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NODAL SOLUTIONS
TO SUPERLINEAR BIHARMONIC EQUATIONS

VIA DECOMPOSITION IN DUAL CONES

Tobias Weth

Abstract. We present an abstract approach to locate multiple solutions of

some superlinear variational problems in a Hilbert space H. The approach
has many points in common with existing methods, but we add a new tool

by using a decomposition technique related to dual cones in H which goes

back to Moreau. As an application we deduce new existence results for
sign changing solutions for some superlinear biharmonic boundary value

problems.

1. Introduction

In this paper we are concerned with locating critical points of a functional
defined on a real Hilbert space in the presence of invariant cones. The abstract
approach we present provides a framework for proving new existence results for
nodal (i.e. sign changing) solutions of superlinear biharmonic equations. We
recall that, for a C1-functional Φ defined on a Hilbert space H, it is well known
that the invariance properties of the vector field A := Id − ∇Φ: H → H are
closely related to the number and location of critical points of Φ. In many
applications the Hilbert space H has a partial order induced by a closed cone K,
and A leaves the cone K or more general order intervals invariant. Depending on
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further assumptions, different methods like the classical sub- and supersolution
technique, topological fixed point theory or variational methods have been used
in order to locate critical points of Φ (which are precisely the fixed points of A).
For the first two methods we refer the reader to the survey papers by Amann
[1] and Dancer [13]. The variational methods are particularly important in the
cases where no a priori bounds on the set of critical points of Φ are available and
thus a global fixed point index for A cannot be defined. The combined use of
variational tools and i nvariance information goes back to the pioneering papers
[23], [18], [8], [9]. More recently, a number of different techniques were developed
to locate critical points inside and outside of invariant sets for A, see e.g. [2]–[4],
[14]–[17], [11], [10], [24], [26], [7].

In the present paper we generalize some results obtained recently in [3]. We
assume that the functional Φ is of class C1,1, and the vector field A leaves
a nonempty closed cone K ⊂ H and its reflection −K = {−u : u ∈ K} invariant.
Actually we need slightly stronger invariance conditions, see Section 2 below.
Under additional superlinearity conditions on A, we then obtain existence of
three nontrivial critical points u1, u2, u3 of Φ, where u1 ∈ K, u2 ∈ −K and
u3 ∈ H \ (K ∪ −K). Assuming in addition that Φ is even, we obtain infinitely
many critical points located in H \ (K ∪−K). Similar results in special cases or
under different assumptions can be found in [3], [24], [26], [2]. In the proof of our
results we generalize the approach of [3], and we simplify some of the arguments.
To pass from the Sobolev space H1(RN ) considered in [3] to an arbitrary Hilbert
space H, we implement ideas related to the decomposition method in dual cones.
This method goes back to Moreau [28], and it was rediscovered and elaborated by
Gazzola and Grunau [19] in the context of variational problems for polyharmonic
operators (see also Miersemann [27]). Its main advantage is the fact that it
provides an abstract substitute for the decomposition u = u+ + u− of functions
u ∈ H1(Ω) (where u+ = max{u, 0} and u− = min{u, 0}). In particular, this is
useful for variational problems in subspaces of H2(Ω) where the decomposition
u = u+ + u− is not available.

In the second part of the paper we consider an application of this type. More
precisely, we study the nonlinear biharmonic equation

(1.1) ∆2u = f(x, u), x ∈ Ω,

subject either to Navier boundary conditions

(1.2) u = ∆u = 0 on ∂Ω

or to Dirichlet boundary conditions

(1.3) u =
∂u

∂ν
= 0 on ∂Ω.
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Here f is a superlinear, subcritical nonlinearity which is nondecreasing in u

and such that f(0) = 0. We obtain new existence and multiplicity results for
sign changing solutions of (1.1), (1.2) and (1.1), (1.3). However, while for the
boundary conditions (1.2) we get results on every smooth bounded domain, this
is not the case for (1.3). In fact, our results strongly depend on the assumption
that the Green function of the biharmonic operator ∆2 on Ω corresponding to
the boundary conditions (1.2), (1.3), respectively, is positive. While for (1.2)
this is true on an arbitrary domain, it fails to be true for (1.3) even on simple
bounded domains (see [22] for a survey on this type of problems). Nevertheless,
by a classical result of Boggio [6], it is true in the case where Ω = B is a ball
in RN . Other examples for domains where the Green function corresponding to
(1.3) is positive are planar domains close to a disk [21], [29] and, for a certain
range of parameters, the limaçon [12]. On these domains we obtain existence of
sign changing solutions of (1.1), (1.3). In case of the ball Ω = B in RN , we do
not need to assume that f is a radial function in x.

Finally, we also prove that, if f ∈ C1(R) and f ′(u) > f(u)/u > 0 for all
u 6= 0, then every sign changing solution of (1.1), (1.2) has Morse index greater
than or equal to two with respect to the corresponding energy functional Φ.
The same is true for problem (1.1), (1.3) for domains with a positive Green
function. This complements a well known result for the second order case, see [5].
Again the proof relies on the decomposition in dual cones. We remark that, in
some situations, the decomposition can also be used to bound the energy of sign
changing solutions from below, see [20, Lemma 4].

The paper is organized as follows. In Section 2 we develop the abstract vari-
ational framework, and we prove two results on the existence and location of
multiple critical points, see Theorems 2.6 and 2.7. In Section 3 we are concerned
with the biharmonic equation (1.1), and we prove our main results on the ex-
istence, multiplicity and the signs of solutions, see Theorems 3.5 and 3.9. We
close this section with the above-mentioned estimate for the Morse index of sign
changing solutions. In the appendix we give a short proof of a topological fact
used in the proof of Theorem 2.6.

Acknowledgements. The author would like to thank Filippo Gazzola and
Hans-Christoph Grunau for fruitful discussions. Moreover he would like to thank
Thomas Bartsch and Zhaoli Liu for introducing him to this type of methods.

2. The abstract framework

Let H be a real Hilbert space with scalar product ( · , · ) and norm ‖ · ‖. For
a subset D of H we write int(D) resp. D resp. ∂D for the interior, the closure
and the boundary of D, respectively. Moreover, for ε > 0 we denote by Bε(D)
the open ε-neighbourhood of D, i.e. Bε(D) := {u ∈ H : dist(u, D) < ε}. If
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D = {u} consists of a single point, we write Bε(u) for the ε-neighbourhood of u.
We consider the fixed point problem

(2.1) A(u) = u, u ∈ H,

where A:H → H is a nonlinear operator satisfying the following assumptions.

(A1) A:H → H is compact and Lipschitz continuous, and A(0) = 0.
(A2) A = ∇Ψ for some functional Ψ ∈ C1,1(H, R), and there are constants

C0, q
∗ > 0, p > 1, η > 2 and q∗ ∈ (0, 1) such that

(A(u), u) ≥ ηΨ(u)− C0 for u ∈ H,(2.2)

|(A(u), v)| ≤ (q∗‖u‖+ q∗‖u‖p)‖v‖ for u, v ∈ H.(2.3)

We assume that (A1) and (A2) are in force from now on. Then solutions of (2.1)
are precisely the critical points of the C1,1-functional

Φ: H → R, Φ(u) =
1
2
‖u‖2 −Ψ(u).

Moreover, we have:

Lemma 2.1. Φ satisfies the Palais–Smale condition.

Proof. Let (un) be a Palais–Smale sequence for Φ, i.e. C := supn∈N |Φ(un)|
< ∞ and ∇Φ(un) → 0 as n →∞. Then

ηC + o(1)‖un‖ ≥ ηΦ(un)− (∇Φ(un), un)

=
η − 2

2
‖un‖2 + (A(un), un)− ηΨ(un) ≥ η − 2

2
‖un‖2 − C0

by (2.2), so that (un) is bounded. Since A is compact, we may pass to a sub-
sequence satisfying A(un) → u0 ∈ H. But since un − A(un) = ∇Φ(un) → 0 as
n →∞, we conclude that un → u0. �

Our aim is to locate critical points of Φ by applying dynamical systems argu-
ments to the negative gradient flow of Φ. Since A is locally Lipschitz continuous,
this flow ϕ : G → H is well defined by{ ∂

∂t
ϕ(t, u) = −∇Φ(ϕ(t, u)) = A(ϕ(t, u))− ϕ(t, u),

ϕ(0, u) = u,

where G = {(t, u) : u ∈ H, 0 ≤ t < T (u)} and T (u) ∈ (0,∞] is the maximal
existence time for the trajectory t 7→ ϕ(t, u). In the following, we will write ϕt
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instead of ϕ(t, · ). Note that for 0 ≤ s < t < T (u) we have the estimate

‖ϕt(u)− ϕs(u)‖ ≤
∫ t

s

‖∇Φ(ϕτ (u))‖ dτ

≤
√

t− s

( ∫ t

s

‖∇Φ(ϕτ (u))‖2 dτ

)1/2

=
√

(t− s)[Φ(ϕs(u))− Φ(ϕt(u))].

From this we conclude that, if for some u ∈ H the energy Φ is bounded from
below on the trajectory {ϕt(u) : t ∈ [0, T (u))}, then T (u) = ∞. In this case the
ω-limit set

ω(u) =
⋂

0≤t<∞

⋃
t≤s<∞

ϕs(u)

of u is a nonempty compact subset of H consisting of critical points of Φ, as
follows in a standard way from Lemma 2.1. A subset D of H is called positively
invariant (under ϕ) if

ϕt(u) ∈ D for every u ∈ D and every t ∈ [0, T (u)).

For a positively invariant set D we define the domain of absorption by

A(D) := {u ∈ H : ϕt(u) ∈ D for some t ∈ [0, T (u))}.

We note that, if D ⊂ H is open, then A(D) is also an open subset of H. We
also define

A0 := {u ∈ H : T (u) = ∞, ϕt(u) → 0 as t →∞}.

Lemma 2.2. A0 ⊂ H is an open neighbourhood of zero.

Proof. Put α0 = ((1− q∗)/2q∗)1/(p−1). Then, for all u ∈ Bα0(0) we have
by (2.3)

Ψ(u) =
∫ 1

0

∂

∂t
Ψ(tu) dt =

∫ 1

0

(A(tu), u) dt ≤
∫ 1

0

(q∗‖tu‖+ q∗‖tu‖p)‖u‖ dt

≤
∫ 1

0

t‖u‖2(q∗ + q∗‖u‖p−1) dt =
‖u‖2

2
(q∗ + q∗‖u‖p−1)

≤ ‖u‖2

2
(q∗ + q∗αp−1

0 ) =
q∗ + 1

4
‖u‖2,

so that

Φ(u) =
1
2
‖u‖2 −Ψ(u) ≥

(
1
2
− q∗ + 1

4

)
‖u‖2 ≥ 0.

Moreover,

(2.4) Φ(u) ≥
(

1
2
− q∗ + 1

4

)
α2

0 =: β0 for u ∈ ∂Bα0(0).
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Since Φ(0) = 0 and Φ is continuous in 0, there is r ∈ (0, α0) such that

Φ(u) < β0 for u ∈ Br(0) ⊂ H.

Now if u ∈ Br(0), then Φ(ϕt(u)) < β0 for every t ∈ [0, T (u)), so that ϕt(u) ∈
Bα0(0) for all t ∈ [0, T (u)) by (2.4). Hence Φ(ϕt(u)) ≥ 0 for all t ∈ [0, T (u)),
which implies that T (u) = ∞. Moreover, ω(u) ⊂ Bα0(0) is a nonempty compact
set consisting of critical points of Φ. However, if v ∈ Bα0(0) is a critical point of
Φ, then

‖v‖2 = (A(v), v) ≤ ‖v‖2(q∗ + q∗‖v‖p−1) ≤ ‖v‖2(q∗ + q∗α0
p−1) =

q∗ + 1
2

‖v‖2.

Since q∗ < 1, we conclude v = 0. Thus ω(u) = {0} for every u ∈ Br(0), which
implies that Br(0) ⊂ A0. From this we deduce that A0 is an open neighbourhood
of 0, as claimed. �

In the following, we look for nontrivial critical points of Φ on the closed
set ∂A0. Obviously this set is positively invariant for the flow ϕ, and infu∈A0 Φ(u)
≥ 0. In fact one can prove strict positivity here, but we do not need this.
Consequently, we have T (u) = ∞ for every u ∈ A0, and ω(u) is a nontrivial
compact subset of A0 consisting of (nontrivial) critical points of Φ.

To obtain more information on the location of some critical points, we inves-
tigate further invariance properties of the flow ϕ. For this we consider a fixed
closed cone in K in H. So K = K is convex, R+ · K ⊂ K and K∩ (−K) = 0. The
dual cone K∗ of K is then defined by

K∗ := {u ∈ H : (u, v) ≤ 0 for all v ∈ K}.

Let P:H → K be the projection on K which is uniquely determined by the
property

‖u− Pu‖ = min
v∈K

‖u− v‖.

Moreover, we put P∗ = Id−P:H → H. Then, as observed in [28], [19], we have

(2.5) P∗u ∈ K∗ and (Pu,P∗u) = 0 for all u ∈ H.

We need the following crucial invariance assumption for the vector field A.

(A3) (A(u), v) ≤ (A(P∗u), v) for u ∈ H and v ∈ K∗.

Note that (A3) in particular implies that A(K) ⊂ K. Indeed, for u ∈ K we have
by (2.5) and (A3)

‖P∗(A(u))‖2 = (A(u),P∗(A(u)))

≤ (A(P∗u),P∗(A(u))) = (A(0),P∗(A(u))) = 0.

For us the following invariance properties are of interest.
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Lemma 2.3.

(a) For α > 0 sufficiently small, the set Bα(K) is positively invariant for
the flow ϕ. Moreover, every critical point of Φ in Bα(K) belongs to K.

(b) K is positively invariant for ϕ.

Proof. (a) Let u ∈ H. Then, by (2.5), (A2) and (A3),

‖P∗(A(u))‖2 = (A(u),P∗(A(u))) ≤ (A(P∗u),P∗(A(u)))

≤ (q∗‖P∗u‖+ q∗‖P∗u‖p)‖P∗(A(u))‖,

so that
‖P∗(A(u))‖ ≤ ‖P∗u‖(q∗ + q∗‖P∗u‖p−1).

Hence, if 0 < ‖P∗u‖ < α0 := ((1− q∗)/2q∗)1/(p−1), then ‖P∗(A(u))‖ < ‖P∗u‖.
Consequently, for α < α0, we have A(∂Bα(K)) ⊂ int(Bα(K)), and every fixed
point u ∈ Bα(K) of A satisfies ‖P∗(A(u))‖ = ‖P∗(u)‖ = 0, hence it belongs
to K.

We now show that, for α < α0, Bα(K) is positively invariant. Assume, by
contradiction, that there is u0 ∈ Bα(K) such that ϕt0(u0) ∈ ∂Bα(K) for some
t0 ∈ (0, T (u0)), and that t0 is the smallest positive time where the trajectory t 7→
ϕt(u0) meets ∂Bα(K). Since Bα(K) is open and convex, by Mazur’s separation
theorem there exists a continuous linear functional `:H → R and β ∈ R such
that `(ϕt0(u0)) = β and `(u) > β for u ∈ Bα(K). It follows that

∂

∂t

∣∣∣∣
t=t0

`(ϕt(u0)) = `(−∇Φ(ϕt0(u0))) = `(A(ϕt0(u0)))− β > 0.

Hence there exists ε > 0 such that `(ϕt(u0)) < β for t ∈ (t0 − ε, t0). Thus,
ϕt(u0) 6∈ Bα(K) for t ∈ (t0 − ε, t0). This contradicts our choice of t0 and proves
that Bα(K) is positively invariant under ϕ.

(b) This follows from (a), since K =
⋂

α>0 Bα(K). �

Proposition 2.4. Suppose that there is u0 ∈ K \ {0} such that Φ(u0) < 0.
Then Φ has a critical point in K. Hence there is a nontrivial solution u ∈ K
of (2.1).

Proof. Since Φ(u0) < 0, u0 is not contained in A0. Therefore, by Lem-
ma 2.2, there is s ∈ (0, 1) such that su0 ∈ ∂A0 ∩ K. By Lemma 2.3(b) the
ω-limit set ω(su0) is contained in ∂A0 ∩ K, and it is nonempty. Since any
element of ω(su0) is a critical point of Φ, the assertion follows. �

Next we are concerned with multiple critical points of Φ. For this we also
consider the cone −K and its dual cone

(−K)∗ = {u ∈ H : (u, v) ≥ 0 for all v ∈ K}.
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We let Q:H → −K be the projection on −K which is uniquely determined by
the relation

‖u−Qu‖ = min
v∈−K

‖u− v‖.

Moreover, we put Q∗ = Id−Q:H → H. Again we find that, for all u ∈ H,

Q∗u ∈ (−K)∗ and (Qu,Q∗u) = 0.

We make the following additional assumption:

(A4) (A(u), v) ≤ (A(Q∗u), v) for u ∈ H and v ∈ (−K)∗.

We remark that, if A:H → H is an odd vector field, then (A4) follows from (A3).
Applying Lemma 2.3(a) to the cone −K, we find that, for α > 0 sufficiently

small, Bα(−K) is also a positively invariant set for the flow ϕ. We now fix α > 0
such that the statement of Lemma 2.3(a) holds for Bα(K) and Bα(−K), and we
put

A+ := A(Bα(K)) ∩ ∂A0, A− := A(Bα(−K)) ∩ ∂A0.

Then we have the following.

Lemma 2.5. The sets A+ and A− are disjoint relatively open subsets of ∂A0.

Proof. Since Bα(±K) are open subsets of H, A(Bα(±K)) are also open in
H. Hence A± are relatively open in ∂A0. Now suppose by contradiction that
A+ ∩ A− 6= ∅, and let u ∈ A+ ∩ A−. Since u ∈ ∂A0, we have T (u) = ∞ and
ω(u) 6= ∅. Since u ∈ A(Bα(K))∩A(Bα(−K)), we have ω(u) ⊂ Bα(K)∩Bα(−K)
and therefore ω(u) ⊂ K ∩ (−K) = {0} by Lemma 2.3(a), since ω(u) consists of
critical points of Φ. Hence ϕt(u) → 0 as t → ∞, but this contradicts the fact
that u ∈ ∂A0. The lemma is proved. �

Theorem 2.6. Suppose that the assumptions (A1)–(A4) are satisfied. Sup-
pose furthermore that there exists a continuous path h: [0, 1] → H with h(0) ∈ K,
h(1) ∈ −K, and Φ(h(t)) < 0 for all t ∈ [0, 1]. Then Φ has at least three critical
points u1, u2, u3, where u1 ∈ K, u2 ∈ −K and u3 ∈ H \ (K ∪−K).

Proof. The existence of u1 and u2 follows from Proposition 2.4 applied to
K and −K. To get u3, we note that A0 ∩ h([0, 1]) = ∅ by assumption. We put
Q := [0, 1]2, and we let B ⊂ Q be defined by

B = {(s1, s2) ∈ Q : s1h(s2) ∈ A0}.

Then B ⊂ Q is a relatively open set such that ({0}×[0, 1]) ⊂ B and ({1}×[0, 1])∩
B = ∅. Hence there is a connected component Γ of the relative boundary ∂B of
B in Q such that Γ∩ ([0, 1]×{0}) 6= ∅ and Γ∩ ([0, 1]×{1}) 6= ∅. This topological
fact has been proved in [26, Lemma 3.1], and we give a different short proof
in the appendix of this paper. Put Γ0 = {s1h(s2) : (s1, s2) ∈ Γ}. Then Γ0 is
a connected subset of ∂A0, and Γ0∩±K 6= 0. By Corollary 2.5, the sets Γ0∩A±
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are disjoint relatively open nonempty subsets of Γ0, so that, by connectivity,
there must be u ∈ Γ0 \ (A+ ∪ A−). Now the trajectory {ϕt(u) : t > 0} is
contained in the closed set A0 \ (A+ ∪ A−), and so is the ω-limit set ω(u).
In particular, ω(u) ∩ (K ∪ −K) = ∅, so any point u3 ∈ ω(u) has the asserted
property. �

Theorem 2.7. Suppose that the assumptions (A1)–(A3) are satisfied, and
that A(−u) = −A(u) and Ψ(−u) = Ψ(u) holds for all u ∈ H. Suppose also that
there is a subspace V ⊂ H of dimension n such that

lim sup
u∈V, ‖u‖→∞

Φ(u) < 0.

Then Φ has at least n − 1 pairs ±u of nontrivial critical points located in H \
(K ∪−K).

Proof. We first note that, by the oddness of A, assumption (A4) is also
satisfied. For a closed and symmetric subset D of H we denote by γ(D) the
usual Krasnoselski genus of D. For a definition and basic properties of γ, see
[30, pp. 94]. Since, by assumption, Φ is an even functional, ∂A0 is a closed and
symmetric subset of H, and A− = −A+. We wish to estimate the number of
critical points of Φ in the symmetric set

E := ∂A0 \ (A+ ∪ A−).

Note that E ⊂ H is closed by Lemma 2.5, and it is positively invariant for the
flow ϕ. For a real number c, we consider the closed and symmetric subsets

Ec := {u ∈ E : Φ(u) ≤ c}, Kc := {u ∈ E : Φ(u) = c, ∇Φ(u) = 0}.

We note that Kc is compact by Lemma 2.1. We consider the nondecreasing
sequence of values

ck := inf{c ∈ R : γ(Ec) ≥ k}, k ∈ N.

If ck < ∞, then ck is a critical value of Φ. In fact, we will prove the following
stronger statement.
(2.6)

If ck = ck+1 = · · · = ck+l < ∞ for some k, l, then γ(Kc) ≥ l + 1 for c := ck.

In particular, Kc is an infinite set if l ≥ 1. To show (2.6), we let ε > 0 be
such that γ(U) = γ(Kc), where U = Bε(Kc). Since Φ satisfies the Palais–Smale
condition, there is δ > 0 such that for

M = {u ∈ E \Bε/2(Kc) : Φ(u) ∈ [c− δ, c + δ]}

we have

(2.7) τ := inf
u∈M

‖∇Φ(u)‖ > 0.
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Now let 0 < δ1 < min{δ, τε/4}, and let u ∈ Ec+δ1 \ [U ∪ Ec−δ1 ] ⊂ M . Then we
claim:

(2.8) ϕt(u) ∈ Ec−δ1 for some t ∈ (0, T (u)).

Indeed, (2.7) immediately implies that the trajectory t 7→ ϕt(u) cannot stay in
M for all times t ∈ [0, T (u)). On the other hand, if, for some t > 0, {ϕs(u) :
0 ≤ s ≤ t} ⊂ M and ϕt(u) ∈ ∂M , then either Φ(ϕt(u)) = c − δ < c − δ1 or
ϕt(u) ∈ ∂Bε/2(Kc). In the latter case, we conclude

ε

2
≤ ‖u− ϕt(u)‖ ≤

∫ t

0

∥∥∥∥∂ϕs(u)
∂s

∥∥∥∥ ds

≤ 1
τ

∫ t

0

‖∇Φ(ϕs(u))‖2 ds ≤ 1
τ

[Φ(u)− Φ(ϕt(u))],

and hence
Φ(ϕt(u)) ≤ Φ(u)− τε

2
< c− δ1.

Thus (2.8) follows. Now, for u ∈ Ec+δ1 \U , let t∗(u) be the smallest t ∈ [0, T (u))
such that ϕt(u) ∈ Ec−δ1 . Then the function t∗: Ec+δ1 \ U → [0,∞) is even and
lower semicontinuous, since Ec−δ1 is closed. In fact, t∗ is also upper semicontin-
uous. To see this, let u ∈ Ec+δ1 \ U . We may assume that Φ(u) ≥ c − δ1, since
otherwise t∗ ≡ 0 in a neighbourhood of u. Then Φ(ϕt∗(u)(u)) = c− δ1, and the
estimate from above shows that ϕt∗(u)(u) ∈ M , hence ϕt∗(u)(u) is not a critical
point of Φ by (2.7). Consequently, if ρ > 0 is given, then Φ(ϕt∗(u)+ρ(u)) < c−δ1,
and thus Φ(ϕt∗(u)+ρ(v)) < c− δ1 for v sufficiently close to u. We conclude that
t∗(v) ≤ t∗(u) + ρ for v sufficiently close to u, which shows upper semicontinuity.
Having thus proved that t∗ is a continuous function, we find that the map

ϑ: Ec+δ1 \ U → Ec−δ1 , ϑ(u) = ϕt∗(u)(u)

is odd and continuous. By definition of c = ck = ck+l and properties of the genus
we conclude that

k − 1 ≥ γ(Ec−δ1) ≥ γ(Ec+δ1 \ U) ≥ γ(Ec+δ1)− γ(U) ≥ k + l − γ(Kc),

and (2.6) follows. Next we prove that

(2.9) cn−1 < ∞.

Indeed, by assumption we can choose R > 0 such that

Φ(u) < 0 for u ∈ V, ‖u‖ ≥ R.

This implies that W := V ∩A0 is an open bounded and symmetric neighbourhood
of 0 in V . Since the dimension of V is n, the boundary ∂V W ⊂ ∂A0 of W in
V satisfies γ(∂V W ) = n. Let C = ∂V W \ (A+ ∪ A−), which is a compact
symmetric set, and let N ⊂ H be an open symmetric neighbourhood of C such
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that γ(N) = γ(C). Then the set N̂ = ∂V W \N is closed and symmetric, and it
is contained in A+ ∪ A−. Since A+ and A− are disjoint relatively open subsets
of ∂A0 by Lemma 2.5, we can define an odd and continuous map h: N̂ → R\{0}
by h(u) = 1 for u ∈ A+ and h(u) = −1 for u ∈ A−. We thus conclude that
γ(N̂) ≤ 1. Now from the subadditivity of the genus we infer

γ(C) = γ(N) ≥ γ(∂V W )− γ(N̂) ≥ n− 1.

Since C ⊂ E ∩ V , we conclude that cn−1 ≤ supΦ(V ) < ∞, as claimed.
Since the assertion is a direct consequence of (2.6) and (2.9), the proof is com-
plete. �

Remark 2.8. Theorem 2.7 can be seen as an abstract version of the multi-
plicity result in [3]. In [3], a relative genus was introduced and used in the proof.
We believe that the proof given here is somewhat more direct since it only uses
the classical Krasnoselski genus.

3. Application to superlinear biharmonic boundary value problems

We are interested in nontrivial solutions of the biharmonic equation

(3.1) ∆2u = f(x, u), x ∈ Ω

on a smooth bounded domain Ω ⊂ RN subject either to Navier boundary con-
ditions

(3.2) u = ∆u = 0 on ∂Ω

or to Dirichlet boundary conditions

(3.3) u =
∂u

∂ν
= 0 on ∂Ω.

Here ∂/∂ν denotes the exterior normal derivative at the boundary. For the
nonlinearity f we require the following assumptions:

(f1) f : Ω×R → R is a Carathéodory function, and f(x, 0) = 0 for a.e. x ∈ Ω.
(f2) There are constants q∗ > 0, q∗ ∈ (0, λ1), and 0 < p < 8/(N − 4) for

N > 4, resp. p > 0 for N ≤ 4, such that

|f(x, t)− f(x, s)| ≤ [q∗ + q∗(|t|p + |s|p)]|t− s| for a.e. x ∈ Ω, t ∈ R.

(f3) There is R > 0 and η > 2 such that

0 < ηF (x, t) ≤ f(x, t)t for a.e. x ∈ Ω, |t| ≥ R,

(f4) f is nondecreasing in t ∈ R for a.e. x ∈ Ω.
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Here F (x, t) :=
∫ t

0
f(x, s) ds, and λ1 denotes the first eigenvalue of ∆2 on Ω

relative to the boundary conditions (3.2), (3.3), respectively.

Remark 3.1. A simple example for (f1)–(f4) is given by nonlinearities of the
form f(x, t) =

∑k
i=1 ai(x)|t|pit with nonnegative weight functions ai ∈ L∞(Ω)

which are positive on a set of positive measure in Ω. Here we require that
0 < pi < 8/(N − 4) for N > 4 and pi > 0 for N ≤ 4, i = 1, . . . , k.

3.1. Navier boundary conditions. In this section we deal with the bound-
ary value problem (3.1), (3.2). Under assumptions (f1)–(f4), we can cast this
problem in the abstract framework of Section 2. We consider the Hilbert space
H := H2(Ω) ∩H1

0 (Ω), endowed with the scalar product

(3.4) (u, v) =
∫

Ω

∆u∆v, u, v ∈ H

and the corresponding norm ‖ · ‖. Then we have compact Sobolev embeddings

H ↪→ Ls(RN ) for 1 ≤ s < 2∗.

Here 2∗ denotes the critical Sobolev exponent for the biharmonic operator, i.e.
2∗ = 2N/(N − 4) for N > 4 and 2∗ = ∞ for N = 1, . . . , 4. Using (f2), (f3) and
these Sobolev embeddings, it is easy to see that the functional

Ψ:H → R, Ψ(u) =
∫

Ω

F (x, u(x)) dx.

is of class C1,1, and that A = ∇Ψ:H → H is uniquely determined by

(A(u), v) =
∫

Ω

f(x, u(x))v(x) dx for all u, v ∈ H.

Fixed points of A are precisely the critical points of the C1,1-functional

Φ(u) =
1
2
‖u‖2 −Ψ(u),

and these are precisely the weak solutions of (3.1), (3.2). Since it is standard
to deduce the abstract conditions (A1) and (A2) from assumptions (f1)–(f3), we
omit the details at this point. Instead we recall another consequence of (f3). For
some constant c0 > 0 and some bounded positive function c: Ω → R, we have

(3.5) F (x, u) ≥ c(x)|u|η − c0 for x ∈ Ω, u ∈ R,

see e.g. [30, p. 111]. From (3.5) we deduce the following property of Φ.

Lemma 3.2. If S ⊂ H\{0} is a compact subset and S̃ := {tu : u ∈ S, t ≥ 0},
then

lim
u∈eS, ‖u‖→∞

Φ(u) = −∞
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Proof. Let (un)n ⊂ S̃ be a sequence with ‖un‖ → ∞, and let vn ∈ S, tn ≥ 0
be such that un = tnvn. By compactness of S, we may pass to a subsequence
such that vn → v ∈ S. Since η ≤ p + 1 < 2∗ by (f2), (f3) and (3.5), the
compactness of the Sobolev embedding H ↪→ Lη(Ω) and the boundedness of the
function c imply that∫

Ω

c(x)|vn|η dx →
∫

Ω

c(x)|v|η dx > 0 as n →∞.

Moreover, tn →∞, since ‖un‖ → ∞ as n →∞. From (3.5) we thus infer

Φ(un) =
‖un‖2

2
−

∫
Ω

F (x, un) dx ≤ ‖un‖2

2
−

∫
Ω

c(x)|un|η dx + c0|Ω|

= tηn

(
t2−η
n

‖vn‖2

2
−

∫
Ω

c(x)|vn|q dx + t−η
n c0|Ω|

)
= tηn

(
o(1)−

∫
Ω

c(x)|v|q dx

)
.

Hence Φ(un) → −∞ as n →∞, as claimed. �

Next we consider the closed cone K := {u ∈ H : u ≥ 0 a.e. on Ω}. For this
choice we also consider the dual cones K∗, (−K)∗ and the projections P, P∗, Q,
Q∗ as defined in Section 2, and we want to verify the invariance conditions (A3)
and (A4). We recall the crucial fact that, on any smooth bounded domain Ω, the
Navier boundary conditions (3.2) allow a strong maximum principle to hold for
the biharmonic operator ∆2 on Ω. More precisely, for any nonnegative function
h ∈ L∞(Ω), h 6≡ 0, the unique solution v ∈ H of the problem ∆2v = h subject
to (3.2) is a C3(Ω)-function which satisfies

(3.6) v > 0 in Ω and
∂v

∂ν
< 0 on ∂Ω.

This follows by applying twice the maximum principle for the harmonic operator
−∆ and once the Hopf boundary lemma. The following lemma collects useful
consequences of this fact.

Lemma 3.3.

(a) K∗ ⊂ −K,
(a’) if u ∈ K∗ \ {0}, then u < 0 a.e. in Ω,
(b) (−K)∗ ⊂ K,
(c) P(u) ≥ u+, P∗(u) ≤ u−,
(d) Q(u) ≤ u−, Q∗(u) ≥ u+.

For the case of Dirichlet boundary conditions on the unit ball B, part (a)
has already been noted in [19, Lemma 2].

Proof of Lemma 3.3. Since u = Pu +P∗u = Qu +Q∗u with Pu ≥ 0 and
Qu ≤ 0, properties (a)–(d) are readily seen to be equivalent. Property (a) can
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be proved precisely as [19, Lemma 2]. We now prove the stronger statement (a’).
Let u ∈ K∗ \ {0}. Since the space C := {w ∈ C2(Ω) : w = 0 on ∂Ω} is dense in
H = H2(Ω)∩H1

0 (Ω), there is u0 ∈ C such that (u, u0) > 0. Consider an arbitrary
function h ∈ L∞(Ω), h ≥ 0, h 6≡ 0, and let v ∈ H be the unique solution of the
problem ∆2v = h subject to the boundary conditions (3.2). Then v ∈ C3(Ω)
and v > 0 in Ω, ∂v/∂ν < 0 on ∂Ω by (3.6). Hence there exists ε = ε(h, u0) such
that v + εu0 ∈ K. Consequently,

0 ≥ (u, v + εu0) =
∫

Ω

uh dx + ε(u, u0) >

∫
Ω

uh dx.

We conclude that
∫
Ω

uh < 0 for all h ∈ L∞(Ω) with h ≥ 0 h 6≡ 0, and this
implies that u(x) < 0 a.e. on Ω. �

Corollary 3.4. If (f4) holds, then (A(u), v) ≤ (A(P ∗u), v) and (A(u), w) ≤
(A(Q∗u), w) for u ∈ H, v ∈ K∗ and w ∈ (−K)∗. Thus the assumptions (A3) and
(A4) from Section 2 are satisfied.

Proof. Let u ∈ H, v ∈ K∗, w ∈ (−K)∗. By Lemma 3.3(a), (b) we have
v ≤ 0 and w ≥ 0. Moreover, by Lemma 3.3(c), (d) and (f4) we have

f(x, [P∗(u)](x)) ≤ f(x, u−(x)) ≤ 0 ≤ f(x, u+(x)) ≤ f(x, [Q∗(u)](x))

for x ∈ Ω, and therefore

(A(u), v) =
∫

Ω

f(x, u)v dx ≤
∫

Ω

f(x, u−)v dx

≤
∫

Ω

f(x,P∗(u))v dx = (A(P ∗(u)), v),

(A(u), w) =
∫

Ω

f(x, u)w dx ≤
∫

Ω

f(x, u+)w dx

≤
∫

Ω

f(x,Q∗(u))w dx = (A(Q∗(u)), w),

as claimed. �

Now we can state our main result.

Theorem 3.5. Suppose that (f1)–(f4) are satisfied. Then problem (3.1), (3.2)
has at least three nontrivial solutions u1, u2, u3, where u1 is positive, u2 is
negative and u3 changes sign. If in addition f(x,−t) = −f(x, t) holds for all x ∈
Ω, t ∈ R, then problem (3.1), (3.2) has infinitely many sign changing solutions.

Proof. By Corollary 3.4 and the preceding discussion, we know that the
abstract conditions (A1)–(A4) are satisfied. We apply Theorem 2.6. For this we
let u ∈ K, v ∈ −K be two linearly independent functions, and define hs: [0, 1] →
H \ {0} for s > 0 by hs(t) = s(tv + (1 − t)u). Then hs(0) ∈ K, hs(1) ∈ −K
for all s. Moreover, if s is sufficiently large, then Φ(hs(t)) < 0 for all t ∈ [0, 1]
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by Lemma 3.2. Hence all assumptions of Theorem 2.6 are satisfied, and thus
we obtain the existence of nontrivial critical points u1 ∈ K, u2 ∈ −K and
u3 ∈ H \ (K∪−K) of Φ. Hence u1, u2, u3 are nontrivial solutions of (3.1), (3.2).
Applying the strong maximum principle stated in (3.6), we conclude that u1 is
positive and u2 is negative, whereas u3 changes sign.

Now we suppose that, in addition, f(x,−t) = −f(x, t) for all x ∈ Ω, t ∈ R.
Then A(−u) = −A(u) and Ψ(−u) = Ψ(u) for all u ∈ H. We fix n ∈ N and an
arbitrary n-dimensional subspace V ⊂ H. Then

lim
u∈V, ‖u‖→∞

Φ(u) = −∞

by Lemma 3.2. Hence all assumptions of Theorem 2.6 are satisfied, and this
Theorem yields n − 1 pairs of critical points of Φ located in H \ (K ∪ −K).
These critical points are sign changing solutions of (3.1), (3.2). Since n ∈ N was
arbitrary, the assertion follows. �

We close this section with a result concerning the Morse index of sign chang-
ing solutions when Φ is a C2-functional and the nonlinearity satisfies a strict
monotonicity assumption.

Proposition 3.6. Suppose that, in addition to (f1)–(f4), the nonlinearity
f ∈ C1(R) satisfies f ′(t) > f(t)/t > 0 for t ∈ R \ {0}. Then every sign changing
solution of (3.1), (3.2) has Morse index greater than or equal to two with respect
to Φ.

Remark 3.7. The assumption f ′(t) > f(t)/t > 0 for t ∈ R \ {0} is satisfied
for the class of nonlinearities given in Remark 3.1.

Proof of Proposition 3.6. Since f ∈ C1(R) satisfies (f2), it is easy to
see that Φ ∈ C2(H, R) and

Φ′′(u)(v, w) =
∫

Ω

(∆v∆w − f ′(u)vw) dx for v, w ∈ H.

Let u be a sign changing solution of (3.1), (3.2), and let u1 = Pu, u2 = P∗u.
First we note that

(3.7) Φ′′(u)(u, u) =
∫

Ω

((∆u)2 − f ′(u)u2) dx =
∫

Ω

(f(u)u− f ′(u)u2) dx < 0

by assumption. Next, let Ω+ = {x ∈ Ω : u(x) > 0}. By Lemma 3.3(a’), (c) we
have u1u2 ≤ 0 a.e. on Ω and u1u2 < 0 a.e. on Ω+. Therefore

(3.8)
∫

Ω

f(u)
u

u1u2 dx ≤
∫

Ω+

f(u)
u

u1u2 dx < 0
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by assumption. Now for α, β ∈ R we have

(3.9) Φ′′(u)(αu1 + βu2, αu1 + βu2)

= Φ′′(u)(u, α2u1 + β2u2)− (α− β)2Φ′′(u)(u1, u2),

where

(3.10) Φ′′(u)(u1, u2) =
∫

Ω

∆u1∆u2 dx−
∫

Ω

f ′(u)u1u2 dx = −
∫

Ω

f ′(u)u1u2 dx

by the orthogonality of u1, u2 and

(3.11) Φ′′(u)(u, α2u1 + β2u2)

=
∫

Ω

∆u∆(α2u1 + β2u2) dx−
∫

Ω

f ′(u)u(α2u1 + β2u2) dx

=
∫

Ω

f(u)(α2u1 + β2u2) dx−
∫

Ω

f ′(u)u(α2u1 + β2u2) dx

=
∫

Ω

[
f(u)

u
− f ′(u)

]
[(αu1 + βu2)2 + (α− β)2u1u2] dx

≤
∫

Ω

[
f(u)

u
− f ′(u)

]
(α− β)2u1u2 dx.

Combining (3.8)–(3.11), we get

(3.12) Φ′′(u)(αu1 + βu2, αu1 + βu2) ≤ (α− β)2
∫

Ω

f(u)
u

u1u2 dx < 0 if α 6= β.

Now from (3.7) and (3.12) it follows that Φ′′ is negative definite on the two-
dimensional subspace spanned by u1 and u2. Hence the Morse index of u with
respect to Φ is at least two. �

3.2. Dirichlet boundary conditions. In this section we briefly discuss
the boundary value problem (3.1), (3.3). So now we consider the Hilbert space
H := H2

0 (Ω), which we also endow with the scalar product given by (3.4). We can
define Φ, Ψ and A in a completely analogous way as in the last section, relative
to the new underlying space H = H2

0 (Ω). Then we get the precise analogue of
Lemma 3.2 for compact subsets S ⊂ H \ {0}. Considering again the closed cone
K of nonnegative functions in H, we need a result similar to Lemma 3.3. For
this we restrict our attention to domains Ω such that the Dirichlet boundary
conditions (3.3) allow a maximum principle to hold for the biharmonic operator
∆2 on Ω. In other words, we require that the Green function of the biharmonic
operator ∆2 corresponding to the boundary conditions (3.3) is positive. By
a similar argument as in the last section, we obtain the following (cf. also [19,
Lemma 2]).
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Lemma 3.8. Suppose that Ω ⊂ RN is such that the Green function of ∆2

corresponding to the boundary conditions (3.3) is positive. Then we have:

(a) K∗ ⊂ −K,
(a’) if u ∈ K∗ \ {0}, then u < 0 a.e. in Ω,
(b) (−K)∗ ⊂ K,
(c) P(u) ≥ u+, P∗(u) ≤ u−,
(d) Q(u) ≤ u−, Q∗(u) ≥ u+.

Proof. As in the proof of Lemma 3.3, it suffices to show (a’). Let u ∈
K∗ \ {0}. Since the space C∞0 (Ω) of test functions is dense in H = H2

0 (Ω),
there is u0 ∈ C∞0 (Ω) such that (u, u0) > 0. Consider an arbitrary function
h ∈ L∞(Ω), h ≥ 0, h 6≡ 0, and let v ∈ H be the unique solution of the problem
∆2v = h subject to the boundary conditions (3.3). Then v is continuous and
positive in Ω (since the Green function is positive). Hence there exists ε =
ε(h, u0) such that v + εu0 ∈ K. Consequently,

0 ≥ (u, v + εu0) =
∫

Ω

uh dx + ε(u, u0) >

∫
Ω

uh dx

We conclude that
∫
Ω

uh < 0 for all h ∈ L∞(Ω) with h ≥ 0, h 6≡ 0, and this
implies that u(x) < 0 a.e. on Ω. �

As already remarked in the introduction, the additional assumption on the
Green function in Lemma 3.8 does not hold for any domain Ω. However, it is
true if Ω is a ball in RN . In fact, in this case, the Green function is known
explicitly, and it is positive, see [6, p. 126]. In two dimensions, this is also true
for perturbations of a disk, see [21], [29], and it is true for the limaçon in a certain
parameter range, see [12]. Now we can proceed as in the last section to obtain
the following result. We omit the details.

Theorem 3.9. Suppose that Ω ⊂ RN is a domain such that the Green func-
tion of the biharmonic operator ∆2 corresponding to the boundary conditions
(3.3) is positive, and suppose that the nonlinearity f satisfies (f1)–(f4). Then
problem (3.1), (3.3) has at least three nontrivial solutions u1, u2, u3, where u1 is
positive, u2 is negative and u3 changes sign. If in addition f(x,−t) = −f(x, t)
holds for all x ∈ Ω, t ∈ R, then problem (3.1), (3.3) has infinitely many sign
changing solutions.

By precisely the same argument as in the proof of Proposition 3.6, we also
get the following.

Proposition 3.10. Suppose that Ω ⊂ RN is a domain such that the Green
function of the biharmonic operator ∆2 corresponding to the boundary conditions
(3.3) is positive. Suppose furthermore that, in addition to (f1)–(f4), the nonlin-
earity f ∈ C1(R) satisfies f ′(t) > f(t)/t > 0 for t ∈ R \ {0}. Then every sign
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changing solution of (3.1), (3.3) has Morse index greater than or equal to two
with respect to Φ.

4. Appendix

Here we give a short proof (using the Leray Schauder continuation principle)
of a topological lemma due to Liu (see [25] and [26, Lemma 3.1]).

Lemma 4.1. Let Q := [0, 1]2 be the unit square, and let B ⊂ Q be a relatively
open set such that ({0} × [0, 1]) ⊂ B and ({1} × [0, 1]) ∩ B = ∅. Then there
is a connected component Γ of the relative boundary ∂B of B in Q such that
Γ ∩ ([0, 1]× {0}) 6= ∅ and Γ ∩ ([0, 1]× {1}) 6= ∅.

Proof. Consider the continuous map g:Q → R defined by

g:Q → R, g(x) =

{
−dist(x, ∂B) for x ∈ B,

dist(x, ∂B) for x ∈ Q \ B,

and for each λ ∈ [0, 1] let gλ: [0, 1] → R be the continuous function defined by
gλ(s) = g(s, λ). By assumption we have gλ(0) < 0 < gλ(1) for all λ ∈ [0, 1], and
this implies

deg(gλ, [0, 1], 0) = 1.

where deg denotes the usual Leray-Schauder degree, see e.g. [31]. Now the Leray–
Schauder continuation principle (see [31, Theorem 14.C] implies that there exists
a connected set Γ ⊂ [0, 1]× [0, 1] such that

gλ(s) = 0 for all (s, λ) ∈ Γ,

Γ ∩ ([0, 1]× {0}) 6= ∅, Γ ∩ ([0, 1]× {1}) 6= ∅.

Since gλ(s) = g(s, λ) = 0 if and only if (s, λ) ∈ ∂B, the assertion follows. �
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[27] E. Miersemann, Über positive Lösungen von Eigenwertgleichungen mit Anwendungen

auf elliptische Gleichungen zweiter Ordnung und auf ein Beulproblem für die Platte,
Z. Angew. Math. Mech. 59 (1979), 189–194.
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