
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 28, 2006, 199–233

THE SUSPENSION ISOMORPHISM
FOR HOMOLOGY INDEX BRAIDS

Maria C. Carbinatto — Krzysztof P. Rybakowski

Abstract. Let X be a metric space, π be a local semiflow on X, k ∈ N,

E be a k-dimensional normed space and eπ be the semiflow generated by
the equation ẏ = Ly, where L: E → E is a linear map whose all eigenvalues

have positive real parts. We show in this paper that for every admissible

isolated π-invariant set S there is a well-defined isomorphism of degree
−k from the homology categorial Conley–Morse index of (π × eπ, S × {0})
to the homology categorial Conley–Morse index of (π, S) such that the

family of these isomorphisms commutes with homology index sequences.
In particular, given a partially ordered Morse decomposition (Mi)i∈P of

S there is an isomorphism of degree −k from the homology index braid of

(Mi × {0})i∈P to the homology index braid of (Mi)i∈P , so C-connection
matrices of (Mi×{0})i∈P are just C-connection matrices of (Mi)i∈P shifted

by k to the right.

1. Introduction

Let Hq, q ∈ Z, be the singular homology functor with coeficients in a fixed
Γ-module G, where Γ is a commutative ring. Let X be a metric space, π be
a local semiflow on X, k ∈ N, E be a k-dimensional normed space and π̃ be the
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semiflow generated by the equation ẏ = Ly, where L:E → E is a linear map
whose all eigenvalues have positive real parts.

Consider the local product semiflow π× π̃ on X×E defined by (x, y)π× π̃t :=
(xπt, yπ̃t) whenever xπt is defined.

Whenever S is an isolated π-invariant set having a strongly π-admissible
isolating neighbouhood, then S×{0}, where 0 = 0E is the zero of E, is an isolated
π × π̃-invariant set having a strongly π × π̃-admissible isolating neighbouhood.
This means that the homotopy (Conley) indices h(π, S) and h(π × π̃, S × {0})
are defined. Moreover, we have the well-known formula

(1.1) h(π × π̃, S × {0}) = h(π, S) ∧ Σk.

Thus applying standard results from homology theory to (1.1) we have, for q ∈ Z,

(1.2) Hq(h(π × π̃, S × {0})) = Hq−k(h(π, S)).

Now formula (1.1) simply means that whenever (N1, N2) is an arbitrary index
pair in some strongly π-admissible isolating neighbouhood of S and (N̂1, N̂2) is
an arbitrary index pair in some strongly π× π̃-admissible isolating neighbouhood
of S × {0}, then the pointed spaces (N̂1/N̂2, [N̂2]) and (N1/N2, [N2]) ∧ (Sk, s0)
are homotopy equivalent, where (Sk, s0) is a k-dimensional sphere with a base-
point. Again, formula (1.2) only means that, for q ∈ Z, there is some Γ-module
isomorphism between Hq(N̂1/N̂2, {[N̂2]}) and Hq−k(N1/N2, {[N2]}).

It is the purpose of this paper to refine formula (1.2). More specifically, we
show in our main theorem that for every S there is a well-defined isomorphism
θq(S) from the homology categorial Conley–Morse index H ′

q(S) := Hq(C(π ×
π̃, S × {0})) of (π × π̃, S × {0}) to the homology categorial Conley–Morse index
Hq−k(S) := Hq−k(C(π, S)) of (π, S) such that the family of such isomorphisms
commutes with homology index sequences. This means that, whenever (A,A∗)
is an attractor-repeller pair of S relative to π, then (A × {0}, A∗ × {0}) is an
attractor-repeller pair of S×{0} relative to π× π̃ and we have the commutative
diagram

(1.3)

// H ′
q(A) //

θq(A)
��

H ′
q(S) //

θq(S)
��

H ′
q(A

∗) //

θq(A∗)
��

H ′
q−1(S) //

θq−1(A)
��

// Hq−k(A) // Hq−k(S) // Hq−k(A∗) // Hq−k−1(A) //

Here, the upper (resp. lower) horizontal sequence is the homology index sequence
of (π × π̃, S × {0}, A × {0}, A∗ × {0}) (resp. (π, S,A,A∗)). This implies that
whenever P is a finite set, ≺ is a strict order relation on P and (Mi)i∈P is a ≺-
ordered Morse decomposition of S relative to π, then (Mi×{0})i∈P is a≺-ordered
Morse decomposition of S × {0} relative to π × π̃ and there is a module braid
isomorphism from the homology index braid of (π × π̃, S × {0}, (Mi × {0})i∈P )
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to the homology index braid of (π, S, (Mi)i∈P ) ‘shifted to the left by k’. In
particular, shifting a C-connection matrix of (π, S, (Mi)i∈P ) by k to the right
gives us a C-connection matrix of (π × π̃, S × {0}, (Mi × {0})i∈P ).

The proof of our main theorem is somewhat technical. A crucial step in the
proof is an important result from homological algebra which, though already
familiar to, say, Bourbaki, was only recently proved by M. Scott Osborne [12] in
the explicit and general form required here. This result asserts that given a 3×3-
matrix of chain maps, the diagram composed of the connecting homomorphisms
of the third row, first column, first row and third column anticommutes!

The outline of this paper is as follows: in Section 2 we establish and collect
some preliminary results required in the sequel. In particular, in Proposition 2.2
we prove existence of ‘symmetric looking’ FM-index pairs for product semiflows.
We also extend some concepts and results from [5] about image modules of con-
nected simple systems under covariant or contravariant functors (Definition 2.3
and Propositions 2.4 and 2.5). In Section 3 we state our main result, Theo-
rem 3.1 and reduce its proof to the proof of a special case, Theorem 3.5. In
Section 4, Theorem 4.8, we establish the existence of the suspension isomor-
phism claimed in Theorem 3.5 through a series of propositions and lemmas. In
Section 5 we present some preliminary algebraic results. In particular, we quote
Osborne’s result (Proposition 5.4) and extend it to 3× 3-matrices of chain maps
with weakly exact rows (Proposition 5.5). We also present a technical result
guaranteeing injectivity of singular chain maps (Lemma 5.7). In Section 6 we
establish a technical result, Theorem 6.1, which implies the commutativity of the
suspension isomorphism with respect to homology index sequences of attractor-
repeller pairs. This completes the proof of Theorem 3.5 and thus also the proof of
Theorem 3.1. Finally, in Section 7, Theorem 3.1 is used to establish the existence
of the braid isomorphism mentioned above.

In this paper we use the notation and results from [5] without further expla-
nation.

2. Preliminaries

In this section we will establish and collect a few preliminary results which
are required for a precise statement and proof of our main result.

Proposition 2.1. Let Y be a topological space and M1, M2, M̃1, M̃2 be
closed in Y such that M2 ⊂M1 ⊂ M̃1, M2 ⊂ M̃2, M̃1\M̃2 ⊂M1 and M̃2∩M1 ⊂
M2. Then the inclusion induced map

f :M1/M2 → M̃1/M̃2

is a base-point preserving homeomorphism.
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Proof. Proposition I.6.2 in [14] implies that f is a continuous map. Define
g: M̃1/M̃2 →M1/M2 by

g(z) :=

{
q(x) if z = q̃(x) with x ∈ M̃1 \ M̃2,

[M2] otherwise,

where q:M1 →M1/M2 and q̃: M̃1 → M̃1/M̃2 are the canonical projection maps.
Since M̃1 \ M̃2 ⊂ M1, it follows that g is well defined. Moreover, g is an inclu-
sion induced map in the sense of Definition I.6.1 in [14] which is continuous by
Proposition I.6.2 in [14]. Clearly, both f and g are base-point preserving.

We need to show that g is the inverse of f . Let z ∈ M1/M2. If z /∈ q(M1)
then M2 = ∅ and z = [M2] so (g ◦ f)(z) = z. If z ∈ q(M1) then let x ∈M1 ⊂ M̃1

be such that z = q(x). Thus f(z) = q̃(x). If x ∈ M̃1 \ M̃2 then the definition of
g implies that g(f(z)) = q(x) = z. Otherwise it follows that x ∈M1 ∩ M̃2 ⊂M2

so, on the one hand, g(f(z)) = [M2] and, on the other hand, z = [M2], hence
g(f(z)) = z.

Let z ∈ M̃1/M̃2. If z = q̃(x) where x ∈ M̃1 \ M̃2, then g(z) = q(x) and
x ∈ M1 \ M2. Therefore, f(g(z)) = q̃(x) = z. Otherwise, z = [M̃2] and so
f(g(z)) = z. �

Now let X and X̃ be metric spaces and let π, respectively π̃, be a local
semiflow defined on X, respectively X̃. Let S, respectively S̃, be a compact
π-invariant, respectively π̃-invariant.

Set D := { (t, (x, x̃)) ∈ [0,∞[ × X × X̃ | xπt and x̃π̃t are defined }. Define
(x, x̃)π × π̃t := (xπt, x̃π̃t) for (t, (x, x̃)) ∈ D. It follows that π × π̃ is a local
semiflow on X × X̃ called the product semiflow of π with π̃ (cf. Section I.10
in [14]).

We have the following result.

Proposition 2.2. Let (N1, N2) (resp. (Ñ1, Ñ2)) be an FM-index pair for
(π, S) (resp. (π̃, S̃)) and let N be a closed subset of X such that N1 ⊂ N . Then
(N1 × Ñ1 ∪N × Ñ2, N2 × Ñ1 ∪N × Ñ2) is an FM-index pair for (π× π̃, S × S̃).

Proof. It is clear that S× S̃, N1× Ñ1 ∪N × Ñ2 and N2× Ñ1 ∪N × Ñ2 are
closed subsets of X × X̃. Since N2 ⊂ N1, it follows that N2 × Ñ1 ∪ N × Ñ2 ⊂
N1 × Ñ1 ∪N × Ñ2. We claim that

(2.1) N2 × Ñ1 ∪N × Ñ2 is N1 × Ñ1 ∪N × Ñ2-positively invariant relative
to π × π̃.

Let (x, x̃) ∈ N2 × Ñ1 ∪ N × Ñ2 and let t ∈ [0,∞[ such that (x, x̃)π × π̃ [0, t] ⊂
N1 × Ñ1 ∪N × Ñ2. We will show that (x, x̃)π × π̃ [0, t] ⊂ N2 × Ñ1 ∪N × Ñ2.

First assume that (x, x̃) ∈ N × Ñ2. Since (x, x̃)π × π̃ [0, t] ⊂ N1 × Ñ1 ∪N ×
Ñ2, N1 ⊂ N and Ñ2 ⊂ N1, it follows that xπ [0, t] ⊂ N and x̃π̃ [0, t] ⊂ Ñ1.
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Since Ñ2 is Ñ1-positively invariant relative to π̃, we have x̃π̃ [0, t] ⊂ Ñ2 and so
(x, x̃)π × π̃ [0, t] ⊂ N2 × Ñ1 ∪N × Ñ2.

Now assume that (x, x̃) ∈ N2×Ñ1 and let τ ∈ [0, t]. If (x, x̃)π×π̃ [0, τ ] ⊂ N1×
Ñ1, since N2 is N1-positively invariant relative to π, it follows that xπ [0, τ ] ⊂ N2

and so (x, x̃)π × π̃τ ∈ N2 × Ñ1 ⊂ N2 × Ñ1 ∪ N × Ñ2. Suppose there exists
a t′ ∈ [0, τ ] such that (x, x̃)π× π̃t′ /∈ N1× Ñ1. Hence (x, x̃)π× π̃t′ ∈ N × Ñ2 and
so x̃π̃t′ ∈ Ñ2. Since Ñ2 is Ñ1-positively invariant relative to π̃ and x̃π̃ [t′, τ ] ⊂
x̃π̃ [0, t] ⊂ Ñ1, it follows that x̃π̃ [t′, τ ] ⊂ Ñ2 and so (x, x̃)π × π̃τ ∈ N × Ñ2 ⊂
N2 × Ñ1 ∪N × Ñ2. Claim (2.1) is proved.

We also claim that

(2.2) N2 × Ñ1 ∪N × Ñ2 is an exit ramp for N1 × Ñ1 ∪N × Ñ2, relative to
π × π̃.

Let (x, x̃) ∈ N1 × Ñ1 ∪ N × Ñ2 and suppose there exists a t′ ∈ [0,∞[ such
that (x, x̃)π × π̃t′ /∈ N1 × Ñ1 ∪ N × Ñ2. We need to show that there exists
a t0 ∈ [0, t′] such that (x, x̃)π× π̃ [0, t0] ⊂ N1 × Ñ1 ∪N × Ñ2 and (x, x̃)π× π̃t0 ∈
N2 × Ñ1 ∪N × Ñ2.

If (x, x̃) ∈ N × Ñ2, setting t0 = 0 we are done. Hence suppose that (x, x̃) ∈
N1 × Ñ1. There are two cases to be consider:

Case 1. Assume that xπt′ /∈ N1. Since N2 is an exit ramp for N1, it follows
that there exists a t′′ ∈ [0, t′] such that xπ [0, t′′] ⊂ N1 and xπt′′ ∈ N2. If
x̃π̃ [0, t′′] ⊂ Ñ1, it follows that (x, x̃)π× π̃ [0, t′′] ⊂ N1 × Ñ1 ⊂ N1 × Ñ1 ∪N × Ñ2

and (x, x̃)π× π̃t′′ ∈ N2× Ñ1 ⊂ N2× Ñ1∪N × Ñ2 and we set t0 = t′′. Otherwise,
there exists a t̃ ∈ [0, t′′] such that x̃π̃t̃ /∈ Ñ1. Since Ñ2 is an exit ramp for Ñ1,
it follows that there exists a t0 ∈ [0, t̃] such that x̃π̃ [0, t0] ⊂ Ñ1 and x̃π̃t0 ∈ Ñ2.
Hence, (x, x̃)π × π̃ [0, t0] ⊂ N1 × Ñ1 ⊂ N1 × Ñ1 ∪ N × Ñ2 and (x, x̃)π × π̃t0 ∈
N1 × Ñ2 ⊂ N2 × Ñ1 ∪N × Ñ2.

Case 2. Assume that x̃π̃t′ /∈ Ñ1. Since Ñ2 is an exit ramp for Ñ1, it follows
that there exists a t′′ ∈ [0, t′] such that x̃π̃ [0, t′′] ⊂ Ñ1 and x̃π̃t′′ ∈ Ñ2. If
xπ [0, t′′] ⊂ N1, it follows that (x, x̃)π× π̃ [0, t′′] ⊂ N1 × Ñ1 ⊂ N1 × Ñ1 ∪N × Ñ2

and (x, x̃)π× π̃t′′ ∈ N1× Ñ2 ⊂ N2× Ñ1∪N × Ñ2 and we set t0 = t′′. Otherwise,
there exists a t̃ ∈ [0, t′′] such that xπt̃ /∈ N1. Since N2 is an exit ramp for N1,
it follows that there exists a t0 ∈ [0, t̃] such that xπ [0, t0] ⊂ N1 and xπt0 ∈ N2.
Hence, (x, x̃)π × π̃ [0, t0] ⊂ N1 × Ñ1 ⊂ N1 × Ñ1 ∪ N × Ñ2 and (x, x̃)π × π̃t0 ∈
N2 × Ñ1 ⊂ N2 × Ñ1 ∪N × Ñ2. This completes the proof of claim (2.2).

To complete the proof we need to show that

(2.3) S × S̃ ⊂ IntX× eX((N1 × Ñ1 ∪ N × Ñ2) \ (N2 × Ñ1 ∪ N × Ñ2)) and
S × S̃ is the largest π × π̃-invariant set in ClX× eX((N1 × Ñ1 ∪ N ×
Ñ2) \ (N2 × Ñ1 ∪N × Ñ2)).



204 M. C. Carbinatto — K. P. Rybakowski

It clear that (N1 × Ñ1 ∪ N × Ñ2) \ (N2 × Ñ1 ∪ N × Ñ2) = N1 \ N2 × Ñ1 \
Ñ2. Therefore, Invπ×eπ(ClX× eX((N1 × Ñ1 ∪N × Ñ2) \ (N2 × Ñ1 ∪N × Ñ2))) ⊂
Invπ×eπ(ClX× eX(N1 \N2 × Ñ1 \ Ñ2)) = Invπ×eπ(ClX(N1 \N2)×Cl

eX(Ñ1 \ Ñ2)) =
Invπ(ClX(N1 \ N2)) × Inv

eπ(Cl
eX(Ñ1 \ Ñ2)) = S × S̃. Moreover, there exist an

open set V in X, respectively Ṽ in X̃, such that S ⊂ V ⊂ N1 \N2, respectively
S̃ ⊂ Ṽ ⊂ Ñ1\Ñ2. Hence S×S̃ ⊂ V ×Ṽ ⊂ (N1×Ñ1∪N×Ñ2)\(N2×Ñ1∪N×Ñ2)
which completes the proof of claim (2.3).

Claims (2.1), (2.2) and (2.3) imply that (N1×Ñ1∪N×Ñ2, N2×Ñ1∪N×Ñ2)
is an FM-index pair for S × S̃ relative to π × π̃. �

Now let K be a category and C be an object of [K], i.e. a subcategory of K
which is a connected simple system. Suppose Φ is a covariant (resp. contravari-
ant) functor from C to the category Mod(Γ) of modules over the (commutative)
ring Γ. Let S = SC,Φ be the disjoint union of all Φ(A), where A is an arbitrary
object of C. Thus, formally we have

S = SC,Φ :=
⋃

A∈Obj(C)

Φ(A)× {A}.

On S define a relation R = RC,Φ as follows:

(x,A)R(y,B) if and only if y = Φ(f)x (resp. x = Φ(f)y), where f is
the unique morphism in C from A to B.

Clearly, R is an equivalence relation on S. Let S/R be the set of equivalence
classes of R and Q = QC,Φ:S → S/R be the canonical quotient map. In the
sequel we write Φ̂(C) := S/R.

For each A ∈ Obj(C), the map QA = QC,Φ,A: Φ(A) → Φ̂(C) given by QA(x) =
Q((x,A)) for x ∈ Φ(A) is easily seen to be bijective. Moreover, if (x,A)R(y,B)
and (x̃, A)R(ỹ, B), then (x +A x̃, A)R(y +B ỹ, B) and (λ ·A x,A)R(λ ·B y,B)
for every λ ∈ Γ. Here, for every C ∈ Obj(C), +C (resp. ·C) is the addition
(resp. scalar multiplication) in the Γ-module Φ(C). Therefore, there is a unique
addition + = +C and scalar multiplication · = ·C in Φ̂(C) such that for every
A ∈ Obj(C), the map QA is a Γ-module isomorphism. The Γ-module Φ̂(C) is
called the image module of C under Φ.

Definition 2.3. Let C and C′ be objects of [K], Φ be a functor from C to
Mod(Γ) and Φ′ be a functor from C′ to Mod(Γ). Assume that Φ and Φ′ are
both covariant (resp. both contravariant) and let A ∈ Obj(C), A′ ∈ Obj(C′) be
arbitrary. If F is a morphism in Mod(Γ) from Φ(A) to Φ′(A′), then define the
map

〈F 〉 = 〈F 〉C,Φ,C′,Φ′ : Φ̂(C) → Φ̂′(C′)
by

〈F 〉 := QC′,Φ′,A′ ◦ F ◦ (QC,Φ,A)−1.
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It follows that 〈F 〉 is a Γ-module homomorphism. Moreover,

Proposition 2.4. Let C and C′ be objects of [K]. Let Φ be a functor from
C to Mod(Γ) and Φ′ be a functor from C′ to Mod(Γ). Assume that Φ and Φ′ are
covariant (resp. contravariant). Suppose A, B ∈ Obj(C), A′, B′ ∈ Obj(C′). If
the diagram

Φ(A) F //

Φ(f)

��

Φ′(A′)

Φ′(f ′)

��

Φ(B)
G

// Φ′(B′),

resp.

Φ(A) F // Φ′(A′)

Φ(B)
G

//

Φ(f)

OO

Φ′(B′)

Φ′(f ′)

OO


commutes, then 〈F 〉 = 〈G〉, where f (resp. f ′) is the unique morphism in C (resp.
C′) from A to B (resp. from A′ to B′).

Proof. Suppose that both Φ and Φ′ are covariant. Let η ∈ Φ̂(C) be
arbitrary. Then there exist an x ∈ Φ(A) and a y ∈ Φ(B) such that η =
QC,Φ((x,A)) = QC,Φ((y,B)). It follows that y = Φ(f)x. Now

〈F 〉(η) = (QC′,Φ′,A′ ◦ F ◦ (QC,Φ,A)−1)(η) = QC′,Φ′,A′Fx,

〈G〉(η) = (QC′,Φ′,B′ ◦G ◦ (QC,Φ,B)−1)(η)

=QC′,Φ′,B′(Gy) = QC′,Φ′,B′G(Φ(f)x) = QC′,Φ′,B′(Φ(f ′)Fx).

Notice that

QC′,Φ′,B′(Φ(f ′)Fx)=QC′,Φ′((Φ(f ′)Fx,B′))=QC′,Φ′((Fx,A′))=QC′,Φ′,A′(Fx).

This implies that 〈F 〉(η) = 〈G〉(η). The proof is analogous in the contravariant
case. The proposition is proved. �

The following result is straightforward from Definition 2.3.

Proposition 2.5. Let C, C′ and C′′ be objects of [K]. Let Φ be a functor
from C to Mod(Γ), Φ′ be a functor from C′ to Mod(Γ) and Φ′′ be a functor
from C′′ to Mod(Γ). Assume that Φ, Φ′ and Φ′′ are all covariant (resp. all
contravariant) and let A ∈ Obj(C), A′ ∈ Obj(C′), A′′ ∈ Obj(C′′) be arbitrary.
If F is a morphism in Mod(Γ) from Φ(A) to Φ(A′) and F ′ is a morphism in
Mod(Γ) from Φ(A′) to Φ(A′′) then

〈F ′ ◦ F 〉 = 〈F ′〉 ◦ 〈F 〉.

If (F, F ′) is exact, i.e. kerF ′ = imF , then so is (〈F 〉, 〈F ′〉).

Remark 2.6. Definition 2.3 and Propositions 2.4 and 2.5 were presented
in [5] in the special case of Φ covariant and Φ′′ = Φ′ = Φ. However, it is the
more general concept and the corresponding results presented here that were
actually already used in [5].



206 M. C. Carbinatto — K. P. Rybakowski

Recall (cf. [7]) that a sequence

C1
i // C2

p
// C3

of chain maps is called weakly exact if ker i = 0, p ◦ i = 0 and the map
Hq(ρ):Hq(C2/ im i) → Hq(C3) is an isomorphism for each q ∈ Z. Here, the
map ρ:C2/ im i → C3 is the (uniquely determined) chain map with ρ ◦ Q = p,
where Q:C2 → C2/ im i is the quotient map.

Given a weakly exact sequence

C1
i // C2

p
// C3

and q ∈ Z, define ∂̂q:Hq(C3) → Hq−1(C1) by ∂̂q := ∂∗q ◦ Hq(ρ)−1, where
∂∗q:Hq(C2/ im i) → Hq−1(C1) is the connecting homomorphism in the long exact
sequence induced by the exact sequence

0 // C1
i // C2

Q
// C2/ im i // 0.

Using elementary homology theory we obtain the following result.

Proposition 2.7 (cf. [7]). Given a weakly exact sequence

C1
i // C2

p
// C3

the corresponding homology sequence

// Hq(C1)
Hq(i)

// Hq(C2)
Hq(p)

// Hq(C3)
b∂q

// Hq−1(C1) //

is exact. Moreover, given a commutative diagram

C1
i //

f1
��

C2
p

//

f2
��

C3

f3
��

C̃1
ei

// C̃2
ep

// C̃3

of chain maps with weakly exact rows, the induced long homology ladder

// Hq(C1)
Hq(i)

//

Hq(f1)

��

Hq(C2)
Hq(p)

//

Hq(f2)

��

Hq(C3)
b∂q

//

Hq(f3)

��

Hq−1(C1) //

Hq−1(f1)

��

// Hq(C̃1)
Hq(ei)

// Hq(C̃2) Hq(ep)
// Hq(C̃3)

f

b∂q

// Hq−1(C̃1) //

is commutative.

In the sequel we denote by ∆ the singular chain functor with coefficients in
the Γ-module G.
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Proposition 2.8 (cf. [7] and [8]). Let (N1, N2, N3) be an FM-index triple
for (π, S,A,A∗) with ClX(N1 \ N3) strongly π-admissible. Then the inclusion
induced sequence

(2.4) N2/N3
i // N1/N3

p
// N1/N2

of pointed spaces induces a weakly exact sequence

∆(N2/N3)/∆({[N3]})
i // ∆(N1/N3)/∆({[N3]})

p
// ∆(N1/N2)/∆({[N2]})

of chain maps.

3. Statement of the main result

We can now state the main result of this paper.

Theorem 3.1. Let X be a metric space, π be a local semiflow on X, k ∈ N,
E be a k-dimensional normed space and π̃ be the semiflow generated by the
equation ẏ = Ly, where L:E → E is a linear map with all eigenvalues having
positive real parts. Then there is a family of Γ-module isomorphisms

θq(π, π̃, S):Hq(π × π̃, S × {0E}) → Hq−k(π, S),

one for each q ∈ Z and each isolated π-invariant set S having a strongly π-
admissible isolating neighbouhood, such that the following property is satisfied:
given any isolated π-invariant set S having a strongly π-admissible isolating
neighbouhood and given any attractor-repeller pair (A,A∗) of S relative to π,
the following diagram commutes:

(3.1)

// Hq(π′, A′) //

θq(π,eπ,A)

��

Hq(π′, S′) //

θq(π,eπ,S)

��

Hq(π′, A∗′) //

θq(π,eπ,A∗)

��

Hq−1(π′, S′) //

θq−1(π,eπ,A)

��
// Hq−k(π,A) // Hq−k(π, S) // Hq−k(π,A∗) // Hq−k−1(π,A) //

Here, the upper (resp. lower) horizontal sequence is the homology index sequence
of (π′, S′, A′, A∗′) (resp. (π, S,A,A∗)), where we set π′ := π× π̃ and for K ⊂ X,
K ′ := K × {0E}.

The following result will reduce the proof of Theorem 3.1 to the proof of
a special case.

Theorem 3.2. Let X and X ′ be metric spaces and let π (resp. π′) be a lo-
cal semiflow on X (resp. on X ′). Let γ:X → X ′ be a homeomorphism which
conjugates π with π′.

(a) Let S be an isolated π-invariant set and (Y,Z) be an FM-index pair
for (π, S) such that ClX(Y \ Z) is strongly π-admissible. Then γ(S) is
an isolated π′-invariant set and (γ(Y ), γ(Z)) is an FM-index pair for
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(π′, γ(S)) such that ClX′(γ(Y ) \ γ(Z)) is strongly π′-admissible. Let
γY,Z :Y/Z → γ(Y )/γ(Z) be the map induced by γ and, for q ∈ Z, let

Fq := Hq(γY,Z):Hq(Y/Z, {[Z]}) → Hq(γ(Y )/γ(Z), {[γ(Z)]})

be the induced homology map.
(b) The map

〈Fq〉 = 〈Fq〉C,Φ,C′,cΦ′ : Φ̂(C) → Φ̂′(C′)
is independent of the choice of (Y, Z). Here, C (resp. C′) is the categorial
Conley–Morse index of (π, S) (resp. (π′, γ(S))) as defined in [5] and Φ
(resp. Φ′) is the restriction of Hq to C (resp. C′). Define the morphism
κq(π, S, γ):Hq(π, S) → Hq(π′, γ(S)) by κq(π, S, γ) = 〈Fq〉. κq(π, S, γ)
is a Γ-module isomorphism.

(c) Given an isolated π-invariant set S having a strongly π-admissible iso-
lating neighbouhood and an attractor-repeller pair (A,A∗) of S relative
to π, then γ(S) is an isolated π′-invariant set having a strongly π′-
admissible isolating neighbouhood, (γ(A), γ(A∗)) is an attractor-repeller
pair of γ(S) relative to π′ and the diagram

(3.2)

// Hq(π,A) //

κq(π,A,γ)

��

Hq(π, S) //

κq(π,S,γ)

��

Hq(π,A∗) //

κq(π,A∗,γ)

��

Hq−1(π,A) //

κq−1(π,A,γ)

��
// Hq(π′, γ(A)) // Hq(π′, γ(S)) // Hq(π′, γ(A∗)) // Hq−1(π′, γ(A)) //

commutes.

Proof. Part (a) is obvious. To prove the independence of 〈Fq〉 of the choice
of (Y, Z), let (Ŷ , Ẑ) be another FM-index pair for (π, S) with ClX(Ŷ \Ẑ) strongly
π-admissible. By Proposition 4.6, Lemma 4.8 and Proposition 2.5 in [5] we
obtain sets L1, L2, W and Ŵ such that (L1, L2) ⊂ (Y ∩ Ŷ ,W ∩ Ŵ ), Z ⊂ W ,
Ẑ ⊂ Ŵ and (L1, L2), (Y,W ) and (Ŷ , Ŵ ) are FM-index pairs for (π, S) such that
ClX(L1 \ L2), ClX(Y \ Z) and ClX(Ŷ \ Ŵ ) are strongly π-admissible. We thus
obtain the commutative diagram

Hq(Y/Z, {[Z]})
Hq(γY,Z)

//

��

Hq(γ(Y )/γ(Z), {[γ(Z)]})
��

Hq(Y/W, {[W ]})
Hq(γY,W )

// Hq(γ(Y )/γ(W ), {[γ(W )]})

Hq(L1/L2, {[L2]})
Hq(γL1,L2 )

//

OO

��

Hq(γ(L1)/γ(L2), {[γ(L2)]})

OO

��

Hq(Ŷ /Ŵ , {[Ŵ ]})
Hq(γ

bY , bW
)

// Hq(γ(Ŷ )/γ(Ŵ ), {[γ(Ŵ )]})

Hq(Ŷ /Ẑ, {[Ẑ]})
Hq(γ

bY ,bZ
)

//

OO

Hq(γ(Ŷ )/γ(Ẑ), {[γ(Ẑ)]})

OO
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whose vertical maps are inclusion induced. Hence, by Proposition 4.5 in [5],
these maps are induced by the unique morphisms in C (resp. in C′) between
the corresponding objects of these connected simple systems. In particular, the
vertical maps are all bijective, and so we may invert the upward pointing arrows
and then compose the columns to obtain the commutative diagram

(3.3)

Hq(Y/Z, {[Z]})
Hq(γY,Z)

//

��

Hq(γ(Y )/γ(Z), {[γ(Z)]})

��

Hq(Ŷ /Ẑ, {[Ẑ]})
Hq(γ

bY ,bZ
)

// Hq(γ(Ŷ )/γ(Ẑ), {[γ(Ẑ)]})

where the vertical maps are induced by the corresponding morphism in C (resp.
in C′). Now an application of Proposition 2.4 to diagram (3.3) completes the
proof of part (b) of the theorem. To prove part (c) let (N1, N2, N3) be an
FM-index triple for (π, S,A,A∗) with ClX(N1 \ N3) strongly π-admissible. It
follows that (N ′

1, N
′
2, N

′
3) := (γ(N1), γ(N2), γ(N3)) is an FM-index triple for

(π′, γ(S), γ(A), γ(A∗)) such that ClX′(γ(N1) \ γ(N3)) is strongly π′-admissible.
We thus have the following commutative diagram

(3.4)

∆(N2/N3)/∆({[N3]}) //

∆(γN2,N3 )

��

∆(N1/N3)/∆({[N3]}) //

∆(γN1,N3 )

��

∆(N1/N2)/∆({[N2]})

∆(γN1,N2 )

��

∆(N ′
2/N

′
3)/∆({[N ′

3]}) // ∆(N ′
1/N

′
3)/∆({[N ′

3]}) // ∆(N ′
1/N

′
3)/∆({[N ′

3]})

with inclusion induced weakly exact rows (in view of Proposition 2.8). Applying
Proposition 2.7 to diagram (3.4) we obtain the induced long commutative ladder
with exact rows. An application of the 〈 · , · 〉-operation to that ladder and using
part (b) we obtain diagram (3.2). This proves part (c). �

The following result is well-known (cf. Lemma 3 in Section 22 of [1]).

Proposition 3.3. Let k ∈ N, E be a k-dimensional normed space and π̃

be the semiflow generated by the equation ẏ = Ly, where L:E → E is a linear
map with all eigenvalues having positive real parts. Let πk be the semiflow on
Rk generated by the ordinary differential equation u̇ = u. Then there exists
a homeomorphism αk:E → Rk which conjugates π̃ with πk.

Theorem 3.4. Theorem 3.1 holds whenever k ∈ N, E := Rk, and π̃ := πk,
where πk is as in Proposition 3.3.

Proof of Theorem 3.1 using Theorem 3.4. Let γ:X ×E → X ×Rk be
given by (x, u) 7→ (x, αk(u)), (x, u) ∈ X × E, where αk is as in Proposition 3.3.
Then γ is a homeomorphism which conjugates π × π̃ with π × πk. If S is an
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isolated π-invariant set having a strongly π-admissible isolating neighbouhood
then let

θq(π, πk, S):Hq(π × πk, S × {0Rk}) → Hq−k(π, S),

be the Γ-module isomorphism which exists by Theorem 3.4. Now use Theo-
rem 3.2 with our choice of γ. It follows that γ(S × {0E}) = S × {0Rk}. Set

θq(π, π̃, S) := θq(π, πk, S) ◦ κq(π, S, γ).

The family of these Γ-isomorphisms clearly satisfies the conclusions of Theo-
rem 3.1. �

The next result is the crucial step in the proof of Theorem 3.4.

Theorem 3.5. Theorem 3.4 holds for k = 1.

Proof of Theorem 3.4 using Theorem 3.5. The proof is by induction
on k ∈ N. Theorem 3.5 implies that Theorem 3.4 holds for k = 1. Suppose that
Theorem 3.4 holds for some k. Let X be a metric space and let π be a local
semiflow on X. Notice that the semiflow π× πk+1 is conjugated to the semiflow
(π × πk) × π1 by the homeomorphism φ:X × Rk+1 → (X × Rk) × R given by
φ(x, u1, . . . , uk+1) = ((x, u1, . . . , uk), uk+1).

Let S be an isolated π-invariant set having a strongly π-admissible isolating
neighbouhood. We use Theorem 3.2 with γ := φ to obtain the Γ-module isomor-
phism κq(π×πk+1, S, φ) from Hq(π×πk+1, S×{0Rk+1}) to Hq((π×πk)×π1, (S×
{0Rk})× {0R}) as in that theorem. Using Theorem 3.5 we obtain the Γ-module
isomorphism θq(π×πk, π1, S×{0Rk}) from Hq((π×πk)×π1, (S×{0Rk})×{0R})
to Hq−1(π × πk, S × {0Rk}), as in that theorem. Since the present Theorem 3.4
is valid for k, there is the Γ-module isomorphism θq−1(π, πk, S) from Hq−1(π ×
πk, S × {0Rk}) to H(q−1)−k(π, S), as in this theorem.

Define the Γ-module isomorphism

θq(π × πk+1, S) =:Hq(π × πk+1, S × {0Rk+1}) → Hq−k−1(π, S)

by

θq(π × πk+1, S) := θq−1(π, πk, S) ◦ θq(π × πk, π1, S × {0Rk}) ◦ κq(π × πk+1, S, φ).

The family θq(π×πk+1, S) obviously satisfies the conclusions of Theorem 3.4 for
k + 1. �

The rest of this paper is devoted to the proof of Theorem 3.5.
For the rest of this paper let X be a metric space and π be a local semiflow

on X. Since Theorem 3.5 is obvious for X = ∅ we assume that X 6= ∅.
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4. Construction of the suspension isomorphism

Definition 4.1. Let (N,Y, Z) be a triple of closed subsets of X with N 6= ∅
and Z ⊂ Y ⊂ N . Define

E(Y ) := Y × [−1, 1] ∪N × {−1, 1},
E(Z) := Z × [−1, 1] ∪N × {−1, 1},

Ω(Y, Z) := E(Y )/E(Z).

Define further I0 := {0}, I1 := [−1, 0], I2 := [0, 1] and

Ek(Y, Z) := Y × Ik ∪ E(Z), k ∈ {0, 1, 2}.

Let pY,Z :Y × [−1, 1] ∪N × {−1, 1} → Ω(Y, Z) be the quotient map and define

Ω1(Y, Z) := pY,Z(E1(Y, Z)),

Ω2(Y, Z) := pY,Z(E2(Y, Z)),

Ω0(Y, Z) := Ω1(Y, Z) ∩ Ω2(Y,Z),

and let zY Z be the base-point of Ω(Y,Z), i.e. {zY,Z} = pY,Z(E(Z)).

Remark 4.2. It is clear that Ω0(Y, Z) = pY,Z(E0(Y, Z)). Moreover, for
k ∈ {0, 1, 2}, Ωk(Y, Z) and Ek(Y,Z)/E(Z) are identical, both as sets and as
topological spaces. In fact, since p−1

Y,Z(pY,Z(Ek(Y,Z))) = Ek(Y, Z) and Ek(Y, Z)
is closed in E(Y ), it follows that the restriction of pY,Z to Ek(Y, Z) is a quotient
map from Ek(Y,Z) to pY,Z(Ek(Y,Z)) = Ωk(Y,Z).

For the rest of this section, let N 6= ∅ be closed in X, S be an isolated
π-invariant set and (Y, Z) be an FM-index pair for (π, S) with Y ⊂ N and
ClX(Y \ Z) strongly π-admissible.

The following lemma holds.

Lemma 4.3. Let gY,Z :Y/Z → (Y ×{0})/(Z×{0}) be induced by the assign-
ment x 7→ (x, 0) and hY,Z : (Y ×{0})/(Z×{0}) → Ω0(Y, Z) = E0(Y, Z)/E(Z) be
inclusion induced. The map fY,Z :Y/Z → Ω0(Y, Z) defined by fY,Z = hY,Z ◦ gY,Z

is a base-point preserving homeomorphism. In particular,

Hq(fY,Z):Hq(Y/Z, {[Z]}) → Hq(Ω0(Y, Z), {zY,Z})

is bijective for all q ∈ Z.

Proof. The map gY,Z :Y/Z → (Y × {0})/(Z × {0}) is clearly a base-point
preserving homeomorphism. An application of Proposition 2.1 shows that the
map hY,Z : (Y × {0})/(Z × {0}) → E0(Y, Z)/E(Z) is a base-point preserving
homeomorphism. �
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Proposition 4.4. Let `Y,Z : (Ω1(Y,Z),Ω0(Y,Z)) → (Ω(Y, Z),Ω2(Y,Z)) be
the inclusion induced map. Then the corresponding homology map

Hq(`Y,Z):Hq(Ω1(Y,Z),Ω0(Y,Z)) → Hq(Ω(Y,Z),Ω2(Y, Z))

is bijective for every q ∈ Z.

To prove Proposition 4.4 we need some auxiliary results.
Recall that, for s ∈ [0,∞[, Z−s(Y ) is the set of all x ∈ X such that, for some

t ∈ [0, s] and for all τ ∈ [0, t], xπτ is defined, xπτ ∈ Y and xπt ∈ Z.

Lemma 4.5. There is an s ∈ [0,∞[ such that Z−s(Y ) is a (closed) neigh-
bouhood of Z in Y .

Proof. The lemma follows from the arguments given in the last part of the
proof of Lemma 3.4 in [9] and the first part of the proof of Remark 3 on page 83
in [13]. �

Lemma 4.6. The set Ω0(Y, Z) is a strong deformation retract of a closed
neighbouhood of itself in Ω1(Y, Z).

Proof. Set p := pY,Z and z := zY,Z . Let a and b satisfy 0 < a < b < 1.
Let U(Y ) (resp. U(Z)) be an open neighbouhood of Y (resp. of Z) in N . It
follows that the set W ′ = U(Y )× ]−a, a[∪U(Z)× [−1, 1]∪N × ([−1,−b[∪ ]b, 1])
is open in N × [−1, 1] with E0(Y,Z) ⊂ W ′. This implies that the set W ′ ∩
E1(Y, Z) = Y × ([−1,−b[ ∪ ]−a, 0]) ∪ (Y ∩ U(Z)) × [−1, 0] ∪ E(Z) is open in
E1(Y, Z). It follows that whenever C is a closed neighbouhood of Z in Y , then
Y ×([−1,−b]∪[−a, 0])∪C×[−1, 0]∪E(Z) is a closed neighbouhood of E0(Y, Z) in
E1(Y, Z). Set C = Z−s(Y ), and A = Y × ([−1,−b]∪ [−a, 0])∪C× [−1, 0]∪E(Z)
where s is as in Lemma 4.5. There is a continuous map γ: [−1, 1]× [0, 1] → [0, s]
with

γ(s, t) =


ts if (s, t) ∈ [−1,−a]× [0, 1],

(−ts/a)s if (s, t) ∈ [−a, 0]× [0, 1],

0 if (s, t) ∈ [0, 1]× [0, 1].
Define the map φ:A× [0, 1] → p(A) by φ((x, s), t) = p(xπγ(s, t), s) if x ∈ Y ,

xπγ(s, t) is defined, xπτ /∈ Z for all τ ∈ [0, γ(s, t)], and φ((x, s), t) = z otherwise.
Since C is Y -positively invariant relative to π, it follows that φ is well-defined.
We claim that φ is continuous. Suppose ((xn, sn), tn) → ((x, s), t) in A × [0, 1]
as n→∞. We consider several cases.

Case 1. There is a τ ∈ [0, γ(s, t)] with xπτ defined and xπτ /∈ ClX(Y \ Z).
If γ(s, t) = 0, then x /∈ ClX(Y \ Z) then xn /∈ ClX(Y \ Z) for all n ∈ N

sufficiently large. If γ(s, t) > 0, then we may assume (by the continuity of π)
that τ ∈ ]0, γ(s, t)[. By the continuity of γ, we see that for all n ∈ N large enough
τ ∈ ]0, γ(sn, tn)[, xnπτ is defined and xnπτ /∈ ClX(Y \Z). Altogether, we obtain
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from the definition of φ that φ((x, s), t) = z and φ((xn, sn), tn) = z for all n ∈ N
large enough. Thus φ((xn, sn), tn) → φ((x, s), t) in this case.

Case 2. Whenever τ ∈ [0, γ(s, t)] and xπτ is defined, then xπτ ∈ ClX(Y \Z).

Since x = xπ0 it follows that x ∈ ClX(Y \ Z) and so, as π does not explode
in ClX(Y \ Z), we obtain that xπγ(s, t) is defined so xnπγ(sn, tn) is defined for
all n ∈ N large enough. Moreover, xπτ ∈ Y for all τ ∈ [0, γ(s, t)] and either
xπτ /∈ Z for all τ ∈ [0, γ(s, t)] so φ((x, s), t) = p(xπγ(s, t), s) or else xπτ ∈ Z for
some τ ∈ [0, γ(s, t)] so, by the Y -invariance of Z, xπγ(s, t) ∈ Z so in this case
φ((x, s), t) = z = p(xπγ(s, t), s). Thus, in both cases,

(4.1) φ((x, s), t) = p(xπγ(s, t), s).

We shall prove that for every neighbouhood V of φ((x, s), t) in p(A) there is an
n0 ∈ N such that φ((xn, sn), tn) ∈ V for all n ≥ n0. Suppose this is not true.
Then there is a neighbouhood V of φ((x, s), t) in p(A) and a subsequence of
((xn, sn), tn)n, again denoted by ((xn, sn), tn)n, such that

(4.2) φ((xn, sn), tn) /∈ V for all n ∈ N.

By taking further subsequences, if necessary, we may thus assume one of the
three cases:

Case 2.1. For every n ∈ N: xn ∈ N \ Y .

Case 2.2. For every n ∈ N: xn ∈ Y and xnπτ /∈ Z all τ ∈ [0, γ(sn, tn)].

Case 2.3. For every n ∈ N: xn ∈ Y and xnπτ ∈ Z for some τ = τn ∈
[0, γ(sn, tn)].

In Case 2.1 we have sn ∈ {−1, 1} for all n ∈ N so s ∈ {−1, 1}. It follows that
φ((xn, sn), tn) = z for all n ∈ N. Moreover, either φ((x, s), t) = p(xπγ(s, t), s)
or else φ((x, s), t) = z. Since (xπγ(s, t), s) ∈ N × {−1, 1} ⊂ E(Z) we obtain
φ((x, s), t) = z so z ∈ V , so φ((xn, sn), tn) ∈ V for all n ∈ N, a contradiction
to (4.2).

In Case 2.2 we have φ((xn, sn), tn) = p(xnπγ(sn, tn), sn) for all n ∈ N, so
φ((xn, sn), tn) → p(xπγ(s, t), s) = φ((x, s), t) in view of (4.1), a contradiction
to (4.2).

Case 2.3 implies that, on the one hand, φ((xn, sn), tn) = z for all n ∈ N, and
on the other hand, xπτ ∈ Z for some τ ∈ [0, γ(s, t)]. The latter implies that
φ((x, s), t) = z. This again contradicts (4.2).

It follows that, indeed, φ is continuous. Since φ(E(Z) × [0, 1]) = {z}, φ
induces a unique map Φ: p(A)× [0, 1] → p(A) with Φ◦ (p× Id[0,1]) = φ. It follows
from Whitehead’s Lemma that Φ is continuous. Moreover, from the properties
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of γ it also follows that

(4.3) Φ(w, 0) = w for all w ∈ p(A),

(4.4) Φ(p(x, s), t) = p(x, s) for all (x, s) ∈ E0(Y,Z), t ∈ [0, 1] ,

(4.5) Φ(p(x, s), 1) = z for all (x, s) ∈ C × [−1,−a] .

There is a continuous function α: [−1, 1]× [0, 1] → [−1, 1] such that

α(s, t) =



s(1− t)− t if (s, t) ∈ [−1,−b]× [0, 1],

s(1− t)− t+ (s+ b)t/(b− a) if (s, t) ∈ [−b,−a]× [0, 1],

s(1− t) if (s, t) ∈ [−a, 0]× [0, 1],

s(1− t) + ts/b if (s, t) ∈ [0, b]× [0, 1],

s(1− t) + t if (s, t) ∈ [b, 1]× [0, 1].

The function ψ:A×[0, 1] → A, ((x, s), t) 7→ (x, α(s, t)), is defined, continuous and
ψ(E(Z)× [0, 1]) ⊂ E(Z). Thus ψ induces a unique map Ψ: p(A)× [0, 1] → p(A)
with Ψ ◦ (p × Id[0,1]) = p ◦ ψ. It follows from Whitehead’s Lemma that Ψ is
continuous. Moreover, from the properties of α it also follows that

(4.6) Ψ(w, 0) = w for all w ∈ p(A),

(4.7) Ψ(p(x, s), t) = p(x, s) for all (x, s) ∈ E0(Y, Z), t ∈ [0, 1] ,

(4.8) Ψ(p(x, s), 1) = z for all (x, s) ∈ Y × [−1,−b],
(4.9) Ψ(p(x, s), 1) = p(x, 0) for all (x, s) ∈ Y × [−a, 0].

Define the map Υ: p(A)× [0, 1] → p(A) by

Υ(w, t) =

{
Φ(w, 2t) if (w, t) ∈ p(A)× [0, (1/2)],

Ψ(Φ(w, 1), 2t− 1) if (w, t) ∈ p(A)× [(1/2), 1].

It follows from (4.6) that Υ is continuous. Moreover, (4.3) implies that

Υ(w, 0) = w for all w ∈ p(A).

(4.4) and (4.7) imply that

Υ(p(x, s), t) = p(x, s) for all (x, s) ∈ E0(Y, Z), t ∈ [0, 1].

(4.5), (4.8) and (4.9) together with the fact that Φ, Ψ and so Υ are base-point
preserving imply that

Υ(p(x, s), 1) ∈ p(E0(Y, Z)) for all (x, s) ∈ A.

The lemma is proved. �

Proof of Proposition 4.4. Lemma 4.6 together with classical arguments
from algebraic topology (see e.g. Theorem 1.8 in [10] and its proof) completes
the proof of the proposition. �
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Proposition 4.4 and standard results from algebraic topology (cf. Theorem 1.4
in [10]) imply that there exists a long exact Mayer–Vietoris sequence

(4.10)
γq+1

// Rq
αq

// Sq
βq

// Tq
γq

// Rq−1
αq−1

// Sq−1
βq−1

//

where, for q ∈ Z,

(4.11)

Rq = Rq(Y,Z) = Hq(Ω0(Y,Z), {zY,Z}),
Tq = Tq(Y, Z) = Hq(Ω(Y,Z), {zY,Z}),
Sq = Sq(Y, Z) = Hq(Ω1(Y, Z), {zY,Z})⊕Hq(Ω2(Y, Z), {zY,Z}),

(4.12)

ρY,Z : (Ω(Y, Z), {zY,Z}) → (Ω(Y, Z),Ω2(Y,Z)),

µk,Y,Z : (Ω0(Y, Z), {zY,Z}) → (Ωk(Y,Z), {zY,Z}),
νk,Y,Z : (Ωk(Y, Z), {zY,Z}) → (Ω(Y, Z), {zY,Z}), k ∈ {1, 2},

are inclusions and

(4.13)

αq := Hq(µ1,Y,Z)⊕Hq(µ2,Y,Z),

βq := Hq(ν1,Y,Z)−Hq(ν2,Y,Z),

γq := ∂q∗(Ω1(Y, Z),Ω0(Y,Z), {zY,Z}) ◦Hq(`Y,Z)−1 ◦Hq(ρY,Z).

Here, ∂q∗(Ω1(Y,Z),Ω0(Y, Z), {zY,Z}) is the connecting homomorphism of the
triple (Ω1(Y,Z),Ω0(Y, Z), {zY,Z}).

Lemma 4.7. Hq(Ω1(Y, Z), {zY,Z}) = 0 and Hq(Ω2(Y,Z), {zY,Z}) = 0 for
q ∈ Z.

Proof. The maps f1:E1(Y, Z)× [0, 1] → E1(Y, Z), ((x, s), t) 7→ (x,−|s|(1−
t) − t), and f2:E2(Y, Z) × [0, 1] → E2(Y,Z), ((x, s), t) 7→ (x, |s|(1 − t) + t),
are defined, continuous and map E(Z) × [0, 1] into E(Z). Thus, by White-
head’s Lemma, we obtain the corresponding induced maps F1: Ω1(Y, Z)×[0, 1] →
Ω1(Y,Z) and F2: Ω2(Y, Z)×[0, 1] → Ω2(Y, Z). These maps are continuous strong
deformation retractions of Ω1(Y, Z), resp. Ω2(Y, Z), onto {zY,Z}. The lemma fol-
lows. �

Lemma 4.7 implies that Sq = 0 for all q ∈ Z. The exactness of dia-
gram (4.10) therefore shows that the map γq is bijective for all q ∈ Z. Recalling
that (Ω(Y, Z), {zY,Z}) = (E(Y )/E(Z), {[E(Z)]}) and that, by Proposition 2.2,
(E(Y ), E(Z)) is an FM-index pair for (π × π1, S × {0}), and using Lemma 4.3
we thus arrive at the following result:

Theorem 4.8.

(a) For every q ∈ Z, the map

ξq = ξq,Y,Z :Hq(E(Y )/E(Z), {[E(Z)]}) → Hq−1(Y/Z, {[Z]})
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defined by

ξq = Hq−1(fY,Z)−1 ◦ ∂̃q(Y, Z) ◦Hq(`Y,Z)−1 ◦Hq(ρY,Z),

is bijective, where we set

∂̃q(Y,Z) := (−1)q∂q∗(Ω1(Y, Z),Ω0(Y, Z), {zY,Z}).

(b) Whenever (Ŷ , Ẑ) is another FM-index pair for (π, S) such that ClX(Ŷ \
Ẑ) is strongly π-admissible, then the diagram

(4.14)

Φ(A) F //

Φ(f)

��

Φ′(A′)

Φ′(f ′)

��

Φ(B)
G

// Φ′(B′)

commutes. Here

A = (E(Y )/E(Z), {[E(Z)]}), B = (E(Ŷ )/E(Ẑ), {[E(Ẑ)]}),
A′ = (Y/Z, {[Z]}), B′ = (Ŷ /Ẑ, {[Ẑ]}),

C is the categorial Morse index of (π× π1, S ×{0}), C′ is the categorial
Morse index of (π, S), Φ is the restriction of the functor Hq to C, Φ′ is
the restriction of Hq−1 to C′, F = ξq,Y,Z , G = ξq,bY ,bZ and f (resp. f ′)
is the unique morphism in C (resp. in C′) from A to B (resp. from A′

to B′).
(c) 〈F 〉C,Φ,C′,Φ′ = 〈G〉C,Φ,C′,Φ′ .

Remark 4.9. The reason for including the factor (−1)q in the definition of
ξq,Y,Z is crucial and will become apparent in Section 6.

Proof of Theorem 4.8. We have just proved part (a). Part (c) follows
from part (b) by Proposition 2.4. To prove part (b) let us first assume that
(Y, Z) ⊂ (Ŷ , Ẑ). Given q ∈ Z consider the following diagrams in the category of
Γ-modules:

Hq(Ω(Y, Z), {zY,Z})
Hq(ρY,Z)

//

��

Hq(Ω(Y, Z),Ω2(Y, Z))

��

Hq(Ω(Ŷ , Ẑ), {z
bY ,bZ}) Hq(ρ

bY ,bZ
)

// Hq(Ω(Ŷ , Ẑ),Ω2(Ŷ , Ẑ))

Hq(Ω(Y,Z),Ω2(Y,Z))
Hq(`Y,Z)−1

//

��

Hq(Ω1(Y, Z),Ω0(Y, Z))

��

Hq(Ω(Ŷ , Ẑ),Ω2(Ŷ , Ẑ))
Hq(`

bY ,bZ
)−1

// Hq(Ω1(Ŷ , Ẑ),Ω0(Ŷ , Ẑ))
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Hq(Ω1(Y, Z),Ω0(Y,Z))
e∂q(Y,Z)

//

��

Hq−1(Ω0(Y, Z), {zY,Z})

��

Hq(Ω1(Ŷ , Ẑ),Ω0(Ŷ , Ẑ))
e∂q(bY ,bZ)

// Hq−1(Ω0(Ŷ , Ẑ), {z
bY ,bZ})

Hq−1(Ω0(Y,Z), {zY,Z})
Hq−1(fY,Z)−1

//

��

Hq−1(Y/Z, {[Z]})

��

Hq−1(Ω0(Ŷ , Ẑ), {z
bY ,bZ}) Hq−1(f

bY ,bZ
)−1

// Hq−1(Ŷ /Ẑ, {[Ẑ]})

Here, the vertical maps are inclusion induced. All these diagrams clearly com-
mute (the third diagram commutes by the naturality of connecting homomor-
phisms of space triples). Composing these diagrams we thus obtain the commu-
tative diagram

(4.15)
Hq(E(Y )/E(Z), {[E(Z)]})

ξq,Y,Z
//

��

Hq−1(Y/Z, {[Z]})

��

Hq(E(Ŷ )/E(Ẑ), {[E(Ẑ)]})
ξ

q,bY ,bZ

// Hq−1(Ŷ /Ẑ, {[Ẑ]})

with inclusion induced vertical maps. Diagram (4.15) is just diagram (4.14)
spelled out. Now an application of Proposition 4.5 in [5] completes the proof
of part (b) is in the special case (Y,Z) ⊂ (Ŷ , Ẑ). In the general case we use
Proposition 4.6, Lemma 4.8 and Proposition 2.5 in [5] to obtain sets L1, L2, W
and Ŵ such that (L1, L2) ⊂ (Y ∩ Ŷ ,W ∩ Ŵ ), Z ⊂ W , Ẑ ⊂ Ŵ and (L1, L2),
(Y,W ) and (Ŷ , Ŵ ) are FM-index pairs for (π, S) such that ClX(L1\L2), ClX(Y \
Z) and ClX(Ŷ \ Ŵ ) are strongly π-admissible. By the special case just proved
we thus obtain the commutative diagram

Hq(E(Y )/E(Z), {[E(Z)]})
ξq,Y,Z

//

��

Hq−1(Y/Z, {[Z]})

��

Hq(E(Y )/E(W ), {[E(W )]})
ξq,Y,W

// Hq−1(Y/W, {[W ]})

Hq(E(L1)/E(L2), {[E(L2)]})
ξq,L1,L2 //

OO

��

Hq−1(L1/L2, {[L2]})

OO

��

Hq(E(Ŷ )/E(Ŵ ), {[E(Ŵ )]})
ξ

q,bY , bW
// Hq−1(Ŷ /Ŵ , {[Ŵ ]})

Hq(E(Ŷ )/E(Ẑ), {[E(Ẑ)]})
ξ

q,bY ,bZ
//

OO

Hq−1(Ŷ /Ẑ, {[Ẑ]})

OO
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The vertical maps in the above diagram are all inclusion induced, thus they are
induced by the unique morphisms in C(π×π1, S×{0}) (resp. in C(π, S)) between
the corresponding objects of these connected simple systems. In particular, the
vertical maps are all bijective and so we may invert the upward pointing arrows
then compose the columns to obtain a commutative diagram of the form (4.15)
where the vertical maps are induced by the corresponding morphism in C(π ×
π1, S × {0}) (resp. in C(π, S)). This completes the proof of part (b) of the
theorem. �

In view of Theorem 4.8 we can now make the following definition.

Definition 4.10. Given an isolated π-invariant set S having a strongly π-
admissible isolating neighbouhood and q ∈ Z, let

θq(π, π1, S):Hq(π × π1, S × {0R}) → Hq−1(π, S)

be defined by θq(π, π1, S) := 〈F 〉C,Φ,C′,Φ′ , where C is the categorial Morse index
of (π×π1, S×{0R}), C′ is the categorial Morse index of (π, S), Φ is the restriction
of the functor Hq to C, Φ′ is the restriction of Hq−1 to C′ and F = ξq,Y,Z with
ξq,Y,Z defined in part (a) of Theorem 4.8. θq(π, π1, S) is a well-defined Γ-module
isomorphism, called the suspension isomorphism from Hq(π × π1, S × {0R}) to
Hq−1(π, S).

Remark 4.11. The existence proof of both the suspension isomorphism
θq(π, π1, S) as well as general suspension isomorphism θq(π, π̃, S) of Theorem 3.1
does not use any particular properties of singular homology and so the result
holds for an arbitrary (unreduced) homology theory with values in Γ-modules.
On the other hand, the existence of long exact homology sequences for attractor-
repeller pairs and the commutativity of the suspension isomorphism with such
sequences, established in Section 6 below, does depend on special properties of
singular homology.

5. Weakly exact sequences and anticommutativity
of the connecting homomorphisms

Recall the following simple and known result.

Lemma 5.1. In any category, consider the diagram

D

��

��
???

?

B

??����
//

��

C

��

D̂
��

??
?

B̂

??���
// Ĉ
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of morphisms. Suppose that the diagrams

(5.1)

D
ρ

��
???

?

B

Q ??����
κ

// C

B
κ //

γB

��

C

γC

��

B̂
bκ

// Ĉ

D̂
bρ

��
??

?

B̂

bQ ??���

bκ
// Ĉ

B
Q

//

γB

��

D

γD

��

B̂
bQ

// D̂

commutes and that Q is epic. Then the diagram

D
ρ

//

γD

��

C

γC

��

D̂
bρ

// Ĉ

commutes.

Proof. We must show that ρ̂ ◦ γD = γC ◦ ρ. Since Q is epic we only need
to prove that (ρ̂ ◦ γD) ◦ Q = (γC ◦ ρ) ◦ Q. The commutativity of the diagrams
in (5.1) implies that

(ρ̂ ◦ γD) ◦Q = ρ̂ ◦ (γD ◦Q) = ρ̂ ◦ (Q̂ ◦ γB) = (ρ̂ ◦ Q̂) ◦ γB

= κ̂ ◦ γB = γC ◦ κ = γC ◦ (ρ ◦Q) = (γC ◦ ρ) ◦Q.

The proof is complete. �

Lemma 5.2. The sequence

0 // B/ imα
ζ

// C/ im(β ◦ α)
η

// C/ imβ // 0

induced by chain monomorphisms α:A→ B and β:B → C is exact.

Proof. Consider the following commutative diagram of chain maps

(5.2)

0

��

0

��

0

��

0 // A
α //

Id

��

B
p1 //

β

��

B/ imα //

ζ

��

0

0 // A
β◦α

//

��

C p2
//

p3

��

C/ im(β ◦ α) //

η

��

0

0 // 0 //

��

C/ imβ
Id

//

��

C/ imβ //

��

0

0 0 0
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in which pi, i ∈ {1, 2, 3}, are quotient maps. Since the rows and the first two
columns of (5.2) are exact, the third column is exact by the 3× 3-lemma. �

Lemma 5.3. Consider the following commutative diagram

(5.3)

A
ι //

γA

��

B
κ //

γB

��

C

γC

��

Â
bι

// B̂
bκ

// Ĉ

of chain morphisms in which the first row is weakly exact and the vertical arrows
are isomorphisms. Then the sequence in the second row is weakly exact.

Proof. Since ι is injective, γA and γB are isomorphims, the commutativity
of diagram (5.3) implies that ι̂ is injective. Moreover, κ̂◦ ι̂ = (γC ◦κ◦γ−1

B )◦(γB ◦
ι◦γ−1

A ) = γC ◦(κ◦ι)◦γ−1
A = 0 since the sequence in the first row of diagram (5.3)

is weakly exact. Let ρ̂: B̂/ im ι̂ → Ĉ be the (uniquely determined) chain map
with ρ̂ ◦ Q̂ = κ̂, where Q̂: B̂ → B̂/ im ι̂ is the quotient map. To complete the
proof we need to show that

(5.4) the map Hq(ρ̂):Hq(B̂/ im ι̂) → Hq(Ĉ) is an isomorphism for each
q ∈ Z.

Since the sequence in the first row of diagram (5.3) is weakly exact, it follows
that the map Hq(ρ):Hq(B/ im ι) → Hq(C) is an isomorphism for each q ∈ Z,
where ρ:B/ im ι → C is the (uniquely determined) chain map with ρ ◦ Q = κ,
where Q:B → B/ im ι is the quotient map. We can thus write diagram (5.3) in
the form

A
ι //

γA

��

B
Q

//

γB

��

B/ im ι
ρ

// C

γC

��

Â
bι

// B̂
bQ

//// B̂/ im ι̂
bρ

// Ĉ

This diagram can be uniquely completed to yield the diagram

A
ι //

γA

��

B
Q

//

γB

��

B/ im ι
ρ

//

γ

��

C

γC

��

Â
bι

// B̂
bQ

//// B̂/ im ι̂
bρ

// Ĉ

in which γ is an isomorphism and the first two squares commute. Lemma 5.1 now
implies that the third square commutes, too. Hence, for each q ∈ Z, Hq(ρ̂) =
Hq(γC) ◦Hq(ρ) ◦Hq(γ)−1 and so Hq(ρ̂) is an isomorphism. �

We require the following important result from homological algebra, which
in its general and explicit form needed here is due to M. Scott Osborne:
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Proposition 5.4 ([12, Proposition 9.20]). Suppose that the diagram

(5.5)

0

��

0

��

0

��

0 // A1,1 //

��

A1,2 //

��

A1,3 //

��

0

0 // A2,1 //

��

A2,2 //

��

A2,3 //

��

0

0 // A3,1 //

��

A3,2 //

��

A3,3 //

��

0

0 0 0

of chain morphisms is commutative and has exact columns and rows. For every
k ∈ {1, 2, 3}, let ∂k

q :Hq(Ak,3) → Hq−1(Ak,1), q ∈ Z, be the connecting homo-
morphism of the long homology sequence associated with the k-th row of (5.5)
and δk

q :Hq(A3,k) → Hq−1(A1,k), q ∈ Z, be the connecting homomorphism of the
long homology sequence associated with the k-th column of (5.5). Then

(5.6) δ1q−1 ◦ ∂3
q = −∂1

q−1 ◦ δ3q , q ∈ Z.

Proposition 5.5. Suppose that the diagram

(5.7)

0

��

0

��

0

��

A1,1
α1 //

��

A1,2
β1 //

��

A1,3

��

A2,1 α2
//

��

A2,2
β2

//

��

A2,3

��

A3,1 α3
//

��

A3,2
β3

//

��

A3,3

��

0 0 0

of chain morphisms is commutative, has exact columns and weakly exact first two
rows. If kerα3 = 0, then the third row of (5.7) is weakly exact. Furthermore, for
every k ∈ {1, 2, 3}, let ∂̂k

q :Hq(Ak,3) → Hq−1(Ak,1), q ∈ Z be the connecting ho-
momorphism of the long homology sequence associated with the k-th row of (5.7)
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and δk
q :Hq(A3,k) → Hq−1(A1,k), q ∈ Z, be the connecting homomorphism of the

long homology sequence associated with the k-th column of (5.7). Then

(5.8) δ1q−1 ◦ ∂̂3
q = −∂̂1

q−1 ◦ δ3q , q ∈ Z.

Proof. Since β2 ◦ α2 = 0 and the chain map from A2,1 to A3,1 in (5.7)
is an epimorphism, it follows that β3 ◦ α3 = 0. Thus for each k ∈ {1, 2, 3}
there is a uniquely defined chain map ρk:A′

k,3 := Ak,2/ imαk → Ak,3 such that
ρk ◦ pk = βk, where pk:Ak,2 → A′

k,3 is the canonical quotient map. Moreover,
there are uniquely determined chain maps from A′

1,3 to A′
2,3 and from A′

2,3 to
A′

3,3 such that the diagram

(5.9)

0

��

0

��

0

��

0 // A1,1
α1 //

��

A1,2
p1 //

��

A′
1,3

//

��

0

0 // A2,1 α2
//

��

A2,2 p2
//

��

A′
2,3

//

��

0

0 // A3,1 α3
//

��

A3,2 p3
//

��

A′
3,3

//

��

0

0 0 0

is commutative, has exact rows and exact first two columns. It follows from the
3 × 3-Lemma that the third column is also exact. For every k ∈ {1, 2, 3} and
q ∈ Z, let ∂k′

q :Hq(A′
k,3) → Hq−1(Ak,1) be the connecting homomorphism of the

long homology sequence associated with the k-th row of (5.9) and δ3
′

q :Hq(A′
3,3) →

Hq−1(A′
1,3) be the connecting homomorphism of the long homology sequence

associated with the 3-th column of (5.9). Lemma 5.1 together with the commu-
tativity of (5.7) and (5.9) implies that the diagram

(5.10)

0

��

0

��

A′
1,3

ρ1 //

��

A1,3

��

A′
2,3 ρ2

//

��

A2,3

��

A′
3,3 ρ3

//

��

A3,3

��

0 0
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commutes. Passing to the long commutative homology ladder

(5.11)

// Hq(A′
1,3) //

Hq(ρ1)

��

Hq(A′
2,3) //

Hq(ρ2)

��

Hq(A′
3,3)

δ3′
q

//

Hq(ρ3)

��

Hq−1(A′
1,3) //

Hq−1(ρ1)

��
// Hq(A1,3) // Hq(A2,3) // Hq(A3,3)

δ3
q

// Hq−1(A1,3) //

induced by (5.10) and using the fact that both Hq(ρ1) and Hq(ρ2) are bijective
for all q ∈ Z, it follows from the 5-Lemma that Hq(ρ3) is bijective for all q ∈ Z.
This proves that the third row of (5.7) is weakly exact.

Now, applying Proposition 5.4 to diagram (5.9) we obtain that

(5.12) δ1q−1 ◦ ∂3′

q = −∂1′

q−1 ◦ δ3
′

q , q ∈ Z.

From diagram (5.11) we obtain that

(5.13) (Hq−1(ρ1))−1 ◦ δ3q = δ3
′

q ◦ (Hq(ρ3))−1, q ∈ Z.

Now ∂̂3
q = ∂3′

q ◦(Hq(ρ3))−1 and ∂̂1
q−1 = ∂1′

q−1◦(Hq−1(ρ1))−1, q ∈ Z. This together
with (5.12) and (5.13) implies (5.8). �

Note the following simple and known result.

Lemma 5.6. Let Y and Z be topological spaces and let f :Y → Z be a con-
tinuous and injective map. Then the inclusion induced chain morphism

∆(f):∆(Y ) → ∆(Z)

is injective.

Lemma 5.7. Let Y and Z be topological spaces and let Y1 ⊂ Y and Z1 ⊂ Z.
Let f :Y → Z be a continuous and injective map such that Z1 ∩ f(Y ) = f(Y1).
Then the inclusion induced chain morphism

∆(f):∆(Y )/∆(Y1) → ∆(Z)/∆(Z1)

is injective.

Proof. Let q ∈ Z. We must prove that, whenever γ ∈ ∆q(Y ) is such that
∆q(f)(γ) ∈ ∆q(Z1), then γ ∈ ∆q(Y1). This is certainly true if γ = 0, so suppose
γ 6= 0. Thus γ =

∑
k∈J rkσk, where J is a finite index set, and for k ∈ J ,

rk ∈ G\{0} and σk:∆q → Y is a singular q-simplex such that σk 6= σl whenever
k 6= l. Since f is injective it follows that f ◦ σk 6= f ◦ σl whenever k 6= l.
Since ∆q(f)(γ) =

∑
k∈J rk(f ◦ σk) and ∆q(f)(γ) ∈ ∆q(Z1), it thus follows that

fσk(∆q) ⊂ Z1 and so fσk(∆q) ⊂ Z1 ∩ f(Y ) for all k ∈ J . Therefore, for k ∈ J ,
fσk(∆q) ⊂ f(Y1) and so the injectivity of f implies that σk(∆q) ⊂ Y1. The
proof is complete. �
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6. The suspension isomorphism and attractor-repeller pairs

In this section we will complete the proof of Theorem 3.5. For the rest of
this section, let N 6= ∅ be closed in X, (A,A∗) be an attractor-repeller pair of S
relative to π and (N1, N2, N3) be an FM-index triple for (π, S,A,A∗) such that
N1 ⊂ N and ClX(N1 \N3) is strongly π-admissible. For i,j ∈ {1, 2, 3}, i < j, set

Ωi,j := Ω(Ni, Nj), Ωi,j
1 := Ω1(Ni, Nj),

Ωi,j
2 := Ω2(Ni, Nj), Ωi,j

0 := Ω0(Ni, Nj),

zi,j := zNi,Nj , pi,j := pNi,Nj , f i,j := fNi,Nj ,

ρi,j := ρNi,Nj , `i,j := `Ni,Nj , ξi,j
q := ξq,Ni,Nj ,

q ∈ Z. (For the notations used here cf Definition 4.1, Lemma 4.3, Proposition 4.4,
formula (4.13) and Theorem 4.8.)

Theorem 3.5 will follow from Theorem 4.8, already proved, and from the
following result.

Theorem 6.1.

(a) The inclusion induced diagram

(6.1)

∆(Ω2,3)/∆({z2,3}) //

∆(ρ2,3)

��

∆(Ω1,3)/∆({z1,3}) //

∆(ρ1,3)

��

∆(Ω1,2)/∆({z1,2})

∆(ρ1,2)

��

∆(Ω2,3)/∆(Ω2,3
2 ) // ∆(Ω1,3)/∆(Ω1,3

2 ) // ∆(Ω1,2)/∆(Ω1,2
2 )

∆(Ω2,3
1 )/∆(Ω2,3

0 ) //

∆(`2,3)

OO

∆(Ω1,3
1 )/∆(Ω1,3

0 ) //

∆(`1,3)

OO

∆(Ω1,2
1 )/∆(Ω1,2

0 )

∆(`1,2)

OO

is commutative with weakly exact rows.
(b) The diagram

(6.2)

∆(N2/N3)/∆({[N3]}) //

∆(f2,3)

��

∆(N1/N3)/∆({[N3]}) //

∆(f1,3)

��

∆(N1/N2)/∆({[N2]})

∆(f1,2)

��

∆(Ω2,3
0 )/∆({z2,3}) // ∆(Ω1,3

0 )/∆({z1,3}) // ∆(Ω1,2
0 )/∆({z1,2})

is commutative with weakly exact rows. Here, the horizontal maps are
inclusion induced.
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(c) The following inclusion induced diagram of chain maps is commutative
with exact columns and weakly exact rows:

(6.3)

0

��

0

��

0

��

∆(Ω2,3
0 )/∆({z2,3}) //

��

∆(Ω1,3
0 )/∆({z1,3}) //

��

∆(Ω1,2
0 )/∆({z1,2})

��

∆(Ω2,3
1 )/∆({z2,3}) //

��

∆(Ω1,3
1 )/∆({z1,3}) //

��

∆(Ω1,2
1 )/∆({z1,2})

��

∆(Ω2,3
1 )/∆(Ω2,3

0 ) //

��

∆(Ω1,3
1 )/∆(Ω1,3

0 ) //

��

∆(Ω1,2
1 )/∆(Ω1,2

0 )

��

0 0 0

The proof of Theorem 6.1 requires several preliminary results.

Lemma 6.2. The inclusion induced map ι: Ω2,3 → Ω1,3 is continuous, injec-
tive and ι(z2,3) = z1,3. Moreover, ι(Ω2,3

i ) ⊂ Ω1,3
i and Ω1,3

i ∩ ι(Ω2,3) ⊂ ι(Ω2,3
i ),

for i ∈ {1, 2}.

Proof. It is clear that ι: Ω2,3 → Ω1,3 is continuous and base-point preserv-
ing.

We will prove that the map ι is injective. Consider the following commutative
diagram:

E(N2)
κ //

p2,3

��

E(N1)

p1,3

��

Ω2,3
ι

// Ω1,3

where κ:E(N2) → E(N1) is the inclusion map.
Let z, z′ ∈ Ω2,3 be such that ι(z) = ι(z′). Let w, w′ ∈ E(N2) be such that

z = p2,3(w) and z′ = p2,3(w′). Hence ι(p2,3(w)) = ι(p2,3(w′)) and so

(6.4) p1,3(w) = p1,3(κ(w)) = p1,3(κ(w′)) = p1,3(w′).

(6.4) implies that either w = w′ and so z = z′ or else w, w′ ∈ E(N3) and so
z = p2,3(w) = z2,3 = p2,3(w′) = z′. Hence, ι is injective.

Let i ∈ {1, 2} be fixed. Let z ∈ ι(Ω2,3
i ). We want to show that z ∈ Ω1,3

i .
Let w ∈ Ei(N2, N3) be such that z = ι(p2,3(w)). Since Ei(N2, N3) ⊂ E(N2), it
follows that z = p1,3(κ(w)). Now, either w ∈ N2 × Ii so w ∈ Ei(N1, N3) and so
z ∈ Ω1,3

i , or else w ∈ E(N3) so w ∈ Ei(N1, N3) and so z ∈ Ω1,3
i .
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Let z ∈ Ω1,3
i ∩ ι(Ω2,3). We will show that z ∈ ι(Ω2,3

i ). Let w′ ∈ Ei(N1, N3)
and w ∈ E(N2) such that p1,3(w′) = z = ι(p2,3(w)). Hence

(6.5) p1,3(w′) = p1,3(w).

(6.5) implies that either w = w′ /∈ E(N3), so w ∈ N2 × Ii and so z ∈ ι(Ω2,3
i ), or

else w ∈ E(N3) and so z = ι(z2,3) ∈ ι(Ω2,3
i ). �

Corollary 6.3. ι(Ω2,3
0 ) ⊂ Ω1,3

0 and Ω1,3
0 ∩ ι(Ω2,3) ⊂ ι(Ω2,3

0 ).

Proof. Notice that Lemma 6.2 and the definition of the sets Ωi,3
0 , i ∈ {1, 2}

imply that ι(Ω2,3
0 ) = ι(Ω2,3

1 ∩ Ω2,3
2 ) = ι(Ω2,3

1 ) ∩ ι(Ω2,3
2 ) ⊂ Ω1,3

1 ∩ Ω1,3
2 = Ω1,3

0 .
Moreover, Ω1,3

0 ∩ ι(Ω2,3) = (Ω2,3
1 ∩ Ω2,3

2 ) ∩ ι(Ω2,3) = (Ω2,3
1 ∩ ι(Ω2,3)) ∩ (Ω2,3

2 ∩
ι(Ω2,3)) ⊂ ι(Ω2,3

1 ) ∩ ι(Ω2,3
2 ) = ι(Ω2,3

0 ). The corollary is proved. �

Corollary 6.4. The inclusion induced chain maps ∆(Ω2,3
1 ) → ∆(Ω1,3

1 ),
∆(Ω2,3

0 ) → ∆(Ω1,3
0 ), ∆(Ω2,3

0 ) → ∆(Ω2,3
1 ) and ∆(Ω1,3

0 ) → ∆(Ω1,3
1 ) are injective.

Proof. Lemma 6.2 implies that for i ∈ {1, 2} the inclusion induced map
ι|Ω2,3

i
: Ω2,3

i → Ω1,3
i is well defined, continuous and injective. Moreover, Corol-

lary 6.3 implies that the inclusion induced map ι|Ω2,3
0

: Ω2,3
0 → Ω1,3

0 is well de-

fined, continuous and injective. Moreover, Ω2,3
0 ⊂ Ω2,3

1 and Ω1,3
0 ⊂ Ω1,3

1 and so
the inclusions Ω2,3

0 → Ω2,3
1 and Ω1,3

0 → Ω1,3
1 are well defined, continuous and

injective. Now an application of Lemma 5.6 concludes the proof. �

Corollary 6.5. The inclusion induced chain maps

∆(Ω2,3)/∆({z2,3}) → ∆(Ω1,3)/∆({z1,3}),
∆(Ω2,3)/∆(Ω2,3

2 ) → ∆(Ω1,3)/∆(Ω1,3
2 ),

∆(Ω2,3
1 )/∆(Ω2,3

0 ) → ∆(Ω1,3
1 )/∆(Ω1,3

0 ),

∆(Ω2,3
1 )/∆({z2,3}) → ∆(Ω1,3

1 )/∆({z1,3}),
∆(Ω2,3

0 )/∆({z2,3}) → ∆(Ω1,3
0 )/∆({z1,3}),

∆(N2/N3)/∆({[N3]}) → ∆(N1/N3)/∆({[N3]})

are injective.

Proof. It clear that {z2,3} ⊂ Ω2,3, {z1,3} ⊂ Ω1,3, Ω2,3
2 ⊂ Ω2,3, Ω1,3

2 ⊂ Ω1,3,
Ω2,3

0 ⊂ Ω2,3
1 , Ω1,3

0 ⊂ Ω1,3
1 , {z2,3} ⊂ Ω2,3

1 , {z1,3} ⊂ Ω1,3
1 , {z2,3} ⊂ Ω2,3

0 , {z1,3} ⊂
Ω1,3

0 , {[N3]} ⊂ N2/N3 and {[N3]} ⊂ N1/N3.
Moreover, since ι: Ω2,3 → Ω1,3 is injective, it follows that {z1,3} ∩ ι(Ω2,3) ⊂

ι({z2,3}), {z1,3}∩ι(Ω2,3
1 ) ⊂ ι({z2,3}) and {z1,3}∩ι(Ω2,3

0 ) ⊂ ι({z2,3}). Lemma 6.2
implies that Ω1,3

2 ∩ ι(Ω2,3) ⊂ ι(Ω2,3
2 ). Similarly, {[N3]} ∩ κ(N2/N3) ⊂ κ({[N3]}),

where κ:N2/N3 → N1/N3 is the (continuous and injective) inclusion induced
map. Since Ω2,3

1 ⊂ Ω2,3, Corollary 6.3 implies that Ω1,3
0 ∩ ι(Ω2,3

1 ) ⊂ ι(Ω2,3
0 ). Now

the proof follows from Lemma 6.2, Corollary 6.4 and Lemma 5.7. �
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Lemma 6.6. The sequences

∆(Ω2,3)/∆({z2,3}) // ∆(Ω1,3)/∆({z1,3}) // ∆(Ω1,2)/∆({z1,2})

∆(N2/N3)/∆({[N3]}) // ∆(N1/N3)/∆({[N3]}) // ∆(N1/N2)/∆({[N2]})

are weakly exact.

Proof. Since (N1, N2, N3) is an FM-index triple for (π, S,A,A∗) such that
ClX(N1 \N3) strongly π-admissible, Proposition 2.8 implies that the sequence

∆(N2/N3)/∆({[N3]}) // ∆(N1/N3)/∆({[N3]}) // ∆(N1/N2)/∆({[N2]})

is weakly exact.
We will prove that the first sequence is weakly exact. Recall that π1 is the

(semi)flow on R generated by the ordinary differential equation

ẋ = x, x ∈ R.

It follows that ([−1, 1] , {−1, 1}) is an FM-index pair for (π1, {0}). It is clear
that (A × {0}, A∗ × {0}) is an attractor-repeller pair for S × {0} relative to
the semiflow π × π1. Notice that E(N3) ⊂ E(N2) ⊂ E(N1) and an application
of Proposition 2.2 implies that (E(N1), E(N3)) is an FM-index pair for (π ×
π1, S × {0}) and (E(N2), E(N3)) is an FM-index pair for (π × π1, A × {0}).
Hence, (E(N1), E(N2), E(N3)) is an FM-index triple for (π × π1, S × {0}, A ×
{0}, A∗ ×{0}). Moreover, ClX×R(E(N1) \E(N3)) is strongly π× π1-admissible.
Now Proposition 2.8 implies that the sequence

∆(Ω2,3)/∆({z2,3}) // ∆(Ω1,3)/∆({z1,3}) // ∆(Ω1,2)/∆({z1,2})

is weakly exact. �

Lemma 6.7. For j ∈ {0, 1, 2} the sequence

∆(Ω2,3
j )/∆({z2,3}) // ∆(Ω1,3

j )/∆({z1,3}) // ∆(Ω1,2
j )/∆({z1,2})

is weakly exact.

Proof. Define R0 := {0}, R1 := ]−∞, 0] and R2 := [0,∞[. Fix j ∈ {0, 1, 2}.
For i ∈ {1, 2, 3} let Mi = M j

i := (Ni × Ij) ∪ (N × (Ij ∩ {−1, 1})) and let π1,j be
the semiflow on Rj generated by the ordinary differential equation

ẋ = x, x ∈ Rj .

It follows that (Ij , Ij ∩ {−1, 1}) is an FM-index pair for (π1,j , {0}). Moreover,
(A×{0}, A∗×{0}) is an attractor-repeller pair for S×{0} relative to the semiflow
π × π1,j . Notice that M3 ⊂ M2 ⊂ M1 and an application of Proposition 2.2
implies that (M1,M3) is an FM-index for (π× π1,j , S×{0}) and (M2,M3) is an
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FM-index for (π×π1,j , A×{0}). Hence, (M1,M2,M3) is an FM-index triple for
(π × π1,j , S × {0}, A × {0}, A∗ × {0}). Moreover, ClX×Rj (M1 \M3) is strongly
π × π1,j-admissible. Now Proposition 2.8 implies that the sequence

∆(M2/M3)/∆({[M3]}) // ∆(M1/M3)/∆({[M3]}) // ∆(M1/M2)/∆({[M2]})

is weakly exact. Notice that, for i, ` ∈ {1, 2, 3} with i < `, M` ⊂ Mi ⊂
Ej(Ni, N`), M` ⊂ E(N`), Ej(Ni, N`) \ E(N`) ⊂ Mi and E(N`) ∩Mi ⊂ M`. It
follows from Proposition 2.1 that the inclusion induced maps

Mi/M` → Ej(Ni, N`)/E(N`), i, ` ∈ {1, 2, 3}, i < `,

are base-point preserving homeomorphisms. Moreover, the following inclusion
induced diagram is commutative

(6.6)

M2/M3
//

��

M1/M3
//

��

M1/M2

��

Ej(N2, N3)/E(N3) // Ej(N1, N3)/E(N3) // Ej(N1, N2)/E(N2)

Notice that, by Remark 4.2, Ωi,`
j = Ej(Ni, N`)/E(N`), i, ` ∈ {1, 2, 3}, i < ` and

j ∈ {0, 1, 2}, both as sets and as topological spaces. Hence, diagram (6.6) can
be rewritten in the following way:

∆(M2/M3)/∆({[M3]}) //

��

∆(M1/M3)/∆({[M3]}) //

��

∆(M1/M2)/∆({[M2]})

��

∆(Ω2,3
j )/∆({z2,3}) // ∆(Ω1,3

j )/∆({z1,3}) // ∆(Ω1,2
j )/∆({z1,2})

where the vertical arrows are isomorphims. Now an application of Lemma 5.3
implies that the sequence

∆(Ω2,3
j )/∆({z2,3}) // ∆(Ω1,3

j )/∆({z1,3}) // ∆(Ω1,2
j )/∆({z1,2})

is weakly exact. �

Lemma 6.8. For i and j ∈ {1, 2, 3} with i < j, the inclusion induced se-
quences

0 // ∆(Ωi,j
0 )/∆({zi,j}) // ∆(Ωi,j

1 )/∆({zi,j}) // ∆(Ωi,j
1 )/∆(Ωi,j

0 ) // 0

0 // ∆(Ωi,j
2 )/∆({zi,j}) // ∆(Ωi,j)/∆({zi,j}) // ∆(Ωi,j)/∆(Ωi,j

2 ) // 0

are exact.

Proof. The first of the above sequences is induced by the inclusion in-
duced chain monomorphisms ∆({zi,j}) → ∆(Ωi,j

0 ) and ∆(Ωi,j
0 ) → ∆(Ωi,j

1 ), while
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the second sequence is induced by the inclusion induced chain monomorphisms
∆({zi,j}) → ∆(Ωi,j

2 ) and ∆(Ωi,j
2 ) → ∆(Ωi,j). The lemma now follows from

Lemma 5.2. �

We can finally give a

Proof of Theorem 6.1. Diagram (6.2) is commutative by the definition
of the maps f i,j (cf. Lemma 4.3). Consider the following inclusion induced
diagrams of chain maps:

(6.7)

0

��

0

��

0

��

∆(Ω2,3
2 )/∆({z2,3}) //

��

∆(Ω1,3
2 )/∆({z1,3}) //

��

∆(Ω1,2
2 )/∆({z1,2})

��

∆(Ω2,3)/∆({z2,3}) //

��

∆(Ω1,3)/∆({z1,3}) //

��

∆(Ω1,2)/∆({z1,2})

��

∆(Ω2,3)/∆(Ω2,3
2 ) //

��

∆(Ω1,3)/∆(Ω1,3
2 ) //

��

∆(Ω1,2)/∆(Ω1,2
2 )

��

0 0 0

Both (6.7) and (6.3) are clearly commutative. Lemma 6.8 implies that the
columns in each of those diagrams are exact. It follows from Lemmas 6.6 and 6.7
that the first two rows in each of those diagrams are weakly exact. Now an ap-
plication of Corollary 6.5 and Proposition 5.5 implies that the third row of those
diagrams is weakly exact. Invoking again Lemma 6.6 we thus conclude that
the rows of diagrams (6.1), (6.2) and (6.3) are weakly exact. The proof of the
theorem is complete. �

We can now complete the proof of Theorem 3.5.

Proof of Theorem 3.5. For i, j ∈ {1, 2, 3} with i < j define the following
sets:

Ai,j
1 := ∆(Ωi,j)/∆({zi,j}), Ai,j

2 := ∆(Ωi,j)/∆(Ωi,j
2 ),

Ai,j
3 := ∆(Ωi,j

1 )/∆(Ωi,j
0 ), Ai,j

4 := ∆(Ωi,j
1 )/∆({zi,j}),

Ai,j
5 := ∆(Ωi,j

0 )/∆({zi,j}), Ai,j
6 := ∆(Ni/Nj)/∆({[Nj ]}).

Using Proposition 4.4 and Lemma 4.3 we see that diagrams (6.1) and (6.2)
of weakly exact sequences in Theorem 6.1 induce the following commutative
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diagrams in homology with long exact rows

(6.8)

// Hq(A
2,3
1 ) //

Hq(ρ2,3)

��

Hq(A
1,3
1 ) //

Hq(ρ1,3)

��

Hq(A
1,2
1 )

Hq(ρ1,2)

��

// Hq−1(A
2,3
1 )

Hq−1(ρ
2,3)

��

//

// Hq(A
2,3
2 ) //

Hq(`2,3)−1

��

Hq(A
1,3
2 ) //

Hq(`1,3)−1

��

Hq(A
1,2
2 ) //

Hq(`1,2)−1

��

Hq−1(A
2,3
2 ) //

Hq−1(`
2,3)−1

��

// Hq(A
2,3
3 ) // Hq(A

1,3
3 ) // Hq(A

1,2
3 ) // Hq−1(A

2,3
3 ) //

(6.9)

// Hq(A
2,3
5 ) //

Hq(f2,3)−1

��

Hq(A
1,3
5 ) //

Hq(f1,3)−1

��

Hq(A
1,2
5 ) //

Hq(f1,2)−1

��

Hq−1(A
2,3
5 ) //

Hq−1(f
2,3)−1

��

// Hq(A
2,3
6 ) // Hq(A

1,3
6 ) // Hq(A

1,2
6 ) // Hq−1(A

2,3
6 ) //

Note that the commutative diagram (6.3) of exact columns and weakly exact
rows in Theorem 6.1 can be written as

(6.10)

0

��

0

��

0

��

A2,3
5

//

��

A1,3
5

//

��

A1,2
5

��

A2,3
4

//

��

A1,3
4

//

��

A1,2
4

��

A2,3
3

//

��

A1,3
3

//

��

A1,2
3

��

0 0 0

Let ∂̂3
q :Hq(A

1,2
3 ) → Hq−1(A

2,3
3 ), (resp. ∂̂1

q :Hq(A
1,2
5 ) → Hq−1(A

2,3
5 )), q ∈ Z, be

the connecting homomorphism of the long homology sequence associated with
the third (resp. first) row of (6.10) while δ3q :Hq(A

1,2
3 ) → Hq−1(A

1,2
5 ), (resp.

δ2q :Hq(A
1,3
3 ) → Hq−1(A

1,3
5 ), resp. δ1q :Hq(A

2,3
3 ) → Hq−1(A

2,3
5 )), q ∈ Z, be the

connecting homomorphism of the long homology sequence associated with the
third (resp. second, resp. first) column of (6.10). Proposition 5.5 implies that

(6.11) δ1q−1 ◦ ∂̂3
q = −∂̂1

q−1 ◦ δ3q , q ∈ Z.
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Thus we obtain the following diagram

(6.12)

// Hq(A
2,3
3 ) //

(−1)qδ1
q

��

Hq(A
1,3
3 ) //

(−1)qδ2
q

��

Hq(A
1,2
3 )

b∂3
q

//

(−1)qδ3
q

��

Hq−1(A
2,3
3 ) //

(−1)q−1δ1
q−1

��

Hq−1(A
1,3
3 ) //

(−1)q−1δ2
q−1

��

// Hq−1(A
2,3
5 ) // Hq−1(A

1,3
5 ) // Hq−1(A

1,2
5 )

b∂1
q−1

// Hq−2(A
2,3
5 ) // Hq−2(A

1,3
5 ) //

The diagrams

Hq(A
2,3
3 ) //

(−1)qδ1
q

��

Hq(A
1,3
3 )

(−1)qδ2
q

��

and

Hq(A
1,3
3 ) //

(−1)qδ2
q

��

Hq(A
1,2
3 )

(−1)qδ3
q

��

Hq−1(A
2,3
5 ) // Hq−1(A

1,3
5 ) Hq−1(A

1,3
5 ) // Hq−1(A

1,2
5 )

commute by the naturality of (δi
q)q∈Z, i ∈ {1, 2, 3} while the diagram

Hq(A
1,2
3 )

b∂3
q

//

(−1)qδ3
q

��

Hq−1(A
2,3
3 )

(−1)q−1δ1
q−1

��

Hq−1(A
1,2
5 )

b∂1
q−1

// Hq−2(A
2,3
5 )

commutes in view of (6.11). It follows that diagram (6.12) is commutative.
Now, composing diagrams (6.8), (6.12) and (6.9) (from top to bottom) and

using Theorem 4.8 we obtain the commutative diagram
(6.13)

// Hq(A
2,3
1 ) //

ξ2,3
q

��

Hq(A
1,3
1 ) //

ξ1,3
q

��

Hq(A
1,2
1 ) //

ξ1,2
q

��

Hq−1(A
2,3
1 ) //

ξ2,3
q−1

��

// Hq−1(A
2,3
6 ) // Hq−1(A

1,3
6 ) // Hq−1(A

1,2
6 ) // Hq−2(A

2,3
6 ) //

Applying the 〈 · , · 〉-operation to diagram (6.13) and using Definition 4.10 to-
gether with Theorem 5.1 in [5] we obtain diagram (3.1). This combined with
Theorem 4.8 completes the proof of Theorem 3.5. �

7. The suspension isomorphism and homology index braids

In this section let P be a finite set, ≺ be a strict partial order on P and
(Mi)i∈P be a Morse decomposition of S relative to π. Using the notation of
Theorem 3.1 we have that (M ′

i)i∈P is a ≺-ordered Morse decomposition of S′

relative to π′. Given (I, J) ∈ I2(≺), (M(I),M(J)) is an attractor-repeller pair
in M(IJ) (where IJ = I ∪ J) relative to π, so (M(I)′,M(J)′) is an attractor-
repeller pair inM(IJ)′ relative to π′. Setting, forK ∈ I(≺) and q ∈ Z, H ′

q(K) :=
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Hq(π′,M(K)′), Hq(K) := Hq(π,M(K)) and θq(K) := θq(π, π̃,M(K)) and using
Theorem 3.1 we thus arrive at the commutative diagram

(7.1)

// H ′
q(I) //

θq(I)

��

H ′
q(IJ) //

θq(IJ)

��

H ′
q(J) //

θq(J)

��

H ′
q−1(I) //

θq−1(I)

��
// Hq−k(I) // Hq−k(IJ) // Hq−k(J) // Hq−k−1(I) //

Here, the upper (resp. lower) horizontal sequence is the homology index se-
quence of (π′,M(IJ)′,M(I)′,M(J)′) (resp. the homology index sequence of
(π,M(IJ),M(I),M(J)) shifted to the left by k). We thus obtain the follow-
ing result.

Theorem 7.1. (θq(J))q∈Z, J ∈ I(≺), is an isomorphism from the homology
index braid of (π′, S′, (M ′

i)i∈P ) to the graded module braid obtained by shifting
the homology index braid of (π, S, (Mi)i∈P ) to the left by k.

Now the results of [6], [7] and [8] imply the following result.

Corollary 7.2. Let C∆(i) = (C∆(i)q)q∈Z, i ∈ P , be a family of graded
modules. For q ∈ Z let ∆̃q:

⊕
i∈P C∆(i)q →

⊕
i∈P C∆(i)q−1 be a Γ-module ho-

momorphism. Suppose that ∆̃ := (∆̃q)q∈Z is a C-connection matrix for the
homology index braid of (π, S, (Mi)i∈P ). Then ∆̃·+k := (∆̃q+k)q∈Z is a C-
connection matrix for the homology index braid of (π′, S′, (M ′

i)i∈P ).
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