EXISTENCE RESULTS FOR IMPULSIVE NEUTRAL FUNCTIONAL DIFFERENTIAL INCLUSIONS

Bapurao C. Dhage - Sotiris K. Ntouyas

Abstract

In this paper we prove existence results for first and second order impulsive neutral functional differential inclusions under the mixed Lipschitz and Carathéodory conditions.

1. Introduction

The theory of impulsive differential equations is emerging as an important area of investigation since it is much richer that the corresponding theory of differential equations; see the monograph of Lakshmikantham et al [2]. In this paper, we study the existence of solutions for initial value problems for first and second order impulsive neutral functional differential inclusions. More precisely in Section 3 we consider first order impulsive neutral functional differential inclusions of the form

$$
\begin{array}{rlrl}
\frac{d}{d t}\left[x(t)-f\left(t, x_{t}\right)\right] & \in G\left(t, x_{t}\right), & & \text { a.e. } t \in I:=[0, T], \\
& & t \neq t_{k}, k=1, \ldots, m, \\
x\left(t_{k}^{+}\right)-x\left(t_{k}^{-}\right) & =I_{k}\left(x\left(t_{k}^{-}\right)\right), & & k=1, \ldots, m, \\
x_{0} & =\phi, & & \tag{1.3}
\end{array}
$$

2000 Mathematics Subject Classification. 34A60, 34K05, 34K45.
Key words and phrases. Neutral functional differential inclusions, fixed point theorems, existence theorem.
where $f: I \times \mathcal{D} \rightarrow \mathbb{R}^{n}$ and $G: I \times \mathcal{D} \rightarrow \mathcal{P}_{f}\left(\mathbb{R}^{n}\right), \mathcal{D}=\left\{\psi:[-r, 0] \rightarrow \mathbb{R}^{n} \mid \psi\right.$ is continuous everywhere except for a finite number of points s at which the left limit $\psi\left(s^{-}\right)$and the right limit $\psi\left(s^{+}\right)$exist and $\left.\psi\left(s^{-}\right)=\psi(s)\right\}, \phi \in \mathcal{D}$, $(0<r<\infty), 0=t_{0}<t_{1}<\ldots<t_{m}<t_{m+1}=T, I_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}(k=1, \ldots, m)$, $x\left(t_{k}^{+}\right)$and $x\left(t_{k}^{-}\right)$are respectively the right and the left limit of x at $t=t_{k}$, and $\mathcal{P}_{f}\left(\mathbb{R}^{n}\right)$ denotes the class of all nonempty subsets of \mathbb{R}^{n}.

For any continuous function x defined on the interval $[-r, T] \backslash\left\{t_{1}, \ldots, t_{m}\right\}$ and any $t \in I$, we denote by x_{t} the element of \mathcal{D} defined by

$$
x_{t}(\theta)=x(t+\theta), \quad \theta \in[-r, 0] .
$$

For $\psi \in \mathcal{D}$ the norm of ψ is defined by

$$
\|\psi\|_{\mathcal{D}}=\sup \{|\psi(\theta)|, \theta \in[-r, 0]\} .
$$

Later, in Section 4, we study the existence of solutions of second order impulsive neutral functional differential inclusions of the form

$$
\begin{align*}
\frac{d}{d t}\left[x^{\prime}(t)-f\left(t, x_{t}\right)\right] & \in G\left(t, x_{t}\right), & & t \in I:=[0, T], \tag{1.4}\\
x\left(t_{k}^{+}\right)-x\left(t_{k}^{-}\right) & =I_{k}\left(x\left(t_{k}^{-}\right)\right), & & k=1, \ldots, m, \\
x^{\prime}\left(t_{k}^{+}\right)-x^{\prime}\left(t_{k}^{-}\right) & =\bar{I}_{k}\left(x^{\prime}\left(t_{k}^{-}\right)\right), & & k=1, \ldots, m, \tag{1.5}\\
y(t) & =\phi(t), & & t \in[-r, 0], \quad x^{\prime}(0)=\eta, \tag{1.6}
\end{align*}
$$

where f, G, I_{k}, ϕ are as in problem (1.1)-(1.3), $\bar{I}_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, and $\eta \in \mathbb{R}^{n}$.
The main tools used in the study are the fixed point theorems of Dhage [1]. In the following section we give some auxiliary results needed in the subsequent part of the paper.

2. Auxiliary results

Throughout this paper X will be a Banach space and let $\mathcal{P}(X)$ denote the class of all subsets of X. Let $\mathcal{P}_{f}(X), \mathcal{P}_{\mathrm{bd}, \mathrm{cl}}(X)$ and $\mathcal{P}_{\mathrm{cp}, \mathrm{cv}}(X)$ denote respectively the classes of all nonempty, bounded-closed and compact-convex subsets of X. For $x \in X$ and $Y, Z \in \mathcal{P}_{\mathrm{bd}, \mathrm{cl}}(X)$ we denote by $D(x, Y)=\inf \{\|x-y\| \mid y \in Y\}$ and $\rho(Y, Z)=\sup _{a \in Y} D(a, Z)$.

Define a function $H: \mathcal{P}_{\mathrm{bd}, \mathrm{cl}}(X) \times \mathcal{P}_{\mathrm{bd}, \mathrm{cl}}(X) \rightarrow \mathbb{R}^{+}$by

$$
H(A, B)=\max \{\rho(A, B), \rho(B, A)\}
$$

The function H is called a Hausdorff metric on X. Note that $\|Y\|=H(Y,\{0\})$.
A correspondence $T: X \rightarrow \mathcal{P}_{f}(X)$ is called a multi-valued mapping on X. A point $x_{0} \in X$ is called a fixed point of the multi-valued operator $T: X \rightarrow \mathcal{P}_{f}(X)$ if $x_{0} \in T\left(x_{0}\right)$. The fixed points set of T will be denoted by $\operatorname{Fix}(T)$.

Definition 2.1. Let $T: X \rightarrow \mathcal{P}_{\mathrm{bd}, \mathrm{cl}}(X)$ be a multi-valued operator. Then T is called a multi-valued contraction if there exists a constant $k \in(0,1)$ such that for each $x, y \in X$ we have

$$
H(T(x), T(y)) \leq k\|x-y\|
$$

The constant k is called a contraction constant of T.
A multi-valued mapping $T: X \rightarrow \mathcal{P}_{f}(X)$ is called lower semi-continuous (shortly l.s.c.) (resp. upper semi-continuous (shortly u.s.c.)) if B is any open subset of X then $\{x \in X \mid G x \cap B \neq \emptyset\}$ (resp. $\{x \in X \mid G x \subset B\}$) is an open subset of X. The multi-valued operator T is called compact if $\overline{T(X)}$ is a compact subset of X. Again T is called totally bounded if for any bounded subset S of X, $T(S)$ is a totally bounded subset of X. A multi-valued operator $T: X \rightarrow \mathcal{P}_{f}(X)$ is called completely continuous if it is upper semi-continuous and totally bounded on X, for each bounded $A \in \mathcal{P}_{f}(X)$. Every compact multi-valued operator is totally bounded but the converse may not be true. However the two notions are equivalent on a bounded subset of X.

We apply the following form of the fixed point theorem of Dhage [1] in the sequel.

Theorem 2.2. Let X be a Banach space, $A: X \rightarrow \mathcal{P}_{\mathrm{cl}, \mathrm{cv}, \mathrm{bd}}(X)$ and $B: X \rightarrow$ $\mathcal{P}_{\mathrm{cp}, \mathrm{cv}}(X)$ two multi-valued operators satisfying:
(a) A is contraction with a contraction constant k, and
(b) B is completely continuous.

Then either

(i) the operator inclusion $\lambda x \in A x+B x$ has a solution for $\lambda=1$, or
(ii) the set $\mathcal{E}=\{u \in X \mid \lambda u \in A u+B u, \lambda>1\}$ is unbounded.

3. First order impulsive neutral functional differential inclusions

Let us start by defining what we mean by a solution of problem (1.1)-(1.3). In order to define the solutions of the above problems, we shall consider the spaces
$P C\left([-r, T], \mathbb{R}^{n}\right)=\left\{x:[-r, T] \rightarrow \mathbb{R}^{n}: x(t)\right.$ is continuous almost everywhere except for some t_{k} at which $x\left(t_{k}^{-}\right)$and $x\left(t_{k}^{+}\right)$, $k=1, \ldots, m$ exist and $\left.x\left(t_{k}^{-}\right)=x\left(t_{k}\right)\right\}$
and
$P C^{1}\left([0, T], \mathbb{R}^{n}\right)=\left\{x:[0, T] \rightarrow \mathbb{R}^{n}: x(t)\right.$ is continuously differentiable everywhere except for some t_{k} at which $x^{\prime}\left(t_{k}^{-}\right)$and $x^{\prime}\left(t_{k}^{+}\right)$, $k=1, \ldots, m$ exist and $\left.x^{\prime}\left(t_{k}^{-}\right)=x^{\prime}\left(t_{k}\right)\right\}$.

Let $Z=P C\left([-r, T], \mathbb{R}^{n}\right) \cap P C^{1}\left([0, T], \mathbb{R}^{n}\right)$. Obviously, for any $t \in[0, T]$ and $x \in Z$, we have $x_{t} \in \mathcal{D}$ and $P C\left([-r, T], \mathbb{R}^{n}\right)$ and Z are Banach spaces with the norms

$$
\|x\|=\sup \{|x(t)|: t \in[-r, T]\} \quad \text { and } \quad\|x\|_{Z}=\|x\|+\left\|x^{\prime}\right\|
$$

where $\left\|x^{\prime}\right\|=\sup \left\{\left|x^{\prime}(t)\right|: t \in[0, T]\right\}$.
In the following we set for convenience $\Omega=P C\left([-r, T], \mathbb{R}^{n}\right)$. Also we denote by $A C\left(J, \mathbb{R}^{n}\right)$ the space of all absolutely continuous functions $x: J \rightarrow \mathbb{R}^{n}$.

Definition 3.1. A function $x \in \Omega \cap A C\left(\left(t_{k}, t_{k+1}\right), \mathbb{R}^{n}\right), k=1, \ldots, m$ is said to be a solution of (1.1)-(1.3) if $x(t)-f\left(t, x_{t}\right)$ is absolutely continuous on $J \backslash\left\{t_{1}, \ldots, t_{m}\right\}$ and (1.1)-(1.3) are satisfied.

We need the following definitions in the sequel.
Definition 3.2. A multi-valued map map $G: J \rightarrow \mathcal{P}_{c p, \mathrm{cv}}\left(\mathbb{R}^{n}\right)$ is said to be measurable if the function $t \rightarrow d(y, G(t))=\inf \{\|y-x\|: x \in G(t)\}$ is measurable for every $y \in \mathbb{R}^{n}$.

Definition 3.3. A multi-valued map $G: I \times \mathcal{D} \rightarrow \mathcal{P}_{\mathrm{cl}}\left(\mathbb{R}^{n}\right)$ is said to be L^{1}-Carathéodory if
(a) $t \mapsto G(t, x)$ is measurable for each $x \in \mathcal{D}$,
(b) $x \mapsto G(t, x)$ is upper semi-continuous for almost all $t \in I$, and
(c) for each real number $\rho>0$, there exists a function $h_{\rho} \in L^{1}\left(I, \mathbb{R}^{+}\right)$such that

$$
\|G(t, u)\|:=\sup \{|v|: v \in G(t, u)\} \leq h_{\rho}(t), \quad \text { a.e. } t \in I
$$ for all $u \in \mathcal{D}$ with $\|u\|_{\mathcal{D}} \leq \rho$.

Then we have the following lemmas due to Lasota and Opial [3].
Lemma 3.4. If $\operatorname{dim}(X)<\infty$ and $F: J \times X \rightarrow \mathcal{P}_{f}(X)$ is L^{1}-Carathéodory, then $S_{G}^{1}(x) \neq \emptyset$ for each $x \in X$.

Lemma 3.5. Let X be a Banach space, G an L^{1}-Carathéodory multi-valued map with $S_{G}^{1} \neq \emptyset$ where

$$
S_{G}^{1}(x):=\left\{v \in L^{1}\left(I, \mathbb{R}^{n}\right): v(t) \in G\left(t, x_{t}\right) \text { a.e. } t \in I\right\}
$$

and $\mathcal{K}: L^{1}(J, X) \rightarrow C(J, X)$ be a linear continuous mapping. Then the operator

$$
\mathcal{K} \circ S_{G}^{1}: C(J, X) \rightarrow \mathcal{P}_{\mathrm{cp}, \mathrm{cv}}(C(J, X))
$$

is a closed graph operator in $C(J, X) \times C(J, X)$.

We consider the following set of assumptions in the sequel.
$\left(\mathrm{H}_{1}\right)$ There exists a function $k \in B\left(I, \mathbb{R}^{+}\right)$such that, for all $x, y \in \mathcal{D}$ and $\|k\|<1$,

$$
|f(t, x)-f(t, y)| \leq k(t)\|x-y\|_{\mathcal{D}} \quad \text { a.e. } t \in I
$$

$\left(\mathrm{H}_{2}\right)$ The multi $G(t, x)$ has compact and convex values for each $(t, x) \in I \times \mathcal{D}$.
$\left(\mathrm{H}_{3}\right) G$ is L^{1}-Carathéodory.
$\left(\mathrm{H}_{4}\right)$ There exists a function $q \in L^{1}(I, \mathbb{R})$ with $q(t)>0$ for a.e. $t \in I$ and a nondecreasing function $\psi: \mathbb{R}^{+} \rightarrow(0, \infty)$ such that

$$
\|G(t, x)\|:=\sup \{|v|: v \in G(t, x)\} \leq q(t) \psi\left(\|x\|_{\mathcal{D}}\right) \quad \text { a.e. } t \in I
$$

for all $x \in \mathcal{D}$.
$\left(\mathrm{H}_{5}\right)$ The impulsive functions $\left|I_{k}\right|$ are continuous and there exist constants c_{k} such that $\left|I_{k}(x)\right| \leq c_{k}, k=1, \ldots, m$ for each $x \in \mathbb{R}^{n}$.

Theorem 3.6. Assume that $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{5}\right)$ hold. Suppose that

$$
\begin{equation*}
\int_{c_{1}}^{\infty} \frac{d s}{\psi(s)}>c_{2}\|\gamma\|_{L^{1}} \tag{3.1}
\end{equation*}
$$

where

$$
c_{1}=\frac{F+\sum_{k=1}^{m} c_{k}}{1-\|k\|}, \quad c_{2}=\frac{1}{1-\|k\|}
$$

and

$$
F=\|\phi\|_{\mathcal{D}}+|\phi(0)-f(0, \phi)|+\sup _{t \in I}|f(t, 0)| .
$$

Then the initial value problem (1.1)-(1.3) has at least one solution on $[-r, T]$.
Proof. Transform the problem (1.1)-(1.3) into a fixed point problem. Consider the operator $N: \Omega \rightarrow \mathcal{P}(\Omega)$ defined by:

$$
N x(t)=\left\{h \in \Omega: h(t)=\left\{\begin{array}{ll}
\phi(t), & t \in I_{0} \\
\phi(0)-f(0, \phi(0))+f\left(t, x_{t}\right) & \\
+\int_{0}^{t} v(s) d s+\sum_{0<t_{k}<t} I_{k}\left(x\left(t_{k}^{-}\right)\right), & t \in I
\end{array}\right\}\right.
$$

where $v \in S_{G}^{1}(x)$.
Define two operators $A: \Omega \rightarrow \Omega$ by

$$
A x(t)= \begin{cases}0 & \text { if } t \in I \tag{3.2}\\ \left\{-f(0, \phi)+f\left(t, x_{t}\right)\right\} & \text { if } t \in I_{0}\end{cases}
$$

and the multi-valued operator $B: \Omega \rightarrow \mathcal{P}_{f}(\Omega)$ by

$$
B x(t)=\left\{h \in \Omega: h(t)=\left\{\begin{array}{ll}
\phi(t) & \text { if } t \in I_{0} \tag{3.3}\\
\phi(0)+\int_{0}^{t} v(s) d s & \\
+\sum_{0<t_{k}<t} I_{k}\left(x\left(t_{k}^{-}\right)\right) & \text {if } t \in I
\end{array}\right\}\right.
$$

Then $N=A+B$. We shall show that the operators A and B satisfy all the conditions of Theorem 2.2 on J.

Step 1. Since $A x$ is singleton for each $x \in \Omega, A$ has closed, convex values on Ω. Also A has bounded values for bounded sets in X. To show this, let S be a bounded subset of Ω. Then, for any $x \in S$ one has

$$
\|A x\| \leq\|A x-A 0\|+\|A 0\| \leq\|k\|\|x\|+\|A 0\| \leq\|k\| \rho+\|A 0\| .
$$

Hence A is bounded on bounded subsets of Ω.
Step 2. Next we prove that $B x$ is a convex subset of Ω for each $x \in \Omega$. Let $u_{1}, u_{2} \in B x$. Then there exists v_{1} and v_{2} in $S_{G}^{1}(x)$ such that

$$
u_{j}(t)=\phi(0)+\sum_{0<t_{k}<t} I_{k}\left(x\left(t_{k}^{-}\right)\right)+\int_{0}^{t} v_{j}(s) d s, \quad j=1,2 .
$$

Since $G(t, x)$ has convex values, one has for $0 \leq \mu \leq 1$,

$$
\left[\mu v_{1}+(1-\mu) v_{2}\right](t) \in S_{G}^{1}(x)(t) \quad \text { for all } t \in J
$$

As a result we have

$$
\left[\mu u_{1}+(1-\mu) u_{2}\right](t)=\phi(0)+\sum_{0<t_{k}<t} I_{k}\left(x\left(t_{k}^{-}\right)\right)+\int_{0}^{t}\left[\mu v_{1}(s)+(1-\mu) v_{2}(s)\right] d s
$$

Therefore $\left[\mu u_{1}+(1-\mu) u_{2}\right] \in B x$ and consequently $B x$ has convex values in Ω. Thus we have $B: \Omega \rightarrow \mathcal{P}_{\mathrm{cv}}(\Omega)$.

Step 3. We show that A is a contraction on Ω. Let $x, y \in X$. By hypothesis $\left(\mathrm{H}_{1}\right)$

$$
|A x(t)-A y(t)| \leq\left|f\left(t, x_{t}\right)-f\left(t, y_{t}\right)\right| \leq k(t)\left\|x_{t}-y_{t}\right\|_{\mathcal{D}} \leq\|k\|\|x-y\|
$$

Taking supremum over t, we have $\|A x-A y\| \leq\|k\|\|x-y\|$. This shows that A is a multi-valued contraction, since $\|k\|<1$.

Step 4. Now we show that the multi-valued operator B is completely continuous on Ω. First we show that B maps bounded sets into bounded sets in Ω. To see this, let S be a bounded set in Ω. Then there exists a real number $\rho>0$ such that $\|x\| \leq \rho$, for all $x \in S$.

Now for each $u \in B x$, there exists a $v \in S_{G}^{1}(x)$ such that

$$
u(t)=\phi(0)+\sum_{0<t_{k}<t} I_{k}\left(u\left(t_{k}^{-}\right)\right)+\int_{0}^{t} v(s) d s
$$

Then for each $t \in I$,

$$
\begin{aligned}
|u(t)| & \leq|\phi(0)|+\sum_{k=1}^{m} c_{k}+\int_{0}^{t}|v(s)| d s \\
& \leq\|\phi\|_{\mathcal{D}}+\sum_{k=1}^{m} c_{k}+\int_{0}^{t} h_{\rho}(s) d s \leq\|\phi\|_{\mathcal{D}}+\sum_{k=1}^{m} c_{k}+\left\|h_{\rho}\right\|_{L^{1}} .
\end{aligned}
$$

This further implies that

$$
\|u\| \leq\|\phi\|_{\mathcal{D}}+\sum_{k=1}^{m} c_{k}+\left\|h_{\rho}\right\|_{L^{1}}
$$

for all $u \in B x \subset \bigcup B(S)$. Hence $\bigcup B(S)$ is bounded.
Next we show that B maps bounded sets into equi-continuous sets. Let S be, as above, a bounded set and $u \in B x$ for some $x \in S$. Then there exists $v \in S_{G}^{1}(x)$ such that

$$
u(t)=\phi(0)+\sum_{k=1}^{m} I_{k}\left(u\left(t_{k}^{-}\right)\right)+\int_{0}^{t} v(s) d s
$$

Then for any $\tau_{1}, \tau_{2} \in I$ with $\tau_{1} \leq \tau_{2}$ we have

$$
\begin{aligned}
\left|u\left(\tau_{1}\right)-u\left(\tau_{2}\right)\right| & \leq\left|\int_{0}^{\tau_{1}} v(s) d s-\int_{0}^{\tau_{2}} v(s) d s\right|+\sum_{0<t_{k}<\tau_{2}-\tau_{1}}\left|I_{k}\left(x\left(t_{k}^{-}\right)\right)\right| \\
& \leq \int_{\tau_{1}}^{\tau_{2}}|v(s)| d s+\sum_{0<t_{k}<\tau_{2}-\tau_{1}}\left|I_{k}\left(x\left(t_{k}^{-}\right)\right)\right| \\
& \leq \int_{\tau_{1}}^{\tau_{2}} h_{\rho}(s) d s+\sum_{0<t_{k}<\tau_{2}-\tau_{1}}\left|I_{k}\left(x\left(t_{k}^{-}\right)\right)\right| \\
& \leq\left|p\left(\tau_{1}\right)-p\left(\tau_{2}\right)\right|+\sum_{0<t_{k}<\tau_{2}-\tau_{1}}\left|I_{k}\left(x\left(t_{k}^{-}\right)\right)\right|
\end{aligned}
$$

where $p(t)=\int_{0}^{t} h_{\rho}(s) d s$.
If $\tau_{1}, \tau_{2} \in I_{0}$ then $\left|u\left(\tau_{1}\right)-u\left(\tau_{2}\right)\right|=\left|\phi\left(\tau_{1}\right)-\phi\left(\tau_{2}\right)\right|$. For the case where $\tau_{1} \leq 0 \leq \tau_{2}$ we have that

$$
\begin{aligned}
\left|u\left(\tau_{1}\right)-u\left(\tau_{2}\right)\right| & \leq\left|\phi\left(\tau_{1}\right)-\phi(0)-\sum_{0<t_{k}<\tau_{2}} I_{k}\left(x\left(t_{k}^{-}\right)\right)-\int_{0}^{\tau_{2}} v(s) d s\right| \\
& \leq\left|\phi\left(\tau_{1}\right)-\phi(0)\right|+\sum_{0<t_{k}<\tau_{2}}\left|I_{k}\left(x\left(t_{k}^{-}\right)\right)\right|+\int_{0}^{\tau_{2}}|v(s)| d s \\
& \leq\left|\phi\left(\tau_{1}\right)-\phi(0)\right|+\sum_{0<t_{k}<\tau_{2}}\left|I_{k}\left(x\left(t_{k}^{-}\right)\right)\right|+\int_{0}^{\tau_{2}} h_{r}(s) d s \\
& \leq\left|\phi\left(\tau_{1}\right)-\phi(0)\right|+\sum_{0<t_{k}<\tau_{2}}\left|I_{k}\left(x\left(t_{k}^{-}\right)\right)\right|+\left|p\left(\tau_{2}\right)-p(0)\right| .
\end{aligned}
$$

Hence, in all cases, we have

$$
\left|u\left(\tau_{1}\right)-u\left(\tau_{2}\right)\right| \rightarrow 0 \quad \text { as } \tau_{1} \rightarrow \tau_{2}
$$

As a result $\bigcup B(S)$ is an equicontinuous set in Ω. Now an application of ArzeláAscoli theorem yields that the multi B is totally bounded on Ω.

Step 5. Next we prove that B has a closed graph. Let $\left\{x_{n}\right\} \subset \Omega$ be a sequence such that $x_{n} \rightarrow x_{*}$ and let $\left\{y_{n}\right\}$ be a sequence defined by $y_{n} \in B x_{n}$ for each $n \in \mathbb{N}$ such that $y_{n} \rightarrow y_{*}$. We will show that $y_{*} \in B x_{*}$. Since $y_{n} \in B x_{n}$, there exists a $v_{n} \in S_{G}^{1}\left(x_{n}\right)$ such that

$$
y_{n}(t)=\phi(0)+\sum_{0<t_{k}<t} I_{k}\left(y_{n}\left(t_{k}^{-}\right)\right)+\int_{0}^{t} v_{n}(s) d s
$$

Consider the linear and continuous operator $\mathcal{K}: L^{1}\left(J, \mathbb{R}^{n}\right) \rightarrow C\left(J, \mathbb{R}^{n}\right)$ defined by

$$
\mathcal{K} v(t)=\int_{0}^{t} v_{n}(s) d s
$$

Now

$$
\left\|y_{n}(t)-\phi(0)-\sum_{0<t_{k}<t} I_{k}\left(y_{n}\left(t_{k}^{-}\right)\right)-\left(y_{*}(t)-\phi(0)-\sum_{0<t_{k}<t} I_{k}\left(y_{*}\left(t_{k}^{-}\right)\right)\right)\right\| \rightarrow 0,
$$

as $n \rightarrow \infty$. From Lemma 3.5 it follows that $\left(\mathcal{K} \circ S_{G}^{1}\right)$ is a closed graph operator and from the definition of \mathcal{K} one has

$$
y_{n}(t)-\phi(0)-\sum_{0<t_{k}<t} I_{k}\left(y_{n}\left(t_{k}^{-}\right)\right) \in\left(\mathcal{K} \circ S_{F}^{1}\left(y_{n}\right)\right) .
$$

As $x_{n} \rightarrow x_{*}$ and $y_{n} \rightarrow y_{*}$, there is a $v \in S_{G}^{1}\left(x_{*}\right)$ such that

$$
y_{*}(t)=\phi(0)+\sum_{0<t_{k}<t} I_{k}\left(y_{*}\left(t_{k}^{-}\right)\right)+\int_{0}^{t} v_{*}(s) d s
$$

Hence the multi B is an upper semi-continuous operator on Ω.
Step 6 . Finally we show that the set

$$
\mathcal{E}=\{u \in \Omega: \lambda u \in A u+B u \text { for some } \lambda>1\}
$$

is bounded.
Let $u \in \mathcal{E}$ be any element. Then there exists $v \in S_{G}^{1}(u)$ such that
$u(t)=\lambda^{-1}[\phi(0)-f(0, \phi)]+\lambda^{-1} f\left(t, u_{t}\right)+\lambda^{-1} \sum_{0<t_{k}<t} I_{k}\left(u\left(t_{k}^{-}\right)\right)+\lambda^{-1} \int_{0}^{t} v(s) d s$.

Then

$$
\begin{aligned}
|u(t)| \leq & \|\phi\|_{\mathcal{D}}+|\phi(0)-f(0, \phi)|+\left|f\left(t, u_{t}\right)\right|+\sum_{k=1}^{m} c_{k}+\int_{0}^{t}|v(s)| d s \\
\leq & \|\phi\|_{\mathcal{D}}+|\phi(0)-f(0, \phi)|+\left|f\left(t, u_{t}\right)-f(t, 0)\right|+|f(t, 0)| \\
& +\sum_{k=1}^{m} c_{k}+\int_{0}^{t} q(s) \psi\left(\left\|u_{s}\right\|_{\mathcal{D}}\right) d s \\
\leq & \|\phi\|_{\mathcal{D}}+|\phi(0)-f(0, \phi)|+|f(t, 0)|+k(t)\left\|u_{t}\right\|_{\mathcal{D}} \\
& +\sum_{k=1}^{m} c_{k}+\int_{0}^{t} q(s) \psi\left(\left\|u_{s}\right\|_{\mathcal{D}}\right) d s \\
\leq & \|\phi\|_{\mathcal{D}}+|\phi(0)-f(0, \phi)|+\sup _{t \in I}|f(t, 0)|+\|k\|\left\|u_{t}\right\|_{\mathcal{D}} \\
& +\sum_{k=1}^{m} c_{k}+\int_{0}^{t} q(s) \psi\left(\left\|u_{s}\right\|_{\mathcal{D}}\right) d s \\
\leq & F+\|k\|\left\|u_{t}\right\|_{\mathcal{D}}+\sum_{k=1}^{m} c_{k}+\int_{0}^{t} q(s) \psi\left(\left\|u_{s}\right\|_{\mathcal{D}}\right) d s,
\end{aligned}
$$

where $F=\|\phi\|_{\mathcal{D}}+|\phi(0)-f(0, \phi)|+\sup _{t \in I}|f(t, 0)|$.
Put $w(t)=\max \{|u(s)|:-r \leq s \leq t\}, t \in I$. Then $\left\|u_{t}\right\|_{\mathcal{D}} \leq w(t)$ for all $t \in I$ and there is a point $t^{*} \in[-r, t]$ such that $w(t)=u\left(t^{*}\right)$. Hence we have

$$
\begin{aligned}
w(t)=\left|u\left(t^{*}\right)\right| & \leq F+\|k\|\left\|u_{t}\right\|_{\mathcal{D}}+\sum_{k=1}^{m} c_{k}+\int_{0}^{t} q(s) \psi\left(\left\|u_{s}\right\|_{\mathcal{D}}\right) d s \\
& \leq F+\|k\| w(t)+\sum_{k=1}^{m} c_{k}+\int_{0}^{t} q(s) \psi(w(s)) d s
\end{aligned}
$$

or

$$
(1-\|k\|) w(t) \leq F+\sum_{k=1}^{m} c_{k}+\int_{0}^{t} q(s) \psi(w(s)) d s
$$

and

$$
w(t) \leq c_{1}+c_{2} \int_{0}^{t} q(s) \psi(w(s)) d s, \quad t \in I
$$

where

$$
c_{1}=\frac{F+\sum_{k=1}^{m} c_{k}}{1-\|k\|} \quad \text { and } \quad c_{2}=\frac{1}{1-\|k\|} .
$$

Let

$$
m(t)=c_{1}+c_{2} \int_{0}^{t} q(s) \psi(w(s)) d s, \quad t \in I .
$$

Then we have $w(t) \leq m(t)$ for all $t \in I$. Differentiating w.r.t. to t, we obtain

$$
m^{\prime}(t)=c_{2} q(t) \psi(w(t)), \quad \text { a.e. } t \in I, m(0)=c_{1} .
$$

This further implies that

$$
m^{\prime}(t) \leq c_{2} q(t) \psi(m(t)), \quad \text { a.e. } t \in I, m(0)=c_{1}
$$

that is,

$$
\frac{m^{\prime}(t)}{\psi(m(t))} \leq c_{2} q(t) \quad \text { a.e. } t \in J, m(0)=c_{1}
$$

Integrating from 0 to t we get

$$
\int_{0}^{t} \frac{m^{\prime}(s)}{\psi(m(t))} d s \leq \int_{0}^{t} c_{2} q(s) d s
$$

By the change of variable,

$$
\int_{c_{1}}^{m(t)} \frac{d s}{\psi(s)} \leq c_{2}\|q\|_{L^{1}}<\int_{c_{1}}^{\infty} \frac{d s}{\psi(s)}
$$

Hence there exists a constant M such that

$$
w(t) \leq m(t) \leq M \quad \text { for all } t \in I
$$

Now from the definition of w it follows that

$$
\|u\|=\sup _{t \in[-r, a]}|u(t)|=w(a) \leq m(a) \leq M
$$

for all $u \in \mathcal{E}$. This shows that the set \mathcal{E} is bounded in Ω. As a result the conclusion (ii) of Theorem 2.2 does not hold. Hence the conclusion (i) holds and consequently the initial value problem (1.1)-(1.3) has a solution x on J. This completes the proof.

4. Second order impulsive neutral functional differential inclusions

Definition 4.1. A function $x \in Z \cap A C^{1}\left(\left(t_{k}, t_{k+1}\right), \mathbb{R}^{n}\right), k=1, \ldots, m$, is said to be a solution of (1.4)-(1.7) if $x^{\prime}(t)-f\left(t, x_{t}\right)$ is absolutely continuous on $J \backslash\left\{t_{1}, \ldots, t_{m}\right\}$ and (1.4)-(1.7) are satisfied.

Theorem 4.2. Assume that $\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}\right)$ and $\left(\mathrm{H}_{5}\right)$ hold. Moreover, we suppose that:
$\left(\mathrm{B}_{1}\right)$ There exists a function $k \in L^{1}\left(I, \mathbb{R}^{+}\right)$such that

$$
|f(t, x)-f(t, y)| \leq k(t)\|x-y\|_{\mathcal{D}} \quad \text { a.e. } t \in I,
$$

for all $x, y \in \mathcal{D}$ and $\|k\|_{L^{1}}<1$.
$\left(\mathrm{B}_{2}\right)$ There exists a function $p \in L^{1}(I, \mathbb{R})$ with $p(t)>0$ for a.e. $t \in I$ and a nondecreasing function $\psi: \mathbb{R}^{+} \rightarrow(0, \infty)$ such that

$$
\|F(t, u)\|:=\sup \{|v|: v \in F(t, u)\} \leq p(t) \psi\left(\|u\|_{\mathcal{D}}\right)
$$

for almost all $t \in J$ and all $u \in \mathcal{D}$, with

$$
\int_{0}^{T} M(s) d s<\int_{\bar{c}}^{\infty} \frac{d s}{1+s+\psi(s)}
$$

where

$$
\bar{c}=\|\phi\|_{\mathcal{D}}+T|\eta-f(0, \phi)|+\sum_{k=1}^{m}\left[c_{k}+\left(T-t_{k}\right) d_{k}\right]
$$

and

$$
M(t)=\max \left\{k(t), T p(t), \sup _{t \in[0, T]}|f(t, 0)|\right\}
$$

$\left(\mathrm{B}_{3}\right)$ The impulsive functions $\left|\bar{I}_{k}\right|$ are continuous and there exist constants d_{k} such that $\left|\bar{I}_{k}(x)\right| \leq d_{k}, k=1, \ldots, m$ for each $x \in \mathbb{R}^{n}$.
Then the initial value problem (1.4)-(1.7) has at least one solution on $[-r, T]$.
Proof. Transform the problem (1.4)-(1.7) into a fixed point problem. Consider the operator $\bar{N}: \Omega \rightarrow \mathcal{P}(\Omega)$ defined by:
$\bar{N} x(t)=\left\{\begin{array}{ll}\left.\phi \in \Omega: h(t)=\left\{\begin{array}{ll}\phi(t), & t \in I_{0}, \\ \phi(0)+[\eta-f(0, \phi(0))] t+\int_{0}^{t} f\left(s, x_{s}\right) d s & \\ +\int_{0}^{t}(t-s) v(s) d s \\ +\sum_{0<t_{k}<t}\left[I_{k}\left(x\left(t_{k}^{-}\right)\right)+\left(t-t_{k}\right) \bar{I}_{k}\left(x\left(t_{k}^{-}\right)\right)\right], & t \in I,\end{array}\right\}, ~\right\}\end{array}\right\}$
where $v \in S_{G}^{1}(x)$. Define two operators $\bar{A}: \Omega \rightarrow \Omega$ by

$$
\bar{A} x(t)= \begin{cases}0 & \text { if } t \in I_{0} \tag{4.1}\\ \left\{\left[\eta-f(0, \phi] t+\int_{0}^{t} f\left(s, x_{s}\right) d s\right\}\right. & \text { if } t \in I\end{cases}
$$

and the multi-valued operator $\bar{B}: \Omega \rightarrow \mathcal{P}_{f}(\Omega)$ by
(4.2) $\bar{B} x(t)$

$$
=\left\{h \in \Omega: h(t)=\left\{\begin{array}{ll}
\phi(t) & \text { if } t \in I_{0} \\
\phi(0)+\int_{0}^{t}(t-s) v(s) d s & \\
+\sum_{0<t_{k}<t}\left[I_{k}\left(x\left(t_{k}^{-}\right)\right)+\left(t-t_{k}\right) \bar{I}_{k}\left(x\left(t_{k}^{-}\right)\right)\right], & \text {if } t \in I
\end{array}\right\}\right.
$$

Then $\bar{N}=\bar{A}+\bar{B}$. We can prove, as in Theorem 3.6, that the operators \bar{A} and \bar{B} satisfy all the conditions of Theorem 2.2 on J. We omit the details, and we prove only that the set

$$
\mathcal{E}(\bar{N}):=\{x \in \Omega: \lambda x \in \bar{A} x+\bar{B} x, \text { for some } \lambda>1\}
$$

is bounded.

Let $x \in \mathcal{E}(\bar{N})$. Then there exists $v \in S_{G}^{1}(x)$ such that

$$
\begin{aligned}
x(t)= & \lambda^{-1} \phi(0)+\lambda^{-1}[\eta-f(0, \phi(0))] t \\
& +\lambda^{-1} \int_{0}^{t} f\left(s, x_{s}\right) d s+\lambda^{-1} \int_{0}^{t}(t-s) v(s) d s \\
& +\lambda^{-1} \sum_{0<t_{k}<t}\left[I_{k}\left(x\left(t_{k}^{-}\right)\right)+\left(t-t_{k}\right) \bar{I}_{k}\left(x^{\prime}\left(t_{k}^{-}\right)\right)\right] .
\end{aligned}
$$

This implies that, for each $t \in[0, T]$, we have

$$
\begin{align*}
|x(t)| \leq & \|\phi\|_{\mathcal{D}}+T|\eta-f(0, \phi)|+\int_{0}^{t} k(s)\left\|x_{t}\right\|_{\mathcal{D}} d s+\int_{0}^{t} f(s, 0) d s \tag{4.3}\\
& +\int_{0}^{t}(T-s) p(s) \psi\left(\left\|x_{s}\right\|_{\mathcal{D}}\right) d s+\sum_{k=1}^{m}\left[c_{k}+\left(T-t_{k}\right) d_{k}\right]
\end{align*}
$$

We consider the function μ defined by

$$
\mu(t):=\sup \{|x(s)|:-r \leq s \leq t\}, \quad 0 \leq t \leq T
$$

Let $t^{*} \in[-r, t]$ be such that $\mu(t)=\left|x\left(t^{*}\right)\right|$. If $t^{*} \in J$, by the inequality (4.3) we have for $t \in[0, T]$

$$
\begin{align*}
\mu(t) \leq & \|\phi\|_{\mathcal{D}}+T|\eta-f(0, \phi)|+\int_{0}^{t} k(s) \mu(s) d s+\int_{0}^{t} f(s, 0) d s \tag{4.4}\\
& +T \int_{0}^{t} p(s) \psi(\mu(s)) d s+\sum_{k=1}^{m}\left[c_{k}+\left(T-t_{k}\right) d_{k}\right]
\end{align*}
$$

If $t^{*} \in[-r, 0]$ then $\mu(t)=\|\phi\|_{\mathcal{D}}$ and the inequality (4.4) holds. Let us take the right-hand side of inequality (4.4) as $v(t)$. Then we have

$$
\begin{gathered}
\mu(t) \leq v(t), \quad t \in[0, T] \\
v(0):=\bar{c}=\|\phi\|_{\mathcal{D}}+T|\eta-f(0, \phi)|+\sum_{k=1}^{m}\left[c_{k}+(T-s) d_{k}\right],
\end{gathered}
$$

and

$$
v^{\prime}(t)=k(t) \mu(t)+f(t, 0)+T p(t) \psi(\mu(t)), \quad t \in[0, T] .
$$

Using the nondecreasing character of ψ we get

$$
v^{\prime}(t) \leq M(t)[1+v(t)+\psi(v(t))], \quad t \in[0, T] .
$$

This inequality implies for each $t \in[0, T]$ that

$$
\int_{v(0)}^{v(t)} \frac{d \tau}{1+\tau+\psi(\tau)} \leq \int_{0}^{T} M(s) d s<\int_{v(0)}^{\infty} \frac{d \tau}{1+\tau+\psi(\tau)}
$$

This inequality implies that there exists a constant b such that $v(t) \leq b, t \in[0, T]$, and hence $\mu(t) \leq b, t \in[0, T]$. Since for every $t \in[0, T],\left\|y_{t}\right\|_{\mathcal{D}} \leq \mu(t)$, we have

$$
\|x\| \leq \max \left\{\|\phi\|_{\mathcal{D}}, b\right\}
$$

where b depends only on T and on the functions p and ψ. This shows that $\mathcal{E}(\bar{N})$ is bounded.

References

[1] B. C. Dhage, Multi-valued mappings and fixed points I, Nonlinear Funct. Anal. Appl. (to appear).
[2] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific Pub. Co., Singapore, 1989.
[3] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786.

Bapurao C. Dhage
Kasubai, Gurukul Colony
Ahmedpur-413 515, Dist: Latur
Maharashtra, INDIA
E-mail address: bcd20012001@yahoo.co.in
Sotiris K. Ntouyas
Department of Mathematics
University of Ioannina
45110 Ioannina, GREECE
E-mail address: sntouyas@cc.uoi.gr

