POSITIVE SOLUTIONS

FOR A CLASS OF VOLTERRA INTEGRAL EQUATIONS VIA A FIXED POINT THEOREM IN FRÉCHET SPACES

Ravi P. Agarwal - Donal O'Regan

Abstract. Motivated by the Emden differential equation we discuss in this paper the existence of positive solutions to the integral equation

$$
y(t)=\int_{0}^{t} k(t, s) f(y(s)) d s \quad \text { for } t \in[0, T)
$$

1. Introduction

In this paper we establish the existence of positive (positive on $(0, T)$) solutions to the Volterra integral equation

$$
\begin{equation*}
y(t)=\int_{0}^{t} k(t, s) f(y(s)) d s \quad \text { for } t \in[0, T) \tag{1.1}
\end{equation*}
$$

where $0<T \leq \infty$ is fixed. Our theory was motivated by the Emden differential equation

$$
\begin{equation*}
y^{\prime \prime}-t^{p} y^{q}=0, \quad p \geq 0 \text { and } 0<q<1 \tag{1.2}
\end{equation*}
$$

which arises in various astrophysical problems, including the study of the density of stars; of course one is interested only in positive solutions to (1.2). Differential equations including (1.2) will be discussed as a special case of (1.1) in Section 2.

[^0]We remark also when the kernel k is a convolution kernel (1.1) arises in connection with nonlinear diffusion and percolation problems (see [3] and the references therein). The results in Section 2 extend and complement the theory in [3], [5].

For notational purposes in this paper if $u \in C[0, T)$ then for every $m \in$ $\{1,2, \ldots\}=N$ we define the seminorms $\rho_{m}(u)$ by

$$
\rho_{m}(u)=\sup _{t \in\left[0, t_{m}\right]}|u(t)|
$$

where $t_{m} \uparrow T$. Note $C[0, T)$ is a locally convex linear topological space. The topology on $C[0, T)$, induced by the seminorms $\left\{\rho_{m}\right\}_{m \in \mathbb{N}}$, is the topology of uniform convergence on every compact interval of $[0, T)$.

Existence in Section 2 is based on a fixed point theorem of Agarwal and O'Regan [2] which in turn is based on Krasnoselskii's fixed point theorem in a cone. We present the result in [2] (see also [1]) for the convenience of the reader. First however we state Krasnosel'skiǐ's result.

Theorem 1.1. Let $B=(B,\|\cdot\|)$ be a Banach space and let $C \subseteq E$ be a cone in B. Assume Ω_{1} and Ω_{2} are open bounded subsets of B with $0 \in \Omega_{1}, \overline{\Omega_{1}} \subset \Omega_{2}$, and let

$$
S: C \cap\left(\overline{\Omega_{2}} \backslash \Omega_{1}\right) \rightarrow C
$$

be a continuous compact map such that either
(a) $\|S u\| \leq\|u\|$ for $u \in C \cap \partial \Omega_{1}$ and $\|S u\| \geq\|u\|$ for $u \in C \cap \partial \Omega_{2}$, or
(b) $\|S u\| \geq\|u\|$ for $u \in C \cap \partial \Omega_{1}$ and $\|S u\| \leq\|u\|$ for $u \in C \cap \partial \Omega_{2}$,
hold. Then S has a fixed point in $C \cap\left(\overline{\Omega_{2}} \backslash \Omega_{1}\right)$.
The result in [2] is based on the fact that a Fréchet space can be viewed as a projective limit of a sequence of Banach spaces $\left\{E_{n}\right\}_{n \in \mathbb{N}}$. We now extend Theorem 1.1 to the Fréchet space setting. Let $E=\left(E,\left\{|\cdot|_{n}\right\}_{n \in \mathbb{N}}\right)$ be a Fréchet space with

$$
|x|_{1} \leq|x|_{2} \leq|x|_{3} \leq \ldots \quad \text { for every } x \in E .
$$

Assume for each $n \in \mathbb{N}$ that $\left(E_{n},|\cdot|_{n}\right)$ is a Banach space and suppose

$$
E_{1} \supseteq E_{2} \supseteq \ldots
$$

with $|x|_{n} \leq|x|_{n+1}$ for all $x \in E_{n+1}$. Also assume $E=\bigcap_{n=1}^{\infty} E_{n}$ where \bigcap_{1}^{∞} is the generalized intersection as described in [4, pp. 439] (i.e. E is the projective limit of $\left\{E_{n}\right\}_{n \in \mathbb{N}}$) with the embedding $\mu_{n}: E \rightarrow E_{n}$. Fix $n \in \mathbb{N}$ and let C_{n} will a cone in E_{n} and for $\rho>0$ we let

$$
U_{n, \rho}=\left\{x \in E_{n}:|x|_{n}<\rho\right\} \quad \text { and } \quad V_{n, \rho}=U_{n, \rho} \cap C_{n} .
$$

Notice

$$
\partial_{C_{n}} V_{n, \rho}=\partial_{E_{n}} U_{n, \rho} \cap C_{n} \quad \text { and } \quad \overline{V_{n, \rho}}=\overline{U_{n, \rho}} \cap C_{n}
$$

(the first closure is with respect to C_{n} whereas the second is with respect to E_{n}). We are interested in establishing that F has a fixed point; here $F: E_{1} \rightarrow E_{1}$.

Definition 1.2. Fix $k \in \mathbb{N}$. If $x, y \in E_{k}$ then we say $x=y$ in E_{k} if $|x-y|_{k}=0$.

Definition 1.3. If $x, y \in E$ then we say $x=y$ in E if $x=y$ in E_{k} for each $k \in \mathbb{N}$.

Theorem 1.4. For each $n \in \mathbb{N}$, let C_{n} be a cone in E_{n} and also let

$$
C_{1} \supseteq C_{2} \supseteq C_{3} \supseteq \ldots
$$

In addition suppose $F: E_{1} \rightarrow E_{1}$. Let γ, r, R be constants with $0<\gamma<r<R$ and assume the following conditions are satisfied:
(a) for each $n \in \mathbb{N}, F: \overline{U_{n, R}} \cap C_{n} \rightarrow C_{n}$ is a continuous compact map,
(b) for each $n \in \mathbb{N},|F x|_{n} \leq|x|_{n}$, for all $x \in \partial_{E_{n}} U_{n, r} \cap C_{n}$,
(c) for each $n \in \mathbb{N},|F x|_{n} \geq|x|_{n}$, for all $x \in \partial_{E_{n}} U_{n, R} \cap C_{n}$, and
(d) for every $k \in \mathbb{N}$ and any subsequence $A \subseteq\{k, k+1, \ldots\}$ if $x \in C_{n}$ is such that $R \geq|x|_{n} \geq r$ for some $n \in A$, then $|x|_{k} \geq \gamma$.
Then F has a fixed point $y \in E$ (in fact $\mu_{n}(y) \in\left(\overline{U_{n, R}} \backslash U_{n, \gamma}\right) \cap C_{n}$ for every $n \in \mathbb{N}$).

REmARK 1.5. Of course there is an obvious analogue of Theorem 1.2 when $U_{n, r}$ is replaced by $U_{n, R}$ in (b) and $U_{n, R}$ is replaced by $U_{n, r}$ in (c).

Proof. We know from Theorem 1.1 (part (a)) that for each $n \in \mathbb{N}, F$ has a fixed point $y_{n} \in\left(\overline{U_{n, R}} \backslash U_{n, r}\right) \cap C_{n}$. Lets look at $\left\{y_{n}\right\}_{n \in \mathbb{N}}$. Note $y_{n} \in \overline{U_{1, R}} \backslash U_{1, \gamma}$ for each $n \in \mathbb{N}$. To see this notice $\left|y_{n}\right|_{n} \leq R$ and $|x|_{1} \leq|x|_{n}$ for all $x \in E_{n}$ implies $\left|y_{n}\right|_{1} \leq R$, and so $y_{n} \in \overline{U_{1, R}}$ for each $n \in \mathbb{N}$. On the other hand $\left|y_{n}\right|_{n} \geq r$, $y_{n} \in C_{n}$ together with (d) implies $\left|y_{n}\right|_{1} \geq \gamma$. Thus $y_{n} \in\left(\overline{U_{1, R}} \backslash U_{1, \gamma}\right) \cap C_{1}$ and $y_{n}=F y_{n}$ in E_{n} for each $n \in \mathbb{N}$ and these together with (a) implies that there exists a subsequence N_{1}^{*} of N and a $z_{1} \in\left(\overline{U_{1, R}} \backslash U_{1, \gamma}\right) \cap C_{1}$ with $y_{n} \rightarrow z_{1}$ in E_{1} as $n \rightarrow \infty$ in N_{1}^{*}. Notice in particular that $\gamma \leq\left|z_{1}\right|_{1} \leq R$.

Let $N_{1}=N_{1}^{*} \backslash\{1\}$. Now look at $\left\{y_{n}\right\}_{n \in N_{1}}$. Again (a) guarantees that there exists a subsequence N_{2}^{*} of N_{1} and a $z_{2} \in\left(\overline{U_{2, R}} \backslash U_{2, \gamma}\right) \cap C_{2}$ with $y_{n} \rightarrow z_{2}$ in E_{2} as $n \rightarrow \infty$ in N_{2}^{*} and $\gamma \leq\left|z_{2}\right|_{2} \leq R$. Note also $\left|z_{2}-z_{1}\right|_{1}=0$ since $N_{2}^{*} \subseteq N_{1}$ and $E_{1} \supseteq E_{2}$, so $z_{2}=z_{1}$ in E_{1}.

Proceed inductively to obtain subsequences of integers

$$
N_{1}^{*} \supseteq N_{2}^{*} \supseteq \ldots, N_{k}^{*} \subseteq\{k, k+1, \ldots\}
$$

and $z_{k} \in\left(\overline{U_{k, R}} \backslash U_{k, \gamma}\right) \cap C_{k}$ with $y_{n} \rightarrow z_{k}$ in E_{k} as $n \rightarrow \infty$ in N_{k}^{*}. Note $z_{k+1}=z_{k}$ in E_{k} for $k \in\{1,2, \ldots\}$. Also let $N_{k}=N_{k}^{*} \backslash\{k\}$.

Fix $k \in \mathbb{N}$. Let $y=z_{k}$ in E_{k} (i.e. $\mu_{k}(y)=z_{k}$). Notice y is well defined and $y \in E$. Now $y_{n}=F y_{n}$ in E_{n} for $n \in N_{k}$ and $y_{n} \rightarrow y$ in E_{k} as $n \rightarrow \infty$ in N_{k} (since $y=z_{k}$ in E_{k}) together with (a) implies $y=F y$ in E_{k}. We can do this for each $k \in \mathbb{N}$ so $y=F y$ in E.

Remark 1.6. From the proof above notice (a) in Theorem 1.4 could be replaced by the condition:
(a') for each $n \in \mathbb{N}, F:\left(\overline{U_{n, R}} \backslash U_{n, \gamma}\right) \cap C_{n} \rightarrow C_{n}$ is a continuous compact map
and the result of Theorem 1.4 is again true. Also $F: E_{1} \rightarrow E_{1}$ in the statement of Theorem 1.4 could be replaced by $F: \overline{U_{1, R}} \cap C_{1} \rightarrow E_{1}$.

2. Volterra integral equations

We now use Theorem 1.4 to establish an existence result for (1.2). Notice T could be ∞ in Theorem 2.1.

Theorem 2.1. Suppose the following conditions are satisfied:
(a) for each $n \in \mathbb{N}, 0<k(t, s)$ for all $t \in\left(0, t_{n}\right]$, a.e. $s \in[0, t]$ and $k_{t}(s)=$ $k(t, s) \in L^{1}[0, t]$ for each $t \in\left[0, t_{n}\right]$ and $\sup _{t \in[0, T)} \int_{0}^{t}\left[k_{t}(s)\right] d s<\infty$,
(b) for each $n \in \mathbb{N}$, for any $t, t^{\prime} \in\left[0, t_{n}\right]$,

$$
\int_{0}^{t^{*}}\left|k_{t}(s)-k_{t^{\prime}}(s)\right| d s \rightarrow 0 \quad \text { as } t \rightarrow t^{\prime}
$$

where $t^{*}=\min \left\{t, t^{\prime}\right\}$,
(c) for each $n \in \mathbb{N}, k\left(x_{1}, s\right)-k\left(x_{2}, s\right) \geq 0$ for a.e. $s \in\left[0, x_{2}\right]$ where $0<$ $x_{2}<x_{1} \leq t_{n}$,
(d) $f:[0, \infty) \rightarrow[0, \infty)$ is continuous and nondecreasing with $f(y)>0$ for $y>0$,
(e) there exists $a \in C[0, T)$ such that $a(0)=0,0<a(t) \leq 1, t \in(0, T)$, and for each $n \in \mathbb{N}$ for any constant $R>0$, a satisfies

$$
\int_{0}^{t} k(t, s) f(R a(s)) d s \geq a(t) f(R) \int_{0}^{T} k(T, s) d s
$$

for $t \in\left[0, t_{n}\right]$,
(f) for each $n \in \mathbb{N}$, there exists $R_{1}>0$ (independent of n) with

$$
f\left(R_{1}\right) \int_{0}^{t_{n}} k\left(t_{n}, s\right) d s \leq R_{1}
$$

(g) for each $n \in \mathbb{N}$, there exists $R_{2}>0$ (independent of n), $R_{2} \neq R_{1}$ with

$$
\int_{0}^{t_{n}} k\left(t_{n}, s\right) f\left(R_{2} a(s)\right) d s \geq R_{2}
$$

Then (1.1) has at least one solution $y \in C[0, T)$ and either
(A) for each $n \in \mathbb{N}, 0<\gamma \leq|y|_{n} \leq R_{2}$ and $y(t) \geq a(t) \gamma$ for $t \in\left[0, t_{n}\right]$ if $R_{1}<R_{2}\left(\right.$ here $\left.\gamma=a\left(t_{1}\right) R_{1}\right)$,
or
(B) for each $n \in \mathbb{N}, 0<\gamma \leq|y|_{n} \leq R_{1}$ and $y(t) \geq a(t) \gamma$ for $t \in\left[0, t_{n}\right]$ if $R_{2}<R_{1}$ (here $\gamma=a\left(t_{1}\right) R_{2}$).

Remark 2.2. When $T=\infty$ notice by $\int_{0}^{T} k(T, s) d s$ in Theorem 2.1(e) we mean $\lim _{t \rightarrow \infty} \int_{0}^{t} k(t, s) d s$.

Remark 2.3. Notice if (b) in Theorem 2.1 is replaced by
(b') for each $n \in \mathbb{N}$, for any $t, t^{\prime} \in\left[0, t_{n}\right]$,

$$
\int_{0}^{t^{*}}\left|k_{t}(s)-k_{t^{\prime}}(s)\right| d s+\int_{t^{*}}^{t^{* *}}\left[k_{t^{* *}}(s)\right] \rightarrow 0 \quad \text { as } t \rightarrow t^{\prime}
$$

where $t^{*}=\min \left\{t, t^{\prime}\right\}$ and $t^{* *}=\max \left\{t, t^{\prime}\right\}$,
then automatically

$$
\sup _{t \in\left[0, t_{n}\right]} \int_{0}^{t}\left[k_{t}(s)\right] d s<\infty
$$

in Theorem 2.1(a).
Proof of Theorem 2.1. Without loss of generality assume $R_{1}<R_{2}$. Fix $n \in \mathbb{N}$ and let $E_{n}=C\left[0, t_{n}\right]$, and

$$
C_{n}=\left\{y \in C\left[0, t_{n}\right]: y(t) \geq a(t)|y|_{n} \text { for } t \in\left[0, t_{n}\right]\right\}
$$

where $|y|_{n}=\sup _{t \in\left[0, t_{n}\right]}|y(t)|$. Let

$$
F y(t)=\int_{0}^{t} k(t, s) f(y(s)) d s
$$

and $U_{n, \beta}=\left\{y \in C\left[0, t_{n}\right]:|y|_{n}<\beta\right\}$; here $\beta=R_{1}$ or R_{2}.
Now let $y \in C_{n} \cap \overline{U_{n, R_{2}}}$. Then (c) implies $F y(t)$ is increasing in t. Also there exists $R \in\left[0, R_{2}\right]$ such that $|y|_{n}=R$ so $a(t) R \leq y(t) \leq R$ for $t \in\left[0, t_{n}\right]$ and as a result

$$
F y(t) \geq \int_{0}^{t} k(t, s) f(R a(s)) d s, \quad t \in\left[0, t_{n}\right]
$$

with

$$
|F y|_{n}=F y\left(t_{n}\right) \leq \int_{0}^{t_{n}} k\left(t_{n}, s\right) f(R) d s
$$

Thus for $t \in\left[0, t_{n}\right]$ we have

$$
F y(t) \geq \frac{\int_{0}^{t} k(t, s) f(R a(s)) d s}{\int_{0}^{t_{n}} k\left(t_{n}, s\right) f(R) d s}|F y|_{n} \geq \frac{\int_{0}^{t} k(t, s) f(R a(s)) d s}{\int_{0}^{T} k(T, s) f(R) d s}|F y|_{n}
$$

and this together with (e) yields

$$
F y(t) \geq a(t)|F y|_{n} \quad \text { for } t \in\left[0, t_{n}\right]
$$

so $F: C_{n} \cap \overline{U_{n, R_{2}}} \rightarrow C_{n}$. A standard argument [5] guarantees that $F: C_{n} \cap \overline{U_{n, R_{2}}} \rightarrow$ C_{n} is a continuous, compact map. Next we show

$$
\begin{equation*}
|F x|_{n} \leq|x|_{n} \quad \text { for all } x \in \partial U_{n, R_{1}} \cap C_{n} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
|F x|_{n} \geq|x|_{n} \quad \text { for all } x \in \partial U_{n, R_{2}} \cap C_{n} \tag{2.2}
\end{equation*}
$$

Let $x \in \partial U_{n, R_{1}} \cap C_{n}$. Then $|x|_{n}=R_{1}$ and $0 \leq a(t) R_{1} \leq x(t) \leq R_{1}$ for $t \in\left[0, t_{n}\right]$. Also Theorem 2.1(f) guarantees that

$$
|F x|_{n}=F x\left(t_{n}\right) \leq \int_{0}^{t_{n}} k\left(t_{n}, s\right) f\left(R_{1}\right) d s \leq R_{1}=|x|_{n}
$$

so (2.1) is true.
Let $x \in \partial U_{n, R_{2}} \cap C_{n}$. Then $|x|_{n}=R_{2}$ and $0 \leq a(t) R_{2} \leq x(t) \leq R_{2}$ for $t \in\left[0, t_{n}\right]$. Also Theorem 2.1(g) guarantees that

$$
|F x|_{n}=F x\left(t_{n}\right) \geq \int_{0}^{t_{n}} k\left(t_{n}, s\right) f\left(a(s) R_{2}\right) d s \geq R_{2}=|x|_{n}
$$

so (2.2) is true.
The result follows immediately from Theorem 1.4 once we show Theorem 1.4(d) holds (with $\gamma=a\left(t_{1}\right) R_{1}$). Fix $k \in \mathbb{N}$ and any subsequence $A \subseteq\{k, k+$ $1, \ldots\}$. Let $n \in A$ and $x \in C_{n}$ with $R_{1} \leq|x|_{n} \leq R_{2}$. Then $R_{1} \leq \sup _{t \in\left[0, t_{n}\right]}|x(t)|$ $\leq R_{2}$ so

$$
x(t) \geq a(t)|x|_{n} \geq a(t) R_{1} \quad \text { for } t \in\left[0, t_{n}\right] .
$$

Now since $n \in A \subseteq\{k, k+1, \ldots\}$ we have $n \geq k$ so (note $t_{n} \uparrow T$)

$$
x(t) \geq a(t) R_{1} \quad \text { for } t \in\left[0, t_{k}\right] .
$$

In particular $t_{1} \in\left[0, t_{k}\right]$ so $x\left(t_{1}\right) \geq a\left(t_{1}\right) R_{1}$ and so

$$
|x|_{k}=\sup _{t \in\left[0, t_{k}\right]}|x(t)| \geq a\left(t_{1}\right) R_{1}=\gamma
$$

Thus Theorem 1.4(d) holds, so Theorem 1.4 guarantees that F has a fixed point $y \in C[0, T)$ with for each $n \in \mathbb{N}$,

$$
\gamma \leq|y|_{n} \leq R \quad \text { and } \quad y(t) \geq a(t)|y|_{n} \geq a(t) \gamma \quad \text { for } t \in\left[0, t_{n}\right] ;
$$

here $\gamma=a\left(t_{1}\right) R_{1}$.

Example 2.4. Consider the generalized Emden equation

$$
\left\{\begin{array}{l}
y^{\prime \prime}-h(t) y^{q}=0 \quad \text { for } t \in[0, T) \tag{2.3}\\
y(0)=y^{\prime}(0)=0
\end{array}\right.
$$

with $0<q<1, h:[0, T) \rightarrow[0, \infty)$ continuous with $h(t) \geq t^{p}, p \geq 0$ and $\int_{0}^{T}(T-s) h(s) d s<\infty$; here $0<T<\infty$ is fixed. We will show (2.3) has a positive solution (positive on $(0, T)$); note $y \equiv 0$ is also a solution of (2.3).

First notice solving (2.3) is equivalent to solving the integral equation

$$
y(t)=\int_{0}^{t}(t-s) h(s)[y(s)]^{q} d s \quad \text { for } t \in[0, T) .
$$

Let

$$
k(t, s)=(t-s) h(s) \quad \text { and } \quad f(y)=y^{q}
$$

in Theorem 2.1. Clearly (a)-(d) hold. Next we show (e) is satisfied with

$$
a(t)=A t^{(p+2) /(1-q)}
$$

where

$$
A=\left\{\frac{(1-q)^{2}}{L(p+2)(p+q+1)}\right\}^{1 /(1-q)} \quad \text { and } \quad L=\int_{0}^{T}(T-s) h(s) d s
$$

First we check $a(t) \leq 1$ for $t \in(0, T)$. This follows immediately if we show $A^{1-q} T^{p+2} \leq 1$, and this will be true if

$$
\begin{equation*}
\frac{(1-q)^{2} T^{p+2}}{(p+2)(p+q+1)} \leq L \tag{2.4}
\end{equation*}
$$

Now (2.4) is true since

$$
\begin{aligned}
L & =\int_{0}^{t}(T-s) h(s) d s \geq T \int_{0}^{T} s^{p} d s-\int_{0}^{T} s^{p+1} d s \\
& =\frac{1}{(p+1)(p+2)} T^{p+2} \geq \frac{T^{p+2}}{(p+2)} \frac{(1-q)^{2}}{(p+q+1)}
\end{aligned}
$$

since

$$
\frac{(1-q)^{2}}{(p+q+1)} \leq \frac{1}{p+1}
$$

Thus $0<a(t) \leq 1$ for $t \in(0, T)$. Now (e) follows immediately since for $n \in \mathbb{N}$, $R>0$, and $t \in\left[0, t_{n}\right]$ we have

$$
\begin{aligned}
& \frac{\int_{0}^{t} k(t, s) f(R a(s)) d s}{f(R) \int_{0}^{T} k(T, s) d s} \geq \frac{R^{q} \int_{0}^{t}(t-s) s^{p}[a(s)]^{q} d s}{R^{q} \int_{0}^{T}(T-s) h(s) d s} \\
& =\frac{A^{q}}{L} \int_{0}^{t}(t-s) s^{(p+2 q) /(1-q)} d s=\frac{A^{q}}{L}\left[\frac{(1-q)}{p+q+1}-\frac{(1-q)}{p+2}\right] t^{(p+2) /(1-q)} \\
& =\frac{A}{A^{1-q} L} \frac{(1-q)^{2}}{(p+q+1)(p+2)} t^{(p+2) /(1-q)}=A t^{(p+2) /(1-q)}=a(t) .
\end{aligned}
$$

It remains to construct constants $R_{2}>0, R_{1}>R_{2}$ so that (f) and (g) hold. Fix $n \in \mathbb{N}$ and let $R>0$. Then

$$
f(R) \int_{0}^{t_{n}} k\left(t_{n}, s\right) d s \leq R^{q} \int_{0}^{T}(T-s) h(s) d s \leq R
$$

for R sufficiently large since $R^{1-q} \rightarrow \infty$ as $R \rightarrow \infty$. Thus there exists $R_{1}>0$ so that (f) holds. Also

$$
\begin{aligned}
\int_{0}^{t_{n}} k\left(t_{n}, s\right) f(R a(s)) d s & \geq R^{q} \int_{0}^{t_{n}}\left(t_{n}-s\right)[a(s)]^{q} d s \\
& \geq R^{q} \int_{0}^{t_{1}}\left(t_{1}-s\right)[a(s)]^{q} d s \geq R
\end{aligned}
$$

for R sufficiently small since $R^{1-q} \rightarrow 0$ as $R \rightarrow 0^{+}$. Thus there exists $R_{2}>0$ with $R_{2}<R_{1}$ with (g) holding.

Existence of a positive (positive on $(0, T)$) solution to (2.3) follows from Theorem 2.1. In fact here one can easily show that the solution lies in $C[0, T]$.

Example 2.5. Consider the integral equation

$$
\begin{equation*}
y(t)=\int_{0}^{t}(t-s)^{\alpha-1} h(s) f(y(s)) d s, \quad t \in[0, T) \tag{2.5}
\end{equation*}
$$

where $h:[0, T) \rightarrow[0, \infty)$ is continuous and

$$
\int_{0}^{T}(T-s)^{\alpha-1} h(s) d s<\infty
$$

$\alpha>1$ and $0<T<\infty$ is fixed. In addition assume (d) of Theorem 2.1 and the following conditions hold:
(i) $f(a b)=f(a) f(b)$ for $a, b \geq 0$, and
(ii) $F(1)<\infty$ where $F:[0,1] \rightarrow[0, \infty)$ is defined by

$$
F(z)=\int_{0}^{z}\left[\frac{s}{f(s)}\right]^{1 / \beta} \frac{d s}{s}
$$

$z \in[0,1], \beta>\alpha>1$ and $c \int_{0}^{T} h(s) d s \in \operatorname{dom} F^{-1}$ where

$$
c=\frac{\beta}{\left[K_{T}\right]^{1 / \beta}\left(\int_{0}^{T}(T-s)^{-(\alpha-1) /(\beta-1)} h(s) d s\right)^{(\beta-1) / \beta}}
$$

with $K_{T}=\int_{0}^{T}(T-s)^{\alpha-1} h(s) d s$.
In addition assume conditions (f) and (g) of Theorem 2.1 hold with $k(t, s)=$ $(t-s)^{\alpha-1} h(s)$ and $a \in C[0, T)$ is given by

$$
a(t)=F^{-1}\left(c \int_{0}^{t} h(s) d s\right) \quad \text { for } t \in[0, T)
$$

where c is defined in (ii). Then (2.5) has a solution $y \in C[0, T)$.

Remark 2.6. We could define F in (ii) on $[0, \infty)$ i.e.

$$
F(z)=\int_{0}^{z}\left[\frac{s}{f(s)}\right]^{1 / \beta} \frac{d s}{s}, \quad z>0
$$

but in this case we need to assume $F^{-1}\left(c \int_{0}^{t} h(s) d s\right) \leq 1$; here c is defined in (ii).
To see that (2.5) has a solution we will apply Theorem 2.1 with $k(t, s)=$ $(t-s)^{\alpha-1} h(s)$. Clearly (a)-(d) are satisfied. Notice in this case (e) can be rewritten (see (i)) as
(i') there exists $a \in C[0, T)$ such that $a(0)=0,0<a(t) \leq 1, t \in(0, T)$, and for each $n \in \mathbb{N}$ for any constant $R>0, a$ satisfies

$$
\int_{0}^{t}(t-s)^{\alpha-1} h(s) f(a(s)) d s \geq a(t) K_{T} \quad \text { for } t \in\left[0, t_{n}\right]
$$

Consider the initial value problem

$$
\begin{cases}a^{\prime}(t)=c a^{1-1 / \beta} h(t)[f(a)]^{1 / \beta} & \text { for } t \in[0, T), \tag{2.6}\\ a(0)=0\end{cases}
$$

and notice (2.6) has a solution $a \in C[0, T)$ given by

$$
a(t)=F^{-1}\left(c \int_{0}^{t} h(s) d s\right) \quad \text { for } t \in[0, T)
$$

From (ii) (see also Remark 2.6) notice $0<a(t) \leq 1$ for $t \in(0, T)$. Fix $n \in \mathbb{N}$ and notice

$$
a^{\prime} a^{1 / \beta-1}=\operatorname{ch}[f(a)]^{1 / \beta} \quad \text { for } t \in\left[0, t_{n}\right]
$$

so

$$
\beta^{\beta} a(t)=c^{\beta}\left(\int_{0}^{t} h(s)[f(a(s))]^{1 / \beta} d s\right)^{\beta}
$$

and this together with Hölder's inequality implies

$$
\begin{aligned}
a(t) & \leq \frac{c^{\beta}}{\beta^{\beta}}\left(\int_{0}^{t}(t-s)^{\alpha-1} h(s) f(a(s)) d s\right) \times\left(\int_{0}^{t}(t-s)^{-(\alpha-1) /(\beta-1)} h(s) d s\right)^{\beta-1} \\
& \leq \frac{1}{K_{T}} \int_{0}^{t}(t-s)^{\alpha-1} h(s) f(a(s)) d s
\end{aligned}
$$

from the definition of c in (ii). Thus (i') (and so Theorem 2.1(e)) is satisfied. The result now follows from Theorem 2.1.

Remark 2.7. It is also possible to construct " a " in Theorem 2.1(e) if the kernel is not of the form $(t-s)^{\kappa} h(s)$; see for example Theorem 3.1 in [5].

Example 2.8. Consider

$$
\begin{equation*}
y(t)=\int_{0}^{t} q(s)[y(s)]^{\beta} d s \quad \text { for } t \in[0, \infty) \tag{2.7}
\end{equation*}
$$

with $q:[0, \infty) \rightarrow[0, \infty)$ continuous and $\int_{0}^{\infty} q(s) d s<\infty$ and $0 \leq \beta<1$. Now (2.3) has a positive solution (positive on $(0, T)$); note $y \equiv 0$ is also a solution of (2.7).

Let $k(t, s)=q(s)$ and $f(y)=y^{\beta}$. Clearly (a)-(d) of Theorem 2.1 holds and it is easy to see that (e) is satisfied with

$$
a(t)=\left(\frac{(1-\beta) \int_{0}^{t} q(s) d s}{\int_{0}^{\infty} q(s) d s}\right)^{1 /(1-\beta)}
$$

Finally (f) and (g) of Theorem 2.1 hold since $R^{1-\beta} \rightarrow \infty$ as $R \rightarrow \infty$ and $R^{1-\beta} \rightarrow 0$ as $R \rightarrow 0^{+}$. The result now follows from Theorem 2.1.

References

[1] R. P. Agarwal, M. Frigon and D. O'Regan, A survey of recent fixed point theory in Fréchet spaces, Nonlinear Analysis and Applications: to V. Lakshmikantham on his 80th birthday, vol. 1, Kluwer Acad. Publ., Dordrecht, 2003, pp. 75-88.
[2] R. P. Agarwal and D. O'Regan, Cone compression and expansion fixed point theorems in Fréchet spaces with applications, J. Differential Equations 171 (2001), 412-429.
[3] P. J. Bushell and W. Okrasinski, Uniqueness of solutions for a class of nonlinear Volterra integral equations with convolution kernel, Math. Proc. Cambridge Philos. Soc. 106 (1989), 547-552.
[4] L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1964.
[5] M. Meehan and D. O'Regan, A note on positive solutions of Volterra integral equations using integral inequalities, J. Inequalities Appl. 7 (2002), 285-307.

Ravi P. Agarwal
Department of Mathematical Science
Florida Institute of Technology
Melbourne, Florida 32901, USA
E-mail address: agarwal@fit.edu
Donal O'Regan
Department of Mathematics
National University of Ireland
Galway, IRELAND
E-mail address: donal.oregan@nuigalway.ie

[^0]: 2000 Mathematics Subject Classification. Volterra integral equation, Emden differential equation, positive solution, fixed point theorem.

 Key words and phrases. and phrases 45D05, 45M20, 47H10.

