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MIN-MAX LEVELS
ON THE DOUBLE NATURAL CONSTRAINT

Sergio Solimini

Abstract. A question about the possibility of using min-max methods
on the double natural constraint, in spite of its lack of regularity, has been

raised in some recent papers. In this note we give an answer by topological

arguments which show the equivalence between constrained and uncon-
strained min-max classes, avoiding in this way any regularity problem.

1. Introduction

In studying problems like

(P )

{
−∆u = |u|p−2u+ λu in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN and p ≤ 2∗, through variational methods we deal with the
associated functional

(1.1) I(u) =
1
2

∫
Ω

|∇u|2 − λ

2

∫
Ω

|u|2 − 1
p

∫
Ω

|u|p.

Introducing suitable constraints turns out to be an useful tool (see for instance
[9]) in order to prove the existence of solutions to (P) and a classical approach
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relies in searching constrained critical points for the functional I on the so called
natural constraint manifold

(1.2) V = {u | u 6= 0, ∇I(u) · u = 0}.

More recently ([2]) a similar approach was carried out on the double natural
constraint manifold

(1.3) W = {u | u± 6= 0, ∇I(u) · u± = 0} ⊂ V.

In [2] the existence of minimum points is proved, whereas in other works (see
for instance [5]) the goal relies in detecting min-max levels. The proof of the
critical character of such levels does not appear sufficiently clear for the poor
regularity properties of the manifold W (see [3], [1]). Hence, also to avoid any
doubt, it seems to be quite useful to spend a few pages in order to show how
a suitable use of the genus allows to find infinitely many critical min-max levels.
To this aim two approaches appear reasonable, namely (1) to prove a suitable
deformation lemma which uses less regularity of the classical ones and works
onW, (2) to prove the equivalence between the variational characterization of the
min-max levels on the constraint and an unconstrained one through topological
methods. We shall pursue the approach (2) which deserves an interest which goes
beyond this particular context. Indeed, even in the case of the natural constraint,
where no regularity problem arises, it is worth to know that the critical points
corresponding to constrained classes also admit a variational characterization as
unconstrained min-max points.

The reader is supposed to be familiar with the use of variational methods
in nonlinear analysis and, in particular, with the connections, which we will
not deepen here, between the topological properties of Krasnosel’skĭı Genus and
the estimates on the corresponding min-max levels. The paper is organized as
follows. In Section 2 we introduce a class of test maps and consequently a notion
of genus which is a slight variant of the well known Krasnosel’skĭı Genus. In
Section 3 we introduce the constrained min-max classes and the corresponding
admissible unconstrained classes in the case of the double natural constraint. In
Section 4 we show the variants needed to deal with the natural constraint and,
finally, Section 5 is devoted to the proof of some topological results which are
needed in order to compute the genus of a sphere.

2. Genus of a symmetric set

For any k ∈ N, we adopt the following notation: Qk = [−1, 1]k, F i
± =

{x ∈ Qk | xi = ±1}. Given n, k ∈ N, for every x ∈ Rn+k we shall split x as
x = (x0, . . . , xk) with x0 ∈ Rn and xi ∈ R for i = 1, . . . , k. Analogously, if
ϕ(x) ∈ Rn+k, we shall write ϕ(x) = (ϕ0(x), . . . , ϕk(x)) with ϕ0(x) ∈ Rn and
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ϕi(x) ∈ R for i = 1, . . . , k. Sometimes, we shall also use the notation x = (x0, x
′),

ϕ(x) = (ϕ0(x), ϕ′(x)) instead of the previous one, by assuming x′, ϕ′(x) ∈ Rk.
We shall set Bn = {x ∈ Rn | |x| ≤ 1}, Sn = ∂Bn+1 = {x ∈ Rn+1 | |x| = 1} and
we shall denote by E any given Banach space.

For any given k ∈ N, we set Ik = {1, . . . , k} and we denote by Pk the set of
all the involutive permutations on Ik, i.e. π ∈ Pk if and only if π: Ik → Ik and
π ◦ π = id. Given any π ∈ Pk, we introduce the map π̂: Rk → Rk so defined:

π̂(x1, . . . , xk) = (xπ(1), . . . , xπ(k)).

We have

π̂(π̂(x)) = π̂(xπ(1), . . . , xπ(k)) = (xπ(π(1)), . . . , xπ(π(k))) = x,

which means π̂ ◦ π̂ = id. Furthermore, given any Banach space E, let us define
the map πE :E×Rk → E×Rk such that πE : (x0, x

′) 7→ (−x0, π̂(x′)). It is easily
seen that πE is involutive too, indeed

πE(πE(x)) = πE(−x0, π̂(x′)) = (x0, π̂(π̂(x′))) = (x0, x
′) = x

and so we also have πE ◦ πE = id. We shall set π̃ = πE if E = Rn. Now, let
A ⊂ E be any symmetric subset and let ϕ:A×Qk → Rn+k and π ∈ Pk be given,
we set

ϕπ = π̃ ◦ ϕ ◦ πA:x 7→ π̃(ϕ(πE(x))),

where πA:A × Qk → A × Qk is the restriction of πE . We shall refer to ϕπ

as to the π-symmetric of ϕ. We shall say that ϕ is π-symmetric if ϕ = ϕπ

and that ϕ is symmetric if there exists π such that ϕ = ϕπ. We note that
(ϕπ)π = π̃ ◦ (π̃ ◦ ϕ ◦ πA) ◦ πA = ϕ.

Remrk 2.1. We observe that if π = id ϕ is π-symmetric if

(S1) ϕ0(−x0, x
′) = −ϕ0(x0, x

′), for all x ∈ A×Qk,
(S2) ϕ′(−x0, x

′) = ϕ′(x0, x
′), for all x ∈ A×Qk.

Definition 2.2. Let A ⊂ E be any given symmetric subset, for any k ∈ N
we shall say that a symmetric function ϕ ∈ C(A × Qk,Rn+k) is a test function
of dimension n for A if the following condition holds

(T) ±ϕi(x) ≥ 0, for all x ∈ A× F i
± and all i = 1, . . . , k.

We shall denote by Λ∗n(A) the set of the n dimensional test functions for A,
obtained for any value of k. Then we are ready to define the genus of a set A as
the number

γ∗(A) = inf{n ∈ N | there exists ϕ ∈ Λ∗n(A) such that 0 6∈ ϕ(A×Qk)}.

Firstly, we remark that, since Λ∗n(A) is a larger set than the set Λn(A) of
the test maps related to Krasnosel’skĭı Genus γ(A) (see [6], [9]) (indeed the last
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one coincides with the subset of the former one which contains the test functions
constructed by taking k = 0), we have that, in general, γ∗(A) ≤ γ(A). By
definition, given any ϕ ∈ Λ∗n(A) with n < γ∗(A), 0 ∈ ϕ(A).

In view of proving the next propositions concerning the genus of a symmetric
set, we prove some useful lemmas stating some properties of the test functions.

Lemma 2.3. Let ϕ:A × Qk → Rn+k satisfy (T) and let π ∈ Pk be given,
then ϕπ also satisfies (T).

Proof. Let x = (x0, x
′) ∈ A × F±i , for i = 1, . . . , k. Then π̂(x′) ∈ F±π(i)

and, since ϕ satisfies (T), we have

±ϕπ(i)(πE(x0, x
′)) = ±ϕπ(i)(−x0, π̂(x′)) ≥ 0.

By the previous definitions we know that ϕπ(i) = (π̃◦ϕ)i and so ±(π̃◦ϕ)i(πE(x))
≥ 0, that is ±(ϕπ)i(x) ≥ 0, as stated in the thesis. �

Lemma 2.4. Let A ⊂ E be any given symmetric subset. Then every test
function ϕ ∈ Λ∗n(A) can be extended to a map in Λ∗n(E).

Proof. Firstly, by virtue of Tietze–Dugundji Theorem (see [4]) we take
an extension of the components ϕi on E × F±i valued in R± keeping the sign
property (T), then we extend them and ϕ0 continuously on all of E × Qk so
getting a map ϕ:E ×Qk → Rn+k which, obviously, satisfies (T). By Lemma 2.3
the map ϕπ, which is an extension of ϕπ, satisfies (T) and the same happens for
ϕs = ϕ/2 +ϕπ/2:E ×Qk → Rn+k, where π ∈ Pk is such that ϕ is π-symmetric.
Obviously, ϕs is symmetric since

(ϕs)π =
1
2
ϕπ +

1
2
(ϕπ)π =

1
2
ϕπ +

1
2
ϕ = ϕs,

so ϕs ∈ Λ∗n(E). If x ∈ A ×Qk then ϕ(x) = ϕπ(x), hence ϕ(x) = ϕ(x) = ϕπ(x)
and so ϕ(x) = ϕs(x). Therefore ϕs extends ϕ to all of E. �

The following statement shows how the lower estimates on the genus are
preserved by the gradient flow.

Proposition 2.5. Let A ⊂ E be any given symmetric subset and let η:A→
E be a given odd continuous map. Then γ∗(η(A)) ≥ γ∗(A).

Proof. Let n < γ∗(A), ϕ ∈ Λn(η(A)) and let η(x0, x
′) = (η(x0), x′), η:A×

Qk → η(A)×Qk. Given π ∈ Pk, we have

πE(η(x0, x
′)) = (−η(x0), π̂(x′)) = (η(−x0), π̂(x′)) = η(−x0, π̂(x′)) = η(πE(x′))

and so πη(A) ◦ η = η ◦ πA. We take ϕ = ϕ ◦ η:A×Qk → Rn+k, then

ϕπ = π̃ ◦ ϕ ◦ πA = π̃ ◦ ϕ ◦ η ◦ πA = π̃ ◦ ϕ ◦ πη(A) ◦ η = ϕπ ◦ η.
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Therefore, if we fix π such that ϕ is π-symmetric, that is ϕ = ϕπ, then ϕπ =
ϕ ◦ η = ϕ, hence also ϕ is symmetric. Since η(A×F±i ) = η(A)×F±i , we deduce
that ϕ satisfies (T). Thus ϕ ∈ Λ∗n(A), hence

0 ∈ ϕ(A×Qk) = ϕ(η(A×Qk)) = ϕ(η(A)×Qk).

It follows that n < γ∗(η(A)) by the arbitrariness of ϕ and, consequently, γ∗(A) ≤
γ∗(η(A)) by the arbitrariness of n. �

We state the following result, which will be proved in Section 5 after some
topological lemmas and shows the existence of sets of large genus.

Proposition 2.6. γ∗(Sn) = n+ 1.

Analogously to the case of Krasnosel’skĭı Genus, we can state a trace property
for the genus γ∗(A) of any subset A ⊂ E which allows to deduce easily that if k
min-max levels coincide, in a case of compactness, the set of the critical points
at such level has a Krasnosel’skĭı Genus bigger or equal to k + 1.

Theorem 2.7. Let A ⊂ E be any given symmetric subset and let ϕ ∈ Λk(A),
with k < γ∗(A). Then γ∗(ϕ−1(0)) ≥ γ∗(A)− k.

Proof. Let k ≤ n < γ∗(A) and ψ ∈ Λ∗n−k(ϕ−1(0)), ψ : ϕ−1(0) × Qh →
Rn−k+h. By Lemma 2.4 ψ can be extended to ψ defined on all of E (and so on A)
and such that ψ ∈ Λ∗n−k(A). Let us consider the function ϕ×ψ:A×Qh → Rn+h

defined below

(ϕ× ψ)(x) = (ϕ(x0), ψ(x)) = ((ϕ(x0), ψ0(x)), ψ
′
(x)).

It is easily seen that ϕ × ψ satisfies (T), since the components involved in such
condition only belong to ψ. Moreover, if π ∈ Ph then

π̃((ϕ× ψ)(πE(x))) = π̃((ϕ(−x0), ψ0(πE(x)), ψ
′
(πE(x))

= ((−ϕ(−x0),−ψ0(πE(x)), π̂(ψ
′
(πE(x)))

= ((ϕ(x0), (π̃ ◦ ψ)0(πE(x)), (π̃ ◦ ψ)′πE(x))) = (ϕ× ψπ)(x).

Therefore (ϕ×ψ)π = ϕ×ψπ, hence since ψ is symmetric, then also ϕ×ψ satisfies
the same condition. Thus ϕ×ψ ∈ Λn(A) and then 0 ∈ (ϕ×ψ)(A×Qh), that is
0 ∈ ψ(ϕ−1(0) × Qh). By the arbitrariness of ψ we get n − k < γ∗(ϕ−1(0)) and
by the arbitrariness of n the thesis follows. �

A different trace property, which actually is the main motivation for passing
to the present variant of the notion of genus, can be now also proved.
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Theorem 2.8. Let A ⊂ E be any symmetric subset and let σ:A×Qk → E

and ϕ:E → Rk be given. If there exists π ∈ Pk such that

(a) σ(πE(x)) = −σ(x) for all x ∈ A×Qk;
(b) ϕ(−u) = π̂(ϕ(u)) for all u ∈ E;
(c) ±ϕi(σ(x)) ≥ 0, for all x ∈ A× F±i and all i = 1, . . . , k,

then γ∗(σ(A×Qk) ∩ ϕ−1(0)) ≥ γ∗(A).

Proof. Firstly we observe that conditions (a), (b) allow to state respectively
that σ(A × Qk) and ϕ−1(0) are symmetric subsets of E and so the assertion
makes sense. We fix n < γ∗(A) and a test function ψ of dimension n defined on
(σ(A×Qk)∩ϕ−1(0)) and extended by Lemma 2.4 on E. Then ψ : E×Qh → Rn+h

satisfies (T) and is symmetric for some π1 ∈ Ph.
Let us define ρ ∈ Pk+h such that ρ(i) = π1(i) if i ≤ h and ρ(i) = h+π(i−h)

if i > h. In this way, if x′ ∈ Rh+k is decomposed as x′ = (z′, y′) with z′ ∈ Rh

and y′ ∈ Rk, we have ρ̂(x′) = (π̂1(z′), π̂(y′)).
We define ϑ:A×Qh+k → Rn+h+k by setting

ϑ(x0, x
′) = ϑ(x0, z

′, y′) = (ψ(σ(x0, y
′), z′), ϕ(σ(x0, y

′))),

that is ϑ0 = ψ0 and ϑ′ = (ψ′, ϕ).
We are going to prove that ϑ ∈ Λ∗n(A). Since ψ satisfies (T) we have that,

for i ≤ h, ±ϑi = ±ψi ≥ 0 if z′ ∈ F±i , whereas condition (c) states that ±ϑh+i =
±ϕi ≥ 0 if y′ ∈ F±i and so ϑ satisfies (T). Moreover, by (a), (b) and the symmetry
of ψ,

ϑ(ρE(x)) = ϑ(−x0, π̂1(z′), π̂(y′))

= (ψ(σ(−x0, π̂(y′)), π̂1(z′)), ϕ(σ(−x0, π̂(y′))))

= (ψ(σ(πE(x0, y
′)), π̂1(z′)), ϕ(σ(πE(x0, y

′))))

= (ψ(−σ(x0, y
′), π̂1(z′)), ϕ(−σ(x0, y

′)))

= (ψ((π1)E(σ(x0, y
′), z′)), π̂(ϕ(σ(x0, y

′))))

= (π̃1(ψ(σ(x0, y
′), z′)), π̂(ϕ(σ(x0, y

′))))

= (−ψ0(σ(x0, y
′), z′), π̂1(ψ′(σ(x0, y

′), z′)), π̂(ϕ(σ(x0, y
′))))

= (−ψ0(σ(x0, y
′), z′), ρ̂(ψ′(σ(x0, y

′), z′)), ϕ(σ(x0, y
′)))

= (−ϑ0(x), ρ̂(ϑ′(x))) = ρ̃(ϑ(x)).

Then ϑ is symmetric and so ϑ ∈ Λ∗n(A) as claimed above and, since n < γ∗(A),
0 ∈ ϑ(A × Qh+k). This means that there exist x0 ∈ A, y′ ∈ Qk and z′ ∈ Qh

such that ψ(σ(x0, y
′), z′) = 0 and ϕ(σ(x0, y

′)) = 0. So 0 ∈ ψ(((σ(A × Qk) ∩
ϕ−1(0)))×Qh). By the arbitrariness of ψ one gets n ≤ γ∗(σ(A×Qk)∩ϕ−1(0))
and by the arbitrariness of n one gets the thesis. �
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3. Min-max classes on the double natural constraint

In this section we shall apply the above introduced notion of genus to the
study of the min-max classes on the double natural constraint. To this aim we
fix π ∈ P2, π 6= id, so that we simply have π(1) = 2, π(2) = 1, and consequently
we fix the maps π̂ and πE as defined in the previous section. Let Ω ⊂ RN be
given and let I:H → R be the functional defined in (1.1), related to problem
(P), with H = H1

0 (Ω). For every x ∈ Ω, we set, as usual, u+(x) = max(u(x), 0),
u−(x) = max(−u(x), 0). Let λ1 be the first eigenvalue of −∆ on Ω, we suppose
λ < λ1. Let W be the double natural constraint given by (1.3), we set for n ≥ 1

ΓWn = {A ⊂ W | A is compact, γ∗(A) ≥ n} and cn = inf
A∈ΓWn

sup
u∈A

I(u).

Since λ < λ1 then there exists a ground state level c > 0 so, for every n, cn > 2c
since, for every u ∈ W, I(u±) ≥ c (see [2]). Let us introduce the sets

C− = {u ∈ H \ {0} | I(u) ≤ c/3, ∇I(u) · u ≥ 0},
C+ = {u ∈ H \ {0} | I(u) ≤ 0, (and so ∇I(u) · u ≤ 0)},
Ln = {u ∈ H \ {0} | I(u) ≤ cn − c/3}.

Let us observe that, being λ < λ1, given any u ∈ H\{0}, the function α 7→ I(αu)
grows with a positive derivative for α small as far as it reaches its maximum,
then it has a negative derivative and tends to −∞ as α→ +∞. So two constants
ε, c > 0 such that ε ≤ 1 ≤ c, εu ∈ C− and cu ∈ C+ always exist. Moreover, if
A ⊂ H \{0} is any compact set, ε and c can be uniformly fixed for u ∈ A, as well
as, if A ⊂ W, for u ∈ A± = {u± | u ∈ A}, since A± turn out to be also compact
sets which do not contain 0. Furthermore, ε can be fixed in a maximal way and
c can be fixed in a minimal way so that both the two values can be considered
as functions of A. We introduce the function σA : A×Q2 → H, defined as

σA(u, α, β) =
(
ε+ (α+ 1)

c− ε

2

)
u+ −

(
ε+ (β + 1)

c− ε

2

)
u−

and the sets

CA = σA(A× ∂Q2) and ΣA = σA(A×Q2).

We shall refer to ΣA as to the double homothetic expansion of A. Let us notice
that if A ∈ ΓWn and supA I < cn + c/3, then σA belongs (see Lemma 3.3 below)
to the class of continuous functions defined by

Fn = {σ:A×Q2 → H | A ∈ ΓWn and (1)–(3) hold},

where

(1) σ(πH(x)) = −σ(x) for all x ∈ A×Q2;
(2) σ(u, α, β) ∈ Ln and σ(u, α, β)+ ∈ C± if α = ±1;
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(3) σ(u, α, β) ∈ Ln and σ(u, α, β)− ∈ C± if β = ±1.

Therefore ΣA belongs to the class of sets defined by

Γn = {X ⊂ H\{0} | there exists A ∈ ΓWn , and exists σ:A×Q2 → H, σ ∈ Fn,

such that X = σ(A×Q2)}.

Let us introduce two further classes of functions and sets, namely

F∗ = {ϕ:H → R2 | (1∗)–(3∗) hold},

where

(1∗) ϕ(−u) = π̂(ϕ(u));
(2∗) ±ϕ1(u) ≥ 0 if u ∈ Ln and u+ ∈ C±;
(3∗) ±ϕ2(u) ≥ 0 if u ∈ Ln and u− ∈ C±,

and

Γ∗n = {X ⊂ H \ {0} | X is compact, X = −X
and γ∗(X ∩ ϕ−1(0)) ≥ n for all ϕ ∈ F∗n}.

Lemma 3.1. Γn ⊂ Γ∗n.

Proof. Let ϕ ∈ F∗, A ∈ ΓWn , σ:A ×Q2 → H, σ ∈ Fn be fixed. By virtue
of Theorem 2.8 we have γ∗(σ(A × Q2) ∩ ϕ−1(0)) ≥ n. By the arbitrariness of
ϕ ∈ F∗, we get σ(A×Q2) ∈ Γ∗n. �

Lemma 3.2. For every A ∈ Γ∗n we have A ∩W ∈ ΓWn .

Proof. Let g(u) = ∇I(u) · u cut off by a positive constant near 0 so that
g(0) > 0. To prove the statement it suffices to note that the function ϕ±:u 7→
−g(u±) ∈ R2 belongs to F∗ and hence by the definition of Γ∗n the thesis follows.�

Lemma 3.3. If A ∈ ΓWn then supΣA
I = supA I and supCA

I ≤ supA I−2c/3.

Proof. Of course A ⊂ ΣA, so supA I ≤ supΣA
I. Conversely, if u ∈ ΣA, u

has the form u = µū+ + νū−, with ū ∈ A. Since ū± ∈ V, we have

I(u) = I(µu+) + I(νu−) ≤ I(u+) + I(u−) = I(u) ≤ sup
A
I.

If u ∈ CA, then {µ, ν} ∩ {ε, c} 6= ∅ so I(u±) − I(u±) ≥ c − c/3 for at least one
of the + and − sign. �

Lemma 3.4. The min-max levels of the above defined classes are the same,
i.e.

inf
A∈Γn

sup
u∈A

I(u) = inf
A∈Γ∗n

sup
u∈A

I(u) = cn.

Proof. By virtue of the inclusion Γn ⊂ Γ∗n we have

inf
A∈Γ∗n

sup
u∈A

I(u) ≤ inf
A∈Γn

sup
u∈A

I(u).
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Moreover, for every X ∈ Γ∗n, from Lemma 3.2 we have

cn ≤ sup
u∈X∩W

I(u) ≤ sup
u∈X

I(u)

and so, by the arbitrariness of X, cn ≤ infA∈Γ∗n supu∈A I(u). Finally, by Lem-
ma 3.3 we have that, for every X ∈ ΓWn , since ΣX ∈ Γn,

inf
A∈Γn

sup
u∈A

I(u) ≤ sup
u∈ΣX

I(u) = sup
u∈X

I(u).

By the arbitrariness of X in ΓWn we have

inf
A∈Γn

sup
u∈A

I(u) ≤ inf
A∈ΓWn

sup
u∈A

I(u) = cn. �

Proposition 3.5. Γn and Γ∗n are two admissible min-max classes.

Proof. Since cn > 0, we can find a cut-off function ϕ such that ϕ(cn) = 1
and ϕ(s) = 0 for s ≤ cn − c/3 (see [9], [8]). By multiplying the gradient ∇I(u)
by ϕ(I(u)) we obtain a cut-off gradient flow η: R×H → H which lets the points
at level cn move along the reverse gradient direction and leaves the points in Ln

fixed. It follows that, setting ηt:x 7→ η(t, x), ηt is odd and if σ ∈ Fn and ϕ ∈ F∗n
then ηt ◦ σ ∈ Fn and ϕ ◦ ηt ∈ F∗n. So if A ∈ Γn then ηt(A) ∈ Γn and if A ∈ Γ∗n
then ηt(A) ∈ Γ∗n. �

By the above results we can state that, for every n, the min-max levels of the
classes in ΓWn are all critical levels provided they satisfy the Palais–Smale con-
dition, regardless any regularity property of the constraint since they are levels
of the unconstrained admissible min-max classes Γn and Γ∗n. The corresponding
critical points also have a characterization of unconstrained min-max points with
the relative properties like, for instance, the direct estimates on the Morse index
in the whole space. Moreover, the three classes are also equivalent from the point
of view of the localization of the critical points near the maximum points of the
terms of a minimizing sequence of sets, as stated in the next proposition.

Proposition 3.6. If (Ai)i∈N is any minimizing sequence in ΓWn , i.e. for
every i ∈ N Ai ∈ ΓWn and limi(supu∈Ai

I(u)) = cn, then the sequence of the
double homothetic expansions (ΣAi

)i∈N is a minimizing sequence in Γn (and so,
in particular, in Γ∗n) for i large.

Proof. The assertion easily follows from Lemmas 3.3 and 3.4. �

Proposition 3.7. If (Ai)i∈N is any minimizing sequence in Γ∗n (and so,
in particular, in Γn) then the sequence of the traces on W (Ai ∩ W)i∈N is a
minimizing sequence in ΓWn .

Proof. The assertion easily follows from Lemmas 3.2 and 3.4. �
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It is worth to remark that the two previous propositions imply, in particular,
that the admissible min-max classes Γn and Γ∗n produce Palais–Smale sequences
in W.

4. Min-max classes on the natural constraint

As stated in the introduction, a similar (but surely simpler) construction can
be also made for the natural constraint V defined in (1.2). In such a case, we
do not need to assume λ < λ1 but we only need to restrict our attention to the
values of n such that the min-max level cn, which we are going to define, is not
zero. For any fixed n we introduce the class of sets

ΓVn = {A ⊂ V | A is compact, γ∗(A) ≥ n}

and denote by cn the corresponding min-max level, that is

cn = inf
A∈ΓVn

sup
u∈A

I(u).

Let k = min{n ∈ N | cn > 0}, we introduce the sets

C− = {u ∈ H \ {0} | I(u) ≤ ck/2, ∇I(u) · u ≥ 0},
C+ = {u ∈ H \ {0} | I(u) ≤ 0, ∇I(u) · u ≤ 0}.

Now two constant ε and c as above such that εu ∈ C− and cu ∈ C+ can be fixed
when u ∈ V (not for all u if λ > λ1) and can be fixed uniformly for a compact set
A ⊂ V and considered as a function of A. Given A, we introduce the function
σA:A×Q1 → H, defined as

σA(u, α) =
(
ε+ (α+ 1)

c− ε

2

)
u,

satisfying the conditions

σA(u,−1) = εu, σA(u, 1) = cu, for all u ∈ A.

Then the set ΣA = σA(A×Q1) will be named simple homothetic expansion of A.
Let us notice that if A ∈ ΓVn then σA belongs to the class of continuous functions
defined by

Fn = {σ:A×Q1 → H | A ∈ ΓVn , for all u ∈ A
such that σ(−u, α) = −σ(u, α), σ(u,−1) ∈ C−, σ(u, 1) ∈ C+}

and ΣA belongs to the class of sets defined by

Γn = {X ⊂ H \ {0} | there exists A ∈ ΓVn , and exists σ:A×Q1 → H,σ ∈ Fn

such that X = σ(A×Q1)}.
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As in the previous case, we set

F∗ = {ϕ:H → R | ϕ(−u) = ϕ(u), ϕ(u) ≤ 0 for all u ∈ C−,
ϕ(u) ≥ 0 for all u ∈ C+},

Γ∗n = {X ⊂ H \ {0} | X is compact,

X = −X, γ∗(X ∩ ϕ−1(0)) ≥ n for all ϕ ∈ F∗}.

Thus, by using the above variants of the previous notation, we can state, also
for the case of the natural constraint, the analogous results as in the previous
section which can be formally stated and proved in the same way and allow to
characterize the critical points arising from min-max levels of the classes in ΓVn
as unconstrained min-max points.

5. A topological lemma

Theorem 5.1. Let f :Bn ×Qk → Rn+k be a continuous map symmetric on
∂Bn×Qk (i.e. such that, for some π ∈ Pk, f(x) = fπ(x), for all x ∈ Sn−1×Qk)
and assume that (T) holds for ϕ = f and A = Bn. Then there exists x ∈ Bn×Qk

such that f(x) = 0.

Proof. The first step consists in introducing a suitable change of variables
which will allow to deal with the symmetry properties involved in the most
convenient way.

For given k ∈ N and π ∈ Pk, let us introduce the sets

I0 = {i ∈ Ik | i = π(i)}, I1 = {i ∈ Ik | i < π(i)}.

We note that, if ki = ]Ii, k0 + 2k1 = k. Let us introduce the functions p1 and
p2, both defined on Rk, as

p1(x) = (xi + xπ(i))i∈I1 + (xi)i∈I0 , p2(x) = (xi − xπ(i))i∈I1 .

We have Rk ∼= p1(Rk)⊕ p2(Rk). Then, for every x ∈ Bn ×Qk, we set

x1 = (x0, p2(x′)), x2 = p1(x′)

and so we have x = (x0, x
′) ∼= (x1,x2). Analogously, for any f = (f0, f ′) ∈ Rn+k,

we define the functions

f1 = (f0, p2 ◦ f ′), f2 = p1 ◦ f ′

and so f ∼= (f1, f2). Now we observe that x1 = 0 if and only if x0 = 0 and,
for every i ∈ Ik, xi = xπ(i), that (−x1,x2) ∼= (−x0, π̂(x′)) = π̃(x) and that,
consequently, f π-symmetric means

(5.1) f(−x1,x2) = π̃(ϕ(x1,x2)) = (−f1(x1,x2), f2(x1,x2)).
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We assume by contradiction that

0 6∈ f(∂(Bn ×Qk)) = f

(
(Sn−1 ×Qk) ∪

k⋃
i=1

(Bn × (F+
i ∪ F−i ))

)
.

In such a case, we shall show that the topological degree of f in zero is different
from zero, that is deg(Bn×Qk, f, 0) 6= 0. The first step in this direction consists
in forcing the assumption (T) to be satisfied with strict inequalities, by adding
to f ′ the function εx′ with ε > 0 suitably small in order to keep the value of
the topological degree. We just remark that the function g: (x0, x

′) 7→ (0, x′) is
π-symmetric, as it can be easily seen. Then, through a linear homotopy, we can
pass from f to (f+fπ)/2, which we will continue to denote by f . By Lemma 2.3
we know that the symmetrization does not change the degree since f is not
modified on ∂Bn ×Qk and fi and (fπ)i have a fixed sign on Bn × F±i .

By a standard perturbation argument we can also assume f ∈ C1(Bn ×
Qk,Rn+k). We set

X = {x ∈ Bn ×Qk | x1 = 0}.

We shall introduce further modifications of f which make f−1(0) ∩ X contain
only regular points. Firstly we know that, by the oddness of f1 with respect to
the variable x1 stated in (5.1), f1 = 0 on X and so the zeroes of f on X are the
zeros of f2. Then we observe that, since after the previous symmetrization f2 is
even with respect to the variable x1, so the partial Jacobian matrix Jx1f2(x) is
identically zero for every x ∈ X. Then, for any x ∈ X, by Laplace Rule we get

|Jf(x)| = |Jx1f1(x)||Jx2f2(x)|.

We can force |Jx2f2| 6= 0 on every x ∈ X such that f2(x) = 0 by subtracting
from f2 a small regular value h ∈ p1(Rk), given by Sard Theorem. Note that
this perturbation does not affect the symmetry properties of f and, if h is taken
sufficiently small, does not change the value of the topological degree. In partic-
ular, we get that f−1(0)∩X is a finite set and therefore the set L which contains
all the eigenvalues of Jx1f1(x) in the points of f−1(0)∩X is also finite. Then we
can force the determinant |Jx1f1(x)| to be different from zero in such points by
adding to f1 the function −λx1 with λ ∈ R \ L. Again, this new perturbation
preserves the symmetry properties of f and, if λ is sufficiently small, does not
change the value of deg(Bn ×Qk, f, 0) and the zeros of f2 remain of course the
same. So we can be sure that f has only regular zeros on X.

Now, since f2 satisfies the hypotheses of Miranda Theorem (see [7]) on X ∼=
Qk0+k1 , we can state that f−1(0)∩X is composed by an odd number of regular
zeroes. By continuity, we have that there exists a small ε > 0 such that the
closed tubolar neighbourhood Xε = {x ∈ Bn ×Qk | d(x,X) ≤ ε} contains only
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regular zeros. In order to force 0 to be a regular value for f we have to deal with
the set (Bn ×Qk) \Xε and, to this aim, we argue as follows.

Let A±i = {x ∈ Bn × Qk | ±xi
1 ≥ ε/n}, where, for i = 1, . . . , n + k1, xi

1 is
the component of x1 of index i. One can easily see that

(Bn ×Qk) \Xε ⊂
n+k1⋃
i=1

(A+
i ∪A

−
i ).

We are going to perform a new perturbation of f , which keeps the symmetry
properties and is too small to change the topological degree or to introduce
singular zeroes in Xε, in order to exclude the presence of singular zeroes of f
also on A±1 . Let S be the set of singular values of f . By Sard Theorem S ∪ π̃(S)
is a negligible set, so we can take h1 ∈ Rn+k \ (S ∪ π̃(S)) arbitrarily small. Let
g: R → [0, 1] be a smooth function such that g(x) = 0 for x ≤ 0 and g(x) = 1 for
x ≥ 1. Let ψ: Rn → Rn+k be defined as

ψ(x) = g

(
n

ε
x1

1

)
h1 + g

(
− n

ε
x1

1

)
π̃(h1).

One easily sees that ψ(x) = h1 if x ∈ A+
1 and ψ(x) = π̃(h1) if x ∈ A−1 . So the

function f :x 7→ f(x) − ψ(x) has no singular zeroes on A+
1 ∪ A

−
1 . Moreover, f

keeps the symmetry properties of f . The value of the degree and the regularity
of the zeroes in Xε are preserved by stability, provided h1 is taken suitably small.

We proceed in this construction through n+k1 steps, from i = 1 to i = n+k1.
Thanks to the stability property of the regular points, we are sure that at each
step the regularity gained at the previous step on Xε ∪

⋃i−1
j=1(A

+
j ∪A

−
j ) is kept,

provided the perturbation term hi given by Sard Theorem is chosen sufficiently
small. Therefore, we can conclude that we have regularity everywhere on Bn×Qk

and so 0 is a regular value for f . Finally, we know that f−1(0) ∩X is made by
an odd number of points and, since f−1(0) = π̃(f−1(0)), f−1(0) \X is made by
an even number of points, indeed π̃(x) 6= x for x 6∈ X. Then we can conclude
that deg(Bn ×Qk, f, 0) is odd and so we get the thesis. �

Remark 5.2. It is worth to notice that the previous theorem reduces to
Borsuk Theorem when k = 0 and to Miranda Theorem when n = 0 and π = id.
If it is easy to see that Miranda Theorem can be deduced from Borsuk Theorem,
nevertheless reconducing the above statement to Borsuk Theorem does not seem
to be an obvious task.

Remark 5.3. In the case π = id the above theorem takes a simpler form
and the assumption f π-symmetric reduces to ask (S1) and (S2) for x0 ∈ ∂Bn.
The proof also becomes easier since x1 = x0 and x2 = x′ in such a case. One
may also wonder if (S2) is essential or if the thesis holds true under the only
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assumptions (S1) and (T). To this aim one can consider the following counterex-
ample.

Let n = k = 1, we take f(x) such that f0(x0, x
′) = |x0 + x′| − 1, f ′(x0, x

′) =
x0+x′. If x0 = ±1 and |x′| ≤ 1 we have |x0+x′| = 1±x′ and so f0(±1, x′) = ±x′

as asked by (S1) and ±f ′(x0, x
′) ≥ 0 for x′ = ±1 so (T) holds. Clearly f does

not satisfy the thesis of the theorem.
Theorem 5.1 can be also stated in the following two forms.

Corollary 5.4. Let ϕ:Sn×Qk → Rn+k be a continuous mapping such that
±ϕi(x) ≥ 0 for all x ∈ Sn × F i

± and for all i = 1, . . . , k. Then for every π ∈ Pk

there exists x ∈ Sn ×Qk such that ϕ(x) = −ϕπ(x).

Proof. Let us define ψ:x 7→ ϕ(x) + ϕπ(x) for some π. We have that ψ
is π-symmetric on Sn × Qk and, by virtue of Lemma 2.3, ψ satisfies (T). Let
Sn

+ = {(x1, . . . , xn+1) ∈ Sn | xn+1 ≥ 0}. Sn
+ is homeomorphic to Bn and

so, by Theorem 5.1, there exists x ∈ Sn
+ × Qk such that ψ(x) = 0, that is

ϕ(x) = −ϕπ(x). �

Corollary 5.5. Let ϕ:Sn×Qk → Rn+k, ϕ ∈ Λ∗n(Sn) be given. Then there
exists x ∈ Sn ×Qk such that ϕ(x) = 0.

Proof. By applying Corollary 5.4 we have the existence of x ∈ Sn × Qk

such that ϕ(x) = −ϕπ(x) = −ϕ(x), that is ϕ(x) = 0. �

We can finally fill the gap in Section 2 by deducing Proposition 2.6 from the
above statements.

Proof of Proposition 2.6. We know that γ∗(Sn) ≤ γ(Sn) ≤ n + 1.
On the other hand, if ϕ ∈ Λ∗n(Sn) then by virtue of Corollary 5.5 we have
0 ∈ ϕ(Sn ×Qk) and so n < γ∗(Sn). �

Corollary 5.5 is clearly equivalent to Proposition 2.6. The proof that it also
implies Theorem 5.1 is trivial and is left to the reader.
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