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GEODESICS IN CONICAL MANIFOLDS

Marco Ghimenti

Abstract. The aim of this paper is to extend the definition of geodesics
to conical manifolds, defined as submanifolds of Rn with a finite number

of singularities. We look for an approach suitable both for the local ge-
odesic problem and for the calculus of variation in the large. We give

a definition which links the local solutions of the Cauchy problem (1.1)

with variational geodesics, i.e. critical points of the energy functional. We
prove a deformation lemma (Theorem 2.2) which leads us to extend the

Lusternik–Schnirelmann theory to conical manifolds, and to estimate the

number of geodesics (Theorem 3.4 and Corollary 3.5). In Section 4, we
provide some applications in which conical manifolds arise naturally: in

particular, we focus on the brachistochrone problem for a frictionless par-

ticle moving in Sn or in Rn in the presence of a potential U(x) unbounded
from below. We conclude with an appendix in which the main results are

presented in a general framework.

1. Introduction and basic definition

The existence of geodesic is one of most studied problems in the calculus
of variation. In this paper we want to study the presence of geodesics in a par-
ticular kind of manifolds, called conical manifolds, that appears in a natural way
in some optimization problem (see Section 4.1).

We define the following type of topological manifolds.
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Definition 1.1. A conical manifold M is a complete n-dimensional C0 sub-
manifold of Rm which is everywhere smooth, except for a finite set of points V .
A point in V is called vertex.

Usually there are two ways to introduce geodesics in a smooth manifold:

• (Local Cauchy problem) A geodesic is a solution of a suitable Cauchy
problem, i.e. given p ∈ M , v ∈ TpM , we look for a curve γ: [0, ε] → M

such that

(1.1)


Dsγ

′ = 0,

γ(0) = p,

γ′(0) = v.

• (Global Bolza problem) We consider the path space on M :

Ωp,q := {γ ∈ H1([0, 1],M) : γ(0) = p, γ(1) = q},
Ωp := {γ ∈ H1([0, 1],M) : γ(0) = γ(1) = p},

a geodesic is a critical point of the energy functional defined by1

E: Ω → R, E(γ) =
∫ 1

0

|γ′(s)|2 ds.

In conical manifolds the Cauchy problem (1.1) is not well posed, and the
solution is neither unique, nor continuously dependent from the initial data.
The functional approach gives us an easy result on minimal geodesics. However,
this approach is not completely useful: we can not easily define a critical point
of energy different from minimum, because the energy is not a C1 functional.

Furthermore, the usual generalization of the derivative, the weak slope, can-
not be applied to our case, because it requires some conditions on the mani-
folds M which are not satisfied in the case of conical manifolds. The weak slope
was introduced by Marco Degiovanni and Marco Marzocchi in [4] (see also [1]–
[3]). Moreover, we refer to [5], [10] for a weak slope approach to geodesic problem
and to [7] for a detailed comparison with our approach.

We give the following definition of geodesics, that appears to be the most
suitable one for this kind of problem.

Definition 1.2. A path γ ∈ Ω is a geodesic if and only if

(a) the set T = Tγ := {s ∈ (0, 1) : γ(s) = v} is a closed set without internal
part,

(b) Dsγ
′ = 0 for all s ∈ [0, 1] \ T ,

(c) |γ′|2 is constant as a function in L1.

1Hereafter we simply note Ω when we not need to specify the extremal points of paths.
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We note that a geodesic may not be a local minimum for the length func-
tional, for example, we consider a Euclidean cone and a broken geodesic passing
through the vertex. However, this definition allows us to prove the main theorem
of this paper (see Corollary 3.5).

Theorem 1.3. Let M be a conical manifold, p ∈M . Then there are at least
cat Ω geodesics.

We are relating Definition 1.2, which is local, with the topology of the path
space, which is a tool of the calculus of variation in the large; furthermore, this
approach allows us to find also non minimal geodesics.

Unfortunately, it’s not easy to compute cat Ω for conical manifolds. Set

Ω∞
p,q := {γ ∈ C0([0, 1],M) : γ(0) = p, γ(1) = q}.

We know that, for a smooth manifold, there is an homotopy equivalence

(1.2) Ω∞
p,q ' Ωp,q

(for a proof see, for example [8, Theorem 1.2.10]). In general this result is false
for conical manifolds; we show it by an example.

Example 1.4. Let M = {(x, x sin(1/x)), x ∈ R} ⊂ R2. This is an 1-
dimensional conical manifold with vertex O = (0, 0). Let p, q ∈ M be two
opposite points with respect to O: we have that, while Ω∞

p,qis connected, Ωp,q is
not, so the usual homotopy equivalence (1.2) does not hold.

Even if an explicit calculation of cat Ω in general is very difficult, in Sec-
tion 4, we will give a criterion for which (1.2) holds. Moreover, we show some
applications in which conical manifolds appears naturally.

2. Deformation lemmas

We want to prove that our definition of geodesic is compatible with the energy
functional, i.e. if there is no geodesic of energy c, then there is no change of the
topology of functional E at level c. To do that, we prove a deformation lemma
(Theorem 2.2), that is the main result of this section.

Definition 2.1. Given p ∈M we set

Ωb =Ωbp := {γ ∈ Ωp : E(γ) ≤ b},
Ωba =Ωba,p := {γ ∈ Ωp : a ≤ E(γ) ≤ b}.
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Theorem 2.2 (Deformation lemma). Let M be a conical manifold, p ∈M .
Suppose that there exists c ∈ R such that Ωc contains only a finite number of
geodesics. Then if a, b ∈ R, and a < b < c are such that the strip [a, b] contains
only regular values of E, Ωa is a deformation retract of Ωb.

In order to prove this theorem, we must study the structure of Ωc. For the
moment, we consider a special case.

We suppose that M has only a vertex v, and we study the special closed
geodesic γ0 for which there exists an unique σ such that γ0(σ) = v. We set
E(γ0) = c0 and we suppose that there exists a, b ∈ R, c0 < a < b, such that Ωb

contains only the geodesics γ0 (so Ωba contains no geodesics).
At last let us set

L1 =
∫ σ

0

|γ′0|2, L2 =
∫ 1

σ

|γ′0|2.

We identify now two special subsets of Ωba. Let

(2.1) Σ = {γ ∈ Ωba : v ∈ Im γ},

for every γ ∈ Σ it exists a set T such that γ(s) = v if and only if s ∈ T . Let

(2.2) Σ0 = {γ ∈ Σ : Dsγ
′(s) = 0 and |γ′|2 is constant

on every connected component of [0, 1] \ T}.

Indeed, we will see in the proof of the next lemma that, if γ ∈ Σ0, then γ([0, 1]) =
γ0([0, 1]), so Σ0 is the set of the piecewise geodesics that are equivalent to γ0 up
to affine reparametrization.

Lemma 2.3. Σ0 is compact.

Proof. If γ ∈ Σ0, only two situations occur: either there exists a unique
τ such that γ(τ) = v, or there exists [τ1, τ2] such that γ(t) = v if and only if
t ∈ [τ1, τ2]. In fact, if it were two isolated consecutive points s1, s2 ∈ T such that
γ(si) = v, then,we can obtain by reparametrization a geodesic γ1 6= γ0 in Ωb,
that contradicts our assumptions (this proves also that γ([0, 1]) = γ0([0, 1])).

Now take (γn)n ⊂ Σ0. For simplicity we can suppose that there exists a
subsequence such that for all n there exists a unique τn for which γn(τn) = v

(else, definitely, there exists [τ1
n, τ

2
n] such that γn(t) = v if and only if s ∈ [τ1

n, τ
2
n],

but the proof follows in the same way).
If we consider ||γ||H1 = E(γ), then we have a ≤ ||γn|| ≤ b, hence, up to

subsequence, there exists γ such that γn → γ in weak-H1 norm and uniformly.
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Also, we know that for all n there exists τn such that γn(τn) = v and

γn =


γ0

(
σ

τn
s

)
for s ∈ [0, τn],

γ0

(
1− σ

1− τn
s+

σ − τn
1− τn

)
for s ∈ (τn, 1].

It exists 0 < p < 1 such that p ≤ τn ≤ 1− p, in fact

b ≥
∫
|γ′n|2 =

∫ τn

0

|γ′n|2 +
∫ 1

τn

|γ′n|2

=
[
σ

τn

]2 ∫ τn

0

|γ′0|2
(
σ

τn
s

)
+

[
1− σ

1− τn

]2 ∫ 1

τn

|γ′0|2
(

1− σ

1− τn
s+

σ − τn
1− τn

)
ds

=
σ

τn

∫ σ

0

|γ′0|2(s′) ds′ +
1− σ

1− τn

∫ σ

0

|γ′0|2(s′) ds′ =
L2

1

στn
+

L2
2

(1− σ)(1− τn)
,

so

b ≥ L2
1

στn
⇒ τn >

L2
1

σb
,

and

b ≥ L2
2

(1− σ)(1− τn)
⇒ τn < 1− L2

2

b(1− σ)
.

So a subsequence exists such that τn → τ , p ≤ τ ≤ 1− p. Obviously
σ

τn
s→ σ

τ
s,

1− σ

1− τn
s+

σ − τn
1− τn

→ 1− σ

1− τ
s+

σ − τ

1− τ
.

So for almost all s we have

(2.3) γn → γ̃(s) =


γ0

(
σ

τ
s

)
for s ∈ [0, τ ],

γ0

(
1− σ

1− τ
s+

σ − τ

1− τ

)
for s ∈ (τ, 1].

Both γn and γ̃ are continuous, because γ0 is continuous, so the convergence in
(2.3) is uniform; furthermore, γ = γ̃ for the uniqueness of limit.

We have also that

||γn|| =
L2

1

στn
+

L2
2

(1− σ)(1− τn)
→ L2

1

στ
+

L2
2

(1− σ)(1− τ)
= ||γ||,

so γn
H1

−→ γ and a ≤ ||γ|| ≤ b, hence γ ∈ Σ0, that concludes the proof. �

Now we shall prove two technical lemmas which are crucial for this paper.

Lemma 2.4 (Existence of retraction in Σ0). There exist R ⊃ Σ0, ν, t ∈ R+

and a continuous function ηR:R× [0, t] → Ω such that, for all t ∈ [0, t], β ∈ R,

(a) ηR(β, 0) = β,
(b) E(ηR(β, t))− E(β) < −νt.
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Proof. We proceed by steps.
Step 1. At first we want to prove that, for any γ ∈ Σ0, there are t, d, ν ∈ R+,

and a local retraction H:B(γ, d)× [0, t] → Ω such that

• H(β, 0) = β,
• E(H(β, t))− E(β) < −νt,

for all t ∈ [0, t], β ∈ B(γ, d). Furthermore, we will see that d is independent
from γ.

By hypothesis there exists an unique σ ∈ [0, 1] such that γ0(σ) = v. Further-
more, because E(γ0) = c0, we know also that |γ′0|2 = c0 almost everywhere. Let
γ ∈ Σ0, then Im(γ) = Im(γ0). In analogy with Lemma 2.3 we suppose, without
loss of generality, that there exists an unique τ ∈ [0, 1] such that γ(τ) = v, and
both γ′|(0,τ), γ′|(τ,1) are constant, although we cannot say if they are equals. We
can choose a suitable change of parameter ϕ such that γ(ϕ(s)) = γ0(s). By this
way we can construct a flow for γ as follows:

H(γ, t) = γ(ϕt(s)) =


γ

(
τ

a(t)
s

)
for s ∈ [0, a(t)),

γ

(
τ − 1
a(t)− 1

s+
a(t)− τ

a(t)− 1

)
for s ∈ [a(t), 1],

where a(t) = (1− t)τ + tσ. Notice that

γ(ϕ0(s)) = γ(s), γ(ϕ1(s)) = γ0(s)

and
γ(τ) = v = γ(ϕ1(σ)) = γ(ϕt(a(t))).

We recall that l(γ0|(0,σ)) = L1, l(γ0|(σ,1)) = L2: obviously[
L1

σ

]2

=
[
L2

1− σ

]2

= c0.

Furthermore [
∂

∂s
γ(ϕt(s))

]2∣∣∣∣
(0,a(t))

=
[
L1

a(t)

]2

,[
∂

∂s
γ(ϕt(s))

]2∣∣∣∣
(a(t),1)

=
[

L2

1− a(t)

]2

,

then

E(H(γ, t)) =
∫ a(t)

0

L2
1

a(t)2
ds+

∫ 1

a(t)

L2
2

(1− a(t))2
ds

=
L2

1

σ2

σ2

a(t)
+

L2
2

(1− σ)2
(1− σ)2

1− a(t)
= c0

(
σ2

a(t)
+

(1− σ)2

1− a(t)

)
,

so
∂

∂t
E(H(γ, t)) = c0

(
(1− σ)2

(1− a(t))2
− σ2

(a(t))2

)
.
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It is easy to see that, either for σ<τ as for σ>τ , we have ∂E(H(γ, t))/∂t<0,
for all t ∈ [0, 1), as expected. More over, because there is a p > 0 such that
p < τ < 1− p (as shown in the previous lemma), we can find t, ν such that

∂

∂t
E(H(γ, t)) < 2ν for all t ∈ [0, t].

Now we want to extend H in a neighbourhood of γ: it is useful, for finding
that, to work on the whole space H1(I,Rn). As above we consider γ ∈ Ω.

Let Bd = BH
1(I,Rn)(γ, d) ∩ Ω. For all β ∈ Bd we can say

β = γ + (β − γ) = γ + δ, ||δ|| ≤ d.

We can extend H as follows:

H(β, t) = H(γ + δ, t) = γ(ϕt(s)) + δ(ϕt(s)).

Obviously Im(β) = Im(H(β, t)), so H(β, t) ∈ Ω.
We want to show that there exists a d > 0 such that

E(H(β, t))− E(β) < −νt for all β ∈ Bd,

E(H(β, t))− E(β) =
∫
|γ(ϕt(s))′ + δ(ϕt(s))′|2 −

∫
|γ′(s) + δ′(s)|2

=
∫
|γ(ϕt(s))′|2 − |γ′(s)|2 +

∫
|δ(ϕt(s))′|2 − |δ′(s)|2

+
∫
〈γ(ϕt(s))′, δ(ϕt(s))′〉 −

∫
〈γ′(s), δ′(s)〉.

We have already shown that∫
|γ(ϕt(s))′|2 − |γ′(s)|2 < −2νt.

Let

A =
∫ 1

0

|δ(ϕt(s))′|2 ds−
∫ 1

0

|δ(s)′|2 ds,

B =
∫ 1

0

〈γ(ϕt(s))′, δ(ϕt(s))′〉 ds−
∫ 1

0

〈γ′(s), δ′(s)〉 ds.

The term A can be estimate as follows, remembering the definition of ϕt(s):

A =
∫ a(t)

0

∣∣∣∣δ( τ

a(t)
s

)′∣∣∣∣2 +
∫ 1

a(t)

∣∣∣∣δ( τ − 1
a(t)− 1

s+
a(t)− τ

a(t)− 1

)′∣∣∣∣2 − ∫ 1

0

|δ′(s)|2

=
[
τ

a(t)

]2 ∫ a(t)

0

∣∣∣∣δ′( τ

a(t)
s

)∣∣∣∣2
+

[
τ − 1
a(t)− 1

]2 ∫ 1

a(t)

∣∣∣∣δ′( τ − 1
a(t)− 1

s+
a(t)− τ

a(t)− 1

)∣∣∣∣2 − ∫ 1

0

|δ′(s)|2



242 M. Ghimenti

=
τ

a(t)

∫ τ

0

|δ′(s)|2 +
τ − 1
a(t)− 1

∫ 1

τ

|δ′(s)|2 −
∫ 1

0

|δ′(s)|2

=
τ − a(t)
a(t)

∫ τ

0

|δ′(s)|2 +
τ − a(t)
a(t)− 1

∫ 1

τ

|δ′(s)|2

≤ max
[∣∣∣∣τ − a(t)

a(t)

∣∣∣∣, ∣∣∣∣τ − a(t)
a(t)− 1

∣∣∣∣] ∫ 1

0

|δ′(s)|2

≤ |τ − a(t)|max
[

1
a(t)

,
1

a(t)− 1

] ∫ 1

0

|δ′(s)|2 ≤ K||δ||2H1t ≤ Kd2 · t

in fact |τ − a(t)| = |τ − σ|t. Furthermore, K depends only on γ0, because there
exists p > 0 such that τ ∈ [p, 1− p] (as shown in Lemma 2.3).

In the same way we can estimate B:

B =
τ − a(t)
a(t)

∫ τ

0

〈γ′(s), δ′(s)〉+
τ − a(t)
a(t)− 1

∫ 1

τ

〈γ′(s), δ′(s)〉

≤
∣∣∣∣τ − a(t)

a(t)

∣∣∣∣ ∫ τ

0

∣∣∣∣〈γ′(s), δ′(s)〉∣∣∣∣ +
∣∣∣∣τ − a(t)
a(t)− 1

∣∣∣∣ ∫ 1

τ

∣∣∣∣〈γ′(s), δ′(s)〉∣∣∣∣
≤ t|τ − σ|max

[
1
a(t)

,
1

1− a(t)

] ∫ 1

0

〈γ′, δ′〉 ≤ K1d · t,

where, as above, K1 is a constant depending only on γ0.
Now, putting together all the pieces we have

E(H(β, t))− E(β) ≤ −2νt+Kd2t+K1dt < −νt

if d < min(ν/K1,
√
ν/K).

Step 2. We want to prove that, for all ε it exist a 0 < t̃ < t such that

H(B(β, d′), t) ⊂ B(β, (1 + ε)d′)

if B(β, d′) ⊂ B(γ, d), t < t̃. We start proving that, for any β, β1 ∈ B(γ, d),

||H(β, t) −H(β1, t)||2H1 ≤
(

τ

a(t)

)2 ∫ a(t)

0

|β′ − β′1|2
(

τ

a(t)
s

)
ds

+
(

τ − 1
a(t)− 1

)2 ∫ 1

a(t)

|β′ − β′1|2
(
τ − 1
a− 1

s+
a− τ

a− 1

)
ds

=
(

τ

a(t)

) ∫ τ

0

|β′ − β′1|2(r) dr +
(

τ − 1
a(t)− 1

) ∫ 1

τ

|β′ − β′1|2(r) dr

≤ max
(

τ

a(t)
,
τ − 1
a(t)− 1

) ∫ 1

0

|β′ − β′1|2(r) dr ≤M2(t)||β − β1||2H1

for all t, where M(t) is a continuous function such that M(0) = 1.
In particular for all ε > 0 there exists t̃ > 0 such that for t ≤ t̃

d(H(β, t),H(β1, t)) <
(

1 +
ε

2

)
||β − β1||H1 .
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So, if β1 ∈ B(β, d′), for all ε > 0 a t̃ exists such that

d(H(β1, t), β) ≤ d(H(β1, t),H(β, t)) + d(H(β, t), β)

≤
(

1 +
ε

2

)
d′ +

ε

2
d′ ≤ (1 + ε)d′

for all 0 ≤ t ≤ t̃, because H(β, t) is continuous in t. Notice that t̃ is independent
from β1, so we have that, chosen β and d′ such that B(β, d′) ⊂ B(γ, d), then for
every ε > 0 there exists t̃ > 0 such that

(2.4) H(B(β, d′), t) ⊂ B(β, (1 + ε)d′) for all 0 ≤ t ≤ t̃.

Step 3. We have now to compound all these retraction. We follow an idea
shown by Corvellec, Degiovanni and Marzocchi in [2, Theorem 2.8], and we
combine it with the compactness of Σ0.

Take d as in the first step. Then
⋃
γ B(γ, d/4) covers Σ0. By compactness

we can choose

γ1, . . . , γN such that
N⋃
i=1

B

(
γi,

d

4

)
⊃ Σ0.

Set B(γi, d/4) = Bi, R =
⋃
iBi and ν = mini νγi

and Hi = Hγi
. Let

ϑi:H1(I,M) → [0, 1]

a partition of unity referred to Bi.
We want to define a sequence of continuous maps ηh:R × [0, t̃h] → Ω, for

h = 1, . . . , N , defined as follows:

η1(β, t) =

{
H1(β, ϑ1t) for β ∈ B1,

β outside,

ηh(β, t) =

{
Hh(ηh−1(β, t), ϑht) for β ∈ Bh,
ηh−1(β, t) outside.

We want that, for all h,

(1) ηh(β, 0) = β,
(2) E(ηh(β, 0))− E(β) ≤ −νt

∑h
i=1 ϑi,

(3) for all i and all ε there exists t̃h such that

ηh−1(Bi, t) ⊂ B(γi, (1 + ε)h−1d/4) if 0 ≤ t ≤ t̃h.

The proof of the first two conditions is obvious. The last condition, that
assures the good definition of ηh, will be proved by induction on h.
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(a) Case h = 1. If Bi = B1 then η1(β, t) = H1(β, ϑt). Hence there exists t̃
such that, if 0 ≤ t ≤ t̃

d(γ1, η1(β, t)) = d(γ1,H1(β, ϑ1t)) < (1 + ε)
d

4
.

In fact we know that there exists t̃ such that

d(γ1,H1(β, t)) < (1 + ε)
d

4
,

for all 0 ≤ t ≤ t̃, and ϑ1 ≤ 1, so ϑ1t ≤ t ≤ t̃.
If B1 ∩Bi = ∅, then η1(Bi, t) = Bi for all t, so the proof is obvious.
Finally, if B1 ∩ Bi 6= ∅, we know that B(γi, d/4) ⊂ B(γ1, d), so we can say

that η1(Bi, t) = H1(Bi, ϑ1t), hence we can repeat the above deduction. Taking
the minimum of t̃ so found (they are a finite number) we can conclude.

(b) Inductive step. Let ηh−1 be such that, given ε > 0, for all i there exists
a t̃h−1 for which

ηh−1(Bi, t) ⊂ B

(
γi, (1 + ε)h−1 d

4

)
for all 0 ≤ t ≤ t̃h.

At first notice that we can choose ε such that ηh−1(Bh, t) ⊂ B(γn, d), so ηh is
well defined.

Either if Bi = Bh or if Bh ∩Bi = ∅ the proof is obvious.
Let Bh ∩Bi 6= ∅. If β ∈ Bi \Bh then ηh(β, t) = ηh−1(β, t), so

d(γh, ηh(β, t)) < (1 + ε)h−1 d

4
< (1 + ε)h

d

4
.

Otherwise, by inductive step

ηh−1(Bh, t) ⊂ B

(
γh, (1 + ε)h−1 d

4

)
,

and, by (2.4) we have that there exists a t̃ such that

Hh(ηh−1(β, t)) ⊂ B

(
γh, (1 + ε)h

δ

4

)
if β ∈ Bh ∩Bi and 0 ≤ t ≤ t̃, so the proof follows immediately. Because we have
N iterations, we choose ε such that (1 + ε)N < 2, and we define

t = min
h
{tε,h previously found}.

By compactness t > 0.
Set ηR = ηN , so we find a continuous map ηR:R× [0, t] → Ω such that

• ηR(β, 0) = β,
• E(ηt(β, t))− E(β) ≤ −νt

∑N
i=1 ϑi = −νt,

for every β ∈ R, 0 ≤ t ≤ t. �
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Lemma 2.5. For any U ⊃ Σ0 there exist t, ν ∈ R+ and a continuous func-
tional ηU : Ωba \ U × [0, t] → Ωba such that

(a) ηU ( · , 0) = id,
(b) E(ηU (β, t))− E(β) ≤ −νt,

for all t ∈ [0, t], for all β ∈ Ωba \ U .

Proof. We look for a pseudo gradient vector field F , such that, if ηU is a
solution of

(2.5)

{
η̇U (t, γ) = F (γ),

ηU (0, · ) = id,

then there exists ν > 0 such that E(ηU (t, γ))− E(γ) < −νt.
For every S neighbourhood of Σ, we have that −∇E is a good gradient field

on Ωba \S, in fact E is smooth and satisfies the Palais Smale condition outside S,
so, for Ωba \ S does not contain critical points of E, we know that there exists
a ν0 ∈ R+ such that −||∇E||2 < −ν0. By integrating (2.5) with F = −∇E we
have that E(ηU (γ, t))− E(γ) < −ν0t if ηU (γ, t) ⊂ Ωba \ S for all t.

Now let S1 be a neighbourhood of S and let U be a neighbourhood of Σ0:
we look for a pseudo gradient vector field on S1 \U . Although E is non smooth,
we can define dE(γ)[w] for every γ ∈ Σ \ U , and for a suitable choice of w. It is
sufficient to take w vector field along γ with

sptw ⊂ {s : γ(s) 6= v}.

There exists ν1 such that for every γ ∈ Σ \ U we can find wγ for which
dE(γ)[wγ ] < −2ν1. This is possible because we can find a partition 0 = s0 <

. . . < sk = 1 such that γ(si) = v and v /∈ Im γ|(si,si+1). Called γi = γ|(si,si+1) we
can shorten it by a vector field wi along γi, leaving its extremal point fixed, so
we obtain a vector field wγ along γ with

sptwγ ⊂ {s : γ(s) 6= v}, and dE(γ)[wγ ] < −2ν1,

in fact for these variations the (PS) condition for energy holds. Moreover, Σ \U
does not contain any stationary point for these kind of variations.

Without loss of generality suppose now that exists a global chart (V, φ),
0 ∈ V ⊂ Rn such that φ(0) = v. The metric of M , read on V , lead us to
consider a matrix (gij(x))ij whose coefficients are discontinuous at 0; if γ is a
path on V we can compute is energy by taking

E(γ) =
∫
gij(γ)γ′iγ

′
j ds.

For the sake of simplicity we suppose also that gij(x) = g(x)δij(x) where δij
are the coefficient of Euclidean metric. The general case does not present further
difficulties.



246 M. Ghimenti

Now we pass to coordinates (V, φ). Because γ ∈ Ω, if ||γ − γ1||Ω < ε then
there exists C ∈ R+ such that ||γ − γ1||L∞ < Cε by the Sobolev immersion, so
also ||φ(γ)− φ(γ1)||L∞ < Cε.

In coordinates dE(γ)[w] has the following form:

dE(γ)[w] =
∫
g(γ)γ′w′ ds+

∫
〈∇g, w〉|γ′|2 ds,

where w ∈ H1(I, V ). Note that, even if ∇g does not exist everywhere, it is well
defined on sptw.

We have proved that for every γ ∈ Σ \ U exists wγ such that dE(γ)[wγ ] <
−2ν1; obviously we can prove the same for every γ ∈ S1 \ U . Given γ ∈ S1 \ U
and wγ as above, it exists a neighbourhood Vγ of γ such that

dE(γ1)[wγ ] < −ν1 for all γ1 ∈ Vγ .

Let ||γ − γ1||H1 < ε, then∫
g(γ)γ′w′γ −

∫
g(γ1)γ′1w

′
γ ≤

∫
g(γ)(γ′ − γ′1)w

′
γ +

∫
(g(γ)− g(γ1))γ′1w

′
γ

≤ sup
t∈sptwγ

g(γ)||γ′ − γ′1||L2 ||w′||L2

+ sup
t∈sptwγ

[g(γ)− g(γ1)]||γ′1||L2 ||w′||L2 ≤ const. · ε,

in fact g(γ) ∈ C∞(sptwγ), so sup g(γ) is bounded. Furthermore, because

||γ − γ1||L∞ < C · ε, sup[g(γ)− g(γ1)] ≤ C · ε.

In the same way∫
〈∇g(γ), wγ〉|γ′|2 −

∫
〈∇g(γ1), wγ〉|γ′1|2

≤
∫
〈∇g(γ), wγ〉(|γ′|2 − |γ′1|2) +

∫
〈∇g(γ)−∇g(γ1), wγ〉|γ′1|2 ≤ const. · ε.

So dE(γ)[wγ ] − dE(γ1)[wγ ] ≤ C · ε: we can choose a neighbourhood Vγ , for all
γ ∈ S1 \ U , such that

dE(γ1)[wγ ] < −ν1 for all γ1 ∈ Vγ .

The sets Vγ covers the whole S1 \U . Let Vγi
be a locally finite refinement of Vγ .

Let βi be a partition of the unity associated to Vγi
. Then

F1 =
∑

βiwγi

is a pseudo-gradient vector field on S1 \U (for the details of such a construction
see [15]). Now let αj be a partition of the unity associated to S1 \U,Ωba \S, then

F = α1F1 − α2∇E
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is the vector field we looked for, in fact we can find ηU because F is a Lipschitz
vector field by definition. Even if E isn’t smooth, we can differentiate it along
the direction of F , so

E(ηU (γ, t))− E(γ) =
∫ t

0

d

dτ
E(ηU (γ, τ)) dτ

=

t∫
0

dE(ηU (γ, τ))[η̇U (γ, τ)] dτ =
∫ t

0

dE(ηU (γ, τ))[F ].

Let ν = min(ν0, ν1). Then

E(ηU (γ, t))− E(γ) =
∫ t

0

α1 dE(ηU (γ, τ))[F1]− α2||∇E(ηU (γ, τ))||2

=
∫ t

0

α1

∑
βi dE(ηU (γ, τ))[wγi ]− α2||∇E(ηU (γ, τ))||2

≤
∫ t

0

−α1

∑
βiν1 − α2ν0 ≤ −

∫ t

0

ν ≤ −νt. �

From Lemmas 2.4 and 2.5 we get the following result.

Theorem 2.6. Let M be a conical manifold with only a vertex v, and con-
sider the special closed geodesic γ0 for which there exists an unique σ such that
γ0(σ) = v. Set E(γ0) = c0. Suppose that there exist a, b ∈ R, c0 < a < b such
that Ωb contains only the geodesics γ0. Then Ωb ' Ωa.

Proof. Given R as in Lemma 2.4, we choose U and V neighbourhoods of
Σ0 such that

Σ0 ( U ( V ( R.

We know that, for such an U , there exists a retraction ηU defined as in Lemma 2.5.
For the sake of simplicity we will suppose that ηU and ηR (see Lemma 2.4) are
defined for 0 ≤ t ≤ 1 and that ν is the same for both of them.

Let θ1: Ωb → [0, 1] a continuous map such that

θ1|U ≡ 0, θ1|Ωb\V ≡ 1.

Then we define a continuous map

µ1: Ωb × [0, 1] → Ωb, µ1(β, t) = ηU (β, θ1(β)t).

We know that E(µ1(β, t))−E(β) ≤ −νtθ1(β), so µ1(Ωb, 1) ⊂ V ∪Ωb−ν . In fact,
if µ1(β, t) /∈ V for all t, then E(µ1(β, t))− E(β) ≤ −νt, so µ1(β, 1) ∈ Ωb−ν .

By µ1 we have retracted Ωb on Ωb−ν ∪ V . Now we define a continuous map
θ2: Ωb → [0, 1] such that

θ1|Ωb
b−ν/2

≡ 1, θ1|Ωb−ν ≡ 0.
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Then set

µ2:V ∪ Ωb−ν × [0, 1] → Ωb, µ2(β, t) = ηR(β, θ2(β)t);

µ2 is a continuous map that retracts V ∪ Ωb−ν on Ωb−ν/2. By iterating this
algorithm we can retract continuously Ωb on Ωa. �

Now we can prove the deformation lemma.

Proof of Theorem 2.2. Let {γi}i=1,... ,N be the set of geodesics in Ωb.
We start defining some special subset of Ωba, as in (2.1) and (2.2); let

Σ = {γ ∈ Ωba : Im γ ∩ V 6= ∅}

(we recall that V is the set of vertexes); for i = 1, . . . N , set

Σi = {γ ∈ Σ : γ = γi up to affine reparametrization}.

We note that for i 6= j then Σi ∩ Σj = ∅, because the geodesics are different.
For these Σi we can find a retraction ηΣ as in Lemma 2.4: indeed, for every
U ⊃

⋃N
i=0 Σi there exists a retraction ηU on Ωba \U in analogy with Lemma 2.5.

Finally, we compound these two maps ηΣ and ηU following the proof of Theo-
rem 2.6 and we conclude. �

Theorem 2.7 (Second deformation lemma). Let M be a conical manifold,
p ∈ M . Suppose that there exists c ∈ R such that Ωc contains only a finite
number of geodesics and that there exists a, b ∈ R, a < b < c such that the
strip [a, b) contains only regular values of E. Set Z the set of geodesics and
Zb = Z ∩ E−1(b), then there exists a neighbourhood U of Zb such that

Ωb \ U ' Ωa.

Proof. We can prove this corollary following the lines of Theorem 2.2. �

As previously said, Lemma 2.4, which is crucial for this work, is based on
a generalization of [2, Theorem 2.8]. Indeed, using a slight modification of the
weak slope tool, this result and the deformation lemmas can be reformulated in a
more general context. This theoretic frame is briefly discussed in the Appendix.

3. Category theory

First, we recall some well known results relative to the Lusternik and Schni-
relmann category. This theory was presented in [9] in a finite dimensional frame-
work, then generalized to Banach manifold by R. Palais [14].
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Definition 3.1. Let X be a topological space, A ⊂ X. If A 6= ∅ we say
that

catA = catXA = k

if and only if k is the least integer for which there are F1, . . . , Fk closed con-
tractible subsets of X such that

⋃
k Fk covers A. We define also

cat ∅ = catX∅ = 0.

Theorem 3.2. Let X be a topological space. Then:

(a) if A ⊂ B ⊂ X then catXA ≤ catXB,
(b) if A,B ⊂ X then catXA ∪B ≤ catXA+ catXB,
(c) if A,B ⊂ X, A closed, and there is η ∈ C([0, 1]×A,X) such that

B = η(1, A), η(0, u) = u for all u ∈ A,

then catXA ≤ catXB,
(d) if Y is a topological space, y ∈ Y , then catX+Y (A× {y}) + catXA.

Proof. The points (a), (b) and (d) are trivial. We have only to prove (c).
By hypothesis, we can find F1, . . . , Fk such that B ⊂ F1 ∪ . . . ∪ Fk. Set

Ci = {u ∈ A : η(1, u) ∈ Fi}.

Obviously, Ci are closed and contractible. Since C1∪ . . .∪Ck covers A we obtain
the thesis. �

By Theorem 2.7 we are able to reconstruct the category theory for the energy
functional defined on a conical manifold.

Lemma 3.3. Let M be a conical manifold, p ∈M . Suppose that there exists
c ∈ R such that Ωc contains only a finite number of geodesics. Let c < c a critical
level for E. Then, set U a neighbourhood of Zc there exists ε > 0 such that

cat Ωc+ε ≤ cat Ωc−ε + catU.

Proof. We know, by the second deformation lemma, that Ωc−ε is a defor-
mation retract of Ωc+ε \ U : applying Theorem 3.2 we obtain

cat Ωc+ε ≤ cat Ωc+ε \ U + catU ≤ cat Ωc−ε + catU. �

Theorem 3.4. Let M be a conical manifold, let p ∈ M and let a < b ∈ R.
Then Ωba contains at least cat Ωb − cat Ωa geodesics.

Proof. We suppose that there is a finite number of critical levels in [a, b]
(otherwise there is nothing to prove). Set a ≤ c0 < c1 < . . . < ck ≤ b these
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critical levels, and set, for all i, Ui a neighbourhood of Zci
. We know that there

exists an ε such that for all i

(3.1) catΩci+ε ≤ cat Ωci−ε + catUi.

By iterating (3.1), and using the deformation lemma, we obtain

cat Ωck+ε ≤ cat Ωck−ε + catUk ≤ cat Ωck−1+ε + catUk

≤ cat Ωck−2+ε + catUk−1 + catUk ≤ . . . ≤ cat Ωc0−ε +
k∑
i=0

catUi.

Because cat Ωb ≤ cat Ωck+ε and catΩc0−ε ≤ cat Ωa we have that

cat Ωb − cat Ωa ≤
k∑
i=0

catUi.

Suppose now that there are a finite number of geodesics for any critical level.
Because every point has a contractible neighbourhood, we can choose Ui such
that

catUi ≤ #Zci ,

thus
cat Ωb − cat Ωa ≤

∑
i

#Zci
. �

From Theorem 3.4 the main result of this paper follows.

Corollary 3.5. Let M be a conical manifold, p ∈ M . Then there are at
least cat Ω geodesics.

Proof. If there is an infinite number of geodesics, there is nothing to prove.
Otherwise, we can apply the previous theorem and we conclude by a limiting

process. (consider that Ω−1 = ∅ and that Ωb ' Ω for b� 1). �

4. An application

We show a topological lemma necessary to provide some applications.
Let X a smooth submanifold of Rn. Given g ∈ L∞(X,R+), set

E(γ) =
∫ 1

0

g(γ(s))|γ′|2 ds.

We set

G(I,X) = {γ ∈ C0(I,X) : E(γ) is well defined and finite},
G(S1, X) = {γ ∈ C0(S1, X) : E(γ) is well defined and finite}.

Obviously we have that

H1(I,X) ⊂ G(I,X) ⊂ C0(I,X), H1(S1, X) ⊂ G(S1, X) ⊂ C0(S1, X).
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We recall that

Ω = ΩpX = {γ ∈ H1([0, 1], X) : γ(0) = γ(1) = p},
Ω∞ = Ω∞

p X = {γ ∈ C0(S1, X) : γ(0) = γ(1) = p},

as previously defined. We define also the free loop space on X as

Λ = ΛX = {γ ∈ H1(S1, X)},
Λ∞ = Λ∞X = {γ ∈ C0(S1, X)}.

In analogous way we set G (resp. Gp) the subspace of Λ∞ (resp. Ω∞) in which E
is well defined and finite, according with previous definitions. These definitions
allow us to formulate the following lemma.

Lemma 4.1. Let X, g and E( · ) be as above. Then

catGG ≥ catΛ∞Λ∞;(4.1)

catGp
Gp ≥ catΩ∞Ω∞.(4.2)

In particular, if X is a connected and non contractible manifold then

(4.3) catGp = catΩ∞ = ∞.

Proof. We show only (4.1), then (4.2) follows in the same way. Because X
is a smooth manifold, it is well known that there is an homotopic equivalence
between Λ∞ and Λ (see e.g. [8, Theorem 1.2.10]). Then

catΛ∞Λ = catΛ∞Λ∞.

Now, because Λ ⊂ G ⊂ Λ∞, we have catGG ≥ catΛ∞Λ = catΛ∞Λ∞, that proves
(4.2).

Formula (4.3) is a standard result and can be found, for example in [6,
Corollary 1.2] �

By this result we can compute catΩ in some concrete case, as shown in the
next example.

Example 4.2. Let M ⊂ Rn a compact conical manifold, V the set of its
vertexes. Suppose that there exists a compact smooth manifold X ⊂ Rk and an
homeomorphism ψ:M → X such that ψ|M\V

∈ C∞(M \V,X), then there exists
g∗ an induced metric on X defined by

g∗p(v, w) :=

{
gψ−1(p)(dψ−1(v), (dψ−1(w)) on X \ ψ(V ),

0 otherwise.
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If |dψ−1| ∈ L∞(X), we have that g∗ is bounded with respect to the Euclidean
metric of X and that

Ωψ−1(p)(M) = Gp(X) :=
{
γ ∈ C0([0, 1], X) :

∫ 1

0

g∗γ |γ′|2 <∞
}
.

In this case, we can apply Lemma 4.1 to compute the category of based (or free)
loop space of M .

We also state an immersion theorem that is, in some sense, the converse of
previous example.

Theorem 4.3 (Nash immersion for conical manifolds). Let X a smooth man-
ifold and let g a continuous non negative and bounded bilinear tensor such that
there exist V a finite set of points and g is smooth and positive defined on X \V .
Then:

(a) If V = {x}, then, for N sufficiently large, there exists M ⊂ RN a conical
manifold and a continuous map ψ:X → M such that ψ|X\V

is a C∞

isometry.
(b) If V = {x1, . . . , xk}, for every xi it exists ρi > 0 such that B(xi, ρi)

is isometric (in the sense above specified) to some conical manifold
Mi ⊂ RN .

Proof. We start proving (a). By hypothesis, (X \ V, g) is a Riemannian
manifold, so, by Nash theorem [12], it can be embedded in RN , for N sufficiently
large. Let ψ:X \ V →M be this embedding.

We can continuously extend ψ to the whole X. In fact, let {xn}n be a
Cauchy sequence converging to x; because g is bounded, then {ψ(xn)}n is a
Cauchy sequence in RN , so there exists y ∈ RN such that limψ(xn) = y. Set
ψ(x) := y: obviously we have that

ψ(BX(x, ρ)) ⊂ BRN (y, r),

and r
ρ→0−→ 0, so ψ is continuous at x.

Then, set M := ψ(X), we have that M is a conical manifold with vertex y,
isometric to X.

To proof (b), it is sufficient to choose ρi such that B(xi, ρi) are all disjoint.
Then we apply the previous result with X = B(xi, ρi). �

By this result, we formulate a result which will be useful in the next of this
paper.

Theorem 4.4. In the above hypothesis, we have that

number of geodesics in X ≥ catG
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Proof. If X has an unique vertex, it is isometric to a conical manifold M .
Then, by applying Lemma 4.1, we obtain the proof. If the manifoldX has several
vertexes, we are in the case (b) of previous theorem.

Anyway, by the local isometries, we can prove an analogous of deformation
lemma for geodesics in X. Also an analogous of Theorem 3.4 follows. This,
paired with Lemma 4.1 gives us the proof. �

4.1. Brachistochrones. In this section we want to study the brachistocro-
nes problem. A brachistochrone is a curve γ which minimizes the time of transit
for a particle moving from a point p towards a point q. We study this problem
on (Sn, 〈 · , · 〉) an Euclidean sphere embedded in Rn+1. We suppose that the
particle moves in the presence of a potential U :Sn → R without friction. Also,
we are interested to any curve stationary for the time of transit functional.

Be p, q ∈ Sn, E ∈ R+ the energy of the particle, U ∈ C∞(Sn,R) the given
potential. It is well known that, if there exist c1, c2 ∈ R such that

−∞ < c1 < U( · ) < c2 < E,

then this problem is equivalent to the geodesic problem for the Riemannian
manifold (

Sn, g := gx =
〈 · , · 〉

E − U(x)

)
,

and that the metric g is equivalent to the Euclidean metric on Sn, so the problem
has always a solution. Furthermore, it is also well known that a solution exists
even if the upper bound on U(x) does not exists.

In this section we want to study the problem for a given potential

U ∈ C∞(Sn \ V,R)

where V = {x1, . . . xk} a finite set of points on the sphere, and

U(x) x→xi−→ −∞.

As we will see in the next section, potential in Sn with these kind of singularities
may appear from non singular potential defined in Rn.

For the sake of simplicity, we suppose that there exist c > 0 for which E >

c > U( · ). We define a metric on Sn by

g := gx =


〈 · , · 〉

E − U(x)
on Sn \ V,

0 otherwise,
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and we look for gx-geodesics between two given points p, q ∈ Sn. Set, as usual

G(p) =
{
γ ∈ C0([0, 1], Sn) : γ(0) = γ(1) = p,

1
2

∫ 1

0

g(γ′, γ′) <∞
}
,

G(p, q) =
{
γ ∈ C0([0, 1], Sn) : γ(0) = p, γ(1) = q,

1
2

∫ 1

0

g(γ′, γ′) <∞
}
,

we know that g satisfies the hypothesis of Lemma 4.1, so catG(p) = ∞.
It’s easy to prove that there is an homotopy equivalence between G(p) and

G(p, q), in fact, for any given couple of points p, q, there exists a continuous
curve γ which joins them, with E(γ) < ∞ (because g is bounded). Then there
is a map

i:G(p) → G(p, q), β 7→ β + γ,

where β + γ is the usual composition of paths.
Of course there exists the inverse map

i−1:G(p, q) → G(p), β 7→ β + (−γ)

and i−1 ◦ i is homotopic equivalent to 1G(p).
By the above consideration and by Nash theorem we have that

∞ = catG(p) = catG(p, q) = number of geodesics between p and q,

thus we can count the number of brachistochrones on the sphere in presence of
our potential U .

4.2. Brachistocrones in Rn. A more interesting application is the study
of the same brachistochrone problem in Rn (indeed this was the very beginning
of our research). Let U ∈ C∞(Rn,R) and E > 0 such that

• E > U(x),
• −U(x) = O(|x|α) when |x| � 1, for some α > 0.

We are looking for brachistocrones joining two given points p, q ∈ Rn in presence
of potential U(x). As above we look for geodesics in(

Rn, gx :=
〈 · , · 〉

E − U(x)

)
where 1/(E − U(x)) ∈ C∞(Rn,R \ {0}) ∩ L∞(Rn).

We can map Rn in Sn ⊂ Rn + 1 by the stereographic map π. The inverse
map is

π−1 :


Sn \N ⊂ Rn+1 → Rn,

y1
...

yn+1

 7→


x1

...

xn

 =


y1/(1− yn+1)

...

yn/(1− yn+1)

 ,
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where N is the north pole of Sn. As usual we can induce a metric g∗ on Sn

defined by

g∗(y)(v, w) =

{
gπ−1(y)(dπ−1v, dπ−1(w)) on Sn \N,
0 for y = N.

It is easy to see that

|dπ−1| = O

(
1√

1− yn+1

)
,

that, read on Rn, becomes

|dπ−1| = O

(
1
|x|

)
.

So, if α > 2, then g∗ is bounded with respect to the Euclidean metric on Sn,
and we can apply Lemma 4.1.

Furthermore, by Nash embedding, there is an isometry with a compact con-
ical manifold, so we can easily state that there is an infinite number of brachis-
tocrones joining p and q, although we cannot say if they are bounded in Rn, and
so physical meaningful.

5. Appendix. The theoretic frame

As said, our deformation lemmas (Lemma 2.2 and Theorem 2.7) are obtained
modifying a weak slope theory resutlt. In this section we present the k-slope, a
generalization of the weak slope, which allows us to reformulate the main results
of this paper in a more general framework.

We start recalling the definition of weak slope.

Definition 5.1. Let (X, d) be a metric space and let f :X → R be a contin-
uous functional. The weak slope of f at u ∈ X (noted |df |(u)) is the supremum of
σ’s in [0,∞) such that therer exists δ > 0 and H:B(u, δ)× [0, δ] → X continuous
with

d(H(v, t), v) ≤ t,(5.1)

f(H(v, t))− f(v) ≤ −σt,(5.2)

for every v ∈ B(u, δ), t ∈ [0, δ].

Due to (5.1) we can prove a deformation property for continuous functionals
([2, Theorem 2.8]): this inequality allows us to compound the local maps H
finding a global retraction.

Unhappily, these tools are not completely useful for our purposes. In partic-
ular we was not able to prove an estimate like (5.1). In our work we override
these difficulties using the compactness of sets Σi and compounding explicitly
all the local retractions. This method has a generalization that we present here.
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5.1 The k-slope. We define an extension of weak slope which will be called
k-slope.

Definition 5.2. Let (X, d) be a metric space. Let f :X → R be a continuous
functional and let u ∈ X. We define the k-slope of f at u ∈ X (noted |dkf |(u))
as the supremum of σ ∈ [0,∞) such that exist δ > 0, ku: [0, δ] → R+ continuous,
ku(0) = 0, and a continuous map H:B(u, δ)× [0, δ] → X which satisfies

d(H(v, t), v) ≤ ku(t),(5.3)

f(H(v, t))− f(v) ≤ −σt,(5.4)

for all v ∈ B(u, δ), for all t ∈ [0, δ].

In analogy with the weak slope theory we can prove the following property.

Proposition 5.3. If f is continuous, |dkf | is lower semi-continuous.

Proof. If |dkf |(u) = 0 the proof is obvious. Otherwise, for any 0 < σ <

|dkf |(u) there exist δ and H:B(u, δ) × [0, δ] → X as in Definition 5.2. Let
uh → u. Definitively we have uh ∈ B(u, δ/2), so we can take the restriction of
H to B(uh, δ/2)× [0, δ/2], to have |dkf(uh)| ≥ σ. This completes the proof. �

Obviously we say that u ∈ X is a critical point if |dkf |(u) = 0.

5.2. The deformation lemma. We are able now to formulate the wanted
deformation property.

Theorem 5.4. Let (X, d) be a metric space, and f :X → R a continuous
functional. Suppose that σ ∈ R+ exists such that |dkf |(u) ≥ σ for all u ∈ X.
Let C ⊂ X be a compact subspace such that

(5.5) ku(t) ≤ t for all u ∈ X \ C.

Then there exists a τ ∈ R+ and a continuous function µ:X × [0, τ ] → X such
that

µ(u, 0) = u for all u ∈ X,
f(µ(u, t))− f(u) ≤ −σt for all u ∈ X, t ∈ [0, τ ].

Before proving Theorem 5.4, we prove two deformation lemmas for C and
X \ C analogues to Lemmas 2 4 and 2.5. To conclude the proof we will attach
the retractions found.

We recall a topological lemma by John Milnor useful for the next results.
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Lemma 5.5 (Milnor’s lemma). Let {Uα}α∈A be an open cover of a paracom-
pact space X. There is a locally finite open cover Vj,λ refining {Uα} such that
Vj,λ ∩ Vj,µ = ∅ if λ 6= µ.

Proof. For the proof we refer to [13, Lemma 2.4]. Here we report only how
to construct the open cover {Vi,λ}i,λ.

By an initial refinement we can take {Uα} locally finite. Then, let Λj be the
set of (j + 1)-ples λ = {α0, . . . , αj} of elements in A. Let {ϕα}α be a partition
of unity with sptϕα ⊂ Uα. For λ ∈ Λj let

Vj,λ = {x ∈ X : ϕα > 0 if α ∈ λ and ϕγ < ϕα if α ∈ λ, γ /∈ λ},

so we have found our locally finite open cover Vj,λ. �

With this lemma, we prove the deformation results.

Lemma 5.6 (Deformation lemma for C). Let (X, d) be a metric space, and
C ⊂ X be a compact set. Let σ ∈ R+ and let f :X → R be a continuous function
such that

|dkf |(u) > σ for all u ∈ C.
Then there exist C̃ ⊃ C, τ ∈ R+ and η: C̃ × [0, τ ] → X a continuous functional
such that:

(a) η(u, 0) = u for all u ∈ C̃,
(b) f(η(u, t))− f(u) ≤ −σt for all u ∈ C̃, t ∈ [0, τ ].

Proof. We know by hypothesis that |dkf |(u) ≥ σ, so for every u ∈ C there
exist a δu > 0, a continuous map ku: [0, δu] → R+, ku(0) = 0, and a continuous
function

Hu:B(u, δu)× [0, δu] → X

satisfying (5.3) and (5.4). By Milnor’s Lemma we know that the open cover
{B(u, δu/2), u ∈ C} admits a locally finite refinement {Vj,λ : j ∈ N, λ ∈ Λj}
such that

λ 6= µ⇒ Vj,λ ∩ Vj,µ = ∅.
By compactness of C we can suppose that {Vj,λ} be a finite family. In particular
there will be an h0 and a finite number of elements in Λj such that the family
{Vj,λ : j = 1, . . . , h0, λ ∈ Λj} covers the whole C.

Let ϑj,λ:X → [0, 1] be a family of continuous functionals with

sptϑj,λ ⊂ Vj,λ,

h0∑
j=1

∑
λ∈Λj

ϑj,λ(u) = 1.

For every (j, λ) let Vj,λ ⊂ B(uj,λ, δuj,λ
). To simplify the notations set δj,λ =

δuj,λ
, kj,λ = kuj,λ

and Hj,λ = Huj,λ
. Let τ0 be a positive real number such that
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0 < τ0 < min δj,λ, so every kj,λ is well defined on [0, τ0]. Let

k(t) =
∨
j,λ

kj,λ(t);

let τ1 be a positive real number such that

max
t∈[0,τ1]

k(t) ≤ 1
2

min δj,λ
h0

∑
j #Λj

.

Set τ = min{τ0, τ1}.
Now, called C̃ =

⋃
j,λ V j,λ, we want to define a sequence of continuous map

ηh: C̃ × [0, τ ] → X such that

d(ηh(v, t), v) ≤
h∑
j=1

∑
λ∈Λj

k(ϑj,λ(v)t),(5.6)

f(ηh(v, t))− f(v) ≤ −σ
( h∑
j=1

∑
λ∈Λj

ϑj,λ(v)
)
t.(5.7)

First of all we set

η1(v, t) =

{ H1,λ(v, ϑ1,λ(v)t) if v ∈ V 1,λ,

v if v /∈
⋃

λ∈Λ1

V1,λ.

Obviously η1 satisfies (5.6) and (5.7); now we proceed by induction: assume that
we have defined ηh−1 satisfying (5.6) and (5.7). For every v ∈ V h,λ we have

d(ηh−1(v, t), v) ≤
h−1∑
j=1

∑
λ∈Λj

k(ϑj,λt) ≤ (h− 1)
∑
j

#Λj max
t∈[0,τ ]

k(t) ≤ 1
2
δh,λ,

hence ηh−1(v, t) ∈ B(uh,λ, δh,λ), so the map

ηh(v, t) =

{ Hh,λ(ηh−1(v, t), ϑh,λ(v)t) if v ∈ V h,λ,
ηh−1(v, t) if v /∈

⋃
λ∈Λh

Vh,λ,

is well defined and satisfies (5.6) and (5.7). Now we set

η(u, t) = ηh0(u, t),

so we have that η: C̃ × [0, τ ] → X is continuous. Furthermore,

d(η(v, t), v) ≤
h∑
j=1

∑
λ∈Λj

k(ϑj,λ(v)t) ⇒ η(0, v) = v,

f(η(v, t))− f(v) ≤ −σ
( h−1∑
j=1

∑
λ∈Λj

ϑj,λ(v)
)
t = −σt,

that concludes the proof �
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In this lemma we have used the compactness of C to compound the local
retractions without using the property (5.1) of the weak slope. To find a retrac-
tion on X \ C we must suppose that ku(t) ≤ t and proceed as in Degiovanni,
Marzocchi and Corvellec work [2].

Lemma 5.7 (deformation lemma for X \ C). Let (X, d) be a metric space,
σ ∈ R+ and f :X → R be a continuous function such that

|dkf |(u) > σ for all u ∈ X.

Suppose also that there exists a compact set C ⊂ X such that

(5.8) ku(t) ≤ t for all u ∈ X \ C,

where ku is defined as in (5.3). Then exist τ ∈ R+ and η:X \ C × [0, τ ] → X a
continuous functional such that

(a) η(u, 0) = u for all u ∈ X \ C,
(b) f(η(u, t))− f(u) ≤ −σt for all u ∈ X \ C, t ∈ [0, τ ].

Proof. For all details see [2, Theorem 2.8]. We note only that the proof is
quite similar to Lemma 5.6, but for proving that ηh is well defined we must use
the inequality (5.8) to obtain a good estimate of d(ηh−1(v, t), v). �

By Lemmas 5.6 and 5.7 the proof of main theorem follows as usual.

Proof of Theorem 5.4. Let V ⊂ X be such that C ⊂ V ⊂ C̃. We can also
choose V such that B(V, ρ) ⊂ C̃ for some ρ > 0. Set ηC and ηX\C the retraction
found respectively in Lemmas 5.6 and 5.7. For the sake of simplicity we suppose
that they are defined for all t ∈ [0, 1]. Let θ:X → [0, 1] be a continuous map
such that

θ1|C ≡ 0, θ1|X\V ≡ 1,

and let θ2 = 1− θ1. Then we define a continuous map µ1:X × [0, 1]:→ X by

µ1(u, t) =

{
ηX\C(u, θ1(u)t) for u ∈ X \ C,
u otherwise.

We know that

f(µ1(u, t))− f(u) ≤ −σtθ1(u) and d(µ1(u, t), u) ≤ tθ1(u).

Now let

µ2 =

{
ηC(µ1(u, t), θ2(u)t) for u ∈ V,
µ1(u, t) otherwise.

We found that
d(µ1(u, t), u) ≤ θ1(u)t ≤ ρ if t ≤ ρ,

so µ2 is well defined on X × [0, ρ].
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Obviously we have that µ2(u, 0) = 0 for all u ∈ X. Furthermore, if u ∈ X \V
we have that

f(µ2(u, t))− f(u) = f(µ1(u, t))− f(u) ≤ −σt,

and, if u ∈ V , then

f(µ2(u, t))− f(u) = f(ηC(µ1(u, t), θ2(u)t))− f(u)

= f(ηC(µ1(u, t), θ2(u)t))− f(µ1(u, t)) + f(µ1(u, t))− f(u)

≤ − σθ2(u)t− σθ1(u)t = −σt.

So, we set τ = ρ and µ = µ2 and we conclude the proof. �

We provide a final remark: we observe that if there exist a compact set
C ⊂ X, then we are allowed to weaken the standard definition of weak slope.
This improvement is useful only in C, because the compactness allows us to
compound the local retraction explicitly.

In X \ C we must recover condition (5.1) adding the hypothesis (5.5) of
Theorem 5.4: in a non compact set this estimate makes possible a continuous
composition of local retractions.

References

[1] A. Canino and M. Degiovanni, Nonsmooth critical point theory and quasilinear ellip-
tic equations, Topological Methods in Differential Equations and inclusions (Montreal,

PQ, 1994), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 472 (1995), 1–50.

[2] J.-N. Corvellec, M. Degiovanni and M. Marzocchi, Deformation proprieties for

continuous functionals and critical point theory, Topol. Methods Nonlinear Anal. 1
(1993), 151–171.

[3] M. Degiovanni, Nonsmooth critical point theory and applications, Proceedings of the
Second World Congress of Nonlinear Analysts, Part 1 (Athens, 1996), vol. 30, 1997,

pp. 89–99.

[4] M. Degiovanni and M. Marzocchi, A critical point theory for nonsmooth functionals,

Ann. Mat. Pura Appl. (4) 167 (1994), 73–100.

[5] M. Degiovanni and L. Morbini, Closed geodesics with Lipschitz obstacle, J. Math.

Anal. Appl. 233 (1999), 767–789.

[6] E. R. Fadell and S. Y. Husseini, Category of loop spaces of open subsets in Euclidean

space, Nonlinear Anal. 17 (1991), 1153–1161.

[7] M. G. Ghimenti, Geodesics in conical manifolds, Phd thesis (2004), Università degli
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variationnels, Hermann, Paris, 1934.

[10] M. Marzocchi and L. Morbini, Periodic solutions of Lagrangian systems with Lip-
schitz obstacle, Nonlinear Anal. 49 (2002), 177–195.



Geodesics in Conical Manifolds 261

[11] A Marino and D. Scolozzi, Geodetiche con obstacolo, Boll. Un. Mat. Ital. B (6) 2

(1983), 1–31. (Italian)

[12] J. Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. (2) 63

(1956), 20–63.

[13] R. S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966),

1–16.

[14] , Lusternik–Schnirelman theory on Banach manifolds, Topology 5 (1966), 115–

132.

[15] P. H. Rabinowitz, Variational methods for nonlinear eigenvalue problems, Eigenval-

ues of Non-Linear Problems (G. Prodi, ed.), Centro Internazionale Matematico Estivo
(C.I.M.E.), Edizioni Cremonese, Roma, 1974.

Manuscript received November 15, 2004

Marco Ghimenti

Dipartimento di Matematica

Università di Pisa
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