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A NEW APPROACH
TO BOUNDARY VALUE PROBLEMS ON THE HALF LINE

USING WEAKLY–STRONGLY
SEQUENTIALLY CONTINUOUS MAPS

Ravi P. Agarwal — Donal O’Regan — Svatoslav Staněk

Abstract. An existence principle is established for a boundary value
problem on the half line using a new theory based on weakly–strongly

sequentially continuous maps.

1. Introduction

In this paper we present a new approach to establishing existence principles
for boundary value problems on the half line. To illustrate our theory we will
consider the problem

(1.1)

{
y′′ −m2y + f(t, y) = 0 a.e. on [0,∞),

y(0) = 0, limt→∞ y(t) = 0 and m > 0.

Our theory is based on a new Leray–Schauder alternative for weakly–strongly
sequentially continuous maps. This alternative combines the advantages of the
strong topology (i.e. the sets will be open in the strong topology) with the advan-
tages of the weak topology (i.e. the maps will be weakly–strongly sequentially
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continuous and weakly compact) and we will see in Section 2 how easily our
alternative applies to (1.1). One of the disadvantages of the standard Leray–
Schauder alternative in the literature [1], [3] is that a lot of time is usually spent
checking the compactness of the map. However if one uses this new approach
the weak compactness of the map is immediate.

For notational purposes let BC[0,∞) denote the space of bounded continuous
mappings from [0,∞) to R. If u ∈ BC[0,∞) we write |u|∞ = supt∈[0,∞) |u(t)|.

We conclude the introduction by stating the Leray–Schauder alternative
from [2] (for completeness we sketch the proof).

Theorem 1.1. Let E be a Banach space, C a closed convex subset of E, U

a convex subset of C and U an open (strong topology) subset of E with 0 ∈ U .
Suppose F :U → C is a weakly–strongly sequentially continuous map (i.e. F :U →
C is completely continuous i.e. if xn, x ∈ U with xn ⇀ x then Fxn → Fx); here
U denotes the closure of U in C. In addition suppose either U is weakly compact
or F :U → C is weakly compact. Also assume

(1.2) x 6= λFx for x ∈ ∂CU and λ ∈ (0, 1);

here ∂CU denotes the boundary (strong topology) of U in C. Then F has a fixed
point in U .

Remark 1.2. Note intCU = U (interior in the strong topology) since U is
open in C so as a result ∂CU = ∂EU ; here ∂EU denotes the boundary of U in E.

Proof. Let µ be the Minkowski functional on U and let r:E → U be given
by

r(x) =
x

max{1, µ(x)}
for x ∈ E.

Note r:E → U is continuous. Also since F :U → C is weakly–strongly sequen-
tially continuous we have immediately that rF :U → U is weakly sequentially
continuous. Notice also that rF :U → U is a weakly compact map if F :U → C

is weakly compact; note F (U)w is weakly compact so the weak compactness of
rF follows from the Krein–Šmulian theorem and

r(F (U)w) ⊆ co ({0} ∪ F (U)w).

Now standard fixed point theory for weakly sequentially continuous self maps
in the literature (see [2]) guarantees that there exists x ∈ U with x = rF (x).
Thus x = r(y) with y = F (x) and x ∈ U = U ∪ ∂U (note intCU = U since
U is also open in C). Now either y ∈ U or y /∈ U . If y ∈ U then r(y) = y

so x = y = F (x), and we are finished. If y /∈ U then r(y) = y/µ(y) with
µ(y) > 1. Then x = λy (i.e. x = λF (x)) with 0 < λ = 1/µ(y) < 1; note x ∈ ∂CU

since µ(x) = µ(λy) = 1 (note ∂CU = ∂EU since intCU = U). This of course
contradicts (1.2). �
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2. Application

To illustrate how easily Theorem 1.1 can be applied in practice we consider
the boundary value problem

(2.1)

{
y′′ −m2y + f(t, y) = 0 a.e. on [0,∞),

y(0) = 0, limt→∞ y(t) = 0

where m > 0 is a constant and f : [0,∞)×R → R is a Lp-Carathéodory function
with p > 1; by this we mean

(f1) t 7→ f(t, y) is measurable for any y ∈ R,
(f2) y 7→ f(t, y) is continuous for almost every t ∈ [0,∞),
(f3) for any r > 0,∃hr ∈ Lp[0,∞) such that |f(t, y)| ≤ hr(t) for all |y| ≤ r

and almost all t ∈ [0,∞) with

lim
t→∞

e−mt

∫ t

0

emshr(s) ds = 0.

We begin by looking at the operator H:Lp[0,∞) → BC[0,∞) given by

Hu(t) =
∫ ∞

0

G(t, s)u(s) ds

where

G(t, s) =


e−mt

2m
[ems − e−ms] for s ≤ t,

e−ms

2m
[emt − e−mt], for s > t.

We must of course check that Hu ∈ BC[0,∞) if u ∈ Lp[0,∞). To see this first
note for fixed t ∈ [0,∞) that G(t, · ) ∈ Lq[0,∞) (here 1/p + 1/q = 1) since∫ ∞

0

|G(t, s)|q ds =
e−m q t

(2 m)q

∫ t

0

(
em s − e−m s

)q

ds

+
1

(2m)q
[emt − e−mt]q

1
mq

e−mqt < ∞.

Next we show

(2.2) sup
t∈[0,∞)

( ∫ ∞

0

|G(t, s)|q ds

)1/q

< ∞.

To see this notice for fixed t ∈ [0,∞) that∫ ∞

0

|G(t, s)|q ds =
e−mqt

(2m)q

∫ t

0

emqs

(
1− e−2ms

)q

ds +
1

mq(2m)q
[1− e−2mt]q

≤ 1
mq(2m)q

(1− e−mqt) +
1

mq(2m)q
[1− e−2mt]q,
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so (2.2) is immediate. Next notice if t, x ∈ [0,∞) and u ∈ Lp[0,∞) then

|Hu(t)−Hu(x)| ≤ ‖u‖Lp[0,∞)

( ∫ ∞

0

|G(t, s)−G(x, s)|q ds

)1/q

so Hu ∈ BC[0,∞) (see (2.2)) if we show

(2.3)
∫ ∞

0

|G(t, s)−G(x, s)|q ds → 0 as t → x;

here ‖u‖Lp[0,∞) = (
∫∞
0
|u(s)|p ds)1/p. Fix x ∈ [0,∞). To show (2.3) assume

without loss of generality that t < x. Then∫ ∞

0

|G(t, s)−G(x, s)|q ds =
1

mq
(e−mt − e−mx)q

∫ t

0

(sinhms)q ds

+
1

mq

∫ x

t

|e−ms sinhmt− e−mx sinhms|q ds

+
1

mq
| sinhmt− sinhmx|q 1

mq
e−mqx → 0

as t → x, so (2.3) is true. Thus H:Lp[0,∞) → BC[0,∞).
It is easy to see that if u ∈ Lp[0,∞) is a solution of

(2.4) u = f(t, H(u))

then y(t) =
∫∞
0

G(t, s)u(s) ds is a solution of (2.1) (notice it is easy to check that
y′′ −m2y = −u and (f)3 guarantees that limt→∞ y(t) = 0). Conversely if w is a
solution of (2.1) then v = m2w − w′′ is a solution of (2.4).

Define an operator F :Lp[0,∞) → Lp[0,∞) by

Fu(t) = f(t,H(u)(t)).

Consequently solving (2.1) is equivalent to finding a fixed point u ∈ Lp[0,∞) of

(2.5) u = Fu.

Theorem 2.1. Let f : [0,∞) × R → R satisfy (f1), (f2) and (f3) with p > 1
and suppose there exists a constant M0, independent of λ, with

(2.6) ‖y′′ −m2y‖Lp[0,∞) 6= M0

for any solution y to the problem

(2.7)λ

{
y′′ −m2y + λf(t, y) = 0 a.e. on [0,∞),

y(0) = 0, limt→∞ y(t) = 0

for any λ ∈ (0, 1). Then (2.1) has at least one solution.

Proof. We will apply Theorem 1.1 with

E = C = Lp[0,∞) and U = {u ∈ Lp[0,∞) : ‖u‖Lp[0,∞) < M0}.
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Notice U = {u ∈ Lp[0,∞) : ‖u‖Lp[0,∞) ≤ M0} is closed and convex, so weakly
closed. Moreover, U is weakly compact (recall in a reflexive Banach space a
subset is weakly compact if and only if it is closed in the weak topology and
bounded in the norm topology). Also (2.6) guarantees that (1.2) holds. It
remains to show F :U → Lp[0,∞) is a weakly–strongly sequentially continuous
map. Let yn, y ∈ U with yn ⇀ y in Lp[0,∞) (i.e.

∫∞
0

yng dt →
∫∞
0

yg dt for all
g ∈ Lq[0,∞) with 1/p+1/q = 1). We must show Fyn → Fy in Lp[0,∞). Notice∫ ∞

0

|Fyn(t)− Fy(t)|p dt =
∫ ∞

0

|f(t, H(yn)(t))− f(t, H(y)(t))|p dt.

If we show

(2.8)
∫ ∞

0

|f(t, H(yn)(t))− f(t, H(y)(t))|p dt → 0 as yn ⇀ y

then we are finished.
First we show for each t ∈ [0,∞) that

(2.9) yn ⇀ y implies H(yn(t)) → H(y(t)).

Fix t ∈ [0,∞). Then

|H(yn(t))−H(y(t))| =
∣∣∣∣ ∫ ∞

0

G(t, s)[yn(s)− y(s)] ds

∣∣∣∣ → 0

as yn ⇀ y since G(t, · ) ∈ Lq[0,∞). Now (2.9) together with the fact that f is
a Lp-Carathéodory function (see (f2)) gives

(2.10) yn ⇀ y ⇒ f(t, H(yn)(t)) → f(t, H(y)(t)) a.e. on [0,∞).

Also for u ∈ U and t ∈ [0,∞) we have

|H(u(t))| =
∣∣∣∣ ∫ ∞

0

G(t, s)u(s) ds

∣∣∣∣ ≤ ‖u‖Lp[0,∞) sup
t∈[0,∞)

( ∫ ∞

0

|G(t, s)|q ds

)1/q

≤M0 sup
t∈[0,∞)

( ∫ ∞

0

|G(t, s)|q ds

)1/q

.

Thus there exists a r > 0 with

(2.11) |H(u(t))| ≤ r for all t ∈ [0,∞) and u ∈ U.

Now (2.8) follows immediately from (2.10), (2.11), (f3) and the Lebesgue domi-
nated convergence theorem.

We may now apply Theorem 1.1 to deduce that F has a fixed point in U .�
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Example 2.2. Suppose f : [0,∞) × R → R is continuous with (f)3 (with
p > 1) holding and suppose

(2.12) ∃M > 0 such that |y| > M implies yf(t, y) ≤ 0 for all t ∈ [0,∞).

Then (2.1) has at least one solution.
To see this we will use Theorem 2.1. Let y be a solution of (2.7)λ for some λ ∈

(0, 1). We claim |y(t)| ≤ M for t ∈ [0,∞). If not, there exists a t ∈ (0,∞) with
|y(t)| > M and so sup[0,∞) |y(t)| = |y(t0)| > M with t0 ∈ (0,∞). Consequently
(2.12) implies

y(t0)y′′(t0) = m2[y(t0)]2 − λy(t0)f(t0, y(t0)) > 0,

which contradicts the maximality of |y(t0)|. Hence |y(t)| ≤ M for t ∈ [0,∞).
Let hM be given as in (f3) (with r = M) and notice

‖y′′ −m2y‖Lp[0,∞) = ‖ − λf(t, y)‖Lp[0,∞) ≤ ‖hM‖Lp[0,∞)

for any solution y to (2.7)λ for any λ ∈ (0, 1). If we take

M0 = ‖hM‖Lp[0,∞) + 1

then (2.6) is satisfied so Theorem 2.1 guarantees that (2.1) has a solution.

Remark 2.4. It is easy to see that f : [0,∞) × R → R continuous could be
replaced by (f1) and (f2) and yf(t, y) ≤ 0 for all t ∈ [0,∞) in (2.12) could be
replaced by yf(t, y) ≤ 0 for a.e. t ∈ [0,∞).

The argument in Theorem 2.1 establishes the following existence principle
for the operator equation

(2.13) u = Tu

where T :Lp[0,∞) → Lp[0,∞) with p > 1.

Theorem 2.4. Suppose there is a constant M0, independent of λ, with

(2.14) ‖y‖Lp[0,∞) 6= M0

for any solution y to the problem

y = λTy for any λ ∈ (0, 1).

In addition assume T :U → Lp[0,∞) is a weakly–strongly sequentially continuous
map where U = {u ∈ Lp[0,∞) : ‖u‖Lp[0,∞) ≤ M0}. Then (2.13) has at least one
solution in U .

Remark 2.5. There is an analogue of Theorem 2.2 for the operator equation
(2.13) where T :E → E with E a reflexive Banach space.
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