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TOPOLOGICAL INDEX FOR CONDENSING MAPS
ON FINSLER MANIFOLDS WITH APPLICATIONS
TO FUNCTIONAL-DIFFERENTIAL EQUATIONS

OF NEUTRAL TYPE

Elena V. Bogacheva — Yuri E. Gliklikh

Abstract. The topological index for maps of infinite-dimensional Finsler
manifolds, condensing with respect to internal Kuratowski’s measure of

non-compactness, is constructed under the hypothesis that the manifold
can be embedded into a certain Banach linear space as a neighbourhood

retract so that the Finsler norm in tangent spaces and the restriction of

the norm from enveloping space on the tangent spaces are equivalent. It
is shown that the index is an internal topological characteristic, i.e. it does

not depend on the choice of enveloping space, embedding, etc. The total in-

dex (Lefschetz number) and the Nielsen number are also introduced. The
developed machinery is applied to investigation of functional-differential

equations of neutral type on Riemannian manifolds. A certain existence

and uniqueness theorem is proved. It is shown that the shift operator,
acting in the manifold of C1-curves, is condensing, its total index is calcu-

lated to be equal to the Euler characteristic of (compact) finite-dimensional

Riemannian manifold where the equation is given. Some examples of cal-
culating the Nielsen number are also considered.

1. Introduction

This paper has two main goals. One of them is to describe and investigate
functional differential equations of neutral type on Riemannian manifolds. This
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is a natural development of the theory yielding interesting invariant geometric
and topological structures and interrelations but also requiring new complicated
methods and constructions. Unlike the theory of ordinary functional differential
equation (whose investigation on manifolds was started probably in Oliva’s pa-
per [12]) the equations of neutral type on manifolds practically were not consid-
ered. Our particular purpose here is to find interrelations between the topological
properties of the manifold and those of solutions of the equation.

Among our tools we should first mention the so-called shift operator along
trajectories of the equation that acts in the infinite-dimensional functional man-
ifold of C1-curves. It is a well-known fact that in the case of linear spaces this
operator is condensing (k-set contraction), see e.g. [11], so that it is a demand
to develop the topological theory of condensing maps on Banach manifolds. The
main difficulty here is that formulations of many facts from this theory in lin-
ear spaces sound reasonably on manifolds but cannot be proved directly since
the topological theory of condensing maps is essentially based on the notion of
convex closure that is absolutely ill-posed on nonlinear manifolds.

In a series of previous works (see, e.g. [5], [7], [3] and references there) such
a theory was constructed for the case of Finsler manifolds that can be embedded
isometrically into a certain Banach linear space as a neighbourhood retract. But
it turns out that the latter condition is not satisfied for the manifold of C1-
curves where the shift operator of neutral type functional differential equation
acts. Thus, our another main goal is to generalize the topological theory of
condensing maps in order to cover the case under consideration.

Here we modify the previous approach and construct the topological index
for some sort of condensing maps of Finsler manifolds that can be embedded
into a linear Banach space as a neighbourhood retract so that the Finsler norm
in tangent spaces and the restriction of the norm from the enveloping Banach
space onto those tangent spaces are equivalent. It is shown that the construction
does not depend on the choice of enveloping space, embedding and other details.
Thus the index is an internal topological characteristic in spite of the fact that
in its construction the enveloping space is involved.

It is shown that under some natural hypotheses the shift operator of a neu-
tral type equation is condensing with respect to internal Kuratowski’s measure
of non-compactness of a certain Finsler metric on the manifold of C1-curves
in a Riemannian manifold and that the manifold of C1-curves satisfies the above
condition so that the topological index for the shift operator is well-posed. The
total index (Lefschetz number) and the Nielsen number for this operator are
investigated and calculated. In particular, it is shown that if the Riemannian
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manifold is compact, the total index of shift operator is equal to its Euler char-
acteristic. This leads to an existence theorem of periodic solutions of the neutral
type equation on a manifold with non-zero Euler characteristic.

The structure of the paper is as follows. In Section 2 we present the con-
struction of topological index for condensing maps of Finsler manifolds under
the above-mentioned conditions. The constructions of total index (Lefschetz
number) and Nielsen number are given. In Section 3 we illustrate the general
construction on a model example of the manifold of C1-curves in a Riemannian
manifold. This material is the basis for further investigation of the shift operator.

Section 4 is devoted to general theory of functional-differential equations of
neutral type on Riemannian manifolds. In particular we prove a certain existence
and uniqueness theorem that is in use below. In the fourth section we investigate
the topological properties of the shift operator of a neutral type equation and
calculate its total index (Lefschetz number). In Appendix we consider a model
example of condensing operator whose Lefschetz number is zero while the Nielsen
number is equal to 2.

The authors are indebted to referee for very much useful remarks and rec-
ommendations.

2. Topological characteristics
of condensing maps of Finsler manifolds

LetM be a Finsler manifold andM be embedded (possibly not isometrically)
into a Banach space E with the norm ‖ · ‖ as a neighbourhood retract. Denote
by ‖ · ‖I the internal (Finsler) norm in tangent spaces TmM, and by ‖ · ‖E

the restriction of the norm in E onto TmM . Below we suppose that the norms
‖ · ‖I and ‖ · ‖E are equivalent, i.e. that there exist constants 0 < c(m) ≤ C(m)
continuously depending on m ∈M such that for any Y ∈ TmM the relation

(2.1) c(m)‖Y ‖I ≤ ‖Y ‖E ≤ C(m)‖Y ‖I

takes place.
Starting from the norms in tangent spaces toM, one can find the correspond-

ing lengths of piece-wise smooth curves in M as integrals of norms of velocity
(derivative) vectors and then define the distance functions on M as infimums of
the lengths of curves connecting the points (standard constructions of Riemann-
ian and Finsler geometry). Denote by ρI the distance generated with ‖ · ‖I , and
by ρE — the distance generated with ‖ · ‖E . Besides, the distance can be mea-
sured directly in E , as the norm of difference. Note that the latter two distance
functions are related by obvious estimate

(2.2) ρE(m0,m1) ≥ ‖m0 −m1‖,
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for all couples m0 and m1 ∈M since the lengths with respect to ‖ · ‖E and ‖ · ‖
coincide but ρE is the infimum of lengths of curves on M while ‖ · ‖ – in E .

Recall (see details, e.g. in [1]) the notions of Kuratowski’s measure of non-
compactness in a metric space E. Let Ω ⊂ E be a bounded subset.

Definition 2.1. α(Ω) = inf{d > 0 | Ω permits its partition in E into a finite
number of subsets with diameters less than d with respect to the metric in E}
is called the Kuratowski’s measure of non-compactness of Ω.

Having defined the distances in M, denote by αI the Kuratowski’s measure
of noncompactness with respect to ρI , by αE — the Kuratowski’s measure of
noncompactness with respect to ρE and by α‖ · ‖ — the Kuratowski’s measure
of noncompactness with respect to ‖ · ‖.

Let ψ be a certain measure of noncompactness.

Definition 2.2. A continuous operator F : M → M is called condensing
with respect to a measure of non-compactness ψ with constant q < 1 if for any
bounded set Ω ⊂M the inequality

(2.3) ψ(FΩ) < qψ(Ω)

holds.

Definition 2.3. A continuous operator F : M → M is called locally con-
densing with respect to ψ, if any point x ∈ M has a neighbourhood Ux such
that for any bounded set Ω ⊂ Ux the inequality

(2.4) ψ(FΩ) < qψ(Ω), q < 1

is satisfied.

Let the operator F : M → M be condensing with respect to ψ = αI with
a constant q < 1 and Ω ⊂ M be a bounded domain. Consider the set F∞Ω =⋂∞

k=1 F
kΩ, where F k is the k-th iteration of F . Sometimes we shall introduce

the additional assumption that F sends the entire M into a domain having finite
diameter with respect to the distance ρI . In this case we can consider the set
F∞M =

⋂∞
k=1 F

kM.

Lemma 2.4. The set F∞Ω is compact. If F sends the entire M into a do-
main having finite diameter with respect to the distance ρI , then the set F∞M
is compact.

The proof can be found, e.g. in [5], [7]. Notice that the set f∞M contains
all fixed points of F from M and F∞Ω contains all fixed points of F from Ω.
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Since the functions C(m) and c(m) are continuous and the sets F∞Ω and
F∞M from Lemma 6 are compact, there exist constants C > c > 0 and a neigh-
bourhood A of F∞Ω or of F∞M such that for any m ∈ A, Y ∈ TmM

(2.5) c‖Y ‖I ≤ ‖Y ‖E ≤ C‖Y ‖I .

Let V ⊂ A be bounded. Then from (2.5) and (2.3) we obtain the following
inequalities:

(2.6) αI(F (V )) ≤ qαI(V ) ≤ 1
c
qαE(V ).

But on the other hand, from (2.3) and (2.6) it follows that

(2.7) αI(F (V )) ≥ 1
C
αE(F (V )).

Then from (2.4), (2.6) and (2.7) we get

(2.8) αE(F (V )) ≤ C

c
qαE(V ).

Denote by R:U →M the smooth retraction of a certain tubular neighbour-
hood U ⊂ E of M and by TR:TU → TM the tangent map to R. Recall that the
tangent map sends the vector X ∈ TxU into TRX = dxRX ∈ TRmM, where the
linear operator dxR:TxU → TRxM is the Frechet derivative of R at the point
x ∈ U .

Theorem 2.5 (cf. [7]). For any m ∈ M ⊂ U there exists a ball Bm ⊂ U

centered at m and having finite radius, where the retraction R is Lipschitz con-
tinuous with respect to ρ and ‖ · ‖ with a certain constant Q > 0, i.e.:

(2.9) ρE(R(u0), R(u1)) ≤ Q‖u0 − u1‖,

for any u0 and u1 ∈ Bm.

Proof. Let ‖dmR‖ be the norm of Frechet derivative of R at m. Since
R is smooth, its Frechet derivative dxR is continuous in x ∈ U and so for
a certain Q > ‖dmR‖ there exists an open neighbourhood Vm ⊂ U of m such
that ‖dxR‖ < Q for any x ∈ Vm.

Since Vm is open, it contains a certain ball Bm with a finite radius centered
at m. Consider two points u0 and u1 in B and denote by u(s), s0 ≤ s ≤ s1, the
line interval connecting u0 and u1. Since B is convex, the complete interval u(s)
belongs to B and thus the map R is well-posed at its points. Consider the curve
m(s) = R(u(s)) in M connecting m0 = R(u0) ∈ M with m1 = R(u1) ∈ M .
Let s be the natural parameter (the length) on u(s) (if it is not so, change the
parameter). Thus ‖u̇(s)‖ = 1 for s ∈ [s0, s1] where u̇ = du/ds. Evidently the

length
∫ s1

s0 ‖u̇(s)‖ ds of u(s) from u0 to u1 is equal to the distance ‖u0 − u1‖
between those points in E and is equal to |s1− s0| since ‖u̇(s)‖ = 1. The length



292 E. V. Bogacheva — Yu. E. Gliklikh

of m(s), s0 ≤ s ≤ s1, between m0 and m1 is equal to
∫ s1

s0 ‖ṁ(s)‖ ds and is not
shorter than the intrinsic distance d(m0,m1) between m0 and m1.

Notice in addition that by definition ṁ(s) = TRu̇(s). Then applying the
above arguments we get the following estimates:

d(m0,m1) ≤
∫ s1

s0
‖ṁ(s)‖ ds =

∫ s1

s0
‖du(s)Ru̇(s)‖ ds ≤

∫ s1

s0
‖du(s)R‖‖u̇(s)‖ ds

≤
∫ s1

s0
Q‖u̇(s)‖ ds = Q

∫ s1

s0
ds = Q(s1 − s2) = Q‖u0 − u1‖.

The theorem follows. �

Introduce F :U →M ⊂ U , by the formula F = F ◦R. From (2.2) it follows
that for any u0, u1 ∈ Bm

‖F (u0)− F (u1)‖ = ‖FR(u0)− FR(u1)‖ ≤ ρE(FR(u0), FR(u1)).

From this and from (2.1), (2.3), (2.8) and (2.9) we get that for a bounded set
V ⊂ Bm

α‖ · ‖(F (V )) ≤ αE(FR(V )) ≤ C

c
qαE(R(V )) ≤ Q

C

c
qα‖ · ‖(V ).

Consider a bounded domain Ω ⊂ M such that F has no fixed points on its
boundary Ω̇, or the entire M under the assumption that FM is bounded (see
above). For any x∗ ∈ F∞Ω (x∗ ∈ F∞M, respectively) take the ball Bx∗ ⊂ U as
above. Cover the set F∞Ω

⋂
Ω (F∞M, respectively) with the balls Bx∗ . This

is an open covering of the compact set F∞Ω
⋂

Ω (F∞M) and so there exists its
finite subcovering Bxi

. Denote by Qi the Lipschitz constant for R in Bxi
and set

Q = maxiQi. Let VB =
⋃

iBxi . For any V ⊂ VB . there exists a finite number
of sets Vi = V

⋂
Bxi

and from above arguments we get

α‖ · ‖(F (Vi)) ≤ Qi
C

c
qα‖·‖(Vi).

Then

(2.10) α‖ · ‖(F (V )) = max
i
α‖ · ‖(F (Vi)) ≤ max

i
Qi
C

c
qα‖ · ‖(Vi) = Q

C

c
qα‖ · ‖(V ).

By the construction, on the boundary of VB there are no fixed points of F .
Recall the following

Definition 2.6. A set S ⊂ E is called fundamental for an operator F :U →
E , if:

(a) S 6= ∅ is convex and compact;
(b) F (U ∩ S) ⊂ S;
(c) if x0 ∈ U \ S, then x0 6∈ co[{F (x0)} ∪ S].
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In the standard theory of topological index for condensing maps in Banach
spaces (see, e.g. [1]) the index is defined as that for the contraction of the operator
to a certain fundamental set, containing the set of fixed points of this operator.
The key fact here is that for an operator, condensing with a constant less than 1,
such a fundamental set exists. We shall show that for the above-mentioned
operator F a fundamental set, containing fixed points of F , does exist in spite
of the fact that the constant for F in (2.10) is greater than 1.

Lemma 2.7. There exists a fundamental set for operator F , constructed
above, that contains all fixed points of F in Ω (in M, respectively).1

Proof. We shall deal here with the bounded domain Ω, the case of M with
F (M) bounded is absolutely analogous. Since F is condensing with the constant
q < 1, F k is obviously condensing with the constant qk. Notice that from the
properties of the retraction it follows that F k = (F ◦ R)k = F k ◦ R. Then with
the same scheme of arguments as above we can show that F k is condensing with
respect to α‖ · ‖ with the constant q = QCqk/c. Since q < 1, for k large enough
qk < 1/(QC/c). For such k we get q < 1.

Choose such k. Denote by ℵ the collection of all closed sets containing F∞(Ω)
and satisfying all conditions from the definition of fundamental set for F and F k

together except maybe compactness.
The collection ℵ is not empty since at least the set T0 = co[F∞(Ω)∪F (Ω)] =

co(F (Ω)) belongs to ℵ. Indeed, since T0 = co(F (Ω)), F (T0 ∩ Ω) ⊂ F (Ω) ⊂ T0

and analogously F k(T0 ∩Ω) ⊂ F (Ω) ⊂ T0. Let x0 ∈ Ω \ T0, then, since F (x0) ∈
F (Ω) ⊂ T0 and F k(x0) ∈ F (Ω) ⊂ T0, x0 6∈ co[F (x0) ∪ T0] means that x0 6∈ T0,
and x0 6∈ co[F k(x0)∪ T0] also means that x0 6∈ T0. But these two conditions are
satisfied by the hypothesis x0 ∈ Ω \ T0.

Let a set T ∈ ℵ. This means that F∞(Ω) ⊂ T , if x0 ∈ Ω ∩ T , then F (x0)
and F k(x0) belongs to the set T and that if x0 ∈ Ω \ T , then x0 6∈ co[F (x0)∪ T ]
and x0 6∈ co[F k(x0) ∪ T ].

Consider the set T1 = co[F∞(Ω)∪F (Ω∩T )]. By the construction T ⊃ T1 =
co[F (Ω∩T )] ⊃ co[F k(Ω∩T )]. Hence F (Ω∩T1) ⊂ F (Ω∩T ) ⊂ co[F (Ω∩T )] = T1,
and consequently F k(Ω ∩ T1) ⊂ T1.

Let x0 ∈ Ω \ T1. Consider two cases:
Case 1. x0 6∈ T , then x0 6∈ co[F (x0) ∪ T ], and so x0 6∈ co[F (x0) ∪ T1] and

from x0 6∈ co[F k(x0) ∪ T ], it follow that x0 6∈ co[F k(x0) ∪ T1];
Case 2. x0 6∈ T1 and x0 ∈ T , hence x0 ∈ Ω ∩ T . Thus F (x0) ∈ T and

F k(x0) ∈ T . From this it follows that F (x0) ∈ F (Ω ∩ T ) ⊂ co[F (Ω ∩ T )] ⊂ T1

and F k(x0) ∈ F k(Ω ∩ T ) ⊂ co[F k(Ω ∩ T )] ⊂ T1. Then since x0 6∈ T1 and

1This result for F condensing with respect to internal Kuratowski’s and Hausdorff’s mea-

sures of noncompactness, was announced in [4].
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F (x0) ∈ T1, we get x0 6∈ co[F (x0) ∪ T1] since co[F (x0) ∪ T1] ⊂ T1. Analogously
x0 6∈ co[F k(x0) ∪ T1] ⊂ T1.

Thus conditions (a) and (b) of Definition 2.6 are fulfilled both for F and F k,
i.e. T1 ∈ ℵ.

Determine the set S as S =
⋂

T∈ℵ T that belongs to ℵ. Hence, as it is proved
above, the set S1 = co[F∞(Ω) ∪ F k(Ω ∩ S)] also belongs to ℵ. Show that S is
fundamental for F . Conditions (a) and (b) of the definition are fulfilled both for
the F and for F k by the construction. The set S ∈ ℵ is minimal in ℵ. Hence
S1 = co[F∞(Ω)∪F k(Ω∩S)] coincides with S. Then since F k is condensing with
a constant less than 1, from the equality S = co[F∞(Ω) ∪ F k(Ω ∩ S)] it follows
that S is compact. �

Thus the index of vector field I − F on the boundary of VB is well-posed.
For the case of entire M we call this index the Lefschetz number ΛF of F on M
and for the case of bounded Ω ⊂M we call it the index indF (Ω̇) of F on Ω̇.

Notice that indF (Ω̇) is well posed for a condensing F under the above as-
sumptions for a bounded domain Ω. In particular, the index of an isolated fixed
point is also well-posed. The Lefschetz number ΛF is well-posed under additional
assumption that FM has finite diameter with respect to ρI . In particular, this
is true for a condensing F if M has finite diameter.

Our definition of Lefschetz number is compatible with the usual terminology
since in the finite-dimensional case the Lefschetz number (in the sense of usual
homological definition) is equal to the total index of fixed points. Suppose that F
has only isolated fixed points and denote by ji the index of F in a neighbourhood
of the fixed point xi. One can easily see that ΛF is equal to the sum of indices,
i.e. ΛF =

∑
i ji.

The following statements are proved in complete analogy with [7].

Lemma 2.8. indF (Ω̇) and Λf do not depend on the choice of E and embed-
ding, U and retraction R and of the choice of VB.

Lemma 2.9. Let Mi be a submanifold in M, such that F :M→Mi. Then
indF (Ω̇) = indF |Mi

˙(Ω ∩Mi) and ΛF = ΛF |Mi
, where F|Mi

is the restriction of
F on Mi.

The next statements follow from the construction and routine facts of the
topological fixed point theory for condensing maps of Banach linear spaces.

Theorem 2.10. The Lefschetz number is invariant under homotopies in the
class of condensing maps. The index is invariant under homotopies in the class
of condensing maps having no fixed points on Ω̇.
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Theorem 2.11. If ΛF 6= 0, then F has a fixed point in M. If indF (Ω̇) 6= 0,
then F has a fixed point in Ω.

For the manifolds and maps, considered above, the general scheme of con-
structing Nielsen number is well-posed.

Let M be connected but not simply connected. A continuous map from
[0, 1] ⊂ R into M is called a path.

Definition 2.12. Fixed points x1 and x2 of F belong to the same Nielsen’s
equivalence class if there exists a path w, connecting them, such that w ◦
f(w)−1 = 0 in π1(M).

Definition 2.13. A Nielsen’s equivalence class of fixed points is called es-
sential if ind 6= 0 and not essential otherwise.

Definition 2.14. The number of essential classes of F is called Nielsen
number Nf .

Lemma 2.15. The Nielsen number is constant under homotopies in the class
of condensing maps.

Indeed, under condensing homotopies the indices remain constant and it is
easy to see that an equivalence class of fixed points transforms into an equivalence
class of fixed points. Thus an essential class turns into an essential class and vice
versa.

It should be pointed out that the construction of index, Lefschetz and Nielsen
numbers, described above, can be obviously generalized for locally condensing
maps F of Finsler manifolds of the same sort under the assumption that for
a certain integer l, 0 < l ≤ ∞, the iteration F l sends a bounded domain Ω or
the entire M, respectively, into a compact set.

3. The manifold of C1-curves on a Riemannian manifold

Consider a basic example of the situation, described above: the manifold of
C1-curves on a compact Riemannian manifold. This manifold is a natural phase
space for functional-differential equations of neutral type, investigated below.
Here we present some basis for further developments.

Let M be a compact Riemannian manifold. By Nash’s theorem it can be
isometrically embedded into Euclidean space RN , where N is large enough, as
a neighbourhood retract. Denote by i:M → RN this embedding and by Ti its
tangent map. Notice that all tangent spaces to RN are canonically isomorphic
to RN itself and that is why we consider Ti as a map sending TM into RN .

Denote by C1([−h, 0],M) the Banach manifold of C1-curves in M , given on
the interval [−h, 0] and by C0([−h, 0],M) the Banach manifold of continuous
curves defined on the same interval. For a curve x( · ) from C1([−h, 0],M) the
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tangent space Tx( · )C
1([−h, 0],M) is the set of C1 vector fields along x( · ). The

tangent space Tx( · )C
0([−h, 0],M) at x( · ) ∈ C0([−h, 0],M) is the set of all

continuous vector fields along x( · ).
Define the internal Finsler metric on C1([−h, 0],M) by constructing the norm

in Tx( · )C
1([−h, 0],M) of the form:

(3.1) ‖Y ( · )‖C1

I = sup
t∈[−h,0]

‖Y (t)‖+ sup
t∈[−h,0]

∥∥∥∥DdtY (t)
∥∥∥∥,

where (D/dt)Y (t) is the covariant derivative of Levi–Civitá connection (see, e.g.
[6]) on M of the vector field Y (t) along x( · ) (emphasize that norm (3.1) is given
in intrinsic terms); The internal Finsler metric on C0([−h, 0],M) is introduced
analogously via the norm

(3.2) ‖Y ( · )‖C0

I = sup
t∈[−h,0]

‖Y (t)‖.

The map i generates the embedding of the manifold C1([−h, 0],M) into Ba-
nach space C1([−h, 0], RN ) as a neighbourhood retract. Introduce the following
norm in Tx( · )C

1([−h, 0],M):

(3.3) ‖Y ( · )‖C1

E = sup
t∈[−h,0]

‖Y (t)‖+ sup
t∈[−h,0]

‖(TiY (t))′‖

where (TiY (t))′ is the derivative of curve TiY (t) in RN .
Introduce the norm, analogous to (3.3) in C1([−h, 0], RN ). Then (3.3) is its

restriction onto tangent spaces to C1([−h, 0],M).
As well as in Section 2 construct the distance functions in C1([−h, 0],M),

corresponding to norms (3.1) and (3.3) and denote them by ρI and ρE , respec-
tively.

Denote by P the orthogonal projection of RN onto TmM . It is well-known
that (D/dt)Y (t) = P (TiY (t))′, thus

‖Y ( · )‖C1

I ≤ ‖Y ( · )‖C1

E .

One can easily see that

(TiY (t))′ =
D

dt
Y (t) + (I − P )

(
T 2i

(
d

dt
y(t), Y (t)

))
,

where T 2i is the bilinear operator of second derivative of embedding i.
For x( · ) ∈ C1([−h, 0],M) its velocity vector field x′(t) is continuous and so

its norm ‖x′(t)‖ is bounded of the compact interval [−h, 0] by a certain constant
k(x( · )) > 0. The operator norm of (I−P )T 2i on M is bounded as a continuous
function on the compact manifold M , i.e. ‖(I − P )Ti2‖ ≤ Ξ for some Ξ > 0.
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Hence, using the above estimates and the obvious fact that supt∈[−h,0] ‖Y (t)‖ ≤
‖Y (t)‖C1

I , we see that

‖Y ( · )‖C1

E = sup
t∈[−h,0]

‖Y (t)‖+ sup
t∈[−h,0]

∥∥∥∥DdtY (t) +
(

(I − P )Ti2
(
d

dt
x(t), Y (t)

))∥∥∥∥
≤ sup

t∈[−h,0]

‖Y (t)‖+ sup
t∈[−h,0]

∥∥∥∥DdtY (t)
∥∥∥∥ + Ξ sup

t∈[−h,0]

(∥∥∥∥ ddtx(t)
∥∥∥∥, ‖Y (t)‖

)
≤‖Y (t)‖C1

I (1 + Ξk(x( · ))).

So, we obtain the following estimate for the norms:

(3.4) ‖Y ( · )‖C1

I ≤ ‖Y ( · )‖C1

E ≤ ‖Y ( · )‖C1

I (1 + Ξk(x( · ))).

Inequality (3.4) means that the norms ‖ · ‖C1

I and ‖ · ‖C1

E are equivalent.
Evidently (3.4) can be transformed to the form (2.1). In particular, consider
a set Ω ∈ C1([−h, 0],M) having finite diameter with respect to ρI . Then for all
curves x( · ) ∈ Ω the velocity vector filed is bounded: ‖x′(t)‖ ≤ k for some k ≥ 0
independent of x( · ). Hence from (3.4) we obtain on Ω

(3.5) ‖Y ( · )‖C1

I ≤ ‖Y ( · )‖C1

E ≤ ‖Y ( · )‖C1

I (1 + Ξk).

Thus we can apply the constructions of Section 2 to condensing maps of
C1([−h, 0],M).

4. Functional-differential equations of neutral type
on a Riemannian manifold

The functional-differential equations of neutral type describe processes whose
first derivative at a time instant t explicitly depends on the values of process and
its first derivatives at previous time instants. Applied problems, where such
equations arise (as well as the bibliography up to 1982 for the case of linear
spaces), are presented, e.g. in survey [2]. The basic definitions and facts from
this theory in linear spaces can be found, e.g. in [2], [10].

In this section we extend the theory of functional-differential equations of
neutral type to the case of smooth manifolds. For this purpose we first intro-
duce the geometrically invariant notion of functional vector field of neutral type
(FVFN).

Let M be a complete Riemannian finite-dimensional manifold and TM be
its tangent bundle. By π:TM →M we denote the natural projection. Consider
the Banach manifolds C0([−h, 0],M) and C0([−h, 0], TM) of continuous curves
in M and TM , respectively, given for s ∈ [−h, 0]. Notice that the norms of
type (3.2) are well-posed in tangent spaces to those manifolds as well as Finsler
metrics on the manifolds, generated by the norms (see Section 3).
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Definition 4.1. The map f : I ×C0([−h, 0], TM) → TM such that for any
y( · ) ∈ C0([−h, 0], TM) the condition f(t, y( · )) ∈ Tπ(y(0))M holds, where I is
a certain interval of real line (in particular, it may be the entire real line), is
called a functional vector field of neutral type (FVFN).

Below, if the contrary is not postulated, for the sake of simplicity we assume
that I is the entire real line. In various concrete problems we also suppose f to
satisfy some additional conditions from the following list:

Condition 4.2. FVFN f is bounded, i.e. for a certain constant C > 0 and
any y( · ) ∈ C0([−h, 0], TM), t ∈ I the inequality ‖f(t, y( · ))‖ ≤ C holds, where
the norm is generated by the Riemannian metric on M .

It is clear that any curve y( · ) ∈ C0([−h, 0], TM) can be represented as the
couple y(t) = (x(t), X(t)), where x(t) = πy(t) is a continuous curve in M and
X(t) is a continuous vector field along x(t). Note that for the vector field X( · )
the uniform norm ‖X( · )‖C0

= sups∈[−h,0] ‖X(s)‖ is well-posed, where ‖ · ‖ (as
well as above) is the norm in tangent spaces to M , generated by the Riemannian
metric.

Condition 4.3. For any continuous curve x( · ) FVFN f is Lipschitz con-
tinuous in the third argument, i.e. for some constant C1 > 0 the inequality
‖f(t, x( · ), X0( · ))− f(t, x( · ), X1( · ))‖ < C1‖X0( · )−X1( · )‖C0

holds, where C1

does not depend on t and x( · ).

Condition 4.4. The map f : I × C0([−h, 0], TM) → TM is C1-smooth as
a mapping of manifolds.

In particular from Condition 4.4 it follows that f is continuous.
For a continuous curve y(t) in TM , t ∈ [−h, T ] for some T > 0 we introduce

the family of curves from C0([−h, 0], TM) by the standard construction yt(θ) =
y(t + θ), θ ∈ [−h; 0], t ∈ [0, T ]. Obviously the family yt(θ) forms a curve
in C0([−h, 0], TM) that is continuous in t ∈ [0, T ]. Then f(t, yt), t ∈ [0, T ] is
a continuous curve in TM .

Condition 4.5. For a bounded set Y ⊂ C0([−h, T ], TM) such that πY is
compact in C0([−h, T ],M), the set {f(t, yt)|y ∈ Y} is compact in C0([0, T ], TM).

Remark 4.6. For the case, where M is a Euclidean space Rn, Condition 4.5
follows from a certain condition from [11]. However the latter condition is specific
for linear spaces and for manifolds it can be formulated only in charts.

Condition 4.7. FVFN f is ω-periodical, i.e. for a certain ω > 0 for any
y( · ) ∈ C0([−h, 0], TM) and any t ∈ R the equality f(t + ω, y( · )) = f(t, y( · ))
holds.
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A particular case of continuous curve in TM of the form y(t) = (x(s), x′(s)),
where x(s) is a C1-curve in M and x′(s) is its derivative, plays an important role
below. We emphasize that the vector f(t, x( · ), x′( · )) ∈ Tx(0)M is well-posed.
Sometimes we shall suppose that a curve x( · ) ∈ C1([−h, 0],M) satisfies the
following condition:

Condition 4.8 (Condition of compatibility).

x′−(0) = f(0, x(t), x′(t)),

where x′−(0) is the backward derivative at zero point.

As above, for a C1-curve x(t), t ∈ [−h, T ], T ≥ 0 we introduce the standard
notations xt(θ) = x(t + θ), x′t(θ) = x′(t + θ), where θ ∈ [−h; 0]. Consider the
following problem:

(4.1) x′(t) = f(t, xt, x
′
t), t ≥ 0,

Definition 4.9. Equation (4.1) is called functional-differential equation of
neutral type (FDEN) on the Riemannian manifold M , generated by FVFN f . A
C1-curve xϕ(t), t ∈ [−h, T ) for a certain T > 0 is called a solution of (4.1) with
initial condition ϕ, satisfying Condition 4.8, if xϕ(t) = ϕ(t) for t ∈ [−h, 0] and
xϕ(t) satisfies (4.1) for t ∈ [0, T ).

We emphasize that the above definition of solution is consistent if the initial
curve ϕ(t) satisfies Condition 4.8. In order to get a solution for any initial curve,
we modify (4.1) and consider the following equation

(4.2) x′(t) = f(t, xt, x
′
t) + ‖νη(t)[x′−(0)− f(0, x0, x

′
0)], t ≥ 0,

where η > 0 is a small enough real number, νη(t) = 1 − η−1t if t ∈ [0, η] and
νη(t) = 0 if t > η, ‖ denotes the Riemannian parallel translation of the vector
νη(t)[x′−(0)− f(0, x0, x

′
0)] ∈ Tx0(0)M along the solution x( · ) from x(0) to x(t).

This is a natural modification of a standard method.
As well as above embed M isometrically into a Euclidean space RN of a di-

mension large enough. Denote by r:U → M the retraction of tubular neigh-
bourhood U in RN onto M . One can easily see that r:U → M generates
the smooth map from C0([−h, 0], U) onto C0([−h, 0],M). In particular, for
ϕ(t) ∈ C0([−h, 0], U) we get that

rϕ(t) ∈ C0([−h, 0],M).

Over any chart Vα in M the tubular neighbourhood U is represented in the form:

r−1(Vα) = Vα ×W,
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where W is an open ball in RN−n, n is the dimension of M . Any ψ(t) ∈
C0([−h, 0], U) is represented in the form:

ψ(t) = (ϕ(t), Z(t)),

where ϕ(t) ⊂ Vα, Z(t) ⊂ W . For any vector field Z(t) along ψ(t) we obtain the
decomposition Z(t) = (ZT (t), ZN (t)), where ZT (t) is tangent to Vα, and ZN (t) is
tangent to W . Evidently TrZ(t) = TrZT (t). Introduce the function f(t, ψ(t)) =
f(t, ϕ(t), Z(t)) = f(t, ϕ(t), ZT (t)) by the formulae

fT (t, ϕ(t), Z(t)) = f(t, rϕ(t), T rZ(t)), fN (t, ϕ(t), Z(t)) = 0.

The map f is well-posed on the domain C0([−h, 0], U)× C0([−h, 0], RN ). Con-
sider the open ball BC+ε(0) centered at the origin in the space C0([−h, 0], RN )
and having radius C + ε where C is introduced in Condition 4.2 and ε > 0 is
a certain number. Below we consider f defined on C0([−h, 0], U)×BC+ε, i.e. on
a bounded domain in the Banach space C0([−h, 0], U)× C0([−h, 0], RN ).

Theorem 4.10. Under Conditions 4.2–4.4 above:

(a) for any curve ϕ(t) ∈ C1([−h, 0],M), satisfying Condition 4.8, and any
T > 0 there exists a unique solution xϕ(t) , t ∈ [−h, T ] of (4.1) on M

with initial condition xϕ
0 (s) = ϕ(s);

(b) for any curve ϕ(t)∈C1([−h, 0],M) any T > 0 there exists a unique solu-
tion xϕ(t), t∈ [−h, T ] of (4.2) on M with initial condition xϕ

0 (s)=ϕ(s).

Proof. Consider the following equation of type (4.1) in RN

(4.3) x′(t) = f(t, xt, x
′
t)

with initial condition ϕ(t). It is easy to see that for (4.3) all the hypotheses of
Theorem 4.3.6 [1] (see also [10]) are fulfilled and so for ϕ(t) ∈ C0([−h, 0], U) ×
BC+ε(0) there exists a unique solution for t ∈ [0, T ]. Moreover, by the construc-
tion x′(t) = fT (t, xt, x

′
t) and fN (t, xt, x

′
t) = 0, hence (4.3) is decomposed into

the system {
x′(t) = fT (t, xt, x

′
t),

y′(t) = 0.
Thus x(t) ⊂ M for all t ∈ [0, ε]. Since M is complete, f is bounded and the
embedding of M into RN is isometric we obtain that x(t) does exist for t ∈ [0, T ].

The proof of the second part is quite analogous. �

5. Shift operator along the trajectories of FDEN
and its Lefschetz number

In this section M is a compact Riemannian manifold. Suppose that Condi-
tions 4.2–4.4 of Section 4 are satisfied. Then by Theorem 4.10 for any initial
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curve ϕ there exists unique solution of (4.2) that is continuous in ϕ. Specify
ω > 0.

Definition 5.1. Operator uω:C1([−h, 0],M) → C1([−h, 0],M) sending the
curve ϕ into the curve xϕ

ω is called the shift operator along the solution of FDEN
(4.1).

One can easily show that under Condition 4.7 of Section 4 the fixed points
of uω and only they are ω-periodic solutions of (4.1). Here we show that if
in addition Condition 4.5 is satisfied, uω is a condensing map with respect to
internal Kuratowski’s measure of noncompactness of a certain special Finsler
metric on C1([−h, 0],M).

Below in this section we suppose Conditions 4.2–4.5 and 4.7 to be fulfilled.
Modify metric (3.1) on the manifold C1([−h, 0],M) as follows:

(5.1) ‖Y ( · )‖C
1

I = sup
t∈[−h,0]

et‖Y (t)‖+ sup
t∈[−h,0]

et

∥∥∥∥DdtY (t)
∥∥∥∥.

Analogous modification of (3.3) has the form

(5.2) ‖Y ( · )‖C
1

E = sup
t∈[−h,0]

et‖Y (t)‖+ sup
t∈[−h,0]

et‖(TiY (t))′‖

and of (3.2) has the form

(5.3) ‖Y ( · )‖C
0

I = sup
t∈[−h,0]

et‖Y (t)‖.

The trivial modification of constructions of Section 3 where (3.1) and (3.3)
replaced with (5.1) and (5.2), respectively, makes obvious the fact that the in-
dex and Lefschetz number are well-posed for an operator on C1([−h, 0],M) that
is condensing with respect to Kuratowski’s measure of noncompactness, corre-
sponding to norm (5.1). We shall show that uω is of this sort and calculate its
Lefschetz number.

Let x0(t) and x1(t) be curves in M , t ∈ [−h, 0], i.e. points in C1([−h, 0],M).
Connect them by a C1-curve ξ(s) = x(t, s) where t ∈ [−h, 0] and s ∈ [0, 1],
ξ(0) = x0 and ξ(1) = x1, in the manifold C1([−h, 0],M). Denote (d/dt)x(t, s)
by W (t, s). Then the length of ξ(s) with respect to ‖ · ‖C1

I is calculated by the
formula:

(5.4) l(ξ)C
1

I =
∫ 1

0

(
sup

t∈[−h,0]

et‖W (t, s)‖+ sup
t∈[−h,0]

et

∥∥∥∥DdtW (t, s)
∥∥∥∥)

ds.

The distance in C1([−h, 0],M) between x0( · ) and x1( · ), corresponding to norm
(5.1), is the infimum of lengths of curves, connecting η( · ) and θ( · ), where the
length is calculated by formula (5.4). Denote by αI the internal Kuratowski’s
measure of non-compactness generated by this distance.
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Let Ω be a set in C1([−h, 0],M), bounded with respect to the above distance.
First suppose that ω ≥ h.

Lemma 5.2. If ω ≥ h, for any bounded set Ω in C1([−h, 0],M) the set uω(Ω)
is compact in C1([−h, 0],M).

Proof. Since M is compact, all curves from Ω belong to a compact set and
so are uniformly bounded. Moreover, boundedness of Ω in C1([−h, 0],M) means
that for all ϕ( · ) ∈ Ω the derivatives (d/dt)ϕ(t) are uniformly bounded and so the
curves from Ω are equicontinuous. Recall that by definition for t ∈ [0, ω] we have
(d/dt)xϕ(t) = f(t, xϕ

t , (d/dt)x
ϕ
t ). Then from Condition 4.2 it follows that the

curves {xϕ(t)|ϕ ∈ Ω} have uniformly bounded derivatives on the entire interval
[−h, ω]. Thus they are uniformly bounded and equicontinuous and so they form
a compact set in C0([−h, ω],M). From Condition 4.5 we obtain that the curves
(d/dt)xϕ(t) = f(t, xϕ

t , (d/dt)x
ϕ
t ), t ∈ [0, ω] form a compact set in C0([0, ω], TM).

Hence the set uω(Ω) is compact in C1([−h, 0],M) since the derivatives of those
curves form a compact set in C0([−h, 0], TM). �

Now consider the case ω < h.
Introduce the Kuratowski’s measure of noncompactness αI in C1([−h, 0],M)

with respect to the distance function, defined as inf of lengths of curves in
C1([−h, 0],M) with respect to norm (5.1). For any point −h+ ω ∈ [−h, 0] con-
sider the restrictions of curves from C1([−h, 0],M) on the intervals [−h,−h+ω]
and [−h+ω, 0]. On the manifolds of curves, defined on those subintervals, one can
define the Finsler metrics, the distances and Kuratowski’s measures of noncom-
pactness as above. Denote those measures of noncompactness by αI,[−h,−h+ω](Ω)
and αI,[−h+ω,0](Ω).

Lemma 5.3. For a bounded set Θ ⊂ C1([−h, 0],M) the equality

αI(Θ) = max(αI,[−h,−h+ω](Θ), αI,[−h+ω,0](Θ)),

holds.

Lemma 5.3 is a well-known property of Kuratowski’s measure of non-com-
pactness (see, e.g. [11]).

Lemma 5.4. Let ω < h and Ω be a bounded set in C1([−h, 0],M). Then
αIuω(Ω) < e−ωαI(Ω).

Proof. By Lemma 5.3 we have αI(uω(Ω)) = max(α[−h,−ω](uω(Ω)), α[−ω,0]

(uω(Ω))) and α[−h,0](Ω) = max(α[−h,−h+ω](Ω), α[−h+ω,0](Ω)).
Taking into account the arguments used in proof of Lemma 5.2 one can easily

see that on [−ω, 0] the curves uω(Ω) form a compact set and so α[−ω,0]uω(Ω) = 0.
Thus αI(uω(Ω)) = α[−h,−ω](uω(Ω)). By the construction of norm (5.1), length
(5.4) and corresponding distance we obtain α[−h,−ω](uω(Ω)) = e−ωα[−h+ω,0](Ω).
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Hence αI(uω(Ω)) = α[−h,−ω](uω(Ω)) = e−ωα[−h+ω,0](Ω) < e−ω max(α[−h,−h+ω]

(Ω), α[−h+ω,0](Ω)) = e−ωαI(Ω). �

Theorem 5.5. uω is condensing with respect to αI with a constant less
than 1 and so the index, constructed above, for it is well-posed.

Theorem 5.5 follows from Lemmas 5.2 and 5.4.
Specify ε > 0. Notice that from Condition 4.2 it follows that the operator uω

sends C1([−h, 0],M) into the domain BC+ε ⊂ C1([−h, 0],M) such that for any
x(t) ∈ BC+ε we have ‖x′(t)‖ < C+ε. By the construction uω has no fixed points
on the boundary of BC+ε and BC+ε has finite diameter. Thus the construction
of Lefschetz number of Section 2 is well-posed for uω.

Theorem 5.6. The Lefschetz number Λuω
is equal to Euler characteristic

χ(M).

Proof. Let s ∈ [0, 1]. Introduce the curve κs(x( · )) ∈ C1([−h, 0],M) by
the formula

κs(x(t)) = x(st).

Consider the homotopy us(x( · )) = usω(κs(x( · ))). As well as above one can
easily prove that this homotopy lives in the class of condensing operators. By
the construction uωs at s = 1 coincides with uω, and at s = 0 the operator u0

sends the curve x( · ) into the constant curve x(0). By Lemma 2.9 we can restrict
u0 from C1([−h, 0],M) on the submanifold consisting of constant curves that is
isomorfic to M . But on M the operator u0 is the identical map and so its total
index (Lefschetz number) is equal to Euler characteristic χ(M). �

Corollary 5.7. Let χ(M) 6= 0 and f satisfy Conditions 4.2–4.5 and 4.7.
Then (4.1) has an ω-periodic solution.

6. Appendix. An example of calculation of Nielsen number

Now consider a model example where an operator, constructed from uω,
has zero Lefschetz number while its Nielsen number is not equal to zero. Here
we involve a special manifold M and a certain continuous map ĥ:M → M ,
considered in [8], [9].

Introduce the equivalence relation in R3 of the form

(6.1) (x, y, z) ∼ (x+ a, (−1)ay + b, (−1)az + c),

where a, b, c are integers. Let M be the manifold obtained from R3 by factor-
ization with respect to this equivalence.

Consider in R3 the map h: R3 → R3, given by the formula:

(6.2) h(x, y, z) = (−x, y + z, y).
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This map induces the continuous map ĥ:M →M having two fixed points:

x1 = (0, 0, 0) and x2 = (1/2, 0, 0).

It is shown in [8] and [9] that indx1 = −1 and indx2 = 1. Hence the Lefschetz
number Λ

bh = 0. The fixed points x1 and x2 belong to different essential Nielsen
equivalence classes and so the Nielsen number N

bh = 2.
Consider the shift operator uω:C1([−h, 0],M) → C1([−h, 0],M) from Sec-

tion 5 and introduce the operator ĥuω. From the fact that uω is condensing
it follows that ĥuω is also condensing with respect to Kuratowski’s measure of
noncompactness of the same metric and so the Lefschetz and Nielsen numbers
are well-posed for it.

Theorem 6.1. Λ
bhuω

= 0 and N
bhuω

= 2.

Proof. The proof is a modification of that for Theorem 5.6. Consider the
homotopy ûs = ĥus where us was introduced in the proof of Theorem 5.6. By
the same arguments as in that proof one can easily show that û1 = ĥuω and that
the homotopy ûs lives in the class of condensing maps. The operator û0 can be
restricted to the manifold of constant curves, homeomorfic to M , and coincides
there with ĥ. Since Λ

bh = 0 and N
bh = 2, this completes the proof. �
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