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EXISTENCE AND MULTIPLICITY RESULTS
FOR SEMILINEAR EQUATIONS WITH MEASURE DATA

Alberto Ferrero — Claudio Saccon

Abstract. In this paper, we study existence and nonexistence of solutions
for the Dirichlet problem associated with the equation −∆u = g(x, u) + µ

where µ is a Radon measure. Existence and nonexistence of solutions

strictly depend on the nonlinearity g(x, u) and suitable growth restrictions
are assumed on it. Our proofs are obtained by standard arguments from

critical theory and in order to find solutions of the equation, suitable func-

tionals are introduced by mean of approximation arguments and iterative
schemes.

1. Introduction

Let Ω ⊂ Rn be a connected open bounded domain with smooth boundary
and let n > 2. Denote by M(Ω) the space of Radon measures, i.e. the dual
space of the Banach space C0(Ω) of continuous functions in Ω which vanish on
the boundary, endowed with the usual L∞-norm. We study elliptic problems
of the type

(1.1)

{
−∆u = g(x, u) + µ in Ω,

u = 0 on ∂Ω,

where µ ∈M(Ω) and g: Ω× R → R is a Caratheodory function.
Previous results on semilinear and quasilinear equations with measure data

have been obtained, see [4]–[6], [8]. In some of these papers the model problem
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(1.1) is studied and existence and nonexistence results are obtained under the
fundamental assumption g(x, s)s ≤ 0. Some difficulties arise when existence
of solutions of (1.1) is studied due to the fact that the associated action functional
J is not defined in the whole Sobolev space H1

0 (Ω), where J is given by

(1.2) J(v) =
1
2

∫
Ω

|∇v|2 dx−
∫

Ω

G(x, v) dx−
∫

Ω

v dµ

for all v ∈ H1
0 (Ω)∩C0(Ω). Here and in the rest of the paper we denote by G(x, s)

the function
∫ s
0
g(x, t) dt for any s ∈ R.

In some of the above mentioned papers (see [5], [8]), this difficulty is over-
come by replacing the measure µ with a sequence of regular functions {µm}
which converges weakly to µ in the sense of measures and g(x, s) with a suitable
sequence of truncated functions gm(x, s) (see (38) in [5]) so that, according to
(1.2) the corresponding functionals J (m) are defined in the whole H1

0 (Ω). Then
a sequence {um} of solutions of the “regularized” problems

(1.3)

{
−∆um = gm(x, um) + µm in Ω,

um = 0 on ∂Ω,

is obtained via minimization and boundedness in L1(Ω) of gm(x, um) is proved,
provided that the assumption g(x, s)s ≤ 0 holds. In order to pass to the limit
in (1.3), a growth restriction at infinity on g is needed. This restriction involves
the critical exponent 2∗ = 2(n− 1)/(n− 2), see Theorem 3 in [5] and Theorem
A.1 in [4]. Note that 2∗ < 2∗ = 2n/(n− 2) where 2∗ denotes the critical Sobolev
exponent. Without this growth restriction the existence of solutions of (1.1) is
guaranteed only under suitable assumptions on the measure µ, see [8] and [9].

Our purpose is to understand what happens when the condition g(x, s)s ≤ 0
is dropped. A completely different behavior of problem (1.1) is expected without
this assumption. In our first result we consider the equation (1.1) and assuming
that g(x, s) has a nonresonant linear behavior as |s| → ∞, in Theorem 2.1 we
prove that (1.1) admits a solution. Here the above mentioned approximation
argument is employed: in the proof of Theorem 2.1 the measure µ is replaced
by a sequence {µm} and the existence of a solution um for the corresponding
problem (1.1) is obtained by [10]. Thanks to the linear asymptotic behavior
at infinity of g(x, s) we prove boundedness in L1(Ω) of the sequence {um} and
using Theorem 8.1 in [14] we pass to the limit in the “regularized” problem thus
obtaining the existence of a solution.

Then we investigate what happens when g = g(s) has a superlinear behavior
at infinity. To this purpose we study the problem

(1.4)

{
−∆u = g(u) + εµ in Ω,

u = 0 on ∂Ω,
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where µ is a nonnegative nontrivial Radon measure and ε > 0. In Theorem 2.2,
we assume that g = g(s) satisfies the growth restriction |g(s)| ≤ C(1 + |s|p−1)
for any s ∈ R with p < 2∗ = 2(n− 1)/(n− 2). Here we prove the existence
of a nonnegative solution uε of (1.4) for any ε ∈ (0, ε∗) for a suitable ε∗ > 0.
Moreover we prove that the restriction ε ∈ (0, ε∗) is also necessary for existence
of nonnegative solutions of (1.4).

Our next purpose is to understand if (1.4) admits an extremal solution, i.e.
a solution corresponding to ε = ε∗. In Theorem 2.5, we give a partial answer to
this problem: we prove existence for ε = ε∗ at least when g is a polynomial-type
function. The proof of Theorem 2.5 is obtained from a convergence result on the
sequence of solutions uε as ε→ ε∗. In order to prove boundedness of {uε}, some
precise asymptotic estimates are needed and therefore we restrict our result to
the case of a polynomial-type nonlinearity g.

Then in Corollary 2.4, by a super-subsolution argument, we prove existence
of solutions of (1.4) for µ ∈M(Ω) without any restriction on the sign of µ.

Next, we investigate whether the model problem (1.4) admits at least two
positive solutions. It was proved in [16] that for g(s) = |s|p−2s, p ≤ 2∗ and
µ ∈ H−1(Ω), µ ≥ 0, then (1.4) admits two positive solutions for any ε small
enough. In Theorem 2.6 we extend this multiplicity result to the case of a non-
negative nontrivial Radon measure under the more restrictive growth condi-
tion p < 2∗. Actually, our multiplicity result is proved for a more general
polynomial-type nonlinearity g. In the proof of Theorem 2.6, precise asymptotic
estimates are needed in order to prove boundedness of Palais–Smale sequences
(see Lemma 9.2) and hence the extension of this result to the more general
nonlinearity g introduced in Theorem 2.2 is far from being straightforward.

In the proofs of Theorems 2.2 and 2.6 an iterative scheme is introduced.
This approach enables us to define a new equation and a corresponding action
functional denoted by IN,ε (see (4.11), (4.12) for the definition of the equation
and the functional IN,ε). This new problem is equivalent to (1.4) in the sense
that admits a solution if and only if (1.4) admits a solution. The functional
IN,ε is obtained after suitable “horizontal and vertical translations” from the
functional

J(v) =
1
2

∫
Ω

|∇v|2 dx−
∫

Ω

G(v) dx− ε

∫
Ω

v dµ,

for all v ∈ H1
0 (Ω) ∩ C0(Ω), where G(s) =

∫ s
0
g(t) dt (see Theorem 2.7). With

this procedure, we obtain a functional IN,ε defined in the whole H1
0 (Ω) from

a functional which is defined only on a subspace of H1
0 (Ω). The multiplicity

result in Theorem 2.6 then follows from an application to the functional IN,ε
of the mountain-pass theorem [3].

Finally, we want to understand whether the growth restriction p < 2∗ on
g(s) = |s|p−2s is also necessary for the existence of nonnegative solutions of (1.4).
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We clarify this question proving in Proposition 2.8 that for p ≥ 2∗, (1.4) does
not admit a nonnegative solution when µ is a Dirac measure concentrated at
an interior point of Ω. Since the Dirac mass is a concentrated measure, one
may ask whether existence of nonnegative solutions of (1.4) can be obtained also
for p ≥ 2∗ when µ is a diffuse measure (see [8] for the definition of diffuse and
concentrated measure). The answer in this sense is negative, since there exist
diffuse measures for which (1.4) does not admit a nonnegative solution. More
precisely, in Proposition 2.9 we prove that for any p ≥ 2∗ there exists a µ ∈ L1(Ω)
such that (1.4) does not admit a nonnegative solution.

This paper is organized as follows. The next section is devoted to the state-
ments of the main results and Sections 3–12 are devoted to their proofs.

Acknowledgement. While this paper was being published the authors dis-
covered that the superlinear case had been treated, in a quite comprehensive way,
by Amann and Quittner in a previous paper (see [2]), also in the case of a more
general linear elliptic operator Lu = −div(aij(x)Dju) (plus lower order terms).

In [2], however the approach is quite different from the previously described
one and is basically non variational, the main tool being the fixed point index
for order-preserving maps. The proof of the main result relies on continuation
properties of the index with respect to the parameter and on an a priori bound
for all the solutions. Getting such properties requires some amount of regularity
for the coefficients of the linear part which are supposed to be C2(Ω).

On the contrary in the present paper the variational aspect of the problem is
recovered, which allows to impose only minimal assumptions. Indeed, although
for the sake of simplicity only the Laplace operator is considered herein, the re-
sults of Theorems 2.2, 2.5 and 2.6 can be easily extended to the case of the linear
part being Lu = −div(aij(x)Dju), with aij just measurable and bounded (and
uniformly elliptic of course). To see this it suffices to observe that what is actu-
ally needed to perform the iterative scheme is the validity of (c) of Lemma 4.3,
which follows from the following regularity argument: if u ∈W 1,q

0 q < N/(N−1),
Lu = h with h ∈ Lr r ≥ 1, then u ∈ L(r∗)∗ when r < N/2 and u ∈ C0 when
r > N/2. This can be easily deduced by the regularity results of [14] (it is worth
noticing that no properties on the second derivative of u are neither proved nor
used). In [14] it is also shown that the operator Lu verifies the strong maximum
principle used to prove positivity of the solutions.

As a final comment it should be noted that the iterative scheme used to
recover the variational nature of the problem is also used in a forthcoming paper
(see [11]), where a problem with jumping nonlinearity is faced, and where degree
arguments seem not suffice to get (at least) the three solutions result proved
therein.
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2. Main results

In this section, we always assume that n > 2 and that Ω ⊂ Rn is an open
bounded domain with smooth boundary. In the rest of the paper we endow the
Hilbert space H1

0 (Ω) with the scalar product

(u, v)H1
0

=
∫

Ω

∇u∇v dx for all u, v ∈ H1
0 (Ω).

We study the Dirichlet problem

(2.1)

{
−∆u = g(x, u) + µ in Ω,

u = 0 on ∂Ω,

where by a solution of (2.1) we mean a function u ∈ L1(Ω) with g(x, u) ∈ L1(Ω)
which satisfies∫

Ω

−u∆ϕdx =
∫

Ω

g(x, u)ϕdx+
∫

Ω

ϕdµ for all ϕ ∈ C2
0 (Ω).

Here C2
0 (Ω) denotes the space of functions C2(Ω) which vanish on ∂Ω.

In our first result, we prove existence of solutions of (2.1) assuming that
g(x, s) has a linear asymptotic behavior as |s| → ∞. Denote by σ(−∆) the
spectrum of −∆ with homogeneous Dirichlet boundary conditions and by λ1 <

λ2 ≤ . . . . the corresponding eigenvalues.
Let g(x, s) be such that

(2.2) hσ(x) = max
|s|≤σ

|g(x, s)| ∈ L2(Ω) for all σ > 0.

Assume that

(2.3) lim
s→±∞

g(x, s)
s

= λ(x) uniformly for a.e. x ∈ Ω

with λk ≤ λ(x) ≤ λk+1 and λk < λk+1 for a suitable k ≥ 0 (here λ0 = 0) and
that

(2.4) there exists s > 0 such that g(x, s)s ≥ 0

for all |s| > s and for a.e. x ∈ Ω.

Moreover, we assume that

λk < λ(x) on a subset of Ω of positive measure,(2.5)

λ(x) < λk+1 on a subset of Ω of positive measure.(2.6)

Then we establish
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Theorem 2.1. Let n > 2 and assume that g satisfies (2.2)–(2.6). Then (2.1)
admits a solution u. Moreover, u ∈W 1,q

0 (Ω) for any q < n/(n− 1).

In our second result, we study the following problem

(2.7)


−∆u = g(u) + εµ in Ω,

u ≥ 0 in Ω,

u = 0 on ∂Ω,

where g is superlinear at infinity, µ ∈ M(Ω) is a nonnegative nontrivial Radon
measure and ε > 0. We assume that

g ∈ C1(R) is convex in [0,∞),(2.8)

g′(s) > 0 for all s > 0.(2.9)

Moreover, suppose that there exists C > 0 such that

(2.10) |g(s)| ≤ λ|s|+ C|s|p−1 for all s ∈ R

with 2 < p < 2∗ and λ ∈ (0, λ1). Finally, we suppose that

(2.11) lim
s→∞

g(s)
s

= ∞.

In the sequel by minimal solution we mean the pointwise smallest nonnegative
solution of (2.7).

Then the following holds

Theorem 2.2. Let n > 2, 2 < p < 2∗ and let µ ∈ M(Ω) be a nonnegative
nontrivial Radon measure. Assume that g satisfies (2.8)–(2.11). Then there
exists an extremal value ε∗ > 0 such that:

(a) If ε ∈ (0, ε∗), then (2.7) admits a minimal solution uε.
(b) If ε > ε∗, then (2.7) admits no solutions.

The assumption λ ∈ (0, λ1) in (2.10) is necessary for the existence of solutions
of (2.7) as one can see from the following

Proposition 2.3. Let n > 2, 2 < p < 2∗, ε > 0 and let µ ∈ M(Ω) be
a nonnegative nontrivial Radon measure. Assume that g satisfies (2.8)–(2.11)
and that g(s) = λs+ o(s) as s→ 0+ with λ > 0. If (2.7) admits a solution, then
λ < λ1.

From Theorem 2.2, we derive an existence result for solutions of

(2.12)

{
−∆u = g(u) + εµ in Ω,

u = 0 on ∂Ω,

without any assumptions on the sign of µ ∈M(Ω). We establish
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Corollary 2.4. Let n > 2, 2 < p < 2∗ and µ ∈ M(Ω). Assume that g(s)
and −g(−s) satisfy (2.8)–(2.11) for any s > 0. Then there exists ε > 0 such that
for any ε ∈ (0, ε) problem (2.12) admits a solution.

Then we prove that if g is a polynomial-type function, then (2.7) admits
a solution for ε = ε∗.

Theorem 2.5. Let n > 2, 2 < p < 2∗, ε∗ > 0 as in Theorem 2.2 and let
µ ∈ M(Ω) be a nonnegative nontrivial Radon measure. Assume that g(s) =
λ|s|q−2s + |s|p−2s with 2 ≤ q < p < 2∗, λ ≥ 0 if q > 2 and λ ∈ [0, λ1) if q = 2.
Then (2.7) admits a solution for ε = ε∗.

Next we prove the existence of a second solution for problem (2.7).

Theorem 2.6. Let n > 2, 2 < p < 2∗ and let µ ∈ M(Ω) be a nonnegative
nontrivial Radon measure. Assume that g(s) = λ|s|q−2s+ |s|p−2s with 2 ≤ q <

p < 2∗, λ ≥ 0 if q > 2 and λ ∈ [0, λ1) if q = 2. If ε ∈ (0, ε∗) then (2.7) admits
a second solution Uε > uε a.e. in Ω with ε∗ and uε as in Theorem 2.2.

In the next result we try to clarify the meaning of the procedure introduced
in the proof of Theorem 2.2. Let µ be a nonnegative nontrivial Radon measure
and let µm = ρm ∗µ where {ρm} is a sequence of mollifiers. Let J (m) be defined
by

J (m)(w) =
1
2

∫
Ω

|∇w|2 dx−
∫

Ω

G(w) dx− ε

∫
Ω

µmw dx for all w ∈ H1
0 (Ω).

Let v(m)
N,ε , γ

(m)
N,ε , h

(m)
N,ε(x, s), f

(m)
N,ε be the functions defined in (4.2)–(4.7) with µm

in place of µ and N as in Lemma 4.3. Let I(m) be the translated functional

(2.13) I(m)(w) = J (m)(w + γ
(m)
N,ε )− J (m)(γ(m)

N,ε ) for all w ∈ H1
0 (Ω).

We have

Theorem 2.7. Let I(m) be the functional defined in (2.13) with ε ∈ (0, ε∗).

(a) Assume that g satisfies (2.8)–(2.11). Then there exists m > 0 such that
for any m > m the functional I(m) admits a local minimizer u(m)

N,ε ≥ 0

which satisfies u(m)
N,ε → uN,ε in H1

0 (Ω) as m→∞. Moreover, uN,ε+γN,ε
coincides with the minimal solution uε of (2.7) found in Theorem 2.2.

(b) Assume that g(s) = λ|s|q−2s + |s|p−2s with 2 ≤ q < p < 2∗, λ ≥ 0 if
q > 2 and λ ∈ [0, λ1) if q = 2. Then there exists m > 0 such that for
any m > m the functional I(m) admits a second critical point U (m)

N,ε ≥ 0

which satisfies U (m)
N,ε → U∗ in H1

0 (Ω) as m → ∞ up to subsequences.
Moreover, U = U∗ + γN,ε is a solution of (2.7) which satisfies U > uε
a.e. in Ω.
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Finally, we show that the growth restriction (2.10) on g is optimal. To this
purpose consider the model problem

(2.14)


−∆u = up−1 + εµ in Ω,

u ≥ 0 in Ω,

u = 0 on ∂Ω.

Then we have

Proposition 2.8. Let n > 2, p ≥ 2∗ and let µ =δa be a Dirac measure
concentrated at a ∈ Ω. Then (2.14) admits no solutions for any ε > 0.

Assume again that p ≥ 2∗. We prove that (2.14) admits no solutions also for
some µ ∈ L1(Ω).

Proposition 2.9. Let n > 2, p ≥ 2∗. Then there exists µ ∈ L1(Ω) such
that (2.14) admits no solutions for any ε > 0.

3. Proof of Theorem 2.1

We start with some preliminary lemmas. In the following two subsections,
we distinguish the cases k ≥ 1 and k = 0 in (2.3)–(2.6).

3.1. The case λk ≤ λ(x) ≤ λk+1, k ≥ 1. Let G(x, s) =
∫ s
0
g(x, t) dt and for

µ ∈ L2(Ω) define the functional

(3.1) J(v) =
1
2

∫
Ω

|∇v|2 dx−
∫

Ω

G(x, v) dx−
∫

Ω

µv dx for all v ∈ H1
0 (Ω).

By (2.2)–(2.6) we deduce that the functional J ∈ C1(H1
0 (Ω)) so that the critical

points of J solve (2.1). We state the following

Lemma 3.1. Assume that g satisfies (2.2)–(2.6). If µ ∈ L2(Ω) then (2.1)
admits a solution u ∈ H1

0 (Ω).

Proof. See [10]. �

Let f ∈ L2(Ω) and consider the following linear problem

(3.2)

{
−∆u = λ(x)u+ f in Ω,

u = 0 on ∂Ω,

with λ(x) as in (2.3). By Lemma 3.1 we infer that (3.2) admits a solution
u ∈ H1

0 (Ω). Then, we establish

Lemma 3.2. Let f ∈ L2(Ω) and let u ∈ H1
0 (Ω) be the corresponding solution

of (3.2) with λ(x) as in (2.3). Then there exists a constant C > 0 such that

‖u‖H1
0
≤ C‖f‖L2 .
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Proof. Let L = −∆:H1
0 (Ω) → H−1(Ω) and let K:H1

0 (Ω) → H1
0 (Ω) be the

linear operator defined by

Kv = L−1(λ(x)v) for all v ∈ H1
0 (Ω).

By (2.5)–(2.6) and Lemma 3 in [10], we deduce that the linear problem{
−∆u = λ(x)u in Ω,

u = 0 on ∂Ω,

admits only the trivial solution and hence, since K is a compact linear operator,
we have 1 ∈ ρ(K) where ρ(K) denotes the resolvent set of K. In particular
this implies that (K − I)−1 ∈ L(H1

0 (Ω);H1
0 (Ω)) where I denotes the identity

in H1
0 (Ω). If u ∈ H1

0 (Ω) is a solution of (3.2), then applying the operator
L−1 to both sides of (3.2), we obtain (K − I)u = −L−1f and in turn u =
−(K − I)−1L−1f. Then, the last identity yields

‖u‖H1
0
≤ ‖(K − I)−1‖L(H1

0 ;H1
0 )‖L−1‖L(H−1;H1

0 )‖f‖L2

which concludes the proof of the lemma. �

3.2. The case 0 ≤ λ(x) ≤ λ1. For µ ∈ L2(Ω) consider the functional J
defined in (3.1). The existence of a critical point for J may be obtained by
minimization.

Lemma 3.3. Assume that g satisfies (2.2)–(2.6) with k = 0. If µ ∈ L2(Ω),
then (2.1) admits a solution u ∈ H1

0 (Ω).

Proof. We first prove that J is bounded from below. To this purpose, let
{um} be a sequence such that ‖um‖H1

0
→∞. Consider now

(3.3)
J(um)
‖um‖2H1

0

=
1
2
−

∫
Ω

G(x, um)
‖um‖2H1

0

dx− 1
‖um‖2H1

0

∫
Ω

µum dx.

By (2.3)–(2.4), we deduce that for any ε > 0 there exists σε > 0 such that∣∣∣∣G(x, s)− 1
2
λ(x)s2

∣∣∣∣ < ε
s2

2
for all x ∈ Ω and all |s| > σε.

Hence, by (2.2), we obtain∣∣∣∣ ∫
Ω

G(x, um) dx−
∫

Ω

1
2
λ(x)u2

m dx

∣∣∣∣ ≤ σε‖hσε
‖L1 +

1
2
λ1σ

2
ε |Ω|+

ε

2

∫
Ω

u2
m dx.

Letting m→∞ and ε→ 0, this yields

(3.4)
∣∣∣∣ ∫

Ω

G(x, um)
‖um‖2H1

0

dx−
∫

Ω

1
2
λ(x)

u2
m

‖um‖2H1
0

dx

∣∣∣∣ → 0 as m→∞.
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Define vm = um/‖um‖H1
0
. Up to subsequences we may assume that vm ⇀ v in

H1
0 (Ω) and hence by (2.6), (3.4), compact embedding H1

0 (Ω) ⊂ L2(Ω) and weak
lower semicontinuity of the H1

0 -norm, we obtain

(3.5) lim
m→∞

∫
Ω

G(x, um)
‖um‖2H1

0

dx = lim
m→∞

1
2

∫
Ω

λ(x)v2
m dx =

1
2

∫
Ω

λ(x)v2 dx

≤ 1
2
λ1‖v‖2L2 ≤

1
2
‖v‖2H1

0
≤ lim inf

m→∞

1
2
‖vm‖2H1

0
=

1
2
.

We claim that the limit in the first line of (3.5) is strictly less than 1/2. Indeed,
if we suppose that the equality holds, then by (3.5) we have λ1‖v‖2L2 = ‖v‖2

H1
0

which proves that v is an eigenfunction relative to λ1; in particular v2 > 0 in Ω.
Therefore by (2.6) we have

1
2

∫
Ω

λ(x)v2 dx <
1
2
λ1‖v‖2L2

and hence the strict inequality in (3.5) holds.
Finally by (3.3) we infer that there exist C > 0 and m > 0 such that

(3.6) J(um) > C‖um‖2H1
0

for all m > m.

This proves that J is bounded from below. Next suppose that {wm} is a minimiz-
ing sequence for J . Then applying inequality (3.6) to {wm} we deduce that {wm}
is bounded in H1

0 (Ω) and hence by (2.3), compact embedding H1
0 (Ω) ⊂ L2(Ω)

and weak lower semicontinuity of the H1
0 -norm we conclude that the weak limit

of {wm} in H1
0 (Ω) is a global minimizer for J . �

3.3. End of the proof of Theorem 2.1. Let {fm} ⊂ L1(Ω) ∩ L2(Ω) be
a bounded sequence in L1(Ω) and consider the following nonlinear problem

(3.7)

{
−∆u = g(x, u) + fm in Ω,

u = 0 on ∂Ω.

By Lemma 3.1 for the case λk ≤ λ(x) ≤ λk+1 and by Lemma 3.3 for the case
0 ≤ λ(x) ≤ λ1, we deduce that (3.7) admits a solution um ∈ H1

0 (Ω) for any
m ∈ N. We recall that um solves (3.7) in H−1(Ω), i.e.

(3.8)
∫

Ω

∇um∇v dx =
∫

Ω

g(x, um)v dx+
∫

Ω

fmv dx for all v ∈ H1
0 (Ω).

Then, we establish

Lemma 3.4. Let {fm} ⊂ L1(Ω) ∩ L2(Ω) and suppose that ‖fm‖L1 < C for
any m ∈ N and let {um} be the corresponding sequence of solutions of (3.7).
Then {um} is bounded in L1(Ω).
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Proof. If we put vm = sign(um), then ‖vm‖L∞ = 1 and

(3.9) ‖um‖L1 =
∫

Ω

umvm dx.

Introduce the following linear problem

(3.10)

{
−∆ϕ = λ(x)ϕ+ vm in Ω,

ϕ = 0 on ∂Ω.

By Lemmas 3.1, 3.3 and Lemma 3 in [10], we infer that for any m ∈ N problem
(3.10) admits a unique solution ϕm ∈ H1

0 (Ω). Since ‖vm‖L∞ = 1 then {vm} is
bounded L2(Ω) and by Lemma 3.2 it follows that {ϕm} is bounded in H1

0 (Ω). By
Sobolev inequality and Lq-estimates for strictly elliptic linear operators (see [1]),
we infer that {ϕm} is bounded in L∞(Ω). We use ϕm as test function in (3.8)
to obtain

(3.11)
∫

Ω

∇um∇ϕm dx =
∫

Ω

g(x, um)ϕm dx+
∫

Ω

fmϕm dx for all m ∈ N.

We need an estimate from above on
∫
Ω
g(x, um)ϕm dx. By (2.3) we infer that

for any ε > 0 there exists σε > 0 such that{
(λ(x)− ε)s ≤ g(x, s) ≤ (λ(x) + ε)s for all x ∈ Ω and all s > σε,

(λ(x) + ε)s ≤ g(x, s) ≤ (λ(x)− ε)s for all x ∈ Ω and all s < −σε,

and hence by (2.2), Sobolev embedding and Hölder inequality, we obtain

(3.12)
∫

Ω

g(x, um)ϕm dx ≤
∫
{|um|≤σε}

g(x, um)ϕm dx

+
∫
{ϕm≥0}∩{um>σε}

(λ(x) + ε)umϕm dx

+
∫
{ϕm<0}∩{um<−σε}

(λ(x) + ε)umϕm dx

+
∫
{ϕm≥0}∩{um<−σε}

(λ(x)− ε)umϕm dx

+
∫
{ϕm<0}∩{um>σε}

(λ(x)− ε)umϕm dx

≤C(ε)‖ϕm‖L∞ + ε‖um‖L1‖ϕm‖L∞ +
∫

Ω

λ(x)umϕm dx.

Then, by (3.9)–(3.12) we have

0 = −
∫

Ω

∇um∇ϕm dx+
∫

Ω

g(x, um)ϕm dx+
∫

Ω

fmϕm dx

≤ −
∫

Ω

∇um∇ϕm dx+
∫

Ω

λ(x)umϕm dx

+ C(ε)‖ϕm‖L∞ + ε‖um‖L1‖ϕm‖L∞ +
∫

Ω

fmϕm dx
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= −
∫

Ω

umvm dx+ C(ε)‖ϕm‖L∞ + ε‖um‖L1‖ϕm‖L∞ +
∫

Ω

fmϕm dx

= − ‖um‖L1 + C(ε)‖ϕm‖L∞ + ε‖um‖L1‖ϕm‖L∞ +
∫

Ω

fmϕm dx

and from this we obtain

(1− ε‖ϕm‖L∞)‖um‖L1 ≤ C(ε)‖ϕm‖L∞ + ‖fm‖L1‖ϕm‖L∞ .

Since {fm} and {ϕm} are bounded respectively in L1(Ω) and L∞(Ω), choosing
ε small enough, it follows immediately that {um} is bounded in L1(Ω). �

Let µ ∈ M(Ω). Then there exists a sequence {fm} ⊂ L1(Ω) ∩ L2(Ω) such
that ‖fm‖L1 < C and fm ⇀ µ in the sense of measures. Let {um} be the
corresponding sequence of solutions of (3.7). By Lemma 3.4 we deduce that the
sequence {um} is bounded in L1(Ω) and by (2.2)–(2.3) and Theorem B.1 in [8]
(see also Theorem 8.1 in [14]), it follows that the sequence {um} is bounded
in W 1,q

0 (Ω) for any 1 ≤ q < n/(n− 1) . Up to subsequences we may assume
that there exists u such that um ⇀ u in W 1,q

0 (Ω) for any 1 ≤ q < n/(n− 1).
Moreover, by (2.2)–(2.3), Sobolev embedding and dominated convergence, it
follows that g(x, um) → g(x, u) in L1(Ω).

Passing to the limit in (3.8) with v = ϕ ∈ D(Ω), we obtain

(3.13)
∫

Ω

∇u∇ϕdx =
∫

Ω

g(x, u)ϕdx+
∫

Ω

ϕdµ for all ϕ ∈ D(Ω).

Note that the variational identity (3.13) holds for any ϕ ∈ W
1,q/(q−1)
0 (Ω) ⊂

C0(Ω) for q < n/(n− 1). If we choose ϕ ∈ C2
0 (Ω), then integrating by parts it

follows that∫
Ω

−u∆ϕdx =
∫

Ω

g(x, u)ϕdx+
∫

Ω

ϕdµ for all ϕ ∈ C2
0 (Ω).

This completes the proof of the theorem. �

4. Proof of Theorem 2.2

We start with the following preliminary lemma.

Lemma 4.1. Let n > 2, p ∈ (2, 2∗), λ ∈ (0, λ1) and ε1, ε2, κ > 0. If a ∈
Ln/2(Ω) and f ∈ L2n/(n+2)(Ω) are nonnegative functions, then the problem

(4.1)

{
−∆u = λu+ κup−1 + ε1a(x)u+ ε2f(x) in Ω,

u = 0 on ∂Ω,

admits a nonnegative nontrivial solution for ε1 and ε2 small enough.
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Proof. The proof of this lemma follows from a standard argument from
critical point theory. Define the functional

K(v) =
1
2
‖∇v‖2L2 −

λ

2

∫
Ω

(v+)2 dx− κ

p

∫
Ω

(v+)p dx

− ε1
2

∫
Ω

a(x)(v+)2 dx− ε2

∫
Ω

fv dx

for all v ∈ H1
0 (Ω). Then K ∈ C1(H1

0 (Ω)) and by the weak comparison principle,
any critical point of K is a nonnegative nontrivial solution of (4.1). By Sobolev
embedding and Poincarè inequality we have

K(v) ≥ 1
2
λ1 − λ

λ1
‖v‖2H1

0
− κC1

p
‖v‖p

H1
0

− ε1C2‖a‖Ln/2‖v‖2H1
0
− ε2C3‖f‖L2n/(n+2)‖v‖H1

0

and hence for ε1 and ε2 small enough we have

there exists ρ,R > 0 such that K(v) ≥ R for all v such that ‖v‖H1
0

= ρ.

Moreover, there exists a nonnegative function w such that

‖w‖H1
0
> ρ and K(w) < 0.

On the other hand, since p ∈ (2, 2∗) then K satisfies the Palais–Smale condition.
Therefore, the mountain-pass theorem [3] applies and (4.1) admits a nonnegative
nontrivial solution. �

Let v1,ε be the unique solution of

(4.2)

{
−∆v1,ε = εµ in Ω,

v1,ε = 0 on ∂Ω,

and by iteration define for k = 1, 2, . . .

(4.3)

 −∆vk+1,ε = g

( k∑
i=1

vi,ε

)
− g

( k−1∑
i=1

vi,ε

)
in Ω,

vk+1,ε = 0 on ∂Ω.

The functions vk,ε are well defined in view of Theorem 8.1 in [14] and they
are nonnegative in view of the weak comparison principle (see Lemma 3 in [7]).
Moreover, they satisfy

(4.4) vi,ε ∈ Lq(Ω) for all q ∈
[
1,

n

n− 2

)
and all i ≥ 1.
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Suppose that u is a solution of (2.7). We introduce the functions uk+1,ε =
uk,ε − vk+1,ε for k = 0, 1, . . . where u0,ε = u. Then, the functions uk+1,ε solve

(4.5)


−∆uk+1,ε = g

(
uk+1,ε +

k+1∑
i=1

vi,ε

)
− g

( k∑
i=1

vi,ε

)
in Ω,

uk+1,ε ≥ 0 in Ω,

uk+1,ε = 0 on ∂Ω.

For k ≥ 1 introduce the odd function hk,ε(x, s), defined by

(4.6) hk,ε(x, s) =

{
g(s+ γk,ε)− g(γk,ε) if s ≥ 0,

hk,ε(x, s) = −hk,ε(x,−s) if s < 0,

and the function fk,ε defined by

(4.7) fk,ε = g(γk,ε)− g(γk−1,ε).

where γk,ε =
∑k
i=1 vi,ε for k ≥ 1 and γ0,ε = 0. Here and in the sequel we denote

by h′k,ε(x, s) the derivative of hk,ε(x, s) with respect to s. Then, by adding and
subtracting g(γk+1,ε) in (4.5), we see that any solution u of problem (4.5) is
a nonnegative solution of

(4.8)

{
−∆u = hk+1,ε(x, u) + fk+1,ε in Ω,

u = 0 on ∂Ω.

that is a function u ∈ L1(Ω) such that hk+1,ε(x, u) ∈ L1(Ω) and∫
Ω

−u∆ϕdx =
∫

Ω

hk+1,ε(x, u)ϕdx+
∫

Ω

fk+1,εϕdx for all ϕ ∈ C2
0 (Ω).

The existence of a solution of (2.7) then follows once we prove the existence
of a solution of (4.5) or equivalently of (4.8) for a suitable k.

We start with the following technical lemma

Lemma 4.2. Let u ∈ Lα(Ω) and v ∈ Lβ(Ω) then uv ∈ Lαβ/(α+β)(Ω).

Proof. This is a straightforward application of the Hölder inequality with
p = (α+ β)/β and q = (α+ β)/α. �

Next we prove

Lemma 4.3. Let n > 2 and assume that g satisfies (2.8)–(2.11). Then:

(a) there exists a constant C > 0 such that

hk,ε(x, s) ≤ (λ1 + C(γk,ε + s)p−2)s for all x ∈ Ω, all s ≥ 0 and all k ≥ 1;

(b) there exists a constant C > 0 such that

h′k,ε(x, s) ≤ λ1 + C(γk,ε + s)p−2 for all x ∈ Ω, all s ≥ 0 and all k ≥ 1;

(c) there exists N ∈ N such that vN,ε ∈ L∞(Ω) and fN,ε ∈ L2n/(n+2)(Ω).
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Proof. By (2.8)–(2.10) for k = 1, 2, . . . we have

0 ≤ hk,ε(x, s) = g(γk,ε + s)− g(γk,ε) ≤ g′(γk,ε + s)s ≤ (λ1 + C(γk,ε + s)p−2)s

for any x ∈ Ω and s ≥ 0. This proves (a) and (b).
Using again (2.8)–(2.10) for k = 1, 2, . . . we have

(4.9) 0 ≤ g

( k∑
i=1

vi,ε

)
− g

( k−1∑
i=1

vi,ε

)

≤ g′
( k∑
i=1

vi,ε

)
vk,ε ≤

(
λ1 + C

( k∑
i=1

vi,ε

)p−2)
vk,ε

where C > 0 is the constant introduced in (a). Since p < 2∗, by (4.4) we
deduce that there exists α0 > n/2 such that vp−2

i,ε ∈ Lα0(Ω) for any i ≥ 1. With
this choice of α0 define c = (2α0 − n)/nα0. For a fixed k ≥ 1 assume that
vk,ε ∈ Lβk(Ω). Then by Lemma 4.2 and (4.4) it follows that

(4.10)
( k∑
i=1

vi,ε

)p−2

vk,ε ∈ Lα0βk/(α0+βk)(Ω).

We distinguish three cases.
Case 1. If βk > 1/c then α0βk/(α0 + βk) > n/2 and hence by (4.3),

(4.9), (4.10), elliptic regularity [1] and Sobolev embedding, we obtain vk+1,ε ∈
W 2,α0βk/(α0+βk)(Ω) ⊂ L∞(Ω).

Case 2. If βk = 1/c with the same procedure of Case 1, we obtain vk+1,ε ∈
W 2,n/2(Ω) ⊂ Lq(Ω) for any q ≥ 1 and with another iteration this yields vk+2,ε ∈
L∞(Ω).

Case 3. If βk < 1/c, using again (4.3), (4.9), (4.10), elliptic regularity [1] and
Sobolev embedding, we obtain vk+1,ε ∈ W 2,α0βk/(α0+βk)(Ω) ⊂ Lβk+1(Ω) with
βk+1 = βk/(1− cβk). After a finite number of iterations, we find k ≥ 1 such
that βk ≥ 1/c and hence applying Cases 1 and 2 it follows that vk+2,ε ∈ L∞(Ω).

We just proved the existence of N ∈ N such that vN,ε ∈ L∞(Ω). Finally
by (4.9), Theorem B.1 in [8], p < 2∗ and vN,ε ∈ L∞(Ω) it follows that fN,ε ∈
L2n/(n+2)(Ω). �

From now on we look for solutions of

(4.11)

{
−∆u = hN,ε(x, u) + fN,ε in Ω,

u = 0 on ∂Ω,

where hN,ε and fN,ε are defined in (4.6)–(4.7). Let IN,ε be the functional defined
by

(4.12) IN,ε(w) =
1
2
‖∇w‖2L2 −

∫
Ω

HN,ε(x,w) dx−
∫

Ω

fN,εw dx
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where

HN,ε(x, s) =
∫ s

0

hN,ε(x, t) dt.

Then we establish:

Lemma 4.4. Let n > 2 and assume that g satisfies (2.8)–(2.11). Let N be as
in Lemma 4.3. Then it is well defined the functional IN,ε:H1

0 (Ω) → R. Moreover,
IN,ε ∈ C2(H1

0 (Ω)) and its critical points solve problem (4.11) or equivalently
problem (4.5) with k = N − 1. Finally the operator ∇IN,ε:H1

0 (Ω) → H1
0 (Ω),

defined by

(∇IN,ε(u), v)H1
0

=
〈
I ′N,ε(u), v

〉
for all u, v ∈ H1

0 (Ω)

can be decomposed as

∇IN,ε(u) = u+Ku = u+ ∆−1(hN,ε(x, u) + fN,ε)

where K:H1
0 (Ω) → H1

0 (Ω) is a compact operator.

Proof. The proof of this lemma is standard and it follows from Lemma 4.3(a)
and the fact that by (4.4) there exists α0 > n/2 such that γp−2

N,ε ∈ Lα0(Ω). �

Before proving existence of solutions for problem (4.11), we need a mono-
tonicity result on the functions hN,ε and fN,ε with respect to ε. To this purpose
we recall the following maximum principle.

Lemma 4.5. Let µ ∈M(Ω) be a nonnegative nontrivial Radon measure and
let u ∈ L1(Ω) be a solution of

(4.13)
∫

Ω

−u∆ϕdx =
∫

Ω

ϕdµ for all ϕ ∈ C2
0 (Ω).

Then u > 0 in Ω in the sense that infK u > 0 for any compact set K ⊂ Ω.

Proof. Fix a compact set K1 ⊂ Ω such that µ(K1) > 0. For any open set
Ω1 such that Ω1 ⊂ Ω and any function φ ∈ C∞(Ω) with suppφ ⊂ Ω1, consider
the following Dirichlet problem

(4.14)

{
−∆ψ = φ in Ω,

ψ = 0 on ∂Ω.

Then denoting by G(x, y) the Green function for −∆ in Ω, from (4.13) we obtain∫
Ω

uφ dx =
∫

Ω

−u∆ψ dx =
∫

Ω

ψ dµ =
∫

Ω

( ∫
Ω

G(x, y)φ(y) dy
)
dµ(x)

≥
∫
K1

( ∫
Ω1

G(x, y)φ(y) dy
)
dµ(x) ≥ Cµ(K1)

∫
Ω

φdy,
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for all φ ∈ C∞(Ω), φ ≥ 0, suppφ ⊂ Ω1, where C > 0 is a constant which depends
on G(x, y), K1, Ω1. This proves that u(x) ≥ Cµ(K1) for a.e. x ∈ Ω1 and hence
the proof of the lemma is complete. �

Now we are ready to prove the following

Lemma 4.6. Let hN,ε(x, s) and fN,ε be the functions introduced in (4.6)–
(4.7). Then:

(a) for s ≥ 0, hN,ε(x, s) is nondecreasing with respect to ε in the sense that
for any ε1 < ε2 we have

hN,ε1(x, s) ≤ hN,ε2(x, s) for a.e. x ∈ Ω and s ≥ 0;

(b) fN,ε is strictly increasing with respect to ε in the sense that for any
ε1 < ε2 we have

fN,ε1(x) < fN,ε2(x) for a.e. x ∈ Ω.

Proof. First of all note that in view of the Lemma 4.5, the functions vi,ε
defined in (4.2)–(4.3) are strictly positive almost everywhere in Ω for any i ∈
{1, . . . , N}. Therefore, using (2.8)–(2.9), by induction on i = 1, . . . , N we prove
that vi,ε is strictly increasing with respect to ε for any i ∈ {1, . . . , N}. This is
trivial for i = 1. Assuming our claim true for any i ≤ k, we prove that if ε1 < ε2

then vk+1,ε1 < vk+1,ε2 almost everywhere in Ω. By (2.8)–(2.9) we have

(4.15)
d

dε
[g(γk,ε)− g(γk−1,ε)] ≥ g′(γk−1,ε)

d

dε
vk,ε ≥ 0.

where the derivative dvk,ε/dε is defined by(
d

dε
vk,ε

)∣∣∣∣
ε=ε0

= lim
t→0

vk,ε0+t − vk,ε0
t

in Lq(Ω), q ∈
[
1,

n

n− 2

)
.

The previous limit is well defined by induction on k since in view of Theorem 8.1
in [14], the linear operator (−∆)−1:M(Ω) → Lq(Ω) is continuous for any q ∈
[1, n/(n− 2)). If we assume by contradiction that the map ε 7→ g(γk,ε)−g(γk−1,ε)
is not strictly increasing then by (4.15) we infer that there exist ε1 < ε2 such that
g′(γk−1,ε)dvk,ε/dε = 0 for any ε ∈ (ε1, ε2). Since g′(γk−1,ε) > 0, this contradicts
the fact that the map ε 7→ vk,ε is strictly increasing. The strict monotonicity
of ε 7→ vk+1,ε then follows immediately from (4.3) and Lemma 4.5.

By (2.8)–(2.9) and (4.6) we have

d

dε
hN,ε(x, s) = [g′(s+γN,ε)− g′(γN,ε)]

d

dε
γN,ε ≥ 0 for a.e. x ∈ Ω, for all s ≥ 0.

This proves part (a). Finally, by (2.8)–(2.9) and (4.7), we have

d

dε
fN,ε ≥ g′(γN−1,ε)

d

dε
vN,ε for a.e. x ∈ Ω.
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Therefore, since g′(γN−1,ε) > 0 almost everywhere in Ω and vN,ε is strictly
increasing with respect to ε, we conclude that fN,ε is also strictly increasing
with respect to ε. �

In the next lemma we prove an existence result for (4.11) for small ε.

Lemma 4.16. Let n > 2 and assume that g satisfies (2.8)–(2.11). Then the
set

E = {ε > 0 : (4.11) has a nonnegative solution u ∈ H1
0 (Ω)}

is an interval and inf E = 0.

Proof. First we prove that E is nonempty. Denote for simplicity by vk the
functions vk,1. Define by iteration the following sequence of functions

(4.16) −∆ṽk =
[
λ1 + C

( k−1∑
i=1

ṽi

)p−2]
ṽk−1

if k ≥ 2 and ṽk = vk if k = 1 where C denotes the positive constant introduced
in (4.9). Assuming ε < 1, we claim that vk,ε ≤ εṽk. By (4.2) we deduce that
v1,ε = εv1. By induction on k, suppose that vi,ε ≤ εṽi for any i = 1, . . . , k.
Then, using again (4.9), we have

0 ≤ g
( k∑
i=1

vi,ε

)
− g

( k−1∑
i=1

vi,ε

)

≤
[
λ1 + C

( k∑
i=1

vi,ε

)p−2]
vk,ε ≤ ε

[
λ1 + C

( k∑
i=1

ṽi

)p−2]
ṽk

and by (4.3), (4.16) and the weak comparison principle (see Lemma 3 in [7]), we
deduce that vk+1,ε ≤ εṽk+1. This proves that vk,ε ≤ εṽk for any k ≤ N . This
yields

(4.17) 0 ≤ fN,ε ≤ g′(γN,ε)vN,ε ≤ [λ1 + Cγp−2
N,ε ]vN,ε ≤ εf̃N

with

f̃N =
[
λ1 + C

( N∑
i=1

ṽi

)p−2]
ṽN .

On the other hand, by (2.8), (2.10), (4.6) we have for a fixed σ ∈ (0, λ1 − λ)

(4.18) |hN,ε(x, s)| ≤ g′(|s|+ γN,ε)|s| ≤ [(λ+ σ) + C(|s|+ γN,ε)p−2]|s|

≤ (λ+ σ)|s|+ C1|s|p−1 + εp−2C2

( N∑
i=1

ṽi

)p−2

|s|

for all x ∈ Ω and all s ∈ R. By Lemma 4.3 and Theorem B.1 in [8], we infer that
f̃N ∈ L2n/(n+2)(Ω) and a(x) = C2(

∑N
i=1 ṽi)

p−2 ∈ Ln/2(Ω). Therefore, in view
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of Lemma 4.1, the homogeneous Dirichlet problem associated to the equation

−∆u = (λ+ σ)u+ C1u
p−1 + εp−2a(x)u+ εf̃N

admits a nonnegative nontrivial solution w ∈ H1
0 (Ω) for ε small enough. Then,

by (4.17), (4.18) we deduce that w is a supersolution of (4.11) and since the null
function is a subsolution of (4.11), using the super-subsolution method, it follows
that (4.11) admits a nonnegative minimal solution uN,ε ∈ H1

0 (Ω). This proves
that the set E is nonempty. Let us prove that E is an interval. By Lemma 4.6, we
have that hN,ε(x, s) and fN,ε are nondecreasing with respect to ε. Therefore we
deduce that if ε ∈ E then the corresponding solution of (4.11) is a supersolution
for (4.11) corresponding to ε ∈ (0, ε). Using again the super-subsolution method
we infer that (4.11) admits a nonnegative solution uN,ε ∈ H1

0 (Ω) for any ε ∈
(0, ε). This completes the proof of the lemma. �

Next we prove a nonexistence result for (2.7) for ε large enough.

Lemma 4.17. Let n > 2 and assume that g satisfies (2.8)–(2.11). Then there
exists ε̃ such that (2.7) admits no solutions for ε > ε̃.

Proof. Fix ε > 0 and assume that (2.7) admits a solution u. Let e1 be
a positive eigenfunction of −∆ associated to the first eigenvalue λ1. Then we
have ∫

Ω

−u∆e1 dx =
∫

Ω

g(u)e1 dx+ ε

∫
Ω

e1 dµ.

By (2.11) we infer that there exists M > 0 such that g(s) > λ1s for any s > M ,
from which we obtain

ε

∫
Ω

e1 dµ =
∫
{0≤u≤M}

[λ1u−g(u)]e1 dx+
∫
{u>M}

[λ1u−g(u)]e1 dx ≤ λ1M‖e1‖L1

and hence

ε ≤ ε̃ =
λ1M‖e1‖L1∫

Ω
e1 dµ

.

This completes the proof of the lemma. �

End of the proof of Theorem 2.2. By Lemmas 4.16 and 4.17 we deduce
that E is a nonempty bounded interval. If we define ε∗ = supE, then we
conclude that (2.7) admits a solution uε given by uε = uN,ε + γN,ε for ε < ε∗

and no solutions for ε > ε∗. �

5. Proof of Proposition 2.3

Define for s ≥ 0 the function g̃(s) = g(s) − λs ≥ 0. Let e1 be a positive
eigenfunction of −∆ associated to the first eigenvalue λ1. If u solves (2.7) then
it satisfies ∫

Ω

−u∆e1 dx =
∫

Ω

λue1 dx+
∫

Ω

g̃(u)e1 dx+ ε

∫
Ω

e1 dµ
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and in turn

(λ1 − λ)
∫

Ω

ue1 dx =
∫

Ω

g̃(u)e1 dx+ ε

∫
Ω

e1 dµ > 0.

This proves that λ < λ1. �

6. Proof of Corollary 2.4

Consider the decomposition µ = µ+ − µ− with µ+, µ− ≥ 0. Introduce the
following problem

(6.1)

{
−∆u = g(u) + εµ+ in Ω,

u = 0 on ∂Ω.

By Theorem 2.2 we infer that if ε is small enough then (6.1) admits a nonnegative
solution u1. Moreover, since µ+ ≥ µ then u1 is a supersolution for (2.12), i.e.∫

Ω

−u1∆ϕdx ≥
∫

Ω

g(u1)ϕdx+ ε

∫
Ω

ϕdµ for all ϕ ∈ C2
0 (Ω), ϕ ≥ 0.

On the other hand, if we introduce the problem

(6.2)

{
−∆u = g(u)− εµ− in Ω,

u = 0 on ∂Ω

then by Theorem 2.2 and (2.8), we deduce that if ε is small enough then (6.2) ad-
mits a nonpositive solution u2. Moreover, since −µ− ≤ µ then u2 is a subsolution
for (2.12), i.e.∫

Ω

−u2∆ϕdx ≤
∫

Ω

g(u2)ϕdx+ ε

∫
Ω

ϕdµ for all ϕ ∈ C2
0 (Ω), ϕ ≥ 0.

We just proved the existence of a supersolution u1 and a subsolution u2 with
u1 ≥ u2. Since g is an increasing function, the existence of a solution of (2.12)
then follows from the super-subsolution method (see Lemma 3 in [7] for more
details).

7. Further properties of minimal solutions of (4.11)

In this section we denote by uN,ε the minimal solution of (4.11) found in
Lemma 4.16. We prove that the function uN,ε is a local minimizer for the
functional IN,ε for any ε ∈ (0, ε∗). To this purpose we define the weighted
eigenvalue problem depending on ε

(7.1)

{
−∆ψ = λg′(uN,ε + γN,ε)ψ in Ω,

ψ = 0 on ∂Ω,

and the number

(7.2) λ1(ε) = inf
{
‖∇ψ‖2L2 : ψ ∈ H1

0 (Ω),
∫

Ω

g′(uN,ε + γN,ε)ψ2 dx = 1
}
.
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First of all note that the integral in (7.2) is well defined since g′(uN,ε + γN,ε) ∈
Ln/2(Ω). This follows from (4.4) and g′(s) = O(sp−2) as s → ∞ with p < 2∗.
Using the compact embedding H1

0 (Ω) ⊂ L2(Ω; g′(uN,ε + γN,ε) dx), by standard
arguments, we deduce that λ1(ε) admits a minimizer which is a solution of (7.1)
with λ = λ1(ε). Thanks to the strong maximum principle (see Theorem 8.19
in [10]), we get that problem (7.2) admits a positive minimizer ψ1. We are ready
to prove the following

Lemma 7.1. Let n > 2 and assume that g satisfies (2.8)–(2.11). If ε ∈ (0, ε∗)
then uN,ε is a local minimizer for IN,ε.

Proof. For any fixed ε ∈ (0, ε∗), let ε ∈ (ε, ε∗). We claim that λ1(ε) >
1. Consider the corresponding minimal solutions of (4.11) uN,ε and uN,ε. By
Lemma 4.6, (2.8) and the weak comparison principle we have uN,ε ≤ uN,ε and

(7.3)
∫

Ω

∇(uN,ε − uN,ε)∇w dx

=
∫

Ω

[hN,ε(x, uN,ε)− hN,ε(x, uN,ε)]w dx+
∫

Ω

(fN,ε − fN,ε)w dx

>

∫
Ω

[hN,ε(x, uN,ε)− hN,ε(x, uN,ε)]w dx

=
∫

Ω

[g(uN,ε + γN,ε)− g(uN,ε + γN,ε)]w dx

≥
∫

Ω

g′(uN,ε + γN,ε)(uN,ε − uN,ε)w dx

for all w ∈ H1
0 (Ω), w > 0 a.e. in Ω. Choosing w = ψ1 > 0, by (7.1) and (7.3) we

obtain

λ1(ε)
∫

Ω

g′(uN,ε + γN,ε)(uN,ε − uN,ε)ψ1 dx =
∫

Ω

∇ψ1∇(uN,ε − uN,ε) dx

>

∫
Ω

g′(uN,ε + γN,ε)(uN,ε − uN,ε)ψ1 dx ≥ 0

which proves that λ1(ε) > 1. Since

‖∇ψ‖2L2 ≥ λ1(ε)
∫

Ω

g′(uN,ε + γN,ε)ψ2 dx for all ψ ∈ H1
0 (Ω)

then, for all ψ ∈ H1
0 (Ω), we obtain

(7.4) ‖∇ψ‖2L2 −
∫

Ω

g′(uN,ε + γN,ε)ψ2 dx ≥
(

1− 1
λ1(ε)

)
‖∇ψ‖2L2 .

By (4.6), Lemma 4.4 and (7.4), we deduce that there exists C > 0 such that

(7.5) 〈I ′′N,ε(uN,ε)ψ,ψ〉 = ‖∇ψ‖2L2 −
∫

Ω

h′N,ε(x, uN,ε)ψ
2 dx ≥ C‖∇ψ‖2L2

for all ψ ∈ H1
0 (Ω). This proves that uN,ε is a local minimizer for IN,ε. �
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8. Proof of Theorem 2.5

Before proving the existence of a solution of (2.7) for ε = ε∗, we need the
following technical inequality

Lemma 8.1. For any r > 2 there exists σ > 0 such that

(8.1) (r−1)(t+s)r−2s2−(t+s)r−1s+tr−1s ≥ σ[(t+s)r−1s−tr−1s−(r−1)tr−2s2]

for any s, t ≥ 0.

Proof. The proof of (8.1) becomes trivial for r = 2 and hence we may
assume r > 2. Divide both sides of (8.1) by sr > 0 and put y = t/s. Then the
proof of the lemma is complete once we prove that

(8.2) (r− 1)(1+ y)r−2− (1+ y)r−1 + yr−1 ≥ σ[(1+ y)r−1− yr−1− (r− 1)yr−2]

for all y ≥ 0. Define for y ≥ 0 the functions

(8.3) Ψ(y) = (r − 1)(1 + y)r−2 + yr−1 − (1 + y)r−1

and

(8.4) Φ(y) = (1 + y)r−1 − yr−1 − (r − 1)yr−2.

By Lagrange Theorem we have

Φ(y) =
(r − 1)(r − 2)

2
ξr−3
y > 0 for all y ≥ 0

for a suitable ξy ∈ (y, y + 1). On the other hand, by (8.3) we have

Ψ̃(y) = y−(r−2)Ψ(y) = (r − 1)
(

1 +
1
y

)r−2

+ y − y

(
1 +

1
y

)r−1

for all y > 0.

By a second order Taylor expansion we obtain

(8.5) Ψ̃(y) =
(r − 1)(r − 2)

2
1
y

+ o

(
1
y

)
→ 0 as y →∞.

Moreover,

Ψ̃′′(y) =
(r − 1)(r − 2)(r − 3)

y4

(
1 +

1
y

)r−4

+
(r − 1)(r − 2)

y3

(
1 +

1
y

)r−3

> 0

for all y > 0 and this with (8.5) implies that Ψ̃(y) > 0 for any y > 0 and in turn
that Ψ(y) > 0 for any y ≥ 0. Using again a second order Taylor expansion we
obtain

Ψ(y)=
(r − 1)(r − 2)

2
yr−3 + o(yr−3) and Φ(y)=

(r − 1)(r − 2)
2

yr−3 + o(yr−3)
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as y → ∞. Therefore, there exists y > 0 such that Ψ(y)/Φ(y) > 1/2 for any
y > y and hence

(8.6) Ψ(y) > σΦ(y) for all y > y and all σ ∈ (0, 1/2).

On the other hand, since Φ and Ψ are strictly positive in [0,∞) then

(8.7) Ψ(y) > σΦ(y) for all y ∈ [0, y] and all σ ∈ (0,M)

where M = mins∈[0,y] Ψ(s)/Φ(s).
Finally, by (8.6)–(8.7) we obtain Ψ(y) > σΦ(y) for all y ≥ 0 with σ <

min{1/2,M}. This proves (8.1). �

Next we deal with the existence of a solution of (4.11) for ε = ε∗ = supE.

Lemma 8.2. Let n > 2 and assume that g(s) = λ|s|q−2s + |s|p−2s with
2 ≤ q < p < 2∗, λ ≥ 0 if q > 2 and λ ∈ [0, λ1) if q = 2. If ε = ε∗ then (4.11)
admits a minimal solution uN,ε∗ .

Proof. Consider ε ∈ (0, ε∗) and the corresponding minimal solution uN,ε.
Then uN,ε solves

(8.8)
∫

Ω

∇uN,ε∇w dx =
∫

Ω

hN,ε(x, uN,ε)w dx+
∫

Ω

fN,εw dx

for all w ∈ H1
0 (Ω). By (4.6) and (7.4), we have

(8.9)
∫

Ω

|∇uN,ε|2 dx ≥
∫

Ω

h′N,ε(x, uN,ε)u
2
N,ε dx.

Choosing w = uN,ε in (8.8), this yields

(8.10)
∫

Ω

h′N,ε(x, uN,ε)u
2
N,ε dx ≤

∫
Ω

hN,ε(x, uN,ε)uN,ε dx+
∫

Ω

fN,εuN,ε dx.

Replacing g(s) = λ|s|q−2s+ |s|p−2s in (4.6) and applying Lemma 8.1, we obtain
for σ > 0 small enough

(8.11)
∫

Ω

h′N,ε(x, uN,ε)u
2
N,ε dx

≥ (1 + σ)
∫

Ω

hN,ε(x, uN,ε)uN,ε dx− σ

∫
Ω

g′(γN,ε)u2
N,ε dx.

By (8.10) and (8.11) we have

σ

∫
Ω

hN,ε(x, uN,ε)uN,ε dx ≤ σ

∫
Ω

g′(γN,ε)u2
N,ε dx+

∫
Ω

fN,εuN,ε dx

and hence by (8.8) with w = uN,ε we obtain

(8.12) σ‖∇uN,ε‖2L2 ≤ σ

∫
Ω

g′(γN,ε)u2
N,ε dx+ (σ + 1)

∫
Ω

fN,εuN,ε dx.
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If we define

Λ1(ε) = inf
ψ∈H1

0 (Ω)\{0}

‖∇ψ‖2L2∫
Ω
g′(γN,ε)ψ2 dx

then by (8.12), Hölder inequality, Sobolev embedding and Lemma 4.6, we infer

σ

(
1− 1

Λ1(ε)

)
‖∇uN,ε‖2L2 ≤ (σ + 1)C‖fN,ε∗‖L2n/(n+2)‖uN,ε‖H1

0
.

This implies that {uN,ε} is bounded in H1
0 (Ω) uniformly with respect to ε once

we prove that

(8.13) lim
ε→ε∗

Λ1(ε) > 1.

To this purpose consider a sequence {ψ1,ε} of minimizers of Λ1(ε) such that
ψ1,ε > 0 in Ω and

∫
Ω
g′(γN,ε)ψ2

1,ε dx = 1. Then {ψ1,ε} is bounded in H1
0 (Ω)

and hence up to subsequences we may assume that ψ1,ε ⇀ ψ∗ in H1
0 (Ω) as

ε → ε∗. By Theorem B.1 in [8] and monotone convergence (see Lemma 4.6)
we infer that g′(γN,ε) → g′(γN,ε∗) in Ln/2(Ω) as ε → ε∗ and since by Sobolev
embedding ψ2

1,ε ⇀ (ψ∗)2 in Ln/(n−2)(Ω), then we have
∫
Ω
g′(γN,ε)ψ2

1,ε dx →∫
Ω
g′(γN,ε∗)(ψ∗)2 dx up to subsequences. This proves that

(8.14)
∫

Ω

g′(γN,ε∗)(ψ∗)2 dx = 1.

For any fixed ε ∈ (0, ε∗), we deduce by Lemmas 4.5 and 4.6 that uN,ε ≥
uN,ε > 0 almost everywhere in Ω for any ε ∈ (ε, ε∗). Moreover, by (8.14), weak
lower semicontinuity of the H1

0 -norm and monotone convergence, we have

lim
ε→ε∗

Λ1(ε) ≥
‖∇ψ∗‖2L2∫

Ω
g′(γN,ε∗)(ψ∗)2 dx

>
‖∇ψ∗‖2L2∫

Ω
g′(γN,ε∗ + uN,ε)(ψ∗)2 dx

= lim
ε→ε∗

‖∇ψ∗‖2L2∫
Ω
g′(γN,ε + uN,ε)(ψ∗)2 dx

≥ lim
ε→ε∗

‖∇ψ∗‖2L2∫
Ω
g′(γN,ε + uN,ε)(ψ∗)2 dx

≥ lim
ε→ε∗

λ1(ε) ≥ 1

where the last inequality follows from the proof of Lemma 7.1. This proves
(8.13).

Up to subsequences we may assume that there exists u∗ ∈ H1
0 (Ω) such that

(8.15) uN,ε ⇀ u∗ in H1
0 (Ω) as ε→ ε∗

and
uN,ε → u∗ a.e. in Ω as ε→ ε∗.

By Lemma 4.4 we deduce that hN,ε(x, u) ∈ L2n/(n+2)(Ω) for any u ∈ H1
0 (Ω) and

ε > 0. Therefore by Lemma 4.6 and monotone convergence we have

(8.16) hN,ε(x, uN,ε) → hN,ε∗(x, u∗) in L2n/(n+2)(Ω) as ε→ ε∗.
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For the same reason, we deduce that

(8.17) fN,ε → fN,ε∗ in L2n/(n+2)(Ω) as ε→ ε∗.

Therefore by (8.15)–(8.17), passing to the limit in (8.8) we obtain∫
Ω

∇u∗∇w dx =
∫

Ω

hN,ε∗(x, u∗)w dx+
∫

Ω

fN,ε∗w dx

for all w ∈ H1
0 (Ω). This completes the proof of the lemma. �

End of the Proof of Theorem 2.5. The existence of a solution uε∗

of (2.7) follows immediately from Lemma 8.2 defining uε∗ = uN,ε∗ + γN,ε∗ . �

9. Proof of Theorem 2.6

The existence of a second solution of (2.7) is obtained as critical point of the
functional IN,ε defined in (4.12). In this section we will use the same notations as
in the proof of Theorem 2.2. First we prove that IN,ε satisfies the PS condition.
In order to prove boundedness of PS sequences we need a technical inequality.

Lemma 9.1. For any r > 2 there exists σ > 0 such that, for any s, t ≥ 0,

(9.1) (t+ s)r−1s+ tr−1s− 2
r
(t+ s)r +

2
r
tr

≥ σ

[
1
r
(t+ s)r − 1

r
tr − tr−1s− r − 1

2
tr−2s2

]
.

Proof. The proof of (9.1) becomes trivial for r = 2 and hence we may
assume r > 2. Divide both sides of (9.1) by sr > 0 and put y = t/s. The
proof of (9.1) is equivalent to Ψ(y) ≥ σΦ(y) for all y ≥ 0 with

Ψ(y) = (1 + y)r−1 + yr−1 − 2
r
[(1 + y)r − yr],(9.2)

Φ(y) =
1
r
[(1 + y)r − yr]− yr−1 − r − 1

2
yr−2.(9.3)

The inequality (9.1) may be obtained applying the procedure introduced in the
proof of Lemma 8.1 to the functions Ψ and Φ defined in (9.2)–(9.3). �

We are ready to prove that the functional IN,ε satisfies the PS condition.

Lemma 9.2. Let n > 2 and assume that g(s) = λ|s|q−2s + |s|p−2s with
2 ≤ q < p < 2∗, λ ≥ 0 if q > 2 and λ ∈ [0, λ1) if q = 2. Then IN,ε satisfies the
PS condition.
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Proof. Let {um} be a PS sequence for IN,ε. Then we have

(9.4) C + o(‖um‖H1
0
) = (2 + σ)IN,ε(um)− 〈I ′N,ε(um), um〉

=
σ

2
‖um‖2H1

0
+

∫
Ω

[hN,ε(x, um)um − (2 + σ)HN,ε(x, um)] dx

− (1 + σ)
∫

Ω

fN,εum dx.

Replacing g(s) = λ|s|q−2s+ |s|p−2s in (4.6) and applying Lemma 9.1, we obtain
for σ > 0 small enough

(9.5)
∫

Ω

[hN,ε(x, um)um − (2 + σ)HN,ε(x, um)] dx ≥ −σ
2

∫
Ω

g′(γN,ε)u2
m dx.

Therefore, by (9.4) and (9.5) we infer
(9.6)

C + o(‖um‖H1
0
) ≥ σ

2

(
‖∇um‖2L2 −

∫
Ω

g′(γN,ε)u2
m dx

)
− (1 + σ)

∫
Ω

fN,εum dx.

But from (7.2) and the proof of Lemma 7.1, we deduce that

Λ1(ε) = inf
ψ∈H1

0 (Ω)\{0}

‖∇ψ‖2L2∫
Ω
g′(γN,ε)ψ2 dx

≥ λ1(ε) > 1

and hence by (9.6), Hölder inequality and Sobolev embedding, we obtain

C + o(‖um‖H1
0
) ≥ σ

2

(
1− 1

Λ1(ε)

)
‖∇um‖2L2 − (1 + σ)C‖fN,ε‖L2n/(n+2)‖um‖H1

0

and in turn
σ

2

(
1− 1

Λ1(ε)

)
‖um‖2H1

0
≤ C + o(‖um‖H1

0
) + (1 + σ)C‖fN,ε‖L2n/(n+2)‖um‖H1

0

which proves that the sequence {um} is bounded in H1
0 (Ω). Up to subsequences,

we may assume that there exists u ∈ H1
0 (Ω) such that um ⇀ u in H1

0 (Ω) and
um → u in Lr(Ω) for any r ∈ [1, 2∗).

Since {um} is a PS sequence, by Lemma 4.4 it follows that um = ∇IN,ε(um)−
Kum and um → u strongly in H1

0 (Ω). �

Next we prove the existence of a second solution of (4.11).

Lemma 9.3. Let n > 2 and assume that g(s) = λ|s|q−2s + |s|p−2s with
2 ≤ q < p < 2∗, λ ≥ 0 if q > 2 and λ ∈ [0, λ1) if q = 2. Then for any ε ∈
(0, ε∗), (4.11) admits a nonnegative solution UN,ε with IN,ε(UN,ε) > IN,ε(uN,ε).
Moreover, UN,ε > uN,ε almost everywhere in Ω.

Proof. In Lemma 9.2 we proved that the functional IN,ε satisfies the PS
condition. In view of (7.5) in Lemma 7.1, we deduce that there exist ρ > 0 and
R > IN,ε(uN,ε) such that

(9.7) IN,ε(ψ) ≥ R for all ψ such that ‖ψ − uN,ε‖H1
0

= ρ.
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Moreover, since p > 2 we deduce that there exists a nonnegative nontrivial
function w ∈ H1

0 (Ω) such that ‖w − uN,ε‖H1
0
> ρ and IN,ε(w) < IN,ε(uN,ε).

Then, we define the functional

(9.8) ĨN,ε(ψ) =
1
2
‖∇ψ‖2L2 −

∫
Ω

HN,ε(x, ψ+) dx−
∫

Ω

fN,εψ dx

for all ψ ∈ H1
0 (Ω). Replacing IN,ε with ĨN,ε in the proofs of Lemmas 4.4 and

9.2 it follows that ĨN,ε ∈ C1(H1
0 (Ω)) and satisfies the PS condition.

Introduce the set of paths Γ defined by

Γ = {γ ∈ C0([0, 1];H1
0 (Ω)) : γ(0) = uN,ε, γ(1) = w}

and define the minimax level

cε = inf
γ∈Γ

max
t∈[0,1]

ĨN,ε(γ(t)).

Since IN,ε(ψ) ≤ ĨN,ε(ψ) for any ψ ∈ H1
0 (Ω), IN,ε(uN,ε) = ĨN,ε(uN,ε) and

IN,ε(w) = ĨN,ε(w), by (9.7) it follows that cε > ĨN,ε(uN,ε) > ĨN,ε(w). By
the the mountain-pass theorem [3], we infer that ĨN,ε admits a critical point
UN,ε at level cε. In particular UN,ε solves the equation

−∆UN,ε = hN,ε(x, U+
N,ε) + fN,ε.

Moreover, by the weak comparison principle, it follows that UN,ε ≥ 0. This
proves that UN,ε is a nonnegative solution of (4.11). Since uN,ε is the nonnegative
pointwise smallest solution of (4.11) and uN,ε does not coincides with UN,ε, by
Lemma 4.5 we conclude that UN,ε > uN,ε almost everywhere in Ω. �

End of the Proof of Theorem 2.6. The proof of the theorem follows
immediately from Lemma 9.3 defining Uε = UN,ε + γN,ε for any ε ∈ (0, ε∗). �

10. Proof of Theorem 2.7

Let {ρm} be a sequence of mollifiers and let µm = ρm ∗ µ. For any m ∈ N,
let v(m)

i,ε be the functions defined in (4.2)–(4.3) with µm in place of µ and let

γ
(m)
k,ε =

∑k
i=1 v

(m)
i,ε for k = 1, . . . , N where N is the integer introduced in the

proof of Theorem 2.2. In this proof we fix ε ∈ (0, ε∗) where ε∗ is the extremal
value for the existence of solutions of (2.7). We proved in Lemma 7.1 that for any
ε ∈ (0, ε∗), the functional IN,ε defined in (4.12) admits a local minimizer uN,ε.
We show that for any m large enough the functional I(m)

N,ε also admits a local

minimum (see (4.12) for the definition of I(m)
N,ε ). First we prove the following

Lemma 10.1. Let γ(m)
N,ε , h

(m)
N,ε , H

(m)
N,ε defined as in the proof of Theorem 2.2

with µm in place of µ. If sm → s in R then:

(a) H
(m)
N,ε (x, sm) → HN,ε(x, s) as m→∞ for a.e. x ∈ Ω;
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(b) h
(m)
N,ε(x, sm) ≤ a + b(x)s + csp−1 for all m, all s ∈ R and a.e. x ∈ Ω

where a, c ∈ R, b ∈ Lα0(Ω), α0 > n/2 and p < 2∗;
(c) h

(m)
N,ε(x, sm) → hN,ε(x, s) as m→∞ for a.e. x ∈ Ω;

(d) (h(m)
N,ε)

′(x, sm) → h′N,ε(x, s) as m→∞ for a.e. x ∈ Ω.

Proof. Since {µm} is bounded in L1(Ω), by Theorem B.1 in [8], Sobolev
embedding and (4.2)–(4.3) we have up to subsequences

(10.1) v
(m)
i,ε → vi,ε in Lr(Ω) as m→∞, for all r ∈ [1, n/(n− 2)).

Since H(m)
N,ε (x, s) and HN,ε(x, s) are even with respect to s, by (4.6), (10.1) we

have up to subsequences

lim
m→∞

H
(m)
N,ε (x, sm) = lim

m→∞

∫ |sm|

0

[g(γ(m)
N,ε + t)− g(γ(m)

N,ε )] dt

= lim
m→∞

[G(γ(m)
N,ε + |sm|)−G(γ(m)

N,ε )− g(γ(m)
N,ε )|sm|]

=G(γN,ε + |s|)−G(γN,ε)− g(γN,ε)|s|
=HN,ε(x, |s|) = HN,ε(x, s)

for a.e. x ∈ Ω where G(s) =
∫ s
0
g(t) dt. This proves (a).

The proof of (b) follows from (10.1) and Lemma 4.3(a). The proofs of (c)–(d)
are similar to the proof of (a) and they are based on the pointwise convergence
v
(m)
i,ε → vi,ε and the continuity of g and g′. �

Lemma 10.2. Let ε ∈ (0, ε∗). Then there exists m > 0 such that for any
m > m the functional I(m)

N,ε admits a local minimizer u(m)
N,ε ≥ 0. Moreover, we

have u(m)
N,ε → uN,ε in H1

0 (Ω) as m→∞.

Proof. We start by proving the existence of a local minimizer. In view
of Lemma 9.3, define ρ > 0 and R > IN,ε(uN,ε) such that

IN,ε(ψ) ≥ R for all ψ ∈ ∂Bρ

where Bρ = {ψ ∈ H1
0 (Ω) : ‖ψ − uN,ε‖H1

0
< ρ}. We claim that I(m)

N,ε converges
uniformly to IN,ε on Bρ. It suffices to show that if {zm} ⊂ Bρ then up to
subsequences we have

(10.2) |I(m)
N,ε (zm)− IN,ε(zm)| → 0 as m→∞.

Indeed, since {zm} is bounded in H1
0 (Ω) up to subsequences there exists z ∈ Bρ

such that zm → z in Lr(Ω) for any r < 2∗. By Lemma 10.1 we have

|I(m)
N,ε (zm)− IN,ε(zm)| ≤

∣∣∣∣ ∫
Ω

H
(m)
N,ε (x, zm) dx−

∫
Ω

HN,ε(x, zm) dx
∣∣∣∣

+
∣∣∣∣ ∫

Ω

f
(m)
N,ε zm dx−

∫
Ω

fN,εzm dx

∣∣∣∣ → 0
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as m→∞. This proves (10.2).
By (10.2) we infer that there exists m > 0 such that

(10.3) inf
∂Bρ

I
(m)
N,ε > I

(m)
N,ε (uN,ε) for all m > m.

On the other hand, since Bρ is compact with respect to the weak topology
of H1

0 (Ω), by weak lower semicontinuity, we infer that I(m)
N,ε admits a global

minimum in Bρ which, in view of (10.3), is achieved by a function u
(m)
N,ε ∈ Bρ.

Therefore u(m)
N,ε is a local minimizer for I(m)

N,ε . Since I(m)
N,ε (|w|) ≤ I

(m)
N,ε (w) for any

w ∈ H1
0 (Ω) we may assume that u(m)

N,ε ≥ 0 up to replace it with |u(m)
N,ε |.

Since IN,ε ∈ C2(H1
0 (Ω)), by Lemma 7.1 we may choose ρ > 0 small enough

such that

(10.4) 〈I ′′N,ε(w)ψ,ψ〉 ≥ C‖ψ‖2H1
0

for all w ∈ Bρ and all ψ ∈ H1
0 (Ω)

for a suitable constant C > 0.
It remains to prove that u(m)

N,ε → uN,ε in H1
0 (Ω). We may assume up to

subsequences that u(m)
N,ε ⇀ u ∈ Bρ in H1

0 (Ω). By Lemma 10.1(a), (b), (10.1) and
weak lower semicontinuity of the H1

0 (Ω)-norm we have

IN,ε(u) ≤ lim inf
m→∞

I
(m)
N,ε (u(m)

N,ε)(10.5)

≤ lim sup
m→∞

I
(m)
N,ε (u(m)

N,ε) ≤ lim
m→∞

I
(m)
N,ε (w) = IN,ε(w)

for all w ∈ Bρ. This proves that u is a minimizer for IN,ε in Bρ. Moreover,
choosing w = u in (10.5) we obtain I(m)

N,ε (u(m)
N,ε) → IN,ε(u). It follows immediately

that ‖u(m)
N,ε‖H1

0
→ ‖u‖H1

0
and hence by the weak convergence u(m)

N,ε ⇀ u we get

u
(m)
N,ε → u in H1

0 (Ω). The minimizer u necessarily coincides with uN,ε since by
(10.4) IN,ε is strictly convex in Bρ. �

Next we prove that for m large enough, the functional I(m)
N,ε admits a second

critical point.

Lemma 10.3. Let g(s) = λ|s|q−2s + |s|p−2s with 2 ≤ q < p < 2∗, λ ≥ 0 if
q > 2 and λ ∈ [0, λ1) if q = 2 and let ε ∈ (0, ε∗). Then there exists m > 0 such
that for any m > m the functional I(m)

N,ε admits a second critical point U (m)
N,ε ≥ 0

such that U (m)
N,ε → U∗ in H1

0 (Ω) as m → ∞ up to subsequences. Moreover, U∗

is a critical point for IN,ε with IN,ε(UN,ε) > IN,ε(uN,ε).

Proof. Let m as in Lemma 10.2. According to (9.8), let Ĩ(m)
N,ε be defined by

Ĩ
(m)
N,ε (ψ) =

1
2
‖∇ψ‖2L2 −

∫
Ω

H
(m)
N,ε (x, ψ+) dx−

∫
Ω

f
(m)
N,ε ψ dx
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for all ψ ∈ H1
0 (Ω). Then by (10.2), we deduce that

Ĩ
(m)
N,ε (uN,ε) < inf

∂Bρ

Ĩ
(m)
N,ε for all m > m

and moreover, by (10.2), there exists w ≥ 0 such that ‖w − uN,ε‖H1
0
> ρ and

Ĩ
(m)
N,ε (w) < Ĩ

(m)
N,ε (uN,ε). Therefore by Lemma 9.2, it follows that the functional

Ĩ
(m)
N,ε satisfies all the assumptions of the mountain-pass theorem [3] and hence

admits a critical point U (m)
N,ε with Ĩ

(m)
N,ε (U (m)

N,ε ) > Ĩ
(m)
N,ε (uN,ε) ≥ Ĩ

(m)
N,ε (u(m)

N,ε). Us-

ing the weak comparison principle it follows that U (m)
N,ε ≥ 0 and hence U (m)

N,ε is

a critical point for I(m)
N,ε . Then we prove that the sequence {U (m)

N,ε } is bounded in
H1

0 (Ω). Using the uniform convergence (10.2) and the minimax characterization
of U (m)

N,ε , we deduce that there exists C > 0 such that

|I(m)
N,ε (U (m)

N,ε )| < C for all m ∈ N.

Therefore, since U (m)
N,ε is a critical point for I(m)

N,ε then by (9.6) we have, for any
σ > 0,

C ≥ (2 + σ)I(m)
N,ε (U (m)

N,ε )− 〈(I(m)
N,ε )′(U (m)

N,ε ), U (m)
N,ε 〉

≥ σ

2

[
‖∇U (m)

N,ε ‖
2
L2 −

∫
Ω

g′(γ(m)
N,ε )(U

(m)
N,ε )2 dx

]
− (1 + σ)

∫
Ω

f
(m)
N,ε U

(m)
N,ε dx

≥ σ

2

(
1− 1

Λ(m)
1 (ε)

)
‖∇U (m)

N,ε ‖
2
L2 − (1 + σ)C‖f (m)

N,ε ‖L2n/(n+2)‖U (m)
N,ε ‖H1

0

where

Λ(m)
1 (ε) = inf

ψ∈H1
0 (Ω)\{0}

‖∇ψ‖2L2∫
Ω
g′(γ(m)

N,ε )ψ2 dx
.

Since the sequence {f (m)
N,ε } is bounded in L2n/(n+2)(Ω) in order to prove bound-

edness of {U (m)
N,ε } we need to show that {Λ(m)

1 (ε)} is bounded away from one for

large m. Since u(m)
N,ε is a local minimizer for I(m)

N,ε for any m > m, then we have

0 ≤ 〈(I(m)
N,ε )′′(u(m)

N,ε)ψ,ψ〉 = ‖∇ψ‖2L2 −
∫

Ω

g′(γ(m)
N,ε + u

(m)
N,ε)ψ

2 dx

for all ψ ∈ H1
0 (Ω) and hence, by the proof of Lemma 7.1, we get

Λ(m)
1 (ε) ≥ λ

(m)
1 (ε) = inf

ψ∈H1
0 (Ω)\{0}

‖∇ψ‖2L2∫
Ω
g′(γ(m)

N,ε + u
(m)
N,ε)ψ2 dx

≥ 1

for all m > m. Suppose by contradiction that there exists a subsequence still
denoted by {Λ(m)

1 (ε)} such that limm→∞ Λ(m)
1 (ε) = 1. Let {ψ(m)

1,ε } be a sequence

of minimizer for Λ(m)
1 (ε) such that∫

Ω

g′(γ(m)
N,ε )(ψ

(m)
1,ε )2 dx = 1.
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Then {ψ(m)
1,ε } is bounded in H1

0 (Ω) so that we may assume that ψ(m)
1,ε ⇀ ψ∗ in

H1
0 (Ω). Then by weak lower semicontinuity, Lemma 10.1(d), (10.1) and the fact

that g′(γ(m)
N,ε ) is uniformly bounded in Ln/2(Ω) we have

∫
Ω
g′(γN,ε)(ψ∗)2dx = 1

and

lim
m→∞

Λ(m)
1 (ε) ≥

‖∇ψ∗‖2L2∫
Ω
g′(γN,ε)(ψ∗)2 dx

≥ λ1(ε) > 1

which is a contradiction. This proves that {U (m)
N,ε } is bounded inH1

0 (Ω) and hence

up to subsequences there exists U∗ ∈ H1
0 (Ω) such that U (m)

N,ε ⇀ U∗ in H1
0 (Ω)

as m → ∞. Since U (m)
N,ε is a critical point for I(m)

N,ε , then from Lemma 4.4 and

Lemma 10.1 it follows that U∗ is a critical point for IN,ε and moreover U (m)
N,ε →

U∗ in H1
0 (Ω). We have to prove that U∗ does not coincide with uN,ε. Since for

any m large enough U (m)
N,ε is a mountain-pass critical point for I(m)

N,ε then by the
proof of Lemma 10.2 it follows that for any 0 < σ < (inf∂Bρ ĨN,ε− ĨN,ε(uN,ε))/2
there exists m > 0 such that

Ĩ
(m)
N,ε (U (m)

N,ε ) ≥ inf
∂Bρ

Ĩ
(m)
N,ε ≥ inf

∂Bρ

ĨN,ε − σ > ĨN,ε(uN,ε) + σ.

Therefore, since U (m)
N,ε → U∗ in H1

0 (Ω) then

IN,ε(U∗) = ĨN,ε(U∗) = lim
m→∞

Ĩ
(m)
N,ε (U (m)

N,ε ) > ĨN,ε(uN,ε) = IN,ε(uN,ε).

This completes the proof of the lemma. �

End of the Proof of Theorem 2.7. The proof of the proposition follows
immediately from Lemmas 10.2 and 10.3 since

I(m)(w) = J (m)(w + γ
(m)
N,ε )− J (m)(γ(m)

N,ε ) = I
(m)
N,ε (w)

for all w ∈ H1
0 (Ω), w ≥ 0. �

11. Proof of Proposition 2.8

Suppose by contradiction that for any ε > 0 (2.14) admits a solution u ∈
Lp−1(Ω). Let ua(x) = εG(x, a) where G(x, a) denotes the Green function for
−∆ in Ω. Then we have∫

Ω

−(u− ua)∆ϕdx =
∫

Ω

up−1ϕdx ≥ 0 for all ϕ ∈ C2
0 (Ω), ϕ ≥ 0

and by the weak comparison principle (see Lemma 3 in [7]) we obtain

(11.1) u ≥ ua ≥ 0 a.e. in Ω.

On the other hand we have ua(x) ∼ C|x − a|−n+2 as x → a and since p ≥ 2∗,
we infer ua /∈ Lp−1(Ω). And this with (11.1) contradicts u ∈ Lp−1(Ω).
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12. Proof of Proposition 2.9

12.1. The case p > 2∗. Up to translation assume that 0 ∈ Ω. Choose
µ = f ∈ L1(Ω) with f(x) = |x|α with α ∈ (−n,−2) and consider the Poisson
equation {

−∆v = εf in Ω,

v = 0 on ∂Ω.

Then we have v(x) ∼ C|x|α+2 as x→ 0.
If we choose α ∈ (−n,−(n+ 2(p− 1))/(p− 1)), then v /∈ Lp−1(Ω). As in the

proof of Proposition 2.8, using the weak comparison principle, we deduce that if
u ∈ Lp−1(Ω) is a solution (2.14) with µ = f , then u ≥ v ≥ 0 almost everywhere
in Ω a contradiction.

12.2. The case p = 2∗. As in the previous case, assume 0 ∈ Ω and choose
µ = f ∈ L1(Ω) with f(x) = |x|−n/(log |x/a|)2 and Ba/2(0) ⊃ Ω. Let v be
a radial solution of −∆v = εf in Ω. Then v = v(r) solves the ordinary differential
equation

−(rn−1v′)′ =
ε

r(log (r/a))2
, for all r = |x| < a

2
.

We may choose v in the form

(12.1) v(r) = −
∫ a/2

r

ε

sn−1 log(s/a)
ds, for all r <

a

2
.

Let w be a harmonic function in Ω such that v = w + v is equal zero on ∂Ω.
Then v solves the Dirichlet problem{

−∆v = εf in Ω,

v = 0 on ∂Ω.

If u ∈ Lp−1(Ω) is a solution of (2.14) with µ = f , by the weak comparison
principle we have u ≥ v ≥ 0 almost everywhere in Ω. If we show that v /∈ Lp−1(Ω)
we reach a contradiction. It is enough to prove that v /∈ Lp−1(Ω). By (12.1), we
infer

v(r) ≥ C

n− 2 + β

(
r−(n−2+β) −

(
a

2

)−(n−2+β))
for all r <

a

2

where β ∈ (−n+2, 0) and C is a suitable positive constant. For R > 0 such that
BR(0) ⊂ Ω we have

∫
Ω

vp−1(x) dx ≥
(

C

n− 2 + β

)p−1 ∫
BR(0)

[
|x|−(n−2+β) −

(
a

2

)−(n−2+β)]p−1

dx
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≥
(

C

n− 2 + β

)p−1 ∫
BR(0)

[
|x|−(p−1)(n−2+β)

− p|x|−(p−2)(n−2+β)

(
a

2

)−(n−2+β)]
dx

and since p − 1 = n/(n− 2), denoting by ωn−1 the measure of the (n − 1)-
dimensional unit sphere in Rn we obtain∫

Ω

vp−1(x) dx ≥
(

C

n− 2 + β

)p−1

ωn−1

·
∫ R

0

[
r−nβ/(n−2)−1 − p

(
a

2

)−(n−2+β)

rn−3−2β/(n−2)

]
dr

=
(

C

n− 2 + β

)p−1

ωn−1

[
− n− 2

nβ
R−nβ/(n−2)

− p

(
a

2

)−(n−2+β)
n− 2

(n− 2)2 − 2β
Rn−2−2β/(n−2)

]
→∞

as β → 0−. This proves that v /∈ Lp−1(Ω).
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Università di Pisa

Largo Bruno Pontecorvo 5

56127 Pisa, ITALY

E-mail address: ferrero@mail.dm.unipi.it

Claudio Saccon
Dipartimento di Matematica Applicata

Universitá di Pisa
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