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DOUBLE POSITIVE SOLUTIONS
FOR SECOND ORDER NONLOCAL FUNCTIONAL
AND ORDINARY BOUNDARY VALUE PROBLEMS

Panagiotis Ch. Tsamatos

Abstract. In this paper we prove the existence of two positive solutions
for a second order nonlinear functional nonlocal boundary value problem.

The results are obtained by using a fixed point theorem on a Banach space,

ordered by an appropriate cone, due to Avery and Henderson [1]. Using
this theorem we have the advantage that the obtained two solutions have

their values at three points of their domain upper and lower bounded by
a-priori given constants.

1. Introduction

Let R be the set of real numbers, R+ =: [0,∞) and I =: [0, 1]. Also, let
q ∈ [0, 1) and J := [−q, 0]. For every closed interval B ⊆ J ∪ I we denote by
C(B) the Banach space of all continuous real functions ψ:B → R endowed with
the usual sup-norm

‖ψ‖B := sup{|ψ(s)| : s ∈ B}.

Also, we define the set C+(B) as follows

C+(B) := {ψ ∈ C(B) : ψ ≥ 0}.
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If x ∈ C(J ∪ I) and t ∈ I, then we denote by xt the element of C(J) defined by

xt(s) = x(t+ s) for s ∈ J.

Now, consider the equation

(1.1) x′′(t) + f(t, xt) = 0 for t ∈ I,

along with the initial condition

(1.2) x0 = φ,

and the nonlocal boundary condition

(1.3) x′(1) =
∫ 1

0

x′(s) dg(s),

where f : R+ × C+(J) → R+ and φ: J → R+ are continuous functions, g: I → R
is a nondecreasing function, such that g(0) = 0 and 1− g(1) > 0.

The problem of existence of positive solutions for boundary value problems
for second order differential equations which involve a nonlocal condition like
(1.3) has been treated recently by Karakostas and Tsamatos [8]–[11] and Tsam-
atos [20]. Moreover, boundary value problems with integral boundary conditions
for second order differential equations with retarded arguments are the subject
of the papers [12] and [17]. In the recent years an increasing interest is also
observed for boundary value problems concerning functional differential equa-
tions (see [6], [7] and the references therein). Fixed point theorems on Banach
spaces ordered by appropriate cones are usually the tools for proving multiple
positive solutions for boundary value problems. The famous Guo–Krasnoselskii
fixed point theorem [13], [22] seems to be used in the majority of the papers
on this subject. Also the well known Leggett–Williams fixed point theorem [14]
and some recent generalizations of it are used in proving existence of multiple
positive solutions for various types of boundary value problems.

For a detailed exposition of the theory of functional differential equations,
like (1.1), the reader is referred to the books due to Hale and Lunel [4] and
Azbelev et al. [3].

In this paper, we choose to use a fixed point theorem, on a Banach space
ordered by cones, due to Avery and Henderson [1] (see also [15], [19]) which, apart
from guaranteeing the existence of two positive solutions, has the advantage to
offer some additional information on these solutions. In our results, the values of
these solutions at three given points of their domain are upper or lower bounded
by a-priori given constants. We note that this fixed point theorem was used
recently in several papers (see [2], [5], [15], [16], [18], [19] and the references
therein).
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The present paper is motivated mainly by the papers [8]–[11] in which the
problem of the existence of multiple positive solutions for ordinary differential
equations with the nonlocal boundary condition (1.3) is studied.

Since the results we present are new even in the ordinary differential equa-
tions case, we mention them for this case too, underlining the necessary ad-
justments that have to be made to the hypothesis referring to the functional
case.

The paper is organized as follows. In Section 2 we present the definitions
and the lemmas we are going to use, as well as the fixed point theorem, on which
we base our results. In Section 3, we present the new results for the functional
case and then in Section 4 the results for the ordinary case. Finally, in Section
5 we give some applications of our results.

2. Preliminaries and some basic lemmas

Definition 2.1. A function x ∈ C(J ∪ I) is a solution of the boundary
value problem (1.1)–(1.3) if x satisfies equation (1.1), the boundary condition
(1.3) and, moreover x|J = φ.

Lemma 2.2. A function x ∈ C(J ∪ I) is a solution of the boundary value
problem (1.1)–(1.3) if and only if x is a fixed point of the operator A:C(J ∪I) →
C(J ∪ I), with

Ax(t) =


φ(t) for t ∈ J,

φ(0) + ζt

∫ 1

0

∫ 1

s

f(r, xr) dr dg(s) +
∫ t

0

∫ 1

s

f(r, xr) dr ds for t ∈ I,

where ζ := 1/(1− g(1)).

Proof. Suppose that x is a solution of the boundary value problem (1.1)–
(1.3). Then, obviously, x|J = φ. Moreover, by integrating (1.1) we get

(2.1) x′(t) = x′(1) +
∫ 1

t

f(s, xs) ds for t ∈ I.

Also from (1.3) and (2.1) we have

x′(1) =
∫ 1

0

x′(s) dg(s) = x′(1)
∫ 1

0

dg(s) +
∫ 1

0

∫ 1

s

f(r, xr) dr dg(s).

Therefore

(2.2) x′(1) = ζ

∫ 1

0

∫ 1

s

f(r, xr) dr dg(s).

Combining (2.1) and (2.2) we conclude that

x′(t) = ζ

∫ 1

0

∫ 1

s

f(r, xr) dr dg(s) +
∫ 1

t

f(s, xs) ds for t ∈ I,
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which by integration from 0 to t, t ∈ I gives

x(t) = φ(0) + ζt

∫ 1

0

∫ 1

s

f(r, xr) dr dg(s) +
∫ t

0

∫ 1

s

f(r, xr) dr ds.

The above step gives that, if x is a solution of the boundary value problem
(1.1)–(1.3), then x = Ax.

Reciprocally, suppose that x is a fixed point of the operator A. Then, ob-
viously, φ(t) = x(t) = x(0 + t) = x0(t) for t ∈ J . Also from the form of A we
have

(2.3) x′(t) = ζ

∫ 1

0

∫ 1

s

f(r, xr) dr dg(s) +
∫ 1

t

f(r, xr) dr for t ∈ I.

Therefore

(2.4) x′(1) = ζ

∫ 1

0

∫ 1

s

f(r, xr) dr dg(s).

Then from (2.3), (2.4) and the fact that ζ := 1/(1− g(1)), g(0) = 0, we get

(2.5) x′(t) = x′(1) +
∫ 1

t

f(s, xs) ds for t ∈ I.

Using (2.4) and (2.5) we can easily obtain

x′(1) =
∫ 1

0

x′(s) dg(s).

Finally, from (2.5) we have

x′(t) = x′(1)−
∫ t

1

f(s, xs) ds for t ∈ I

and so
x′′(t) + f(t, xt) = 0 for t ∈ I.

The proof is complete. �

The following lemma can be found in [21].

Lemma 2.3. If a function x ∈ C(I) is concave, nondecreasing and nonneg-
ative then

x(t) ≥ t‖x‖, 0 ≤ t ≤ 1.

The results proved in this paper are based on the following Theorem 2.7 due
to R. I. Avery and J. Henderson [1] (see also [15] and [19]). As we mentioned in
the introduction, this theorem ensures that our boundary value problem (1.1)–
(1.3) has at least two distinct positive solutions and, moreover, for each of these
solutions, we have an upper bound at some specific point of its domain and
a lower bound at some other specific point of its domain. Also, both solutions are
concave and nondecreasing on I. In order to apply this theorem some definitions
are necessary.
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Definition 2.4. Let E be a real Banach space. A cone in E is a nonempty,
closed set P ⊂ E such that

(a) κu+ λv ∈ P for all u, v ∈ P and all κ, λ ≥ 0,
(b) u, −u ∈ P implies u = 0.

Definition 2.5. Let P be a cone in a real Banach space B. A functional
ψ: P → B is said to be increasing on P if ψ(x) ≤ ψ(y), for any x, y ∈ P with
x ≤ y, where ≤ is the partial ordering induced to the Banach space by the
cone P, i.e.

x ≤ y if and only if y − x ∈ P.

Definition 2.6. Let ψ be a nonnegative functional on a cone P. For each
d > 0 we denote by P(ψ, d) the set

P(ψ, d) := {x ∈ P : ψ(x) < d}.

Theorem 2.7. Let P be a cone in a real Banach space E. Let α and γ be
increasing, nonnegative, continuous functionals on P, and let θ be a nonnegative
functional on P with θ(0) = 0 such that, for some c > 0 and Θ > 0,

γ(x) ≤ θ(x) ≤ α(x) and ‖x‖ ≤ Θγ(x),

for all x ∈ P(γ, c). Suppose there exists a completely continuous operator

A: P(γ, c) → P

and real constants a, b, with 0 < a < b < c, such that

θ(λx) ≤ λθ(x) for 0 ≤ λ ≤ 1 and x ∈ ϑP(θ, b),

and

(a) γ(Ax) > c for all x ∈ ∂P(γ, c),
(b) θ(Ax) < b for all x ∈ ∂P(θ, b),
(c) P(α, a) 6= ∅ and α(Ax) > a for all x ∈ ∂P(α, a),

or

(a′) γ(Ax) < c for all x ∈ ∂P(γ, c),
(b′) θ(Ax) > b for all x ∈ ∂P(θ, b),
(c′) P(α, a) 6= ∅, and α(Ax) < a for all x ∈ ∂P(α, a).

Then A has at least two fixed points x1 and x2 belonging to P(γ, c) such that

a < α(x1), θ(x1) < b < θ(x2) and γ(x2) < c.
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3. Main results

Define the set K := {x ∈ C(J ∪ I) : x(t) ≥ 0, t ∈ J ∪ I, x|I is concave and
nondecreasing}, which is a cone in C(J ∪ I). Also let 0 < r1 ≤ r2 ≤ r3 ≤ 1 and
consider the following functionals

γ(x) = x(r1) for x ∈ K,

θ(x) = x(r2) for x ∈ K,

α(x) = x(r3) for x ∈ K.

It is easy to see that α, γ are nonnegative, increasing and continuous functionals
on K, θ is nonnegative on K and θ(0) = 0. Also, it is straightforward that

(3.1) γ(x) ≤ θ(x) ≤ α(x),

since x ∈ K is nondecreasing on I. Furthermore, for any x ∈ K, by Lemma 2.3,
we have

γ(x) = x(r1) ≥ r1‖x‖I .

So

(3.2) ‖x‖I ≤
1
r1
γ(x) for x ∈ K.

Additionally, by the definition of θ it is obvious that

θ(λx) = λθ(x), 0 ≤ λ ≤ 1, x ∈ K.

Now, if D ⊂ I, consider the functions H:C(I) → C(I) and HD:C(I) → C(I) by

(Hz)(s) :=
∫ 1

s

z(r) dr for s ∈ I

and
(HDz)(s) :=

∫
D∩[s,1]

z(r) dr for s ∈ I.

At this point, we state the following assumptions:

(H1) There exist M > 0, a continuous function u: I → R+ and a nondecreas-
ing function L: R+ → R+ such that

f(t, y) ≤ u(t)L(‖y‖J) for t ∈ I, y ∈ C+(J)

and also

φ(0) + L(M)
(
ζr2

∫ 1

0

(Hu)(s) dg(s) +
∫ r2

0

(Hu)(s) ds
)
< Mr2.

(H2) There exist a constant δ ∈ (0, 1) and functions τ : I → [0, q], continuous
v: I → R+ and nondecreasing w: R+ → R+ such that

f(t, y) ≥ v(t)w(y(−τ(t))), for t ∈ X, y ∈ {h ∈ C+(J) : ‖h‖J < M},
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where X := {t ∈ I : δ ≤ t− τ(t) ≤ 1} and M is defined in (H1).
(H3) There exist ρ1, ρ3 > 0 such that

ρi

δ
< φ(0) + w(ρi)

(
riζ

∫ 1

0

(HXv)(s) dg(s) +
∫ ri

0

(HXv)(s) ds
)
, i = 1, 3,

and ρ3/δ < Mr2 < ρ1/δ.

Notice that if φ(0) 6= 0, then these ρ1, ρ3 always exist.

Remark 3.1. It is easy to see that sup{v(t): t ∈ X} > 0 and meas(X ∩
[s, 1)) > 0, s ∈ [0, 1) in the assumption (H2), imply that∫ 1

0

(HXv)(s) dg(s) > 0 and
∫ ri

0

(HXv)(s) ds > 0, i = 1, 3.

Theorem 3.2. Suppose that assumptions (H1)–(H3) hold and furthermore
‖φ‖J ≤M . Then the boundary value problem (1.1)–(1.3) has at least two concave
and nondecreasing on I and positive on J ∪I solutions x1, x2 such that x1(r3) >
ρ3/δ, x1(r2) < Mr2, x2(r2) > Mr2 and x2(r1) < ρ1/δ.

Proof. First of all, we observe that, because of (H1), f(t, · ) maps bounded
sets into bounded sets. Therefore A is a completely continuous operator.

Now we set a = ρ3/δ, b = Mr2, c = ρ1/δ and we consider a x ∈ K(γ, c).
Then since ζ > 0 and f(t, xt) ≥ 0 for every t ∈ I, we get that Ax(t) ≥ 0,
t ∈ I. Also Ax(t) = φ(t) ≥ 0, t ∈ J . Thus Ax(t) ≥ 0, t ∈ J ∪ I. Moreover,
(Ax)′′(t) = −f(t, xt) ≤ 0, which means that Ax is concave on I. Also it is clear
that (Ax)′(t) ≥ 0 for t ∈ I. So A: K(γ, c) → K.

Now let x ∈ ∂K(γ, c). Then γ(x) = x(r1) = c and so ‖x‖I ≥ c. Having in
mind assumption (H2), we get

γ(Ax) =Ax(r1) = φ(0) + ζr1

∫ 1

0

∫ 1

s

f(r, xr) dr dg(s) +
∫ r1

0

∫ 1

s

f(r, xr) dr ds

≥φ(0) + ζr1

∫ 1

0

∫
X∩[s,1]

f(r, xr) dr dg(s) +
∫ r1

0

∫
X∩[s,1]

f(r, xr) dr ds

≥φ(0) + ζr1

∫ 1

0

∫
X∩[s,1]

v(r)w(xr(−τ(r))) dr dg(s)

+
∫ r1

0

∫
X∩[s,1]

v(r)w(xr(−τ(r))) dr ds

=φ(0) + ζr1

∫ 1

0

∫
X∩[s,1]

v(r)w(x(r − τ(r))) dr dg(s)

+
∫ r1

0

∫
X∩[s,1]

v(r)w(x(r − τ(r))) dr ds

≥φ(0) + ζr1

∫ 1

0

∫
X∩[s,1]

v(r)w(x(δ)) dr dg(s)
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+
∫ r1

0

∫
X∩[s,1]

v(r)w(x(δ)) dr ds.

Additionally, by assumption (H3) and Lemma 2.3, we have

γ(Ax) ≥ φ(0) + w(δ‖x‖I)
(
r1ζ

∫ 1

0

(HXv)(s) dg(s) +
∫ r1

0

(HXv)(s) ds
)

≥ φ(0) + w(δc)
(
r1ζ

∫ 1

0

(HXv)(s) dg(s) +
∫ r1

0

(HXv)(s) ds
)

= φ(0) + w(ρ1)
(
r1ζ

∫ 1

0

(HXv)(s) dg(s) +
∫ r1

0

(HXv)(s) ds
)
>
ρ1

δ
= c.

This means that condition (a) of Theorem 2.7 is satisfied.
Now let x ∈ ∂K(θ, b). Then θ(x) = x(r2) = b and so by Lemma 2.3 we get

‖x‖I ≤
1
r2
x(r2) =

1
r2
θ(x) =

b

r2
.

Also we assumed that ‖φ‖J ≤ M = b/r2, so ‖x‖J∪I ≤ b/r2. Now, by (H1), we
have

θ(Ax) = Ax(r2)

= φ(0) + ζr2

∫ 1

0

∫ 1

s

f(r, xr) dr dg(s) +
∫ r2

0

∫ 1

s

f(r, xr) dr ds

≤ φ(0) + ζr2

∫ 1

0

∫ 1

s

u(r)L(‖xr‖J) dr dg(s) +
∫ r2

0

∫ 1

s

u(r)L(‖xr‖J) dr ds

≤ φ(0) + ζr2

∫ 1

0

∫ 1

s

u(r)L
(
b

r2

)
dr dg(s) +

∫ r2

0

∫ 1

s

u(r)L
(
b

r2

)
dr ds

= φ(0) + L(M)
(
ζr2

∫ 1

0

(Hu)(s) dg(s) +
∫ r2

0

(Hu)(s) ds
)
< Mr2 = b.

So condition (b) of Theorem 2.7 is also satisfied.
Now, define the function y: J ∪ I → R with y(t) = a/2. Then it is obvious

that α(y) = a/2 < a, so K(α, a) 6= ∅. Also, for any x ∈ ∂K(α, a) we have
α(x) = x(r3) = a. Therefore ‖x‖I ≥ a. Now, having in mind assumption (H2)
and as in the case of the functional γ above, we get

α(Ax) = Ax(r3) ≥ φ(0) + ζr3

∫ 1

0

∫
X∩[s,1]

v(r)w(x(δ)) dr dg(s)

+
∫ r3

0

∫
X∩[s,1]

v(r)w(x(δ)) dr ds.

Then, by assumption (H3) and inequality of Lemma 2.3, we also have

α(Ax) ≥ φ(0) + w(δa)
(
r3ζ

∫ 1

0

(HXv)(s) dg(s) +
∫ r3

0

(HXv)(s) ds
)
>
ρ3

δ
= a.

Consequently, assumption (c) of Theorem 2.7 is satisfied.
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The result can now be obtained by applying Theorem 2.7. �

The above Theorem 3.2 has been obtained by using the requirements (a)–(c)
of Theorem 2.7. Using the requirements (a′)–(c′) of the same theorem we can
also obtain another existence theorem (Theorem 3.3 below) for our boundary
value problem (1.1)–(1.3). For this purpose we need the following assumptions.

(Ĥ1) There exist M1,M3 > 0, a continuous function u: I → R+ and a nonde-
creasing function L: R+ → R+ such that

f(t, y) ≤ u(t)L(‖y‖J), for t ∈ I, y ∈ C+(J)

and also

φ(0) + L(Mi)
(
ζri

∫ 1

0

(Hu)(s) dg(s) +
∫ ri

0

(Hu)(s) ds
)
< Miri, i = 1, 3.

(Ĥ2) There exist a constant δ ∈ (0, 1) and functions τ : I → [0, q], continuous
v: I → R+ and nondecreasing w: R+ → R+ such that

f(t, y) ≥ v(t)w(y(−τ(t))), t ∈ X, y ∈ {h ∈ C+(J) : ‖h‖J < min{M1,M3}},

where X := {t ∈ I : δ ≤ t− τ(t) ≤ 1} and M1, M3 are defined in (Ĥ1).
(Ĥ3) There exists ρ > 0 such that

ρ

δ
< φ(0) + w(ρ)

(
r2ζ

∫ 1

0

(HXv)(s) dg(s) +
∫ r2

0

(HXv)(s) ds
)
.

Notice that if φ(0) 6= 0, then this ρ always exists.
Using the assumptions (Ĥ1)–(Ĥ3) and, in the same way as in the above

Theorem 3.2, we can prove the following theorem.

Theorem 3.3. Suppose that assumptions (Ĥ1)–(Ĥ3) hold and furthermore
‖φ‖J ≤ min{M1,M3}. Then the boundary value problem (1.1)–(1.3) has at least
two concave and nondecreasing on I and positive on J ∪ I solutions x1, x2 such
that x1(r3) > M3r3, x1(r2) < ρ/δ, x2(r2) > ρ/δ and x2(r1) < M1r1.

The obtained solutions x1, x2 in Theorems 3.2 and 3.3 are all nondecreasing.
Thus, in the special case when r1 = r2 = r3 = 1, we have that xi(rj) = xi(1) =
‖xi‖, i = 1, 2, j = 1, 2, 3. Therefore, we have the following corollary of Theorems
3.2 and 3.3.

Corollary 3.4. Suppose that assumptions (H1)–(H3) (resp. (Ĥ1)–(Ĥ3))
hold and furthermore ‖φ‖J ≤M (resp. ‖φ‖J ≤ min{M1,M3}). Then the bound-
ary value problem (1.1)–(1.3) has at least two concave and nondecreasing on I

and positive on J ∪ I solutions x1, x2 such that

ρ3

δ
< ‖x1‖ < M < ‖x2‖ <

ρ1

δ

(
resp. M3 < ‖x1‖ <

ρ

δ
< ‖x2‖ < M1

)
.
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It is remarkable to observe that this corollary can also be obtained by ap-
plying twice the Krasnoselskii’s theorem under the same assumptions (H1)–(H3)
(resp. (Ĥ1)–(Ĥ3)).

4. The ordinary differential equations case

In this section we suppose that q = 0. Then J = {0}, so the boundary value
problem (1.1)–(1.3) is reformulated as follows

x′′(t) + f(t, x(t)) = 0 for t ∈ I,(4.1)

x(0) = N,(4.2)

x′(1) =
∫ 1

0

x′(s) dg(s),(4.3)

where f : R+ ×R+ → R+ is a continuous function, g: I → R+ is a nondecreasing
function, such that g(0) = 0, 1−g(1) > 0 and N ∈ R+. Note that equation (4.1)
is equivalent to the following form

x′′(t) + f(t, xt(0)) = 0 for t ∈ I

and C+({0}) ≡ R+, so f : R+ × C+({0}) → R+.
Now, the analogue of Lemma 2.2 for this case is the following:

Lemma 4.1. A function x ∈ C(I) is a solution of the boundary value problem
(4.1)–(4.3) if and only if x is a fixed point of the operator Â:C(I) → C(I), with

Âx(t) = N + ζt

∫ 1

0

∫ 1

s

f(r, x(r)) dr dg(s) +
∫ t

0

∫ 1

s

f(r, x(r)) dr ds, t ∈ I,

where ζ := 1/(1− g(1)).

Assumptions (H1)–(H3) and (Ĥ1)–(Ĥ3), for the special case q = 0, are stated
as follows:

(H1)0 There exist M > 0, continuous function u: I → R+ and nondecreasing
function L: R+ → R+ such that

f(t, y) ≤ u(t)L(y) for t ∈ I, y ∈ R+

and

N + L(M)
(
ζr2

∫ 1

0

(Hu)(s) dg(s) +
∫ r2

0

(Hu)(s) ds
)
≤Mr2,

where the function H is defined in the previous section.
(H2)0 There exist δ ∈ (0, 1) and functions v: I → R+ continuous and w: R+ →

R+ nondecreasing such that

f(t, y) ≥ v(t)w(y) for t ∈ Z := [δ, 1], y ∈ [0,M ].
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(H3)0 There exist ρ1, ρ3 > 0 such that

ρi

δ
≤ N + w(ρi)

(
riζ

∫ 1

0

(HZv)(s) dg(s) +
∫ ri

0

(HZv)(s) ds
)
, i = 1, 3,

where the function HZ is defined in previous section.
(Ĥ1)0 There exist M1,M3 > 0, a continuous function u: I → R+ and a nonde-

creasing function L: R+ → R+ such that

f(t, y) ≤ u(t)L(y) for t ∈ I, y ∈ R+

and

N + L(Mi)
(
ζri

∫ 1

0

(Hu)(s) dg(s) +
∫ ri

0

(Hu)(s) ds
)
< Miri, i = 1, 3

where the function H is defined in the previous section.
(Ĥ2)0 There exist a constant δ ∈ (0, 1), a continuous function v: I → R+ and

a nondecreasing function w: R+ → R+ such that

f(t, y) ≥ v(t)w(y) for t ∈ Z := [δ, 1], y ∈ R+.

(Ĥ3)0 There exists ρ > 0 such that

ρ

δ
< N + w(ρ)

(
r2ζ

∫ 1

0

(HZv)(s) dg(s) +
∫ r2

0

(HZv)(s) ds
)
,

where the function HZ is defined in the previous section.

Therefore, we have the following theorems, which are analogues of Theorems
3.2 and 3.3, respectively.

Theorem 4.2. Suppose that assumptions (Ĥ1)–(Ĥ3) hold and furthermore
N ≤ M . Then the boundary value problem (4.1)–(4.3) has at least two con-
cave, nondecreasing and positive on I solutions x1, x2 such that x1(r3) > ρ3/δ,
x1(r2) < Mr2, x2(r2) > Mr2 and x2(r1) < ρ1/δ.

Theorem 4.3. Suppose that assumptions (Ĥ1)0–(Ĥ3)0 hold and furthermore
N ≤ min{M1,M3}. Then the boundary value problem (4.1)–(4.3) has at least
two concave, nondecreasing and positive on I solutions x1, x2 such that x1(r3) >
M3r3, x1(r2) < ρ/δ, x2(r2) > ρ/δ and x2(r1) < M1r1.

Also, the following corollary corresponds to Corollary 3.4.

Corollary 4.4. Suppose that assumptions (H1)0–(H3)0 (resp. (Ĥ1)0–(Ĥ3)0)
hold and furthermore N ≤ M (resp. N ≤ min{M1,M3}). Then the boundary
value problem (4.1)–(4.3) has at least two concave, nondecreasing and positive
on I solutions x1, x2 such that

ρ3

δ
< ‖x1‖ < M < ‖x2‖ <

ρ1

δ

(
resp. M3 < ‖x1‖ <

ρ

δ
< ‖x2‖ < M1

)
.
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5. Applications

5.1. Consider the boundary value problem

x′′(t) +
[
x

(
t− 1

2

)
− 4

5

]5

+ 1 = 0 for t ∈ I := [0, 1],(5.1)

x0(t) = φ(t) := t2 for t ∈ J :=
[
− 1

2
, 0

]
,(5.2)

x′(1) =
∫ 1

0

x′(s) dg(s),(5.3)

where

g(t) =


0 for 0 ≤ t ≤ 1

3
,

3
2
t− 1

2
for

1
3
≤ t ≤ 1

2
,

1
2
t for

1
2
≤ t ≤ 1.

It is easy to see that condition (5.3) is equivalent to the following nonlocal
one

x′(1) =
1
2
x(1) + x

(
1
2

)
− 3

2
x

(
1
3

)
.

Obviously, f(t, y) := (y − 4/5)5 + 1 is nonnegative on R+ × C+(J), φ is
nonnegative on J and g is nondecreasing, with g(0) = 0 and 1− g(1) = 1/2 > 0.
Set r1 = 2/5, r2 = 3/5 and r3 = 4/5. Define L(z) = (z− 4/5)5 + 1, z ∈ R+, and
u(t) = 1, t ∈ I. Since inequality

L(M) <
60
67
M

holds for M = 7/5, assumption (H1) is satisfied.
Additionally, set δ = 1/4, τ(t) = 1/2, t ∈ I, v(t) = 1, t ∈ I and w(z) =

(z − 4/5)5 + 1, z ∈ R+. Then, X = [3/4, 1] and the inequalities in (H3) assume,
take the form

w(ρ1) >
64
3
ρ1 and w(ρ3) >

3200
299

ρ3,

which are satisfied for ρ1 = 6 and ρ3 = 1/20. Finally, it is obvious that ‖φ‖J ≤
7/5, so we can apply Theorem 3.2 to get that the boundary value problem (5.1)–
(5.3) has at least two concave and nondecreasing on I and positive on J ∪ I
solutions x1, x2, such that

x1

(
4
5

)
>

1
5
, x1

(
3
5

)
<

21
25
, x2

(
3
5

)
>

21
25

and x2

(
2
5

)
< 24.
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5.2. Once again, consider the boundary value problem (5.1)–(5.3).
Having in mind Corollary 3.4, we set r1 = r2 = r3 = 1. Define also again

L(z) = (z − 4/5)5 + 1, z ∈ R+, and u(t) = 1, t ∈ I. Since inequality

L(M) <
12
11
M

holds for M = 11/10, assumption (H1) is satisfied.
Additionally, set δ = 1/4, τ(t) = 1/2, t ∈ I, v(t) = 1, t ∈ I and w(z) =

(z − 4/5)5 + 1, z ∈ R+. Then, X = [3/4, 1] and the inequalities in assumption
(H3) take the forms

w(ρ1) >
64
7
ρ1 and w(ρ3) >

64
7
ρ3,

which are satisfied for ρ1 = 27/10 and ρ3 = 1/12. Finally, it is obvious that
‖φ‖J ≤ 11/10, so we can apply Corollary 3.4 to get that the boundary value
problem (5.1)–(5.3) has at least two concave and nondecreasing on I and positive
on J ∪ I solutions x1, x2, such that

1
3
< ‖x1‖ <

11
10

< ‖x2‖ <
54
5
.

5.3. Consider the boundary value problem

x′′(t) + 8 arctan(10x(t)− 14) + 12 = 0 for t ∈ I := [0, 1],(5.4)

x(0) = 0,(5.5)

x′(1) =
∫ 1

0

x′(s) dg(s),(5.6)

where g(t) = t/4, t ∈ I.
It is clear that (5.6) is equivalent to the boundary condition

x′(1) =
1
4

(
x(1)− x(0)

)
.

Obviously, f(t, y) := 8 arctan(10y − 14) + 12 is positive on R+ × R+ and g

is nondecreasing, with g(0) = 0 and 1− g(1) = 3/4 > 0. Set r1 = 1/4, r2 = 1/2
and r3 = 3/4. Define L(z) = 8 arctan(10z − 14) + 12, z ∈ R+, and u(t) = 1,
t ∈ I. Since inequalities

L(M1) <
24
25
M1 and L(M3) <

24
19
M3

hold for M1 = 30 and M3 = 1/100, assumption (Ĥ1)0 is satisfied.
Additionally, set δ = 1/2, v(t) = 1, t ∈ I and w(z) = 8 arctan(10z−14)+12,

z ∈ R+. Then, Z = [1/2, 1] and assumption (Ĥ3)0 takes the form

w(ρ) >
96
15
ρ,
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which is satisfied for ρ = 7/5. Finally, it is obvious that N = 0 ≤ 1/100 =
min{M1,M3}, so we can apply Theorem 4.3 to get that the boundary value
problem (5.4)–(5.6) has at least two concave and nondecreasing and positive on
I solutions x1, x2, such that

x1

(
3
4

)
>

3
400

, x1

(
1
2

)
<

14
5
, x2

(
1
2

)
>

14
5

and x2

(
1
4

)
<

15
2
.
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