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Abstract. The generalized variational principle of Herglotz defines the

functional, whose extrema are sought, by a differential equation rather than

by an integral. For such functionals the classical Noether theorems are not
applicable. First and second Noether-type theorems which do apply to the

generalized variational principle of Herglotz were formulated and proved.

These theorems contain the classical first and second Noether theorems
as special cases. We published the first Noether-type theorem previously

in this journal. Here we prove the second Noether-type theorem and show

that it reduces to the classical second Noether theorem when the Herglotz
variational principle reduces to the classical variational principle.

1. Introduction

In 1918, Emmy Noether [12], [13] proved two remarkable theorems relating
symmetry groups of a variational integral to properties of its associated Euler–
Lagrange equations. For modern derivations and discussions of these theorems
see Logan [11], Olver [14], Bluman and Kumei [1]. In the first of these theorems,
Noether shows how each one-parameter variational symmetry group gives rise
to a conservation law of the Euler–Lagrange equations. Conservation of energy,
for example, comes from invariance of the system under time translations, while
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conservation of linear and angular momenta reflect invariance of the system un-
der spatial translations and rotations. This first theorem gives a one-to-one
correspondence between symmetry groups and conservation laws. Noether’s sec-
ond theorem relates an infinite-dimensional symmetry group of the functional to
an identity involving the corresponding Euler–Lagrange equations.

Noether’s theorems are applicable only to the classical variational principle,
in which the functional is defined by an integral. The generalized variational prin-
ciple of Herglotz defines the functional, whose extrema are sought, by a differen-
tial equation rather than an integral. For such functionals the classical Noether’s
theorems are not applicable. We formulated and proved two Noether-type the-
orems which do apply to the Generalized Variational Principle, and contain the
first and second Noether theorems as special cases. See Georgieva and Guen-
ther [4]. This theorem gives explicit conserved quantities for non-conservative
(and conservative) systems described by the Generalized Variational Principle
corresponding to symmetries of the functional under an n-parameter symmetry
group. Here we prove the second Noether-type theorem. It gives an identity,
which reduces to the identity provided by the classical second Noether theorem
in the case when the functional is defined by an integral.

The Generalized Variational Principle was proposed by Gustav Herglotz
in 1930. See Herglotz [8] and [9]. It generalizes the classical variational principle
by defining the functional, whose extrema are sought, by a differential equation.
Herglotz’s original idea was published in 1979 in his collected works; this publica-
tion was supervised by Schwerdtfeger, see Gesammelte Schriften, Vandenhoeck
and Ruprecht, Gẗtingen. Immediately thereafter, Scherdtfeger and R. B. Guen-
ther published Herglotz’s Vorlesungen über die Mechanik der Kontinua which
appeared in the series Teubner-Archive zur Mathematik, B. G. Teubner Ver-
lagsgesellschaft, Leipzig, 1985. Herglotz reached the idea of the Generalized
Variational Principle through his work on contact transformations and their
connections with Hamiltonian systems and Poisson brackets. His work was mo-
tivated by ideas from S. Lie, C. Carathéodory and other researchers. An im-
portant reference on the Generalized Variational Principle is The Herglotz Lec-
tures on Contact Transformations and Hamiltonian Systems published in 1996
by R. B. Guenther, J. A. Gottsch and C. M. Guenther [7].

The variational principle of Herglotz is important for a number of reasons:

(1) The solutions of the equations, which give the extrema of the functional
defined by the generalized variational principle, when written in terms of xi

and pi = ∂L/∂ẋi, determine a family of contact transformations. This family
is a one-parameter group in a certain case. See Guenther et al [7] as well as
Caratheodory [2] and Eisenhart [3].

(2) The generalized variational principle gives a variational description of
nonconservative processes.
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(3) For a process, conservative or nonconservative, which can be described
with the generalized variational principle, one can systematically derive con-
served quantities by application of the first Noether-type theorem. See Georgieva
and Guenther [4].

(4) For any process described by the generalized variational principle the
second Noether-type theorem, proved in this paper, can be applied to derive a
non-trivial identity involving the so called generalized Euler–Lagrange equations.

(5) In a previous paper (Georgieva, Guenther and Bodurov [5]) we have shown
that the variational principle of Herglotz can be extended to several independent
variables. The new principle reduces to the classical variational principle with
several independent variables. A first Noether-type theorem which applies to
the new variational principle was formulated and proved in the same paper.

2. The generalized variational principle of Herglotz

Let x = (x1, . . . , xn) be a set of functions xk = xk(t) on the interval 0 ≤ t ≤ s

which are at least twice differentiable. Consider the differential equation

(2.1)
dz

dt
= L(t, x, ẋ, z), 0 ≤ t ≤ s

where t is the independent variable, z is the dependent variable, ẋ = dx/dt,
and L(t, x, ẋ, z) is a given function, which we will call the Lagrangian. For any
arbitrary but fixed set of functions x(t) and a fixed initial value for z at t = 0
the solution of the differential equation (2.1) depends both on t and on x(t). If
we take t = s = const. then the solution z = z[x; s] is a functional of the set of
functions xk(t).

The generalized variational principle of Herglotz is as follows:
Let the functional z = z[x; s] of x(t) be given by a differential equation of

the form (2.1) and let the functions η = (η1(t), . . . , ηn(t)) have continuous first
derivatives and satisfy the boundary conditions

(2.2) η(0) = η(s) = 0

but otherwise be arbitrary. Then the value of the functional z[x; s] is an extremum
for functions x(t) which satisfy the condition

(2.3)
d

dε
z[x+ εη; s]

∣∣∣∣
ε=0

= 0.

It should be observed that when a variation εη is applied to x equation (2.1) must
be solved with the same fixed initial condition z(0) at t = 0 and the solution
evaluated at the same fixed final t = s for all varied argument functions x+ εη.

Herglotz proved that condition (2.3) is fulfilled when the functions xk(t) are
solutions of the equations

(2.4)
∂L

∂xk
− d

dt

∂L

∂ẋk
+
∂L

∂z

∂L

∂ẋk
= 0, k = 1, . . . , n
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which he called the generalized Euler–Lagrange equations.
If the Lagrangian L does not depend on z and xk(t) are given functions

equation (2.1) can be integrated immediately

z(s)− z(0) =
∫ s

0

L(t, x, ẋ) dt

showing that now z[x; s] = z(s) is a conventional functional of xk(t). This
justifies naming L the Lagrangian. At the same time equations (2.4) reduce to
the classical Euler–Lagrange equations. Hence, the Herglotz variational principle
contains the classical variational principle as a special case.

3. Second Noether-type theorem
for the generalized variational principle of Herglotz

The following theorem extends the second Noether theorem so that it applies
to the generalized variational principle of Herglotz. This new theorem, which
we call the second Noether-type theorem, provides an identity for each infinite
dimensional symmetry group of the functional z[x; s] as defined by (2.1).

Theorem 3.1. Let the infinite-dimensional Lie group

(3.1)
t = φ(t, x, p(t), p(1)(t), . . . , p(r)(t)),

xk = ψk(t, x, p(t), p(1)(t), . . . , p(r)(t)), k = 1, . . . , n,

which depends on the function p(t) ∈ Cr+2 and its derivatives p(i) = dip/dti,
subject to the conditions t = t and xk = xk when p(t) = p(1)(t) = . . . = p(r)(t) =
0, be a symmetry group of the functional z[x; s] defined by the differential equation
(2.1). Then the identity

(3.2) X̃k(EQk)− Ũ(EQkẋ
k) = 0

holds. Here Ũ and X̃k are the adjoints of the linear differential operators

(3.3)

U =
∂φ

∂p
+

∂φ

∂p(1)

d

dt
+ . . .+

∂φ

∂p(r)

dr

dtr
,

Xk =
∂ψk

∂p
+

∂ψk

∂p(1)

d

dt
+ . . .+

∂ψk

∂p(r)

dr

dtr
, k = 1, . . . , n,

evaluated at p(t) = p(1)(t) = . . . = p(r)(t) = 0; Qk denote the generalized Euler–
Lagrange expressions in (2.4)

Qk =
∂L

∂xk
− d

dt

∂L

∂ẋk
+
∂L

∂z

∂L

∂ẋk
, k = 1, . . . , n,(3.4)

E = exp
(
−

∫ t

0

∂L

∂z
dθ

)
.(3.5)
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Proof. By Lie theory we know that close to the identity transformation the
action of the group (3.1) is the same as the action of the infinitesimal transfor-
mation corresponding to (3.1). This infinitesimal transformation is

(3.6) t = t+ εUp, xk = xk + εXkp, k = 1, . . . , n

where U and Xk are defined by (3.3). For notational simplicity we set

(3.7) τ = Up, ξk = Xkp

with which the infinitesimal transformation (3.6) is

(3.8) t = t+ ετ, xk = xk + εξk, k = 1, . . . , n.

The transform of the differential equation (2.1) under (3.6), or equivalently (3.8)
is

dz

dt
= L

(
t, x(t),

dx(t)
dt

, z

)
which can be written in more detail as

(3.9)
dz

dt
= L

(
t, x(t),

dx(t)
dt

, z

)
dt

dt
= L

(
t+ ετ, x+ εξ,

dx

dt
, z

)
d

dt
(t+ ετ).

Differentiate (3.9) with respect to ε, set ε = 0 and denote

(3.10) ζ(t) =
d

dε
z[x; t]

∣∣∣∣
ε=0

to obtain the differential equation

(3.11)
dζ

dt
= L

dτ

dt
+
∂L

∂t
τ +

∂L

∂xk
ξk +

∂L

∂ẋk

d

dε

dxk

dt

∣∣∣∣
ε=0

+
∂L

∂z
ζ

for the variation ζ of the functional z produced by the transformation (3.8). We
need to express the term

d

dε

dxk

dt

∣∣∣∣
ε=0

with the non-transformed variables, only. To do this we observe that

dxk

dt
=
dxk

dt

dt

dt

which on account of (3.8) becomes

(3.12)
dxk

dt
+ ε

dξk

dt
=
dxk

dt

(
1 + ε

dτ

dt

)
.

Setting ε = 0 in the last equation produces

(3.13)
dxk

dt
=
dxk

dt
= ẋk.
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Next, we differentiate (3.12) with respect to ε, set ε = 0 and use (3.13) to find

d

dε

dxk

dt

∣∣∣∣
ε=0

=
dξk

dt
− ẋk dτ

dt
.

Inserting this expression into equation (3.11) we get

(3.14)
dζ

dt
= L

dτ

dt
+
∂L

∂t
τ +

∂L

∂xk
ξk +

∂L

∂ẋk

(
dξk

dt
− ẋk dτ

dt

)
+
∂L

∂z
ζ.

This is an equation for ζ of the form

(3.15)
dζ

dt
= A+

∂L

∂z
ζ, 0 ≤ t ≤ s

where ∂L/∂z and

A = L
dτ

dt
+
∂L

∂t
τ +

∂L

∂xk
ξk +

∂L

∂ẋk

(
dξk

dt
− ẋk dτ

dt

)
are known functions of t since xk(t) are assumed to be known. The solution ζ(s)
of equation (3.15), evaluated at t = s, is

ζ(s) exp
(
−

∫ s

0

∂L

∂z
dθ

)
− ζ(0) =

∫ s

0

A exp
(
−

∫ t

0

∂L

∂z
dθ

)
dt.

According to the definition of the functional z the initial value z(0) is fixed
and independent of x and, hence, independent of ε. Consequently ζ(0) = 0.
Furthermore, ζ(s) = 0 because the functional z[x; s] is invariant under the trans-
formation (3.8) by the hypothesis of Theorem 3.1. Thus we have

(3.16)
∫ s

0

A exp
(
−

∫ t

0

∂L

∂z
dθ

)
dt

=
∫ s

0

E

(
L
dτ

dt
+
∂L

∂t
τ +

∂L

∂xk
ξk +

∂L

∂ẋk

(
dξk

dt
− ẋk dτ

dt

))
dt = 0

where for brevity we have set

(3.5) E = exp
(
−

∫ t

0

∂L

∂z
dθ

)
.

Next we integrate by parts the terms involving dτ/dt, dξk/dt, take into account
that

dL

dt
=
∂L

∂t
+

∂L

∂xk
ẋk +

∂L

∂ẋk
ẍk +

∂L

∂z
ż

and perform some algebraic manipulations to obtain

E

((
L− ∂L

∂ẋk
ẋk

)
τ +

∂L

∂ẋk
ξk

)t=s

t=0

+
∫ s

0

E

(
∂L

∂xk
− d

dt

∂L

∂ẋk
+
∂L

∂z

∂L

∂ẋk

)
(ξk − ẋkτ) dt = 0.
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Since p(t) is arbitrary, we may choose p(t) such that

(3.17) p(0) = p(1)(0) = . . . = p(r)(0) = 0, p(s) = p(1)(T ) = . . . = p(r)(T ) = 0

which makes τ = Up = 0 and ξk = Xkp = 0. Then the first term in the above
expression vanishes and the remaining term can be written as∫ s

0

EQk(Xk − ẋkU ) p dt = 0

with the use of the notational abbreviations (3.3)–(3.5) and (3.7). Using the
adjoint operators X̃k and Ũ the last equation becomes∫ s

0

(X̃k(EQk)− Ũ(EQk ẋ
k)) p(t) dt+ [. . . ]t=s

t=0 = 0

where the boundary terms [. . . ]t=s
t=0 = 0 vanish due to (3.17). Recognizing that

p(t) is arbitrary we arrive at the final result

(3.2) X̃k(EQk)− Ũ(EQk ẋ
k) = 0

which concludes the proof of the theorem. �

Observe that E = 1 when L does not depend on z. Then the identity (3.2)
reduces to the identity provided by the second Noether theorem, namely,

X̃k

(
∂L

∂xk
− d

dt

∂L

∂ẋk

)
− Ũ

((
∂L

∂xk
− d

dt

∂L

∂ẋk

)
ẋk

)
= 0.

Thus, we see that when the generalized variational principle of Herglotz reduces
to the classical variational principle Theorem 3.1 reduces to the classical second
Noether theorem.

4. Concluding discussion

Motivated by the important applications of the classical second Noether the-
orem, we are currently preparing a paper on the second Noether-type theorem for
the Herglotz variational principle in the case of several independent variables.
Extending the classical variational principle with one independent variable to
several independent variables is trivial, but this is not so with Herglotz prin-
ciple: the functional in the Herglotz variational principle with one independent
variable is defined by an ordinary differential equation; in the case of several inde-
pendent variables it is defined by an integro-differential equation. In a previous
paper we extended the variational principle of Herglotz to the case of several
independent variables and proved a first Noether-type theorem. See Georgieva
et all, [5]. The classical second Noether theorem in the case of several indepen-
dent variables has applications in classical field theories, gauge theory, general
relativity and other areas. In the near future we will publish a paper proving
the second Noether-type theorem for the Herglotz principle in the case of several
independent variables together with some applications of it.
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