J((vn)−) → cV0 as J ′((vn)+)((vn)+) = J ′((vn)−)((vn)−) = 0,

thus, applying the same type of arguments found in [3], we can conclude that
{(vn)+} and {(vn)−} are convergent sequences in W 1,p(RN ).

Considering the sequences {tin} ⊂ R,w1
n(z) = t1n(vn)+(z) and w2

n(z) =
t2n(vn)−(z) such that J ′V0

(wi
n)wi

n = 0 where

JV0(u) =
1
p

∫
RN

(|∇u|p + V0|u|p) dx−
∫

RN

F (u) dx, u ∈ W 1,p(RN )
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it is possible to show that the sequences {tin} are also convergent in R. Using
this information, we have that wi

n converges to wi ∈ W 1,p(RN ) \ {0} with

J ′V0
(wi) = 0 and JV0(w

i) ≥ cV0 .

Thus
ε−N

n Iεn
(uεn

) ≥ JV0(t
1
n(v1

n)+) + JV0(t
2
n(v2

n)−)

and so
ε−N

n Iεn
(uεn

) ≥ JV0(w
1
n) + JV0(w

2
n).

Taking the limit as n →∞ in the last inequality, we get

2cV0 ≥ JV0(w
1) + JV0(w

2) ≥ 2cV0 .

The last inequality implies that JV0(w
i) = cV0 . By Theorem 4.3 in [23], J ′V0

(wi)
= 0 for i = 1, 2, and by Maximum Principle implies w1 > 0 and w2 < 0 in RN (see
[21]), consequently v+ > 0 and v− < 0 in RN , obtaining this way an absurd. �

Proof of Lemma 3.4. In the next, we will argue by contradiction. Assume,
passing to a subsequence if necessary, that zi

n → zi ∈ Λ, i = 1, 2 with V (z1) > V0

and V (z2) ≥ V0. As in the above lemmas, we consider the sequences vi
n(z) =

uεn
(zi

n + εnz), i = 1, 2 and study their behaviors as n goes to infinity. For
i = 1, 2, the function vi

n satisfies the problem

(Pn)i

{
−∆pv

i
n + V (εnz + zi

n)|vi
n|p−2vi

n = g(εz + zi
n, vi

n) in Ωi
n,

vi
n = 0 on ∂Ωi

n,

where Ωi
n = ε−N{Ω − zi

n}. Again, the sequence vi
n is bounded in W 1,p(RN ),

thus it can be assumed to converge uniformly on compacts subsets of RN to
a function vi ∈ W 1,p(RN ). Now, the sequence of functions χi

n(z) ≡ χΛ(εnz+zi
n)

can be assumed to converge weakly in any Lp(RN ) on compacts to a function
0 ≤ χi ≤ 1. Therefore, vi satisfies the limiting problem

(PL)i −∆pv
i + V (zi)|vi|p−2vi = gi(z, vi) in RN

where gi(z, s) = χi(z)f(s)+ (1−χi(z))f̃(s) and zi = limn→∞ zi
n. We claim that

vi does not change sign, for i = 1, 2. More precisely, v1 ≥ 0 and v2 ≤ 0. In
fact, suppose, by contradiction, that v1 changes sign. Let r > 0 be such that v1

changes sign on the closed ball B[0, r] and that there exist Q+
1,n, Q−1,n ∈ B[0, r]

such that

(v1
n)+(Q+

1,n) = max
z∈RN

(v1
n)+(z) and (v1

n)−(Q−1,n) = min
z∈RN

(v1
n)−(z).

Since v1
n converges uniformly to v1 on compacts subsets of RN , there exists n0

such that

(v1
n)+(Q+

1,n) ≥ C > 0 and (v1
n)−(Q−1,n) ≤ −C < 0, for all n ≥ n0
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for some positive constant C. Thus, for

(v1
n)+(Q+

1,n) = v1
n(Q+

1,n) = uεn
(εnQ+

1,n + z1
n),

(v1
n)−(Q−1,n) = v1

n(Q−1,n) = uεn
(εnQ−1,n + z1

n),

considering
P̃+

n = εnQ+
1,n + z1

n and P̃−n = εnQ−1,n + z1
n

it follows that P̃+
n and P̃−n are maximum and minimum points of uεn in RN ,

respectively, with

uεn(P̃+
n ) ≥ C and uεn(P̃−n ) ≤ −C.

Applying the same arguments employed in Proposition 3.1, we have∣∣∣∣ P̃+
n − P̃−n

εn

∣∣∣∣ →∞.

But this is impossible because∣∣∣∣ P̃+
n − P̃−n

εn

∣∣∣∣ = |Q+
1,n −Q−1,n| ≤ 2r.

Hence, since v1
n(0) > 0 and v1

n → v1 uniformly on compacts subsets of RN , it
follows that v1 ≥ 0. Moreover, using the Maximum Principle it follows that
v1 > 0 in RN (see [21]). A similar argument implies that v2 < 0 in RN .

Associated to the limiting problem (PL)i, we have the functional

Ji:H1(RN ) → R

defined by

Ji(u) =
1
p

∫
RN

(|∇u|p + V (zi)|u|p) dx−
∫

RN

Gi(z, u) dx, u ∈ W 1,p(RN )

where Gi(z, s) =
∫ s

0
gi(z, t) dt. Then, vi is clearly a critical point of Ji. Also

associated to problem (Pn)i we have the functional

J i
n(u) =

1
p

∫
Ωi

n

(|∇u|p + V (εnz + zi
n)|u|p) dx−

∫
Ωi

n

Gi(εnz + zi
n, u) dx,

for u ∈ W 1,p
0 (Ωi

n), which satisfies the following equality involving uεn
and vn

(5.5) ε−N
n Jεn(uεn) = ε−N

n (Jεn(u+
εn

) + Jεn(u−εn
)) = J1

n((v1
n)+) + J2

n((v2
n)−),

so, repeating the idea explored in the proof of Proposition 3.1, the sequences
{(v1

n)+}, {(v2
n)−} are convergent in W 1,p(RN ).

Considering again sequences {tin} ⊂ R, w1
n(z) = t1n(v1

n)+(z) and w2
n(z) =

t2n(v2
n)−(z) verifying J̃ ′n,i(w

i
n)wi

n = 0 where

J̃n,i(u) =
1
p

∫
RN

(|∇u|p + V (εnz + zi
n)|u|p) dx−

∫
RN

F (u) dx,
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for u ∈ W 1,p(RN ), it is possible to prove that the sequences {tin} are also
convergent in (0,∞). Using this information, we have that wi

n converges to
wi ∈ W 1,p(RN ) \ {0} with

J ′V (zi)(w
i) = 0 and JV (zi)(wi) ≥ cV (zi).

From (5.5),
ε−N

n Jεn(uεn) ≥ J̃1
n(t1n(v1

n)+) + J̃2
n(t2n(v2

n)−)

consequently
ε−N

n Jεn
(uεn

) ≥ J̃n,1(w1
n) + J̃n,2(w2

n).

Taking the limit as n →∞ in the last inequality, we get

(5.6) 2cV0 ≥ JV (z1)(w
1) + JV (z1)(w

1) ≥ cV (z1) + cV (z2).

Since by hypothesis, let us assume V (z1) > V (0) and V (z2) ≥ V (0), it follows
the inequality

cV (z1) + cV (z2) > 2cV (0)

which contradicts (5.6). �

Acknowledgments. The authors are grateful to the referee for his/her
remarks and to Thomas Bartsch for useful suggestions concerning the themes
treated in this paper.

References

[1] C. O. Alves, Existence and multiplicity of solution for a class of quasilinear equations,
Advanced Nonlinear Studies 5 (2005), 73–86.

[2] C. O. Alves and G. M. Figueiredo, Existence and multiplicity of positive solutions
to a p-Laplacian equation in RN , Differential Integral Equations 19 (2006), 143–162.

[3] , Multiplicity of positive solutions for a quasilinear problem in RN via penaliza-

tion method, Advanced Nonlinear Studies 5 (2005), 551–572.
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CEP: 66075-110 Belém, Pa, BRASIL

E-mail address: giovany@ufpa.br

TMNA : Volume 29 – 2007 – No 2


