EXISTENCE AND CONCENTRATION OF NODAL SOLUTIONS

TO A CLASS OF QUASILINEAR PROBLEMS

Claudianor O. Alves - Giovany M. Figueiredo

Abstract

The existence and concentration behavior of nodal solutions are established for the equation $-\varepsilon^{p} \Delta_{p} u+V(z)|u|^{p-2} u=f(u)$ in Ω, where Ω is a domain in \mathbb{R}^{N}, not necessarily bounded, V is a positive Hölder continuous function and $f \in C^{1}$ is a function having subcritical growth.

1. Introduction

In this paper we are concerned with the existence and concentration of nodal solutions for the problem

$$
\begin{cases}-\varepsilon^{p} \Delta_{p} u+V(z)|u|^{p-2} u=f(u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\varepsilon>0,1<p<N, \Delta_{p} u$ is the p-Laplacian operator defined as

$$
\Delta_{p} u=\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}}\left(|\nabla u|^{p-2} \frac{\partial u}{\partial x_{i}}\right)
$$

Key words and phrases. Quasilinear equation, variational methods, behaviour of solutions. Research of the first named author supported by CNPq and PADCT 620017/2004-0.
Ω is a domain in \mathbb{R}^{N} containing the origin, not necessarily bounded, with empty or smooth boundary, $V: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a Hölder continuous function satisfying:
$\left(\mathrm{V}_{1}\right)$ The set $M=\left\{z \in \mathbb{R}^{N}: V(z)=V_{0}\right\}$ is bounded and compactly contained in Ω, where

$$
V_{0}=\inf _{z \in \mathbb{R}^{N}} V(z)>0
$$

$\left(\mathrm{V}_{2}\right)$ There exists an open and bounded domain Λ, compactly contained in Ω, such that

$$
V_{0}=\inf _{z \in \Lambda} V(z)<\min _{z \in \partial \Lambda} V(z) .
$$

With relation the function f, we assume the following conditions:
$\left(\mathrm{f}_{1}\right) f \in C^{1}(\mathbb{R})$ and $\lim _{s \rightarrow 0}|f(s)| /|s|^{p-1}=0$.
(f f_{2}) There exists $q \in\left(p, p^{*}\right)$, where $p^{*}=N p /(N-p)$ such that

$$
\lim _{|s| \rightarrow \infty} \frac{|f(s)|}{|s|^{q-1}}=0
$$

$\left(\mathrm{f}_{3}\right)$ There exists $\theta \in(p, q)$ such that $0<\theta F(s) \leq s f(s)$, for all $s \neq 0$, where $F(s)=\int_{0}^{s} f(t) d t$.
$\left(\mathrm{f}_{4}\right)$ The function $s \mapsto f(s) /|s|^{p-1}$ is an increasing in $\mathbb{R} \backslash\{0\}$.
For the case $p=2$, equation $\left(\mathrm{P}_{\varepsilon}\right)$ is equal to

$$
\begin{equation*}
-\varepsilon^{2} \Delta u+V(z) u=f(u) \quad \text { in } \Omega \tag{*}
\end{equation*}
$$

and this type of equation arises in some important mathematical models. For example, when $f(s)=|s|^{q-2} s, 2<q<2^{*}=2 N /(N-2)$, these equations are related with the existence of standing waves of the nonlinear Schrödinger equation

$$
\begin{equation*}
i h \frac{\partial \Psi}{\partial t}=-h^{2} \Delta \Psi+(V(z)+E) \Psi-f(\Psi) \quad \text { for all } z \in \Omega \tag{NLS}
\end{equation*}
$$

A standing wave of (NLS) is a solution of the form $\Psi(z, t)=\exp (-i E t / h) u(z)$, where u is a solution of $\left(\mathrm{P}_{*}\right)$.

Still for the case $p=2$, existence of nodal solutions for general semilinear elliptic equations with superlinear nonlinearity have been established by Bartsch and Wang in [7], [8], by Bartsch, Chang and Wang in [9] and by Bartsch, Weth and Willem in [10]. Moreover, the existence and concentration of positive solutions for $\left(\mathrm{P}_{*}\right)$ have been extensively studied in recent years, see for example, Floer and Weinstein [11], Oh [18], [19], Rabinowitz [20], Wang [22], Alves and Souto [1], del Pino and Felmer [13], Alves, do Ó and Souto [4], and the references therein. For the case involving nodal solutions we cite the works of Noussair and Wei [16], [17] and Alves and Soares [5].

For the general case $p \geq 2$, some results of existence and concentration for $\left(\mathrm{P}_{\varepsilon}\right)$ were proved by Alves and Figueiredo [2], [3].

In this work, motivated by paper [5] and by some ideas employed in [2] and [3], we prove the existence and concentration of nodal solutions to $\left(\mathrm{P}_{\varepsilon}\right)$. To get these nodal solutions we adapt some arguments developed in [10], [13] and in [16], [17], and to prove the concentration of the solutions, we use the same type of ideas found in [5]. However, for our case, we ought to use a different approach of that explored in [5], [13] and [16], [17], since we are working with the p-Laplacian operator and some estimates for this type of operator can not be obtained using the same type of ideas explored for the case $p=2$. For example, results involving convergences in the C^{2} sense do not hold for the p-Laplacian. To overcome these difficulties, we use the same type of arguments developed by the authors in the papers [2], [3] and make a careful analysis of the estimates proved in [5].

Our main result is the following:
Theorem 1.1. Suppose that f and V satisfy $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{4}\right)$ and $\left(\mathrm{V}_{1}\right)-\left(\mathrm{V}_{2}\right)$, respectively. Then, there exists $\varepsilon_{0}>0$ such that $\left(\mathrm{P}_{\varepsilon}\right)$ possesses a nodal solution $u_{\varepsilon} \in W_{0}^{1, p}(\Omega)$, for every $\varepsilon \in\left(0, \varepsilon_{0}\right)$. Moreover, if $P_{\varepsilon}^{1} \in \Omega$ is a positive global maximum point of u_{ε} and $P_{\varepsilon}^{2} \in \Omega$ is a negative global minimum point of u_{ε}, we have that $P_{\varepsilon}^{i} \in \Lambda$ and $V\left(P_{\varepsilon}^{i}\right) \rightarrow V_{0}$, for $i=1,2$.

This paper is organized as follows: in Section 2, we work with an auxiliary problem, which is used to show the existence of the nodal solution to $\left(\mathrm{P}_{\varepsilon}\right)$. In Section 3, we state some lemmas and propositions used in the proof of main result. In Section 4, we prove Theorem 1.1. In Section 5 we prove the technical lemmas and propositions stated in the Section 3.

2. An auxiliary problem

In this section we will work with an auxiliary problem, which is related in some sense with problem $\left(\mathrm{P}_{\varepsilon}\right)$.
2.1. Preliminaries and notations. In this section we fix some notations and prove some lemmas which are key points in our arguments.

Hereafter, let us omit the symbol " $d x$ " in all integrals.
We recall that the weak solutions of $\left(\mathrm{P}_{\varepsilon}\right)$ are the critical points of the functional

$$
J_{\varepsilon}(u)=\frac{1}{p} \int_{\Omega} \varepsilon^{p}|\nabla u|^{p}+\frac{1}{p} \int_{\Omega} V(z)|u|^{p}-\int_{\Omega} F(u)
$$

where $F(t)=\int_{0}^{t} f(s) d s$, and $J_{\varepsilon}(u)$ is defined for u in the Banach space

$$
W=\left\{u \in W_{0}^{1, p}(\Omega): \int_{\Omega} V(z)|u|^{p}<\infty\right\}
$$

endowed with the norm

$$
\|u\|=\left(\int_{\Omega}|\nabla u|^{p}+\int_{\Omega} V(z)|u|^{p}\right)^{1 / p} .
$$

To establish the existence of nodal solution, we will adapt for our case, an argument explored by del Pino and Felmer [13] (see also [3] and [5]), which consists in considering a modified problem. To this end, we need to fix some notations.

Let θ be the number given in $\left(\mathrm{f}_{3}\right)$, and $a, k_{1}, k_{2}>0$ be constants satisfying $k_{1}, k_{2}>(\theta / \theta-p),\left(f(a) / a^{p-1}\right)=\left(V_{0} / k_{1}\right)$ and $\left(f(-a) / a^{p-1}\right)=-\left(V_{0} / k_{2}\right)$, where V_{0} appears in $\left(\mathrm{V}_{1}\right)$. Using the above numbers, let us define the functions

$$
\begin{gathered}
\tilde{f}(s)= \begin{cases}f(s) & \text { if }|s| \leq a, \\
\frac{V_{0}}{k_{1}}|s|^{p-2} s & \text { if } s>a, \\
\frac{V_{0}}{k_{2}}|s|^{p-2} s & \text { if } s<-a,\end{cases} \\
g(z, s)=\chi_{\Lambda}(z) f(s)+\left(1-\chi_{\Lambda}(z)\right) \tilde{f}(s),
\end{gathered}
$$

and the auxiliary problem
$\left(\mathrm{P}_{\varepsilon}\right)_{a} \quad \begin{cases}-\varepsilon^{p} \Delta_{p} u+V(z)|u|^{p-2} u=g(z, u) & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega,\end{cases}$
where χ_{Λ} is the characteristic function of the set Λ. It is easy to check that $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{4}\right)$ imply that g is a Carathéodory function and for $z \in \Omega$, the function $s \rightarrow g(z, s)$ satisfies the following conditions, uniformly for $z \in \Omega$:
$\left(\mathrm{g}_{1}\right)$

$$
\lim _{|s| \rightarrow 0} \frac{g(z, s)}{|s|^{p-1}}=0
$$

$\left(\mathrm{g}_{2}\right)$

$$
\lim _{|s| \rightarrow \infty} \frac{g(z, s)}{|s|^{q-1}}=0
$$

$\left(g_{3}\right)_{i}$

$$
0 \leq \theta G(z, s) \leq g(z, s) s
$$

for all $z \in \Lambda$ and all $s \neq 0$, and
$\left(g_{3}\right)_{i i}$

$$
0<p G(z, s) \leq g(z, s) s \leq \frac{1}{k} V(z)|s|^{p}
$$

for all $z \notin \Lambda$ and all $s \neq 0$, where $k=\min \left\{k_{1}, k_{2}\right\}$ and $G(z, s)=\int_{0}^{s} g(z, t) d t$.
The function
$\left(g_{4}\right) \quad s \rightarrow \frac{g(z, s)}{|s|^{p-1}} \quad$ is nondecreasing for each $z \in \Omega$ and all $s \neq 0$.
Remark 2.1. Note that if u is a nodal solution of $\left(\mathrm{P}_{\varepsilon}\right)_{a}$ with $|u(z)| \leq a$ for every $z \in \Omega \backslash \Lambda$, then u is also a nodal solution of $\left(\mathrm{P}_{\varepsilon}\right)$.
2.2. Existence of ground state nodal solution for $\left(\mathrm{P}_{\varepsilon}\right)_{a}$. In this section, we adapt some arguments found in Bartsch, Weth and Willem [10], Alves and Figueiredo [3] and Alves and Soares [5] to establish the existence of ground state nodal solution for problem $\left(\mathrm{P}_{\varepsilon}\right)_{a}$.

Hereafter, let us denote by I_{ε} the functional

$$
I_{\varepsilon}(u)=\frac{1}{p} \int_{\Omega} \varepsilon^{p}|\nabla u|^{p}+\frac{1}{p} \int_{\Omega} V(z)|u|^{p}-\int_{\Omega} G(z, u)
$$

and by $\mathcal{M}_{\varepsilon}$ the set

$$
\mathcal{M}_{\varepsilon}=\left\{u \in W: u^{ \pm} \neq 0 \text { and } I_{\varepsilon}^{\prime}\left(u^{ \pm}\right) u^{ \pm}=0\right\}
$$

where

$$
u^{+}(z)=\max \{u(z), 0\} \quad \text { and } \quad u^{-}(z)=\min \{u(z), 0\} .
$$

It is easy to check that there exists $\mu^{*}>0$ such that

$$
\begin{equation*}
\int_{\Lambda}\left|u^{ \pm}\right|^{q}>\mu^{*} \quad \text { for all } u \in \mathcal{M}_{\varepsilon} \tag{2.1}
\end{equation*}
$$

Hereafter, we will denote by c_{ε} the following real number

$$
c_{\varepsilon}=\inf _{\mathcal{M}_{\varepsilon}} I_{\varepsilon} .
$$

Theorem 2.2. c_{ε} is achieved by some $u_{\varepsilon} \in \mathcal{M}_{\varepsilon}$. Moreover, u_{ε} is a nodal solution of $\left(\mathrm{P}_{\varepsilon}\right)_{a}$.

Proof. It is easy to check that I_{ε} is bounded from below on $\mathcal{M}_{\varepsilon}$ since, using the definition of $\mathcal{M}_{\varepsilon}$, there exists $C>0$ such that

$$
\begin{equation*}
I_{\varepsilon}(u) \geq C\|u\|^{p} \quad \text { for all } u \in \mathcal{M}_{\varepsilon} . \tag{2.2}
\end{equation*}
$$

Thus, there exists a sequence $\left\{v_{n}\right\} \subset \mathcal{M}_{\varepsilon}$ verifying $I_{\varepsilon}\left(v_{n}\right) \rightarrow c_{\varepsilon}$ as $n \rightarrow \infty$ which is bounded by (2.2). Since W is reflexive, there exists $v \in W$ such that $v_{n} \rightharpoonup v$ in W. By (2.1) and by the Sobolev imbedding, we have

$$
\int_{\Lambda}\left|v^{ \pm}\right|^{q}>\mu^{*}
$$

showing that $v^{ \pm} \neq 0$. By the weak convergence of the sequence and condition $\left(\mathrm{g}_{3}\right)$, it follows that

$$
\left\|v^{ \pm}\right\|^{p} \leq \int_{\Omega} g\left(z, v^{ \pm}\right) v^{ \pm}
$$

The above inequalities imply that there exist $t^{+}, t^{-} \in(0,1]$ such that

$$
\left\|t^{ \pm} v^{ \pm}\right\|^{p}=g\left(z, t^{ \pm} v^{ \pm}\right)
$$

which implies that $w=t^{+} v^{+}+t^{-} v^{-}$is an element of $\mathcal{M}_{\varepsilon}$.
Since

$$
I_{\varepsilon}\left(t^{ \pm} v^{ \pm}\right)=\int_{\Omega}\left[\frac{1}{p} g\left(z, t^{ \pm} v^{ \pm}\right) t^{ \pm} v^{ \pm}-G\left(z, t^{ \pm} v^{ \pm}\right)\right]
$$

using Fatou's lemma, it follows that

$$
I_{\varepsilon}\left(t^{ \pm} v^{ \pm}\right) \leq \liminf _{n \rightarrow \infty} \int_{\Omega}\left[\frac{1}{p} g\left(z, t^{ \pm} v_{n}^{ \pm}\right) t^{ \pm} v_{n}^{ \pm}-G\left(z, t^{ \pm} v_{n}^{ \pm}\right)\right]
$$

For each n, conditions $\left(\mathrm{f}_{4}\right)$ and $\left(\mathrm{g}_{4}\right)$ imply that the function

$$
t \mapsto \int_{\Omega}\left[\frac{1}{p} g\left(z, t v_{n}^{ \pm}\right) t v_{n}^{ \pm}-G\left(z, t v_{n}^{ \pm}\right)\right]
$$

is increasing and thus

$$
I_{\varepsilon}\left(t^{ \pm} v^{ \pm}\right) \leq \liminf _{n \rightarrow \infty} \int_{\Omega}\left[\frac{1}{p} g\left(z, v_{n}^{ \pm}\right) v_{n}^{ \pm}-G\left(z, v_{n}^{ \pm}\right)\right]=\liminf _{n \rightarrow \infty} I_{\varepsilon}\left(v_{n}^{ \pm}\right)
$$

From the last inequality, it follows that

$$
I_{\varepsilon}(w)=I_{\varepsilon}\left(t^{+} v^{+}\right)+I_{\varepsilon}\left(t^{-} v^{-}\right) \leq \liminf _{n \rightarrow \infty} I_{\varepsilon}\left(v_{n}\right)=c_{\varepsilon} .
$$

Since $w \in \mathcal{M}_{\varepsilon}$, the above inequality implies that $I_{\varepsilon}(w)=c_{\varepsilon}$, and thus c_{ε} is achieved. Now, from [3, Proposition 3.1] (see also [14]) the functional I_{ε} satisfies the Palais-Smale at all $c \in \mathbb{R}$ and hence, we can repeat the same arguments found in $\left[10\right.$, Proposition 3.1] to conclude that c_{ε} is a critical level, that is, there exists $u_{\varepsilon} \in \mathcal{M}_{\varepsilon}$ such that

$$
I_{\varepsilon}\left(u_{\varepsilon}\right)=c_{\varepsilon} \quad \text { and } \quad I_{\varepsilon}^{\prime}\left(u_{\varepsilon}\right)=0
$$

Remark 2.3. The nodal solution found in Theorem 2.2 satisfies the following properties:
(a) If Ω is bounded, the function u_{ε} belongs to $C(\bar{\Omega})$ (see [12]).
(b) If Ω is unbounded, the function u_{ε} is a continuous function and verifies $\lim _{|z| \rightarrow \infty} u_{\varepsilon}(z)=0$ (see [15]).

3. Statement of lemmas and propositions

Hereafter, let us denote by $w \in W^{1, p}\left(\mathbb{R}^{N}\right)$ a least energy solution of the problem

$$
-\Delta_{p} w+V_{0}|w|^{p-2} w=f(w) .
$$

Consequently, w satisfies

$$
c_{V_{0}}=J_{V_{0}}(w)=\inf _{\substack{v \in W^{1, p\left(\mathbb{R}^{N}\right)} \\ v \neq 0}} \sup _{\tau \geq 0} J_{V_{0}}(\tau v),
$$

where $J_{V_{0}}$ is defined as

$$
J_{V_{0}}(v)=\frac{1}{p} \int_{\mathbb{R}^{N}}\left(|\nabla v|^{p}+V_{0}|v|^{p}\right) d x-\int_{\mathbb{R}^{N}} F(v) d x
$$

for all $v \in W^{1, p}\left(\mathbb{R}^{N}\right)($ see $[1])$.

Let us denote by u_{ε} the nodal solution of $\left(\mathrm{P}_{\varepsilon}\right)_{a}$ obtained in Theorem 2.2. Adapting the same type of argument explored in [5, Lemma 2.1], it is easy to check that

$$
\begin{equation*}
\limsup _{\varepsilon \rightarrow 0} \varepsilon^{-N} I_{\varepsilon}\left(u_{\varepsilon}\right) \leq 2 c_{V_{0}} . \tag{3.1}
\end{equation*}
$$

The next lemma shows a situation where we have convergence on compacts sets.

Lemma 3.1. Let $\left\{x_{n}\right\} \subset \bar{\Lambda}$ and let $\left\{\varepsilon_{n}\right\}$ be a sequence of positive numbers such that $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$. If we set $v_{n}(x)=u_{\varepsilon_{n}}\left(\varepsilon_{n} x+x_{n}\right)$, then $\left\{v_{n}\right\}$ converges uniformly on compact subsets of \mathbb{R}^{N}.

Proof. See Section 5.
The next result establishes a first information about the localization of maximum and minimum points of u_{ε}.

Lemma 3.2. Let $\left\{\varepsilon_{n}\right\} \subset(0, \infty)$ be a sequence with $\varepsilon_{n} \rightarrow 0$ and P_{n}^{1}, P_{n}^{2} be, respectively, a maximum and minimum point of the function $u_{\varepsilon_{n}}$. Then, there exist $\delta^{*}>0$ and a subsequence, still denoted by $\left\{u_{\varepsilon_{n}}\right\}$, such that $\left\{P_{n}^{i}\right\}, i=1,2$, are convergent sequences, $u_{\varepsilon_{n}}\left(P_{n}^{1}\right) \geq \delta^{*}$ and $u_{\varepsilon_{n}}\left(P_{n}^{1}\right) \leq-\delta^{*}$.

Proof. See Section 5.
The next result is a key point to prove the existence of nodal solution to the original problem. A version of this result for $p=2$ can be found in [5].

Proposition 3.3. If P_{ε}^{1} is a maximum point of u_{ε}^{+}and P_{ε}^{2} is a minimum point of u_{ε}^{-}, then

$$
\left|\frac{P_{\varepsilon}^{1}-P_{\varepsilon}^{2}}{\varepsilon}\right| \rightarrow \infty \quad \text { as } \varepsilon \rightarrow 0
$$

Proof. See Section 5.
In order to use the Remark 2.1, the lemmas below are important in our arguments to prove that the family $\left\{u_{\varepsilon}\right\}$ satisfies the estimate $\left|u_{\varepsilon}(z)\right| \leq a$, for $z \in \Omega \backslash \Lambda$ when ε is sufficiently small.

LEmma 3.4. Let $\left\{\varepsilon_{n}\right\}$ be a sequence of positive number with $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$ and let $\left\{z_{n}^{i}\right\} \subset \bar{\Lambda}, i=1,2$, be a sequence such that $u_{\varepsilon_{n}}\left(z_{n}^{1}\right) \geq b>0$ and $u_{\varepsilon_{n}}\left(z_{n}^{2}\right) \leq-b<0$. Then,

$$
\lim _{n \rightarrow \infty} V\left(z_{n}^{i}\right)=V_{0} \quad \text { for } i=1,2
$$

Proof. See Section 5.
LEMMA 3.5. If $m_{\varepsilon}^{+}=\max _{\partial \Lambda} u_{\varepsilon}$ and $m_{\varepsilon}^{-}=\min _{\partial \Lambda} u_{\varepsilon}$, then $\lim _{\varepsilon \rightarrow 0} m_{\varepsilon}^{ \pm}=0$.
Proof. This Lemma follows directly from Lemma 3.4.

4. Proof of Theorem 1.1

By Theorem 2.2, we have that problem $\left(\mathrm{P}_{\varepsilon}\right)_{a}$ has a nodal solution u_{ε}, for all $\varepsilon \in(0, \bar{\varepsilon})$. By Lemma 3.5, $m_{\varepsilon}^{+}<a$, for all $\varepsilon \in(0, \bar{\varepsilon})$ and then $\left(u_{\varepsilon}-a\right)^{+}(z)=0$ for a neighbourhood of $\partial \Lambda$. Hence $\left(u_{\varepsilon}-a\right)^{+} \in W_{0}^{1, p}(\Omega \backslash \Lambda)$ and the function Ψ given by $\Psi(z)=0$, if $z \in \Lambda$ and $\Psi(z)=\left(u_{\varepsilon}-a\right)^{+}(z)$, if $z \in \Omega \backslash \Lambda$ belongs to $W_{0}^{1, p}(\Omega)$. Using Ψ as a test function, we have

$$
\begin{aligned}
\int_{\Omega \backslash \Lambda} \varepsilon^{p}|\nabla \Psi(z)|^{p} & +\int_{\Omega \backslash \Lambda}\left[V(z)\left|u_{\varepsilon}\right|^{p-2}-\frac{g\left(z, u_{\varepsilon}\right)}{u_{\varepsilon}}\right]|\Psi(z)|^{2} \\
& +\int_{\Omega \backslash \Lambda}\left[V(z)\left|u_{\varepsilon}\right|^{p-2}-\frac{g\left(z, u_{\varepsilon}\right)}{u_{\varepsilon}}\right] t_{0} \Psi(z)=0 .
\end{aligned}
$$

The last equality implies

$$
\Psi(z)=0, \quad \text { a.e. in } z \in \Omega \backslash \Lambda .
$$

Hence $u_{\varepsilon}(z) \leq a$, for $z \in \Omega \backslash \Lambda$. Since we can assume $m_{\varepsilon}^{-} \geq-a$ for $\varepsilon \in(0, \bar{\varepsilon})$, working with the function $\left(u_{\varepsilon}+a\right)^{-}$, it is possible to prove that $u_{\varepsilon}(z) \geq-a$ for $z \in \Omega \backslash \Lambda$. This fact implies that $\left|u_{\varepsilon}(z)\right| \leq a$ for $z \in \Omega \backslash \Lambda$, and the existence of a nodal solution follows from Remark 2.1. The concentration of the nodal solutions follows from Lemmas 3.2, 3.4 and 3.5

5. Proofs of lemmas and propositions

In this section, we will prove the lemmas and propositions established in Section 3.

Proof of Lemma 3.1. First of all, note that the sequence $\left\{v_{n}\right\}$ satisfies the following problem
$\left(\mathrm{P}_{n}\right) \quad \begin{cases}-\Delta_{p} v_{n}+V\left(x_{n}+\varepsilon_{n} x\right)\left|v_{n}\right|^{p-2} v_{n}=g\left(x_{n}+\varepsilon_{n} x, v_{n}\right) & \text { in } \widehat{\Omega}_{\varepsilon_{n}}, \\ v_{n}=0 & \text { on } \partial \widehat{\Omega}_{\varepsilon_{n}},\end{cases}$
where $\widehat{\Omega}_{\varepsilon_{n}}=\varepsilon_{n}^{-1}\left\{\Omega-x_{n}\right\}$. From (3.1), it follows that $\left\{v_{n}\right\}$ is bounded in $W^{1, p}\left(\mathbb{R}^{N}\right)$ and adapting some arguments explored in [3, Lemma 4.1], we have that the sequences v_{n}^{+}and v_{n}^{-}are bounded in $L^{\infty}\left(\mathbb{R}^{N}\right)$. Thus, there exists a subsequence, still denoted by $\left\{v_{n}\right\}$, such that for each compact subset K of \mathbb{R}^{N}, there exists a constant $C_{K}>0$ with $\left|\nabla v_{n}\right|_{\infty, K} \leq C_{K}$, for n sufficiently large. Therefore $\left\{v_{n}\right\}$ converges uniformly on compact subsets of \mathbb{R}^{N}.

Proof of Lemma 3.2. Firstly, we will show that there exist $\delta^{*}>0$ and $n_{0} \in \mathbb{N}$ such that

$$
u_{\varepsilon_{n}}\left(P_{n}^{1}\right) \geq \delta^{*} \quad \text { and } \quad u_{\varepsilon_{n}}\left(P_{n}^{2}\right) \leq-\delta^{*} \quad \text { for } n \geq n_{0} .
$$

Assume, by contradiction, that there exists a subsequence, still denoted by $\left\{u_{\varepsilon_{n}}\right\}$, such that

$$
u_{\varepsilon_{n}}\left(P_{n}^{1}\right)=\left\|u_{\varepsilon_{n}}^{+}\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)} \rightarrow 0 .
$$

Defining $h_{n}(x)=u_{\varepsilon_{n}}\left(\varepsilon_{n} x\right)$, we have that $\left\|h_{n}^{+}\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)} \rightarrow 0$. For a fixed $r=V_{0} / 2$, it follows by $\left(f_{1}\right)$ that there exists $n_{0} \in \mathbb{N}$ such that

$$
\frac{f\left(\left\|h_{n}^{+}\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)}\right)}{\left\|h_{n}^{+}\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)}^{p-1}}<r \quad \text { for } n \geq n_{0}
$$

Hence,

$$
\int_{\mathbb{R}^{N}}\left|\nabla h_{n}^{+}\right|^{p}+\int_{\mathbb{R}^{N}} V_{0}\left|h_{n}^{+}\right|^{p} \leq \int_{\mathbb{R}^{N}} \frac{f\left(\left\|h_{n}^{+}\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)}\right)}{\left\|h_{n}^{+}\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)}^{p-1}}\left|h_{n}^{+}\right|^{p} \leq r \int_{\mathbb{R}^{N}}\left|h_{n}^{+}\right|^{p}
$$

thus $\left\|h_{n}^{+}\right\|_{W^{1, p}\left(\mathbb{R}^{N}\right)}=0$ for $n \geq n_{0}$, which is impossible, because $h_{n}^{+} \neq 0$, for all $n \in \mathbb{N}$. Then, there exists $\delta^{*}>0$ and $n_{1} \in \mathbb{N}$ such that $\left\|u_{\varepsilon_{n}}^{+}\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)} \geq \delta^{*}$, for all $n \geq n_{1}$. Repeating these arguments, we find $n_{2} \in \mathbb{N}$ such that $\left\|u_{\varepsilon_{n}}^{-}\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)} \geq \delta^{*}$, for all $n \geq n_{2}$. Choosing $n_{0}=\max \left\{n_{1}, n_{2}\right\}$, we have that

$$
u_{\varepsilon_{n}}\left(P_{n}^{1}\right) \geq \delta^{*} \quad \text { and } \quad u_{\varepsilon_{n}}\left(P_{n}^{2}\right) \leq-\delta^{*}, \quad \text { for all } n \geq n_{0} .
$$

On the other hand, the function h_{n} satisfies the following problem

$$
\begin{cases}-\Delta_{p} h_{n}+V\left(\varepsilon_{n} x\right)\left|h_{n}\right|^{p-2} h_{n}=g\left(\varepsilon_{n} x, h_{n}\right) & \text { in } \Omega_{\varepsilon_{n}} \tag{n}\\ h_{n}=0 & \text { on } \partial \Omega_{\varepsilon_{n}}\end{cases}
$$

where $\Omega_{\varepsilon_{n}}=\Omega / \varepsilon_{n}$. Since $V_{0}=\inf _{z \in \mathbb{R}^{N}} V(z)$ and $\lim \sup _{\varepsilon_{n} \rightarrow 0}\left(\varepsilon_{n}^{-N} I_{\varepsilon_{n}}\left(u_{\varepsilon_{n}}\right)\right) \leq$ $2 c_{V_{0}}$, defining

$$
J_{n}^{1}(v)=\frac{1}{p} \int_{\Omega_{\varepsilon_{n}}}\left(|\nabla v|^{p}+V\left(\varepsilon_{n} x\right)|v|^{p}\right) d x-\int_{\Omega_{\varepsilon_{n}}} G\left(\varepsilon_{n} x, v\right) d x
$$

we have that $J_{n}^{1}\left(h_{n}\right)=\varepsilon_{n}^{-N} I_{\varepsilon_{n}}\left(u_{\varepsilon_{n}}\right)$ and consequently

$$
J_{n}^{1}\left(h_{n}^{+}\right) \rightarrow c_{V_{0}} \quad \text { with } h_{n}^{+} \in \mathcal{N}_{\varepsilon_{n}},
$$

where $\mathcal{N}_{\varepsilon_{n}}=\left\{u \in W_{n} \backslash\{0\}: J_{n}^{1^{\prime}}(u) u=0\right\}$.
Using [2, Lemma 4.3] and [3, Proposition 3.3], there exists a sequence $\left\{\widetilde{y}_{n}\right\} \subset$ \mathbb{R}^{N}, such that $\widetilde{h}_{n}(x)=h_{n}^{+}\left(x+\widetilde{y}_{n}\right)$ converges strongly to a function $h \in W^{1, p}\left(\mathbb{R}^{N}\right)$ $\backslash\{0\}$. Moreover, the sequence $\left\{y_{n}\right\}$ given by $y_{n}=\varepsilon_{n} \widetilde{y}_{n}$, has a subsequence, still denoted by y_{n}, such that $y_{n} \rightarrow y \in M$. Now, to adapt some arguments explored in [2, Lemma 4.5], let us consider, for each $n \in \mathbb{N}$ and $L>0$, the functions

$$
v_{L, n}(x)= \begin{cases}\widetilde{h}_{n}(x) & \text { if } \widetilde{h}_{n}(x) \leq L \\ L & \text { if } \widetilde{h}_{n}(x) \geq L\end{cases}
$$

and

$$
z_{L, n}=\eta^{p} v_{L, n}^{p(\beta-1)} \widetilde{h}_{n} \quad \text { and } \quad w_{L, n}=\eta \widetilde{h}_{n} v_{L, n}^{\beta-1}
$$

with $\beta>1$ to be picked up later. Remarking that the function $\widehat{h}_{n}(x)=h_{n}\left(x+\widetilde{y}_{n}\right)$ is a critical point of the functional

$$
T(v)=\frac{1}{p} \int_{\tilde{\Omega}_{\varepsilon_{n}}}\left(|\nabla v|^{p}+V\left(\varepsilon_{n} x+y_{n}\right)|v|^{p}\right) d x-\int_{\tilde{\Omega}_{\varepsilon_{n}}} G\left(\varepsilon_{n} x+y_{n}, v\right) d x
$$

where $\widetilde{\Omega}_{\varepsilon_{n}}=\varepsilon_{n}^{-1}\left\{\Omega-y_{n}\right\}$. Taking $z_{L, n}$ as a test function, it is possible to prove that, for a fixed $\gamma \in(0, \delta)$, there exists $R>0$ such that

$$
\left\|\widetilde{h}_{n}\right\|_{L^{\infty}(|x| \geq R)}<\gamma \quad \text { for all } n \in \mathbb{N}
$$

Consequently,

$$
\begin{equation*}
u_{\varepsilon_{n}}^{+}\left(\varepsilon_{n} x+y_{n}\right)<\gamma, \quad \text { for all } n \in \mathbb{N} \text { and }|x| \geq R \tag{5.1}
\end{equation*}
$$

If P_{n}^{1} denotes a maximum point of $u_{\varepsilon_{n}}$, we have that

$$
\begin{equation*}
u_{\varepsilon_{n}}\left(P_{n}^{1}\right) \geq \delta^{*} \quad \text { for all } n \in \mathbb{N} \tag{5.2}
\end{equation*}
$$

So, if $P_{n}^{1}=\varepsilon_{n} Q_{n}+y_{n}$ it follows from (5.1) and (5.2) that $\left|Q_{n}\right| \leq R$. Using the fact that $\left\{y_{n}\right\}$ converges to $y^{1} \in M$, we can conclude that $\left\{P_{n}^{1}\right\}$ also converges to $y^{1} \in M$ and therefore

$$
\lim _{n \rightarrow \infty} V\left(P_{n}^{1}\right)=V_{0}
$$

Using similar arguments we can prove that the sequence $\left\{P_{n}^{2}\right\}$ also converges to some $y^{2} \in M$.

Proof of Proposition 3.3. Assume by contradiction that there exists a sequence $\left\{\varepsilon_{n}\right\}$ with $\varepsilon_{n} \rightarrow 0$ verifying

$$
\left|\frac{P_{n}^{1}-P_{n}^{2}}{\varepsilon_{n}}\right| \rightarrow \beta<\infty
$$

where $P_{n}^{1}=P_{\varepsilon_{n}}^{1}$ and $P_{n}^{2}=P_{\varepsilon_{n}}^{2}$.
Defining $v_{n}(x)=u_{\varepsilon_{n}}\left(P_{n}^{1}+\varepsilon_{n} x\right)$, it is easy to check that v_{n} is a solution of the problem

$$
\left(\mathrm{P}^{\prime}{ }_{n}\right)-\Delta_{p} v_{n}+V\left(P_{n}^{1}+\varepsilon_{n} x\right)\left|v_{n}\right|^{p-2} v_{n}=g\left(P_{n}^{1}+\varepsilon_{n} x, v_{n}\right) \quad \text { in } \Omega_{\varepsilon_{n}}^{1}, v_{n}=0 \partial \Omega_{\varepsilon_{n}}^{1}
$$

where $\Omega_{\varepsilon_{n}}^{1}=\varepsilon_{n}^{-1}\left\{\Omega-P_{n}^{1}\right\}$, that the function v_{n} is a critical point of the functional

$$
J(v)=\frac{1}{p} \int_{\Omega_{\varepsilon_{n}}^{1}}\left(|\nabla v|^{p}+V\left(\varepsilon_{n} x+P_{n}^{1}\right)|v|^{p}\right) d x-\int_{\Omega_{\varepsilon_{n}}^{1}} G\left(\varepsilon_{n} x+P_{n}^{1}, v\right) d x
$$

and that $J\left(v_{n}\right)=\varepsilon_{n}^{-N} I_{\varepsilon_{n}}\left(u_{\varepsilon_{n}}\right)$. Using the fact that $J^{\prime}\left(v_{n}\right)\left(v_{n}\right)=0$, from (3.1), we have that $\left\{v_{n}\right\}$ is a bounded sequence in $W^{1, p}\left(\mathbb{R}^{N}\right)$. Using the same type of arguments explored in the proof of Lemma 3.1, there exists a function $v \in$ $W^{1, p}\left(\mathbb{R}^{N}\right)$ such that $\left\{v_{n}\right\}$ converges uniformly on compact subsets of \mathbb{R}^{N}. For each fixed compact subset $K \subset \mathbb{R}^{N}$, there exists $C_{K}>0$ such that $\left|\nabla v_{n}\right|_{\infty, K} \leq$ C_{K}, for all $x \in K$. Moreover, the sequence of functions $\chi_{n}(y)=\chi_{\Lambda}\left(\varepsilon_{n} y+P_{n}^{1}\right)$ can
be assumed to converge weakly on compacts subsets in any $L^{r}\left(\mathbb{R}^{N}\right)$ to a function $0 \leq \chi \leq 1$ and the function v satisfies the problem

$$
\begin{equation*}
-\Delta_{p} v+V(\bar{P})|v|^{p-2} v=\bar{g}(x, v) \quad \text { in } \mathbb{R}^{N}, \tag{PL}
\end{equation*}
$$

where

$$
\bar{g}(z, s)=\chi(z) f(s)+(1-\chi(z)) \tilde{f}(s) \quad \text { and } \quad \bar{P}=\lim _{n \rightarrow \infty} P_{n}^{1}
$$

Suppose that $\beta=0$. By Lemma 3.2 and the Mean Value Inequality, we have

$$
\begin{equation*}
2 \delta \leq\left|v_{n}(0)-v_{n}\left(Z_{\varepsilon}\right)\right| \leq\left|\nabla v_{\varepsilon}\left(Q_{n}\right)\right|\left|Z_{n}\right|, \tag{5.3}
\end{equation*}
$$

where $Z_{n}=\left(P_{n}^{1}-P_{n}^{2}\right) / \varepsilon_{n}$ and $Q_{n}=t_{n} Z_{n}$, for some $t_{n} \in[0,1]$. Using the hypothesis that $\beta=0$, we have that the sequence $\left\{Q_{n}\right\} \subset \bar{B}_{1}(0)$. Hence, there exists $C>0$ such that $\left|\nabla v_{n}\left(Q_{n}\right)\right| \leq C$, for all $n \in \mathbb{N}$. Using the last inequality in (5.3), we obtain the inequality

$$
\begin{equation*}
2 \delta \leq\left|v_{n}(0)-v_{n}\left(Z_{\varepsilon}\right)\right| \leq C\left|Z_{n}\right| \tag{5.4}
\end{equation*}
$$

leading to a contradiction with the fact that $\lim _{n \rightarrow \infty} Z_{n}=0$. Therefore, $\beta>0$ and $P=\lim _{n \rightarrow \infty} Z_{n} \neq 0$. To conclude the proof, taking a subsequence if necessary, v_{n} converges on compacts to a function $v \in W^{1, p}\left(\mathbb{R}^{N}\right)$. As $v_{n}(0)=$ $u_{\varepsilon_{n}}\left(P_{n}^{1}\right) \geq \delta^{*}$ and $v_{n}\left(Z_{n}\right)=u_{\varepsilon_{n}}\left(P_{n}^{2}\right) \leq-\delta^{*}<0$, it follows that $v(0)>0$ and $v(P)<0$, i.e. v is a nodal function of (PL). Associated to (PL) we have the functional $\bar{J}: W^{1, p}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ defined by

$$
\bar{J}(u)=\frac{1}{p} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{p}+V(\bar{P})|u|^{p}\right) d x-\int_{\mathbb{R}^{N}} \bar{G}(z, u) d x, \quad u \in W^{1, p}\left(\mathbb{R}^{N}\right)
$$

where $\bar{G}(z, s)=\int_{0}^{s} \bar{g}(z, t) d t$ and $\bar{P}=\lim _{n \rightarrow \infty} P_{n}^{1}$. Then, v is a critical point of \bar{J}. Thus, $\bar{J}^{\prime}(v) \varphi=0$ for every $\varphi \in W^{1, p}\left(\mathbb{R}^{N}\right)$. In particular, $\bar{J}^{\prime}(v) v^{ \pm}=0$, which implies $v \in M_{V(\bar{z})}$, where

$$
\begin{aligned}
M_{V(\bar{z})}=\left\{u \in W_{0}^{1, p}(\Omega):\right. & u^{ \pm} \not \equiv 0, \\
& \left.\int_{\Omega}\left(\left|\nabla u^{ \pm}\right|^{p}+V(\bar{z})\left|u^{ \pm}\right|^{p}\right) d x=\int_{\Omega} \bar{g}\left(z, u^{ \pm}\right) u^{ \pm} d x\right\} .
\end{aligned}
$$

Since $J\left(v_{n}\right)=\varepsilon_{n}^{-N} I_{\varepsilon_{n}}\left(u_{\varepsilon_{n}}\right)$, it follows that

$$
J\left(\left(v_{n}\right)^{+}\right), J\left(\left(v_{n}\right)^{-}\right) \rightarrow c_{V_{0}} \quad \text { as } J^{\prime}\left(\left(v_{n}\right)^{+}\right)\left(\left(v_{n}\right)^{+}\right)=J^{\prime}\left(\left(v_{n}\right)^{-}\right)\left(\left(v_{n}\right)^{-}\right)=0
$$

thus, applying the same type of arguments found in [3], we can conclude that $\left\{\left(v_{n}\right)^{+}\right\}$and $\left\{\left(v_{n}\right)^{-}\right\}$are convergent sequences in $W^{1, p}\left(\mathbb{R}^{N}\right)$.

Considering the sequences $\left\{t_{n}^{i}\right\} \subset \mathbb{R}, w_{n}^{1}(z)=t_{n}^{1}\left(v_{n}\right)^{+}(z)$ and $w_{n}^{2}(z)=$ $t_{n}^{2}\left(v_{n}\right)^{-}(z)$ such that $J_{V_{0}}^{\prime}\left(w_{n}^{i}\right) w_{n}^{i}=0$ where

$$
J_{V_{0}}(u)=\frac{1}{p} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{p}+V_{0}|u|^{p}\right) d x-\int_{\mathbb{R}^{N}} F(u) d x, \quad u \in W^{1, p}\left(\mathbb{R}^{N}\right)
$$

it is possible to show that the sequences $\left\{t_{n}^{i}\right\}$ are also convergent in \mathbb{R}. Using this information, we have that w_{n}^{i} converges to $w^{i} \in W^{1, p}\left(\mathbb{R}^{N}\right) \backslash\{0\}$ with

$$
J_{V_{0}}^{\prime}\left(w^{i}\right)=0 \quad \text { and } \quad J_{V_{0}}\left(w^{i}\right) \geq c_{V_{0}}
$$

Thus

$$
\varepsilon_{n}^{-N} I_{\varepsilon_{n}}\left(u_{\varepsilon_{n}}\right) \geq J_{V_{0}}\left(t_{n}^{1}\left(v_{n}^{1}\right)^{+}\right)+J_{V_{0}}\left(t_{n}^{2}\left(v_{n}^{2}\right)^{-}\right)
$$

and so

$$
\varepsilon_{n}^{-N} I_{\varepsilon_{n}}\left(u_{\varepsilon_{n}}\right) \geq J_{V_{0}}\left(w_{n}^{1}\right)+J_{V_{0}}\left(w_{n}^{2}\right)
$$

Taking the limit as $n \rightarrow \infty$ in the last inequality, we get

$$
2 c_{V_{0}} \geq J_{V_{0}}\left(w^{1}\right)+J_{V_{0}}\left(w^{2}\right) \geq 2 c_{V_{0}}
$$

The last inequality implies that $J_{V_{0}}\left(w^{i}\right)=c_{V_{0}}$. By Theorem 4.3 in [23], $J_{V_{0}}^{\prime}\left(w^{i}\right)$ $=0$ for $i=1,2$, and by Maximum Principle implies $w^{1}>0$ and $w^{2}<0$ in \mathbb{R}^{N} (see [21]), consequently $v^{+}>0$ and $v^{-}<0$ in \mathbb{R}^{N}, obtaining this way an absurd.

Proof of Lemma 3.4. In the next, we will argue by contradiction. Assume, passing to a subsequence if necessary, that $z_{n}^{i} \rightarrow \overline{z_{i}} \in \bar{\Lambda}, i=1,2$ with $V\left(\bar{z}_{1}\right)>V_{0}$ and $V\left(\bar{z}_{2}\right) \geq V_{0}$. As in the above lemmas, we consider the sequences $v_{n}^{i}(z)=$ $u_{\varepsilon_{n}}\left(z_{n}^{i}+\varepsilon_{n} z\right), i=1,2$ and study their behaviors as n goes to infinity. For $i=1,2$, the function v_{n}^{i} satisfies the problem
$\left(\mathrm{P}_{n}\right)_{i} \quad \begin{cases}-\Delta_{p} v_{n}^{i}+V\left(\varepsilon_{n} z+z_{n}^{i}\right)\left|v_{n}^{i}\right|^{p-2} v_{n}^{i}=g\left(\varepsilon z+z_{n}^{i}, v_{n}^{i}\right) & \text { in } \Omega_{n}^{i}, \\ v_{n}^{i}=0 & \text { on } \partial \Omega_{n}^{i},\end{cases}$
where $\Omega_{n}^{i}=\varepsilon^{-N}\left\{\Omega-z_{n}^{i}\right\}$. Again, the sequence v_{n}^{i} is bounded in $W^{1, p}\left(\mathbb{R}^{N}\right)$, thus it can be assumed to converge uniformly on compacts subsets of \mathbb{R}^{N} to a function $v^{i} \in W^{1, p}\left(\mathbb{R}^{N}\right)$. Now, the sequence of functions $\chi_{n}^{i}(z) \equiv \chi_{\Lambda}\left(\varepsilon_{n} z+z_{n}^{i}\right)$ can be assumed to converge weakly in any $L^{p}\left(\mathbb{R}^{N}\right)$ on compacts to a function $0 \leq \chi^{i} \leq 1$. Therefore, v^{i} satisfies the limiting problem

$$
\begin{equation*}
-\Delta_{p} v^{i}+V\left(\overline{z_{i}}\right)\left|v^{i}\right|^{p-2} v^{i}=\bar{g}_{i}\left(z, v^{i}\right) \quad \text { in } \mathbb{R}^{N} \tag{PL}
\end{equation*}
$$

where $\overline{g_{i}}(z, s)=\chi^{i}(z) f(s)+\left(1-\chi^{i}(z)\right) \widetilde{f}(s)$ and $\bar{z}_{i}=\lim _{n \rightarrow \infty} z_{n}^{i}$. We claim that v^{i} does not change sign, for $i=1,2$. More precisely, $v^{1} \geq 0$ and $v^{2} \leq 0$. In fact, suppose, by contradiction, that v^{1} changes sign. Let $r>0$ be such that v^{1} changes sign on the closed ball $B[0, r]$ and that there exist $Q_{1, n}^{+}, Q_{1, n}^{-} \in B[0, r]$ such that

$$
\left(v_{n}^{1}\right)^{+}\left(Q_{1, n}^{+}\right)=\max _{z \in \mathbb{R}^{N}}\left(v_{n}^{1}\right)^{+}(z) \quad \text { and } \quad\left(v_{n}^{1}\right)^{-}\left(Q_{1, n}^{-}\right)=\min _{z \in \mathbb{R}^{N}}\left(v_{n}^{1}\right)^{-}(z)
$$

Since v_{n}^{1} converges uniformly to v^{1} on compacts subsets of \mathbb{R}^{N}, there exists n_{0} such that

$$
\left(v_{n}^{1}\right)^{+}\left(Q_{1, n}^{+}\right) \geq C>0 \quad \text { and } \quad\left(v_{n}^{1}\right)^{-}\left(Q_{1, n}^{-}\right) \leq-C<0, \quad \text { for all } n \geq n_{0}
$$

for some positive constant C. Thus, for

$$
\begin{aligned}
& \left(v_{n}^{1}\right)^{+}\left(Q_{1, n}^{+}\right)=v_{n}^{1}\left(Q_{1, n}^{+}\right)=u_{\varepsilon_{n}}\left(\varepsilon_{n} Q_{1, n}^{+}+z_{n}^{1}\right), \\
& \left(v_{n}^{1}\right)^{-}\left(Q_{1, n}^{-}\right)=v_{n}^{1}\left(Q_{1, n}^{-}\right)=u_{\varepsilon_{n}}\left(\varepsilon_{n} Q_{1, n}^{-}+z_{n}^{1}\right),
\end{aligned}
$$

considering

$$
\widetilde{P}_{n}^{+}=\varepsilon_{n} Q_{1, n}^{+}+z_{n}^{1} \quad \text { and } \quad \widetilde{P}_{n}^{-}=\varepsilon_{n} Q_{1, n}^{-}+z_{n}^{1}
$$

it follows that \widetilde{P}_{n}^{+}and \widetilde{P}_{n}^{-}are maximum and minimum points of $u_{\varepsilon_{n}}$ in \mathbb{R}^{N}, respectively, with

$$
u_{\varepsilon_{n}}\left(\widetilde{P}_{n}^{+}\right) \geq C \quad \text { and } \quad u_{\varepsilon_{n}}\left(\widetilde{P}_{n}^{-}\right) \leq-C
$$

Applying the same arguments employed in Proposition 3.1, we have

$$
\left|\frac{\widetilde{P}_{n}^{+}-\widetilde{P}_{n}^{-}}{\varepsilon_{n}}\right| \rightarrow \infty
$$

But this is impossible because

$$
\left|\frac{\widetilde{P}_{n}^{+}-\widetilde{P}_{n}^{-}}{\varepsilon_{n}}\right|=\left|Q_{1, n}^{+}-Q_{1, n}^{-}\right| \leq 2 r .
$$

Hence, since $v_{n}^{1}(0)>0$ and $v_{n}^{1} \rightarrow v^{1}$ uniformly on compacts subsets of \mathbb{R}^{N}, it follows that $v^{1} \geq 0$. Moreover, using the Maximum Principle it follows that $v^{1}>0$ in \mathbb{R}^{N} (see [21]). A similar argument implies that $v^{2}<0$ in \mathbb{R}^{N}.

Associated to the limiting problem (PL) ${ }_{i}$, we have the functional

$$
\overline{J_{i}}: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}
$$

defined by

$$
\overline{J_{i}}(u)=\frac{1}{p} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{p}+V\left(\overline{z_{i}}\right)|u|^{p}\right) d x-\int_{\mathbb{R}^{N}} \overline{G_{i}}(z, u) d x, \quad u \in W^{1, p}\left(\mathbb{R}^{N}\right)
$$

where $\overline{G_{i}}(z, s)=\int_{0}^{s} \overline{g_{i}}(z, t) d t$. Then, v^{i} is clearly a critical point of $\overline{J_{i}}$. Also associated to problem $\left(\mathrm{P}_{n}\right)_{i}$ we have the functional

$$
J_{n}^{i}(u)=\frac{1}{p} \int_{\Omega_{n}^{i}}\left(|\nabla u|^{p}+V\left(\varepsilon_{n} z+z_{n}^{i}\right)|u|^{p}\right) d x-\int_{\Omega_{n}^{i}} \bar{G}_{i}\left(\varepsilon_{n} z+z_{n}^{i}, u\right) d x
$$

for $u \in W_{0}^{1 \cdot p}\left(\Omega_{n}^{i}\right)$, which satisfies the following equality involving $u_{\varepsilon_{n}}$ and v_{n}

$$
\begin{equation*}
\varepsilon_{n}^{-N} J_{\varepsilon_{n}}\left(u_{\varepsilon_{n}}\right)=\varepsilon_{n}^{-N}\left(J_{\varepsilon_{n}}\left(u_{\varepsilon_{n}}^{+}\right)+J_{\varepsilon_{n}}\left(u_{\varepsilon_{n}}^{-}\right)\right)=J_{n}^{1}\left(\left(v_{n}^{1}\right)^{+}\right)+J_{n}^{2}\left(\left(v_{n}^{2}\right)^{-}\right), \tag{5.5}
\end{equation*}
$$

so, repeating the idea explored in the proof of Proposition 3.1, the sequences $\left\{\left(v_{n}^{1}\right)^{+}\right\},\left\{\left(v_{n}^{2}\right)^{-}\right\}$are convergent in $W^{1, p}\left(\mathbb{R}^{N}\right)$.

Considering again sequences $\left\{t_{n}^{i}\right\} \subset \mathbb{R}, w_{n}^{1}(z)=t_{n}^{1}\left(v_{n}^{1}\right)^{+}(z)$ and $w_{n}^{2}(z)=$ $t_{n}^{2}\left(v_{n}^{2}\right)^{-}(z)$ verifying $\widetilde{J}_{n, i}^{\prime}\left(w_{n}^{i}\right) w_{n}^{i}=0$ where

$$
\widetilde{J}_{n, i}(u)=\frac{1}{p} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{p}+V\left(\varepsilon_{n} z+z_{n}^{i}\right)|u|^{p}\right) d x-\int_{\mathbb{R}^{N}} F(u) d x,
$$

for $u \in W^{1, p}\left(\mathbb{R}^{N}\right)$, it is possible to prove that the sequences $\left\{t_{n}^{i}\right\}$ are also convergent in $(0, \infty)$. Using this information, we have that w_{n}^{i} converges to $w^{i} \in W^{1, p}\left(\mathbb{R}^{N}\right) \backslash\{0\}$ with

$$
J_{V\left(z^{i}\right)}^{\prime}\left(w^{i}\right)=0 \quad \text { and } \quad J_{V\left(z^{i}\right)}\left(w^{i}\right) \geq c_{V\left(z^{i}\right)}
$$

From (5.5),

$$
\varepsilon_{n}^{-N} J_{\varepsilon_{n}}\left(u_{\varepsilon_{n}}\right) \geq \widetilde{J}_{n}^{1}\left(t_{n}^{1}\left(v_{n}^{1}\right)^{+}\right)+\widetilde{J}_{n}^{2}\left(t_{n}^{2}\left(v_{n}^{2}\right)^{-}\right)
$$

consequently

$$
\varepsilon_{n}^{-N} J_{\varepsilon_{n}}\left(u_{\varepsilon_{n}}\right) \geq \widetilde{J}_{n, 1}\left(w_{n}^{1}\right)+\widetilde{J}_{n, 2}\left(w_{n}^{2}\right)
$$

Taking the limit as $n \rightarrow \infty$ in the last inequality, we get

$$
\begin{equation*}
2 c_{V_{0}} \geq J_{V\left(z_{1}\right)}\left(w^{1}\right)+J_{V\left(z_{1}\right)}\left(w^{1}\right) \geq c_{V\left(z^{1}\right)}+c_{V\left(z^{2}\right)} \tag{5.6}
\end{equation*}
$$

Since by hypothesis, let us assume $V\left(z^{1}\right)>V(0)$ and $V\left(z^{2}\right) \geq V(0)$, it follows the inequality

$$
c_{V\left(z^{1}\right)}+c_{V\left(z^{2}\right)}>2 c_{V(0)}
$$

which contradicts (5.6).
Acknowledgments. The authors are grateful to the referee for his/her remarks and to Thomas Bartsch for useful suggestions concerning the themes treated in this paper.

References

[1] C. O. Alves, Existence and multiplicity of solution for a class of quasilinear equations, Advanced Nonlinear Studies 5 (2005), 73-86.
[2] C. O. Alves and G. M. Figueiredo, Existence and multiplicity of positive solutions to a p-Laplacian equation in \mathbb{R}^{N}, Differential Integral Equations 19 (2006), 143-162.
[3] , Multiplicity of positive solutions for a quasilinear problem in \mathbb{R}^{N} via penalization method, Advanced Nonlinear Studies 5 (2005), 551-572.
[4] C. O. Alves, J. M. do Ó and M. A. S. Souto, Local mountain-pass for a class of elliptic problems involving critical growth, Nonliner Anal. 46 (2001), 495-510.
[5] C. O. Alves and S. H. M. Soares, On the location and profile of spike-layer nodal solutions to nonlinear Schrödinger equations, J. Math. Anal. Appl. 296 (2004), 563-577.
[6] C. O. Alves and M. A. S Souto, On existence and concentration behavior of ground state solutions for a class of problems with critical growth, Comm. Pure Appl. Anal. 3 (2002), 417-431.
[7] T. Bartsch and Z.-Q. Wang, On the existence of sign changing solutions for semilinear Dirichlet problems, Topol. Methods Nonlinear Anal. 7 (1996), 115-131.
[8] \qquad , Sign changing solutions of nonlinear Schrödinger equations, Topol. Methods Nonlinear Anal. 13 (1999), 191-198.
[9] T. Bartsch, K.-C. Chang and Z.-Q. Wang, On the Morse indices of sign changing solutions of nonlinear elliptic problems, Math. Z. 233 (2000), 655-677.
[10] T. Bartsch, T. Weth and M. Willem, Partial symmetry of least energy nodal solution to some variational problems, Preprint.
[11] A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equations with bounded potential, J. Funct. Anal. 69 (1986), 397-408.
[12] M. Gueda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. 13 (1983), 879-902.
[13] M. del Pino M and P. L. Felmer, Local Mountain Pass for semilinear elliptic problems in unbounded domains, Calc. Var. 4 (1996), 121-137.
[14] G. M. Figueiredo, Multiplicidade de soluções positivas para uma classe de problemas quasilineares, Unicamp, 2004.
[15] Li Gongbao, Some properties of weak solutions of nonlinear scalar field equations, Ann. Acad. Sci. Fenincae Ser. A 14 (1989), 27-36.
[16] E. S. Noussair and J. Wei, On the effect of domain geometry on the existence of nodal solutions in singular pertubations problems, Indiana Univ. Math. J. 46 (1997), 1255-1271.
[17] , On the location of spikes and profile of nodal solutions for a singularly perturbed Neumann problem, Comm. Partial Differential Equations 23 (1998), 793-816.
[18] Y. J. Он, Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials on the class $(V)_{a}$, Comm. Partial Differential Equations 13 (1988), 14991519.
[19] , Corrections to existence semi-classical bound states of nonlinear Schrödinger equations under multiple well potential, Comm. Partial Differential Equations 14 (1989), 833-834.
[20] P. H. Rabibowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), 270-291.
[21] N. S. Trudinger, On Harnack type inequalities and their applications to quasilinear elliptic equations, Comm. Pure Appl. Math. XX (1967), 721-747.
[22] X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys. 53 (1993), 229-244.
[23] M. Willem, Minimax Theorems, Birkhäuser, 1996.

Claudianor O. Alves
Universidade Federal de Campina Grande
Departamento de Matemática e Estatística
CEP: 58109-970, Campina Grande, Pb, BRASIL
E-mail address: coalves@dme.ufcg.edu.br
Giovany M. Figueiredo
Universidade Federal do Pará
Departamento de Matemática
CEP: 66075-110 Belém, Pa, BRASIL
E-mail address: giovany@ufpa.br

