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POSITIVE SOLUTIONS
FOR A CLASS OF VOLTERRA INTEGRAL EQUATIONS
VIA A FIXED POINT THEOREM IN FRÉCHET SPACES

Ravi P. Agarwal — Donal O’Regan

Abstract. Motivated by the Emden differential equation we discuss in

this paper the existence of positive solutions to the integral equation

y(t) =

Z t

0
k(t, s) f(y(s)) ds for t ∈ [0, T ).

1. Introduction

In this paper we establish the existence of positive (positive on (0, T )) solu-
tions to the Volterra integral equation

(1.1) y(t) =
∫ t

0

k(t, s) f(y(s)) ds for t ∈ [0, T )

where 0 < T ≤ ∞ is fixed. Our theory was motivated by the Emden differential
equation

(1.2) y′′ − tp yq = 0, p ≥ 0 and 0 < q < 1

which arises in various astrophysical problems, including the study of the density
of stars; of course one is interested only in positive solutions to (1.2). Differential
equations including (1.2) will be discussed as a special case of (1.1) in Section 2.
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We remark also when the kernel k is a convolution kernel (1.1) arises in connec-
tion with nonlinear diffusion and percolation problems (see [3] and the references
therein). The results in Section 2 extend and complement the theory in [3], [5].

For notational purposes in this paper if u ∈ C[0, T ) then for every m ∈
{1, 2, . . . } = N we define the seminorms ρm(u) by

ρm(u) = sup
t∈[0,tm]

|u(t)|

where tm ↑ T . Note C[0, T ) is a locally convex linear topological space. The
topology on C[0, T ), induced by the seminorms {ρm}m∈N, is the topology of
uniform convergence on every compact interval of [0, T ).

Existence in Section 2 is based on a fixed point theorem of Agarwal and
O’Regan [2] which in turn is based on Krasnoselskii’s fixed point theorem in
a cone. We present the result in [2] (see also [1]) for the convenience of the
reader. First however we state Krasnosel’skĭı’s result.

Theorem 1.1. Let B = (B, ‖·‖) be a Banach space and let C ⊆ E be a cone
in B. Assume Ω1 and Ω2 are open bounded subsets of B with 0 ∈ Ω1, Ω1 ⊂ Ω2,
and let

S:C ∩ (Ω2 \ Ω1) → C

be a continuous compact map such that either

(a) ‖Su‖ ≤ ‖u‖ for u ∈ C ∩ ∂Ω1 and ‖Su‖ ≥ ‖u‖ for u ∈ C ∩ ∂Ω2, or
(b) ‖Su‖ ≥ ‖u‖ for u ∈ C ∩ ∂Ω1 and ‖Su‖ ≤ ‖u‖ for u ∈ C ∩ ∂Ω2,

hold. Then S has a fixed point in C ∩ (Ω2 \ Ω1).

The result in [2] is based on the fact that a Fréchet space can be viewed
as a projective limit of a sequence of Banach spaces {En}n∈N. We now extend
Theorem 1.1 to the Fréchet space setting. Let E = (E, {| · |n}n∈N) be a Fréchet
space with

|x|1 ≤ |x|2 ≤ |x|3 ≤ . . . for every x ∈ E.

Assume for each n ∈ N that (En, | · |n) is a Banach space and suppose

E1 ⊇ E2 ⊇ . . .

with |x|n ≤ |x|n+1 for all x ∈ En+1. Also assume E =
⋂∞

n=1 En where
⋂∞

1 is
the generalized intersection as described in [4, pp. 439] (i.e. E is the projective
limit of {En}n∈N) with the embedding µn:E → En. Fix n ∈ N and let Cn will
a cone in En and for ρ > 0 we let

Un,ρ = {x ∈ En : |x|n < ρ} and Vn,ρ = Un,ρ ∩ Cn.

Notice
∂Cn

Vn,ρ = ∂En
Un,ρ ∩ Cn and Vn,ρ = Un,ρ ∩ Cn
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(the first closure is with respect to Cn whereas the second is with respect to En).
We are interested in establishing that F has a fixed point; here F :E1 → E1.

Definition 1.2. Fix k ∈ N. If x, y ∈ Ek then we say x = y in Ek if
|x− y|k = 0.

Definition 1.3. If x, y ∈ E then we say x = y in E if x = y in Ek for each
k ∈ N.

Theorem 1.4. For each n ∈ N, let Cn be a cone in En and also let

C1 ⊇ C2 ⊇ C3 ⊇ . . .

In addition suppose F :E1 → E1. Let γ, r, R be constants with 0 < γ < r < R

and assume the following conditions are satisfied:

(a) for each n ∈ N, F :Un,R ∩ Cn → Cn is a continuous compact map,
(b) for each n ∈ N, |F x|n ≤ |x|n, for all x ∈ ∂En

Un,r ∩ Cn,
(c) for each n ∈ N, |F x|n ≥ |x|n, for all x ∈ ∂En

Un,R ∩ Cn, and
(d) for every k ∈ N and any subsequence A ⊆ {k, k + 1, . . . } if x ∈ Cn is

such that R ≥ |x|n ≥ r for some n ∈ A, then |x|k ≥ γ.

Then F has a fixed point y ∈ E (in fact µn(y) ∈ (Un,R \ Un,γ) ∩ Cn for every
n ∈ N).

Remark 1.5. Of course there is an obvious analogue of Theorem 1.2 when
Un,r is replaced by Un,R in (b) and Un,R is replaced by Un,r in (c).

Proof. We know from Theorem 1.1 (part (a)) that for each n ∈ N, F has a
fixed point yn ∈ (Un,R\Un,r)∩Cn. Lets look at {yn}n∈N. Note yn ∈ U1,R\U1,γ for
each n ∈ N. To see this notice |yn|n ≤ R and |x|1 ≤ |x|n for all x ∈ En implies
|yn|1 ≤ R, and so yn ∈ U1,R for each n ∈ N. On the other hand |yn|n ≥ r,
yn ∈ Cn together with (d) implies |yn|1 ≥ γ. Thus yn ∈ (U1,R \ U1,γ) ∩ C1 and
yn = F yn in En for each n ∈ N and these together with (a) implies that there
exists a subsequence N∗

1 of N and a z1 ∈ (U1,R \ U1,γ) ∩ C1 with yn → z1 in E1

as n →∞ in N∗
1 . Notice in particular that γ ≤ |z1|1 ≤ R.

Let N1 = N∗
1 \ {1}. Now look at {yn}n∈N1 . Again (a) guarantees that there

exists a subsequence N∗
2 of N1 and a z2 ∈ (U2,R \U2,γ)∩C2 with yn → z2 in E2

as n →∞ in N∗
2 and γ ≤ |z2|2 ≤ R. Note also |z2− z1|1 = 0 since N∗

2 ⊆ N1 and
E1 ⊇ E2, so z2 = z1 in E1.

Proceed inductively to obtain subsequences of integers

N∗
1 ⊇ N∗

2 ⊇ . . . , N∗
k ⊆ {k, k + 1, . . . }

and zk ∈ (Uk,R \Uk,γ)∩Ck with yn → zk in Ek as n →∞ in N∗
k . Note zk+1 = zk

in Ek for k ∈ {1, 2, . . . }. Also let Nk = N∗
k \ {k}.
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Fix k ∈ N. Let y = zk in Ek (i.e. µk(y) = zk). Notice y is well defined and
y ∈ E. Now yn = F yn in En for n ∈ Nk and yn → y in Ek as n → ∞ in Nk

(since y = zk in Ek) together with (a) implies y = Fy in Ek. We can do this for
each k ∈ N so y = Fy in E. �

Remark 1.6. From the proof above notice (a) in Theorem 1.4 could be
replaced by the condition:

(a’) for each n ∈ N, F : (Un,R \ Un,γ) ∩ Cn → Cn is a continuous compact
map

and the result of Theorem 1.4 is again true. Also F :E1 → E1 in the statement
of Theorem 1.4 could be replaced by F :U1,R ∩ C1 → E1.

2. Volterra integral equations

We now use Theorem 1.4 to establish an existence result for (1.2). Notice T

could be ∞ in Theorem 2.1.

Theorem 2.1. Suppose the following conditions are satisfied:

(a) for each n ∈ N, 0 < k(t, s) for all t ∈ (0, tn], a.e. s ∈ [0, t] and kt(s) =
k(t, s) ∈ L1[0, t] for each t ∈ [0, tn] and supt∈[0,T )

∫ t

0
[kt(s)] ds < ∞,

(b) for each n ∈ N, for any t, t′ ∈ [0, tn],∫ t∗

0

|kt(s)− kt′(s)| ds → 0 as t → t′

where t∗ = min{t, t′},
(c) for each n ∈ N, k(x1, s) − k(x2, s) ≥ 0 for a.e. s ∈ [0, x2] where 0 <

x2 < x1 ≤ tn,
(d) f : [0,∞) → [0,∞) is continuous and nondecreasing with f(y) > 0 for

y > 0,
(e) there exists a ∈ C[0, T ) such that a(0) = 0, 0 < a(t) ≤ 1, t ∈ (0, T ),

and for each n ∈ N for any constant R > 0, a satisfies∫ t

0

k(t, s)f(R a(s)) ds ≥ a(t)f(R)
∫ T

0

k(T, s) ds

for t ∈ [0, tn],
(f) for each n ∈ N, there exists R1 > 0 (independent of n) with

f(R1)
∫ tn

0

k(tn, s) ds ≤ R1,

(g) for each n ∈ N, there exists R2 > 0 (independent of n), R2 6= R1 with∫ tn

0

k(tn, s) f(R2 a(s)) ds ≥ R2.



Positive Solutions for a Class of Volterra Integral Equations 193

Then (1.1) has at least one solution y ∈ C[0, T ) and either

(A) for each n ∈ N, 0 < γ ≤ |y|n ≤ R2 and y(t) ≥ a(t) γ for t ∈ [0, tn] if
R1 < R2 (here γ = a(t1)R1),

or

(B) for each n ∈ N, 0 < γ ≤ |y|n ≤ R1 and y(t) ≥ a(t)γ for t ∈ [0, tn] if
R2 < R1 (here γ = a(t1)R2).

Remark 2.2. When T = ∞ notice by
∫ T

0
k(T, s) ds in Theorem 2.1(e) we

mean limt→∞
∫ t

0
k(t, s) ds.

Remark 2.3. Notice if (b) in Theorem 2.1 is replaced by

(b’) for each n ∈ N, for any t, t′ ∈ [0, tn],∫ t∗

0

|kt(s)− kt′(s)| ds +
∫ t∗∗

t∗
[kt∗∗(s)] → 0 as t → t′

where t∗ = min{t, t′} and t∗∗ = max{t, t′},

then automatically

sup
t∈[0,tn]

∫ t

0

[kt(s)] ds < ∞

in Theorem 2.1(a).

Proof of Theorem 2.1. Without loss of generality assume R1 < R2. Fix
n ∈ N and let En = C[0, tn], and

Cn = {y ∈ C[0, tn] : y(t) ≥ a(t)|y|n for t ∈ [0, tn]}

where |y|n = supt∈[0,tn] |y(t)|. Let

Fy(t) =
∫ t

0

k(t, s)f(y(s)) ds

and Un,β = {y ∈ C[0, tn] : |y|n < β}; here β = R1 or R2.
Now let y ∈ Cn∩Un,R2 . Then (c) implies Fy(t) is increasing in t. Also there

exists R ∈ [0, R2] such that |y|n = R so a(t)R ≤ y(t) ≤ R for t ∈ [0, tn] and as
a result

Fy(t) ≥
∫ t

0

k(t, s)f(R a(s)) ds, t ∈ [0, tn]

with

|Fy|n = Fy(tn) ≤
∫ tn

0

k(tn, s)f(R) ds.

Thus for t ∈ [0, tn] we have

Fy(t) ≥
∫ t

0
k(t, s)f(R a(s)) ds∫ tn

0
k(tn, s) f(R) ds

|F y|n ≥
∫ t

0
k(t, s)f(R a(s)) ds∫ T

0
k(T, s)f(R) ds

|Fy|n



194 R. P. Agarwal — D. O’Regan

and this together with (e) yields

Fy(t) ≥ a(t)|Fy|n for t ∈ [0, tn],

so F :Cn∩Un,R2 → Cn. A standard argument [5] guarantees that F :Cn∩Un,R2 →
Cn is a continuous, compact map. Next we show

(2.1) |F x|n ≤ |x|n for all x ∈ ∂Un,R1 ∩ Cn

and

(2.2) |F x|n ≥ |x|n for all x ∈ ∂Un,R2 ∩ Cn.

Let x ∈ ∂Un,R1 ∩Cn. Then |x|n = R1 and 0 ≤ a(t)R1 ≤ x(t) ≤ R1 for t ∈ [0, tn].
Also Theorem 2.1(f) guarantees that

|F x|n = F x(tn) ≤
∫ tn

0

k(tn, s) f(R1) ds ≤ R1 = |x|n,

so (2.1) is true.
Let x ∈ ∂Un,R2 ∩ Cn. Then |x|n = R2 and 0 ≤ a(t)R2 ≤ x(t) ≤ R2 for

t ∈ [0, tn]. Also Theorem 2.1(g) guarantees that

|Fx|n = Fx(tn) ≥
∫ tn

0

k(tn, s)f(a(s)R2) ds ≥ R2 = |x|n,

so (2.2) is true.
The result follows immediately from Theorem 1.4 once we show Theorem

1.4(d) holds (with γ = a(t1)R1). Fix k ∈ N and any subsequence A ⊆ {k, k +
1, . . . }. Let n ∈ A and x ∈ Cn with R1 ≤ |x|n ≤ R2. Then R1 ≤ supt∈[0,tn] |x(t)|
≤ R2 so

x(t) ≥ a(t)|x|n ≥ a(t)R1 for t ∈ [0, tn].

Now since n ∈ A ⊆ {k, k + 1, . . . } we have n ≥ k so (note tn ↑ T )

x(t) ≥ a(t)R1 for t ∈ [0, tk].

In particular t1 ∈ [0, tk] so x(t1) ≥ a(t1)R1 and so

|x|k = sup
t∈[0,tk]

|x(t)| ≥ a(t1)R1 = γ.

Thus Theorem 1.4(d) holds, so Theorem 1.4 guarantees that F has a fixed point
y ∈ C[0, T ) with for each n ∈ N,

γ ≤ |y|n ≤ R and y(t) ≥ a(t)|y|n ≥ a(t)γ for t ∈ [0, tn];

here γ = a(t1)R1. �
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Example 2.4. Consider the generalized Emden equation

(2.3)

{
y′′ − h(t)yq = 0 for t ∈ [0, T ),

y(0) = y′(0) = 0,

with 0 < q < 1, h: [0, T ) → [0,∞) continuous with h(t) ≥ tp, p ≥ 0 and∫ T

0
(T − s)h(s) ds < ∞; here 0 < T < ∞ is fixed. We will show (2.3) has

a positive solution (positive on (0, T )); note y ≡ 0 is also a solution of (2.3).
First notice solving (2.3) is equivalent to solving the integral equation

y(t) =
∫ t

0

(t− s)h(s)[y(s)]q ds for t ∈ [0, T ).

Let
k(t, s) = (t− s) h(s) and f(y) = yq

in Theorem 2.1. Clearly (a)–(d) hold. Next we show (e) is satisfied with

a(t) = At(p+2)/(1−q)

where

A =
{

(1− q)2

L (p + 2) (p + q + 1)

}1/(1−q)

and L =
∫ T

0

(T − s)h(s) ds.

First we check a(t) ≤ 1 for t ∈ (0, T ). This follows immediately if we show
A1−qT p+2 ≤ 1, and this will be true if

(2.4)
(1− q)2 T p+2

(p + 2) (p + q + 1)
≤ L.

Now (2.4) is true since

L =
∫ t

0

(T − s) h(s) ds ≥ T

∫ T

0

sp ds−
∫ T

0

sp+1 ds

=
1

(p + 1) (p + 2)
T p+2 ≥ T p+2

(p + 2)
(1− q)2

(p + q + 1)

since
(1− q)2

(p + q + 1)
≤ 1

p + 1
.

Thus 0 < a(t) ≤ 1 for t ∈ (0, T ). Now (e) follows immediately since for n ∈ N,
R > 0, and t ∈ [0, tn] we have∫ t

0
k(t, s) f(R a(s)) ds

f(R)
∫ T

0
k(T, s) ds

≥
Rq

∫ t

0
(t− s) sp [a(s)]q ds

Rq
∫ T

0
(T − s) h(s) ds

=
Aq

L

∫ t

0

(t− s) s(p+2q)/(1−q) ds =
Aq

L

[
(1− q)

p + q + 1
− (1− q)

p + 2

]
t(p+2)/(1−q)

=
A

A1−q L

(1− q)2

(p + q + 1)(p + 2)
t(p+2)/(1−q) = At(p+2)/(1−q) = a(t).
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It remains to construct constants R2 > 0, R1 > R2 so that (f) and (g) hold. Fix
n ∈ N and let R > 0. Then

f(R)
∫ tn

0

k(tn, s) ds ≤ Rq

∫ T

0

(T − s)h(s) ds ≤ R

for R sufficiently large since R1−q →∞ as R →∞. Thus there exists R1 > 0 so
that (f) holds. Also∫ tn

0

k(tn, s)f(Ra(s)) ds ≥ Rq

∫ tn

0

(tn − s)[a(s)]q ds

≥ Rq

∫ t1

0

(t1 − s) [a(s)]q ds ≥ R

for R sufficiently small since R1−q → 0 as R → 0+. Thus there exists R2 > 0
with R2 < R1 with (g) holding.

Existence of a positive (positive on (0, T )) solution to (2.3) follows from
Theorem 2.1. In fact here one can easily show that the solution lies in C[0, T ].

Example 2.5. Consider the integral equation

(2.5) y(t) =
∫ t

0

(t− s)α−1h(s)f(y(s)) ds, t ∈ [0, T )

where h: [0, T ) → [0,∞) is continuous and∫ T

0

(T − s)α−1 h(s) ds < ∞,

α > 1 and 0 < T < ∞ is fixed. In addition assume (d) of Theorem 2.1 and the
following conditions hold:

(i) f(a b) = f(a)f(b) for a, b ≥ 0, and
(ii) F (1) < ∞ where F : [0, 1] → [0,∞) is defined by

F (z) =
∫ z

0

[
s

f(s)

]1/β
ds

s
,

z ∈ [0, 1], β > α > 1 and c
∫ T

0
h(s) ds ∈ dom F−1 where

c =
β

[KT ]1/β(
∫ T

0
(T − s)−(α−1)/(β−1)h(s) ds)(β−1)/β

with KT =
∫ T

0
(T − s)α−1 h(s) ds.

In addition assume conditions (f) and (g) of Theorem 2.1 hold with k(t, s) =
(t− s)α−1h(s) and a ∈ C[0, T ) is given by

a(t) = F−1

(
c

∫ t

0

h(s) ds

)
for t ∈ [0, T )

where c is defined in (ii). Then (2.5) has a solution y ∈ C[0, T ).
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Remark 2.6. We could define F in (ii) on [0,∞) i.e.

F (z) =
∫ z

0

[
s

f(s)

]1/β
ds

s
, z > 0

but in this case we need to assume F−1(c
∫ t

0
h(s) ds) ≤ 1; here c is defined in (ii).

To see that (2.5) has a solution we will apply Theorem 2.1 with k(t, s) =
(t − s)α−1 h(s). Clearly (a)–(d) are satisfied. Notice in this case (e) can be
rewritten (see (i)) as

(i’) there exists a ∈ C[0, T ) such that a(0) = 0, 0 < a(t) ≤ 1, t ∈ (0, T ),
and for each n ∈ N for any constant R > 0, a satisfies∫ t

0

(t− s)α−1h(s)f(a(s)) ds ≥ a(t)KT for t ∈ [0, tn].

Consider the initial value problem

(2.6)

{
a′(t) = ca1−1/βh(t)[f(a)]1/β for t ∈ [0, T ),

a(0) = 0,

and notice (2.6) has a solution a ∈ C[0, T ) given by

a(t) = F−1

(
c

∫ t

0

h(s) ds

)
for t ∈ [0, T ).

From (ii) (see also Remark 2.6) notice 0 < a(t) ≤ 1 for t ∈ (0, T ). Fix n ∈ N and
notice

a′a1/β−1 = ch[f(a)]1/β for t ∈ [0, tn]

so

ββ a(t) = cβ

( ∫ t

0

h(s)[f(a(s))]1/β ds

)β

and this together with Hölder’s inequality implies

a(t) ≤ cβ

ββ

( ∫ t

0

(t− s)α−1h(s)f(a(s)) ds

)
×

( ∫ t

0

(t− s)−(α−1)/(β−1)h(s) ds

)β−1

≤ 1
KT

∫ t

0

(t− s)α−1h(s)f(a(s)) ds

from the definition of c in (ii). Thus (i’) (and so Theorem 2.1(e)) is satisfied.
The result now follows from Theorem 2.1.

Remark 2.7. It is also possible to construct “a” in Theorem 2.1(e) if the
kernel is not of the form (t− s)κ h(s); see for example Theorem 3.1 in [5].
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Example 2.8. Consider

(2.7) y(t) =
∫ t

0

q(s)[y(s)]β ds for t ∈ [0,∞)

with q: [0,∞) → [0,∞) continuous and
∫∞
0

q(s) ds < ∞ and 0 ≤ β < 1. Now
(2.3) has a positive solution (positive on (0, T )); note y ≡ 0 is also a solution
of (2.7).

Let k(t, s) = q(s) and f(y) = yβ . Clearly (a)–(d) of Theorem 2.1 holds and
it is easy to see that (e) is satisfied with

a(t) =
(

(1− β)
∫ t

0
q(s) ds∫∞

0
q(s) ds

)1/(1−β)

.

Finally (f) and (g) of Theorem 2.1 hold since R1−β → ∞ as R → ∞ and
R1−β → 0 as R → 0+. The result now follows from Theorem 2.1.
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