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OF ANALYTIC GRADIENT VECTOR FIELDS

ON ANALYTIC MANIFOLDS
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Abstract. Let f : M → R be an analytic proper function defined in a

neighbourhood of a closed “regular” (for instance semi-analytic or sub-

analytic) set P ⊂ f−1(y). We show that the set of non-trivial trajectories

of the equation ẋ = ∇f(x) attracted by P has the same Čech–Alexander

cohomology groups as Ω ∩ {f < y}, where Ω is an appropriately choosen
neighbourhood of P . There are also given necessary conditions for existence

of a trajectory joining two closed “regular” subsets of M .

Let f :M → R be a function of class C1 on a riemannian manifold M . We
can associate with f the gradient vector field ∇f on M . For any subset P ⊂M
one may ask what is the topology of the family of non-trivial trajectories of ∇f
that tend to P .

In the case where P is an isolated invariant set, one may apply the result
obtained by R. Churchill [2] who used the Conley index [3] so as to describe the
Čech–Alexander cohomologies of that family. Since the Conley index is defined
only for isolated invariant sets, one cannot apply Churchill’s results if P is not
isolated in the set of critical points of f .
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In this paper we propose a different approach to the problem, which may be
applied in the case whereM is an analytic manifold, f is an analytic proper func-
tion and P is a compact “regular” (for instance semi-analytic or sub-analytic)
subset of f−1(y) for some critical value y.
There exists such open Ω ⊃ P , that for any open T ⊃ P there is an open

Ω′ ⊃ P such that Ω′ ⊂ T and the inclusion Ω′ ∩ {f < y} ⊂ Ω ∩ {f < y} is
a homotopy equivalence.
The main result of the paper (Theorem 2.25) says that the Čech–Alexander

cohomology groups of the family of non-trivial trajectories tending to P are
isomorphic to the cohomologies of Ω ∩ {f < y}. In the case where P is a point
this result has been already presented in [17].
We shall also give necessary conditions for existence of a trajectory joining

two subsets P1 ⊂ f−1(y1) and P2 ⊂ f−1(y2) in the case where the interval
(y1, y2) consists of regular values of f .
The proof requires advanced techniques of analytic geometry. The main tool

is the Łojasiewicz inequality. In order to get result for a large class of “regular”
subsets ofM , in Section 1 we recall the notion of an analytic-geometric category,
which was introduced by L. van den Dries and C. Miller [6]. (Semi-analytic and
sub-analytic sets belong to any analytic-geometric category.)
In Section 2 we prove basic technical facts. Section 3 is devoted to the proof

of the main Theorem 2.25. In Section 4 we give necessary conditions for existence
of a trajectory joining P1 and P2.
References [1], [4], [5], [7], [9]–[11], [13], [15], [16], [18]–[20] present some

important results on geometric and topological properties of gradient vector
fields.

1. Analytic–geometric categories

An analytic–geometric category is an extension of the category of sub-analy-
tic sets which has these sets among its object. The notion of analytic–geometric
category has been introduced by L. van den Dries and C. Miller [6]. In this
section we present some of their results. In exposition and notation we follow
closely [6].
Throughout this paper, each manifold is assumed to be Haussdorff, with a

countable basis for its topology and of the same (finite) dimension at all of its
points. Also, “manifold” will mean “real analytic manifold” unless otherwise
specified.

Definition 1.1. We say that an analytic–geometric category C is given if
each manifold M is equipped with a collection C(M) of subsets of M such that
the following conditions are satisfied for all manifolds M and N .

(AG1) C(M) is a boolean algebra of subsets of M , with M ∈ C(M).
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(AG2) If A ∈ C(M), then A× R ∈ C(M × R).
(AG3) If f :M → N is a proper analytic map and A ∈ C(M) then f(A) ∈ C(N).
(AG4) If A ⊂M and (Ui)i∈I is an open covering of M , then A ∈ C(M) if and

only if A ∩ Ui ∈ C(Ui) for all i ∈ I.
(AG5) Every bounded set in C(R) has finite boundary.

Definition 1.2. If A ∈ C(M), B ∈ C(N) then a continuous map f :A→ B

is called a C-map if its graph belongs to C(M ×N).

Below we list some basic properties of a fixed analytic–geometric category C.
Let M , N be manifolds, and let A ∈ C(M), B ∈ C(N).

(A1) All sub-analytic subsets of a manifold are C-sets in that manifold.
(A2) Every analytic map f :M → N is a C-map.
(A3) Given an open covering (Ui)i∈I of M , a map f :A → N is a C-map if

and only if each restriction f |Ui∩A:Ui ∩A→ N is a C-map.
(A4) A × B ∈ C(M ×N), and the projections A × B → A and A × B → B

are C-maps.
(A5) If f :A→ N is a proper C-map and X ⊂ A is a C-set, then f(X) ∈ C(N).
(A6) If A is closed in M and f :A→ N is a C-map, then f−1(B) ∈ C(M).
(A7) If B1, . . . , Bk are C-sets (in possibly different manifolds), then a map

f = (f1, . . . , fk):A→ B1 × . . .×Bk

is a C-map if and only if each fi:A→ Bi is a C-map.
(A8) If f, g:A → R are C-maps, then f ± g, f · g are C-maps. If g 6= 0 on A

then f/g is a C-map.
(A9) If A is a C1 submanifold ofM and f :A→ R is a C-map of class C1 then

d f : TA→ TR, where TA denotes the tangent bundle, is a C-map.
(A10) There exists a locally finite Whithey stratification S ⊂ C(M) with con-

nected, relatively compact strata such that A =
⋃
X∈S X. Moreover,

cl(A), int(A), fr(A) = cl(A) \A ∈ C(M), and dim fr(A) < dimA.
(A11) If x ∈ fr(A), then there is a C-map γ: [0, 1) → M of class C1 such that

γ((0, 1)) ⊂ A and γ(0) = x.
(A12) Assume that A is closed. Let f :A→ N be a proper C-map and FM ⊂

C(M), FN ⊂ C(N) be locally finite families. Then there is a locally finite
C1 Whitney stratification (S, T ) of f with connected strata such that
S ⊂ C(M) is compatible with FM (i.e. for all X1 ∈ S and X2 ∈ FM ,
either X1 ∩ X2 = ∅ or X1 ⊂ X2) and T ⊂ C(N) is compatible with
FN . According to the Thom Isotopy Lemma, for any X ∈ FM and
Y ∈ T the map f :X ∩ f−1(Y )→ Y is a trivial fibration. In particular,
f : f−1(Y )→ Y is a trivial fibration too.
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(A13) If A is closed, then there is a C-map p:M → R of class C1 with A =
Z(p) := {x ∈ M | p(x) = 0}. (This result generalizes the theorem
proved by Bierstone, Milman and Pawłucki, in an unpublished paper,
for the sub-analytic category.)

(A14) IfX ∈ C(Rn) is compact and f, g:X → R are C-maps with Z(f) ⊂ Z(g),
then there exists an odd, strictly increasing bijection ψ:R → R which
is a C-map of class C1 such that |ψ(g(x))| ≤ |f(x)| for all x ∈ X.

(A15) There exists an o-minimal structure G on R such that all bounded C-sets
in Rn belong to G.

(A16) Let f : (a, b) → R be a C-map. Then there are a0, a1, . . . , ak+1 with
a = a0 < a1 < . . . < ak < ak+1 = b such that f |(ai, ai+1) is C1, and
either constant or strictly monotone, for i = 0, . . . , k.

2. Preliminaries

Assume that an analytic–geometric category C is fixed. Let M be a real
analytic connected manifold. We shall assume that M is equipped with an
analytic riemannian metric. If v, w ∈ TxM then denote by 〈v, w〉 the scalar
product of v and w, and put ‖v‖ = 〈v, v〉1/2.
If h:M → R is a differentiable function then we will denote by dh its dif-

ferential and by ∇h the gradient with respect to the riemannian metric, i.e. for
every x ∈M and v ∈ TxM , dh(x)(v) = 〈∇h(x), v〉.
Let f, p:M → R be C-maps such that

(a) f is an analytic function,
(b) p is proper, non-negative of class C1,
(c) Z(p) ⊂ Z(f).

The last condition implies that p > 0 on M \ Z(f).

Lemma 2.1. The set of critical values of p is discrete.

Proof. By (A12), there exists a locally finite C1-Whitney stratification
(S, T ) of p with connected strata. T is a stratification of R, so there exists
a sequence . . . < yi < yi+1 < . . . (−∞ < i < ∞) such that each element of T
equals either {yi} or (yi, yi+1).
Assume that x ∈ p−1((yi, yi+1)). One may find X ∈ S with x ∈ X. Since

p:X → (yi, yi+1) is a submersion, x is a regular point of p|X , as well as p, which
shows that every interval (yi, yi+1) consists of regular values of p. �

If r > 0 is a regular value of p then S(r) = p−1(r) ∈ C(M) is a compact
C1-manifold. Using (A9) and similar arguments as in the above lemma one may
show that the set of critical values of f |S(r) is finite.
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For a fixed y0 > 0, denote U0 = f−1((−y0, 0)). The set {x ∈ U0 | d p(x) ∧
d f(x) = 0} belongs to C(M). (Locally it is given by inequality −y0 < f < 0
and equations Di pDj f −Dj pDi f = 0. By (A9) Di p, Dj f are C-maps.)
Since p is proper, by (A5) the set

Σ = {(p(x), f(x)) | x ∈ U0 and d p(x) ∧ d f(x) = 0} ⊂ R2

belongs to C(R2). If (r, y) ∈ Σ and r > 0 is sufficiently small then r is a regular
value of p and y is a critical value of f |S(r), and so Σ ∩ {r} × R is finite. Since
p is positive on U0, Σ is a closed 1-dimensional C(R2)-set near the origin. Put
∆ = cl(Σ).
Since f < 0 on U0, Σ ∩ R × {0} = ∅ and then the origin is isolated in

∆∩R×{0}. Since Z(p) ⊂ Z(f), Σ∩{0}×R = ∅ and then the origin is isolated
in ∆ ∩ {0} × R. By (A10), in a neighbourhood of the origin, ∆ = Σ ∪ {(0, 0)}
is an union of a finite family of curves belonging to C(M), and Σ ⊂ R × R−.
From (A15), we may assume that ∆ belongs to G, and then it admits a cell
decomposition [6, p. 509]. In particular, there is a C-map y1: [0, ε]→ R such that
for every (r, y) ∈ ∆, 0 ≤ r ≤ ε, we have y ≤ y1(r), y1(0) = 0, and y1(r) < 0
on (0, ε]. According to (A16), we may assume that y1 is strictly decreasing.
The function y2(r) = r, 0 ≤ r ≤ ε, is a C-map, and Z(y1) = Z(y2) = {0}.
From (A14), there exists an odd, strictly increasing bijection ψ:R→ R which is
a C-map of class C1 such that 2|ψ(y2(r))| = 2ψ(r) ≤ |y1(r)| for 0 ≤ r ≤ ε. Then

2ψ(r) ≤ |y|

for all (r, y) ∈ ∆ sufficiently close to the origin. (Notice that r ≥ 0 for every
(r, y) ∈ ∆.) In other words, for any x ∈ U0 with p(x) close to zero, if d p(x) ∧
d f(x) = 0 then

(2.1) f(x) ≤ −2ψ(p(x)).

Lemma 2.2. Let N be a positive integer. Put g(x) = f(x)+ψ(p(x))N . Then
d g(x) does not vanish at any x ∈ U0 with p(x) sufficiently close to zero.

Proof. Suppose, contrary to our claim, that

Z(p) ∩ cl({x ∈ U0 | d g(x) = 0})

is not empty. It is an C(M)-set, and then there exists an injective C-map
γ: [0, 1) → M of class C1 such that γ(0) ∈ Z(p) and p(γ(t)) 6= 0, d g(γ(t)) = 0
for t ∈ (0, 1). Since Z(p) ⊂ Z(f) and ψ(0) = 0, g(γ(0)) = 0 and then g ◦ γ = 0.
Hence f = −(ψ ◦ p)N ≥ −ψ ◦ p and 0 = d g ∧ d p = d f ∧ d p along γ, which

contradicts (2.1). �

For a fixed positive integer N denote V = Z(g) = {x ∈ M | f(x) =
−ψ(p(x))N}. Since p ≥ 0, V ⊂ {f ≤ 0}.
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Lemma 2.3. Suppose that there are constants c > 0, 0 < ρ < 1, such that
‖∇f(x)‖ ≥ c|f(x)|ρ for x ∈ U0 with p(x) small enough. Take a positive integer
N such that Nρ < N − 1. If x ∈ V \ Z(f) and p(x) is sufficiently close to
zero then the scalar product 〈∇f(x),∇g(x)〉 is positive. In particular ∇g(x) 6= 0,
which implies that V \ Z(f) is a C1-hypersurface in a neighbourhood of Z(p).

Proof. For all x with p(x) close to zero we have

‖∇((ψ ◦ p)N )(x)‖ = N |ψ(p(x))|N−1|ψ′(p(x))| · ‖∇p(x)‖ ≤ CN |ψ(p(x))|N−1

(CN > 0). If x ∈ V ∩U0 then p(x) > 0 and ψ(p(x)) > 0. If p(x) is small enough
then

‖∇f(x)‖ ≥ c|f(x)|ρ = c|ψ(p(x))|Nρ > CN |ψ(p(x))|N−1 ≥ ‖∇((ψ ◦ p)N )(x)‖.

Hence

〈∇f(x),∇g(x)〉 ≥ ‖∇f(x)‖2 − ‖∇f(x)‖ · ‖∇((ψ ◦ p)N )(x)‖ > 0. �

From now on we shall suppose that f and N satisfy the assumptions of
Lemma 2.3. Denote

H = {g ≤ 0} = {x ∈M | f(x) ≤ −ψ(p(x))N}.

Corollary 2.4. If x ∈ V \ Z(f) and p(x) is sufficiently close to zero then
∇f(x) is transversal to V and points outside H.

Lemma 2.5. Assume that A,B ∈ C(M), A is closed, and h1, h2:M → R are
C-maps such that each hi|A is non-negative, proper and Z(h1)∩A = Z(h2)∩A.
If r > 0 is small enough then sets

L(r, hi, A ∩B) = {x ∈ A ∩B | hi(x) = r},
M(r, hi, A ∩B) = {x ∈ A ∩B | 0 < hi(x) ≤ r},

where i = 1, 2, are homotopy equivalent. Moreover, for any r > 0 there is y > 0
with M(y, h2, A ∩ B) ⊂ M(r, h1, A ∩ B), and for any y > 0 there is r > 0 with
M(r, h1, A ∩B) ⊂M(y, h2, A ∩B).

Proof. Denote Mi(r) = M(r, hi, A ∩ B). Proper C-maps on a closed set
A admit a Whitney stratification compatible with any locally finite family of
subsets of C(M), in particular with A ∩ B ∩ Z(hi), A ∩ B ∩ {hi > 0}, i = 1, 2.
Hence, from (A12), there is r0 > 0 such that hi:Mi(r0) → (0, r0] is a trivial
fibration. Since Z(h1) ∩ A = Z(h2) ∩ A, there are 0 < r3 < r2 < r1 < r0 such
that

M2(r3) ⊂M1(r2) ⊂M2(r1) ⊂M1(r0).
Inclusions M2(r3) ⊂ M2(r1) and M1(r2) ⊂ M1(r0) are homotopy equivalences,
and so the inclusion M1(r2) ⊂M2(r1) is a homotopy equivalence.
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Now it is enough to observe that inclusions L(r, hi, A ∩ B) ⊂ Mi(r) are
homotopy equivalences for 0 < r ≤ r0. �

Denote

L(r) =S(r) ∩ {x ∈M | f(x) < 0},
L′(r) =S(r) ∩H = S(r) ∩ {x ∈M | f(x) ≤ −ψ(p(x))N},
M(r) = {x ∈M | 0 < p(x) ≤ r, f(x) < 0},
M ′(r) = {x ∈M | 0 < p(x) ≤ r, f(x) ≤ −ψ(p(x))N}.

By (A6), the sets defined above belong to C(M) for every r. From Lemma 2.5, if
r > 0 is small enough then the inclusion L(r) ⊂M(r) is a homotopy equivalence.
Applying the same arguments one may prove that for each positive integer N , if
r > 0 is small enough then L′(r) ⊂M ′(r) is a homotopy equivalence.

Lemma 2.6. If r > 0 is small enough then L(r), L′(r), M(r), and M ′(r)
are homotopy equivalent.

Proof. Since ψ is continuous and ψ(0) = 0, 2ψ(r) > ψ(r)N if r > 0 is
small enough. By (2.1), for any negative critical value y of f |S(r), y ≤ −2ψ(r) <
−ψ(r)N . Hence f has no critical points in {x ∈ S(r) | −ψ(r)N ≤ f(x) < 0}, and
then L′(r) = {x ∈ S(r) | f(x) ≤ −ψ(r)N} is a deformation retract of L(r). �

For y > 0 denote

F (y) = H ∩ f−1(−y) = {x ∈M | f(x) ≤ −ψ(p(x))N , f(x) = −y}.

Lemma 2.7. Z(p) ∩ H = Z(f) ∩ H = Z(p). If r, y > 0 are small enough
then F (y), L′(r), L(r), and M(r) are homotopy equivalent.

Proof. H belongs to C(M). Since p is proper and non-negative, ψ(p(x))N |H
is proper non-negative. Of course, f ≤ 0 on H. For any a > 0,

{x ∈ H | −a ≤ f(x)} ⊂ {x ∈ H | −a ≤ −ψ(p(x))N ≤ 0}.

The last set is compact, and then {x ∈ H | −a ≤ f(x) ≤ a} is compact too.
Hence (−f)|H is proper, non-negative.
Since Z(p) ⊂ Z(f), Z(p) ∩ H = Z(p) = Z(−f) ∩ H. Using notation intro-

duced in Lemma 2.5,

L′(r) = L(r, p,H), F (y) = L(y,−f,H).

Hence, if r, y > 0 are small enough then L′(r) and F (y) are homotopy equivalent.
Now it is enough to apply Lemma 2.6. �

Denote H(y) = {x ∈ H | f(x) ≥ −y} nd W (r) = {x ∈ H | p(x) ≤ r}. Then

F (y) = H(y) ∩ f−1(−y), L′(r) =W (r) ∩ p−1(r) =W (r) ∩ S(r).
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Applying the same arguments as in the proof of Lemma 2.5, one may show

Corollry 2.8. For any r > 0 there exists y > 0 such that F (y) ⊂ H(y) ⊂
W (r). For any y > 0 there exits r > 0 such that L′(r) ⊂W (r) ⊂ H(y).

Corollary 2.9. For any r > 0 there exists y > 0 and 0 < r1 < r such that
f < −y on L′(r) and f > −y on L′(r1).

Lemma 2.10. Let Ω be an open neighbourhood of Z(p) such that for any
neighbourhood T ⊂ Ω there is a neighbourhood Ω′ ⊂ T such that the inclusion
Ω′ ∩ {f < 0} ⊂ Ω ∩ {f < 0} is a homotopy equivalence. Denote

D(r) = {x ∈M | p(x) ≤ r}.

If r > 0 is small enough then the inclusion

M(r) = D(r) ∩ {f < 0} ⊂ Ω ∩ {f < 0}

is a homotopy equivalence.

Proof. Since p is a proper C-map and Z(p) ∩ {f < 0} = ∅, there is r0 > 0
such that D(r0) ⊂ Ω and p:D(r0) ∩ {f < 0} → (0, r0] is a topologically trivial
fibration.

Take 0 < r ≤ r0. There exists an open neighbourhood Ω′ of Z(p) such that
Ω′ ⊂ D(r) and Ω′ ∩ {f < 0} ⊂ Ω ∩ {f < 0} is a homotopy equivalence. There
exists r′ < r such that D(r′) ⊂ Ω′. Since D(r′) ∩ {f < 0} ⊂ D(r) ∩ {f < 0} is a
homotopy equivalence and

D(r′) ∩ {f < 0} ⊂ Ω′ ∩ {f < 0} ⊂ D(r) ∩ {f < 0} ⊂ Ω ∩ {f < 0},

the inclusionM(r) = D(r)∩{f < 0} ⊂ Ω∩{f < 0} is a homotopy equivalence.�

Note that there exists Ω satisfying the above lemma. It is enough to take
Ω = int(D(r)), for r > 0 small enough. From Lemmas 2.7 and 2.10 we get

Corollary 2.11. Let Ω be an open neighbourhood of Z(p) such that for any
neighbourhood T ⊂ Ω there is a neighbourhood Ω′ ⊂ T such that the inclusion
Ω′ ∩ {f < 0} ⊂ Ω ∩ {f < 0} is a homotopy equivalence. Then if y > 0 is small
enough then the inclusion F (y) ⊂ Ω ∩ {f < 0} is a homotopy equivalence.

Denote V (y) = {x ∈ V | f(x) ≥ −y}.

Proposition 2.12. For any y > 0 there exists r > 0 such that V ∩D(r) ⊂
V (y), and for any r > 0 there exists y > 0 such that V (y) ⊂ V ∩ D(r). In
particular, V ∩Z(f) = V ∩Z(p). If y > 0 is small enough then f :V (y)\Z(p)→
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[−y, 0) is a topologically trivial fibration, and V (y) \Z(p) is either void or a C1-
hypersurface.

Proof. V is a closed C(M)-set. Since ψ:R → R is an odd continuous
bijection and p is proper, −f = (ψ ◦ p)N :V → R is a proper C-map, which
implies the first part of the proposition.
By (A12), there is a sequence . . . < yi < yi+1 < . . . (−∞ < i < ∞) such

that f :V ∩ f−1((yi, yi+1))→ (yi, yi+1) is a topologically trivial fibration. Then
it is enough to take y > 0 and i such that (−2y, 0) ⊂ (yi, yi+1). The last part of
the Proposition is a consequence of Lemma 2.3. �

Let f :M → R be a proper analytic function. There are positive con-
stants c, y0 and 0 < ρ < 1 such that the Łojasiewicz inequality holds on
U0 = f−1((−y0, 0)), i.e. ‖∇f(x)‖ ≥ c|f(x)|ρ for x ∈ U0 [14], [15]. (Kurdyka
and Parusiński [12] proved that the inequality also holds if f is a continuous
subanalytic function.)

Corollary 2.13. ∇f 6= 0 on U0.

If x ∈ U0 then denote by φ(t, x), where a(x) < t < b(x), the maximal solution
in U0 of the differential equation ẋ = ∇f/‖∇f‖ with φ(0, x) = x. Then f ◦φ(t, x)
is increasing, d/dt[f ◦ φ] = 1, and

lim
t→a(x)

f ◦ φ(t, x) = −y0, lim
t→b(x)

f ◦ φ(t, x) = 0.

Of course, trajectories of ẋ = ∇f/‖∇f‖ are the same as trajectories of ẋ = ∇f
in U0.
If x1, x2 ∈ U0 belong to the same trajectory, let `(x1, x2) denote the lenght

of the trajectory between x1 and x2. Using the same arguments as in [11, p. 765]
one may prove

Lemma 2.14. `(x1, x2) ≤ c0||f(x1)|1−ρ−|f(x2)|1−ρ|, where c0 = [c(1−ρ)]−1.

Hence the lenght of each trajectory is bounded by c0|y0|1−ρ, and then the
limit ω(x) = limt→b(x) φ(t, x) does exist, ω(x) ∈ Z(f), and

`(x, ω(x)) = lim
t→b(x)

`(x, φ(t, x)) ≤ c0|f(x)|1−ρ.

For x, y ∈ M let d(x, y) denote the distance in M defined as the infimum
of the lenght of all continuous picewise C1-curves in M from x to y. For any
A ⊂M , let d(x,A) = infy∈A d(x, y).
Of course, d(x, ω(x)) ≤ `(x, ω(x)). For x ∈ Z(f) put ω(x) = x. Then

ω:U0 ∪ Z(f) = f−1((−y0, 0]) → Z(f) is a continuous retraction by a strong
deformation.
Let P ∈ C(M) be a closed subset of Z(f). The Bierstone–Milman–Pawłucki

theorem (A13) implies that there exists a non-negative C-map p:M → R of class
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C1 with P = Z(p). In particular, Z(p) ⊂ Z(f). Since P is compact, one may
easily modify the proof of (A13) presented in [6] so as to show that there exists
a proper p. U0 is relatively compact, so the norm of d p is bounded on U0 and,
after multiplying p by an appriopriate constant, we may assume that

(2.2) p(x) ≤ d(x,Z(p)) on U0.

Let ψ:R → R be an odd, strictly increasing bijection which is a C-map of
class C1, defined as in Section 2. Let D(r) = {x ∈ M | p(x) ≤ r}. Clearly,
D(r) ⊂W (r).

Lemma 2.15. Let N be a positive integer such that N(1 − ρ) > 1. Then
there exists r0 > 0 such that if x ∈ U0 ∩D(r0) and −ψ(p(x))N ≤ f(x) then

`(x, ω(x)) < p(x)/2,

so that ω(x) 6∈ Z(p).

Proof. Since ψ is odd of class C1, there is c1 such that ψ(r) ≤ c1r, for
r > 0 small enough. If −ψ(p(x))N ≤ f(x) then

`(x, ω(x)) ≤ c0|f(x)|1−ρ ≤ c0ψ(p(x))N(1−ρ) ≤ c0cN(1−ρ)1 p(x)N(1−ρ).

Since N(1 − ρ) > 1, it is enough to take r0 > 0 with c0cN(1−ρ)1 r
N(1−ρ)
0 < r0/2.

If that is the case, `(x, ω(x)) < d(x,Z(p))/2, and then ω(x) 6∈ Z(p). �

Corollary 2.16. If x ∈ U0 and ω(x) ∈ Z(p), put

c(x) = sup{t | p(φ(t, x)) = r0}.

Then φ(c(x), x) ∈ L′(r0) and φ(t, x) ∈W (r0) for any t ≥ c(x).

Proposition 2.17. Let N be a positive integer such that N(1 − ρ) > 1.
Then there exists y1 > 0 such that

(a) for any positive y < y1, F (y) is either void or a compact C1-manifold
with boundary

∂F (y) = {x ∈M | ψ(p(x))N = y, f(x) = −y}
= {x ∈M | ψ(p(x)) = y1/N , f(x) = −y},

(b) if x ∈ U0 and ω(x) ∈ Z(p) then φ(t, x) cuts F (y) transversally at exactly
one point.

Proof. f and (ψ ◦ p)N are proper C-maps of class C1. Hence the set of
critical values of these maps is discrete. Then there exists y1 > 0 such that
y0 > y1 and the interval (0, y1) consists of regular values of −f and (ψ ◦ p)N .
We may assume that y1/N1 > 2y1.
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(a) If 0 < y < y1 then F (y) is the intersection of a C1-hypersurface f−1(−y)
and H = {f ≤ −(ψ ◦ p)N}. H is “bounded” by V = {f = −(ψ ◦ p)N}, so it is
enough to show that both the sets cut transversally.
From Lemma 2.3 and Proposition 2.12, V \ Z(f) is a C1-hypersurface, and

using the well-known curve selection lemma argument one may prove that f
restricted to V \ Z(f) has no critical points for |f(x)| small enough. Hence, if
y1 > 0 is small enough then f−1(−y) is transversal to V .
(b) From Corollaries 2.8, 2.9 we may assume that H(y1) ⊂ W (r0) ⊂ D(r0)

and f < −y1, on L′(r0). Take any 0 < y < y1. From Corollary 2.9, there exists
r1 < r0 such that f > −y on L′(r1).
Take x ∈ U0 such that ω(x) ∈ Z(p). From Corollary 2.16, x1 = φ(c(x), x) ∈

L′(r0) and φ(t, x) ∈W (r0) for any t ≥ c(x).
Since p(x1) = r0 and limt→b(x) p(φ(t, x)) = 0, there exists x2 on the trajectory

such that p(x2) = r1, and then x2 ∈ L′(r1). Hence f(x1) < −y1 < −y < f(x2),
so that the trajectory must cut transversally f−1(−y) at a point belonging to
W (r0) ∩ f−1(−y) ⊂ F (y). �

The set H(y) is compact, its boundary is the union of F (y) and V (y), where

F (y) ∩ V (y) = {x ∈M | −y = f(x) = −ψ(p(x))N} = ∂F (y).

If 0 < y � 1 then H(y) \ Z(p) ⊂ U0, so that ∇f 6= 0 on H(y) \ Z(p).
If x ∈ F (y) \ ∂F (y) then f(x) = −y < −ψ(p(x))N . Then there is d > 0

such that f(φ(t, x)) ≥ −y and f(φ(t, x)) ≤ −ψ(φ(t, x))N , i.e. φ(t, x) ∈ H(y), for
t ∈ [0, d].
Denote d(x) = sup{t | φ(t, x) ∈ H(y)} and γ(x) = limt→d(x) φ(t, x). Clearly,

γ(x) ∈ V (y).
If x ∈ V (y) \ Z(p) then g(x) = f(x) + ψ(p(x))N = 0. By Lemma 2.3, φ(t, x)

is transversal to V (y) and there is e > 0 such that g(φ(t, x)) > 0 for t ∈ (0, e),
and then φ(t, x) 6∈ H(y).
That means that a trajectory enters H(y) on F (y) \∂F (y), and either leaves

it on V (y) \ Z(p) at γ(x) 6= 0 or is attracted by Z(p). In the second case,
γ(x) = ω(x) = 0. From Proposition 2.17, if a trajectory is attracted by Z(p)
then it must first cut F (y) and enter H(y). From Lemma 2.15, if a trajectory
leaves H(y) on V (y) \ Z(p) then it is not attracted by Z(p). Hence we have

Theorem 2.18. If N(1 − ρ) > 1 and y > 0 is small enough then there is
one-to-one correspondence between the set of non-trivial trajectories attracted by
Z(p) and

Γ(y) = {x ∈ F (y) | γ(x) ∈ Z(p)}.

The above theorem allows us to equip the set of non-trivial trajectories at-
tracted by the origin with the topology induced from Γ(y). In the remainder of
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this section we shall show that this space has the same Čech–Alexander coho-
mology groups as F (y).

Lemma 2.19. γ:F (y)→ V (y) is a continuous function, and γ:F (y)\Γ(y)→
V (y) \ Z(p) is a homeomorphism.

Proof. Let x ∈ F (y) \ Γ(y). Its trajectory is transversal to both F (y)
and V (y), so γ is the Poincaré mapping in some neighbourhood of x, and then
γ:F (y) \ Γ(y)→ V (y) \ Z(p) is a homeomorphism.
If x ∈ Γ(y) then γ(x) = ω(x) ∈ Z(p). Take a sequence F (y) 3 xn → x. Since

γ(xn) ∈ V (y), by Lemma 2.15 and (2.2) we have

d(γ(xn), ω(xn)) ≤ `(γ(xn), ω(xn)) ≤ p(γ(xn))/2 ≤ d(γ(xn), Z(p))/2.

If there is δ > 0 such that δ < p(γ(xn)) then δ < d(γ(xn), Z(p)), and so δ/2 ≤
d(ω(xn), Z(p)). Then limω(xn) 6= ω(x), which contradicts the continuity of ω.
Hence lim p(γ(xn)) = 0, and then lim d(γ(xn), ω(xn)) = 0. Since limω(xn) =

ω(x), lim γ(xn) = γ(x). Then γ is continuous at each point in Γ(y). �

Lemma 2.20. γ(F (y)) = V (y) ∩ cl(U0).

Proof. The inclusion “⊂” is obvious.
From the previous lemma, V (y) \ Z(p) ⊂ γ(F (y)). It is easy to see that

ω(f−1(−y)) = Z(f)∩cl(U0). In particular, for any z ∈ Z(p)∩cl(U0) there exists
x ∈ f−1(−y) with ω(x) = z. From Theorem 2.18, Z(p)∩ cl(U0) ⊂ γ(F (y)). Now
it is enough to observe that V (y) ∩ cl(U0) is the disjoint union of V (y) \ Z(p)
and Z(p) ∩ cl(U0). �

Corollry 2.21. If Z(p) = Z(p) ∩ cl(U0) then γ(F (y)) = V (y).

From now on we shall assume that Z(p) = Z(p) ∩ cl(U0).

Lemma 2.22. For any open neighbourhood T of Γ(y) in F (y) the image γ(T )
is an open neighbourhood of Z(p) in V (y).

Proof. T is open, so F (y) \ T is compact. Then γ(F (y) \ T ) is compact in
V (y), so V (y) \ γ(F (y) \ T ) is open in V (y). It is enough to show that it equals
γ(T ).
We have V (y) \ γ(F (y) \ T )) ⊂ γ(T ) because γ(F (y)) = V (y). Let z ∈ γ(T ).

If z ∈ Z(p) then z 6∈ γ(F (y) \ T ) because Γ(y) ⊂ T . If z 6∈ Z(p) then z = γ(x)
for some x ∈ T \Γ(y). But γ|F (y)\Γ(y) is a homeomorphism, so z 6∈ γ(F (y)\T ).�

Lemma 2.23. If y > 0 is small enough then there exists a descending family
Γ(y) = T1 ⊃ T2 ⊃ . . . of open neighbourhoods of Γ(y) in F (y) such that
(a) every inclusion Tn+1 ⊂ Tn is a homotopy equivalence, so that the in-
duced homomorphism of cohomology groups H∗(Tn) → H∗(Tn+1) and
H∗(F (y))→ H∗(Tn) are isomorphisms,
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(b) for every open neighburhood T of Γ(y) in F (y) there is n such that
Tn ⊂ T .

Proof. As in the proof of Proposition 2.12, if y > 0 is small enough then
f :V (y)→ [−y, 0] is proper and f :V (y)\V (f)→ [−y, 0) is a topologically trivial
fibration. V (y) ∩ Z(f) = V (y) ∩ Z(p), hence there exists a descending family
V (y) = T ′1 ⊃ T ′2 ⊃ . . . of open neighbourhoods of Z(p) such that every inclusion
T ′n+1 ⊂ T ′n is a homotopy equivalence, and for every neighbourhood T ′ of Z(p)
in V (y) there is n such that T ′n ⊂ T ′. Set Tn = γ−1(T ′n). Each Tn is an open
neighbourhood of Γ(y).

γ:F (y) \ Γ(y) → V (y) \ Z(p) is a homeomorphism, hence (a) holds. Let T
be an open neighbourhood of Γ(y) in F (y). From Lemma 2.22, γ(T ) is an open
neighbourhood of Z(p) in V (y), and then there is n with T ′n ⊂ γ(T ). Hence
Tn ⊂ T . �

Theorem 2.24. If y > 0 is small enough then the Čech–Alexander coho-
mology groups H

∗
(F (y)) = H∗(F (y)) and H

∗
(Γ(y)) are isomorphic.

Proof. The family T1 ⊃ T2 ⊃ . . . described in the previous Lemma is
cofinal in the family of all open neighbourhoods of Γ(y) in F (y). Then we have
an isomorphism of direct limits

H
∗
(Γ(y)) = lim−→

Tn

H∗(Tn) ∼= H∗(F (y)). �

Theorem 2.25. Let f :M → R be a proper analytic function. Take a
positive constant y0 such that f has no critical points in f−1((−y0, 0)). Let
ω: f−1((−y0, 0]) → Z(f) be the continuous deformation defined by the flow as-
sociated with ∇f . Let P ⊂ Z(f) be a closed C-set and Γ(y) = {x ∈ f−1(−y) |
ω(x) ∈ P} for 0 < y < y0. Then there is one-to-one correspondence between Γ(y)
and the set of non-trivial trajectories of the equation ẋ = ∇f attracted by P . Let
Ω be an open neighbourhood of P such that for any neighbourhood T ⊂ Ω there
is a neighbourhood Ω′ ⊂ T such that the inclusion Ω′ ∩{f < 0} ⊂ Ω∩{f < 0} is
a homotopy equivalence. Then Ω ∩ {f < 0} has the homotopy type of a compact
manifold with boundary, and the Čech–Alexander cohomology groups H

∗
(Γ(y))

and H
∗
(Ω ∩ {f < 0}) = H∗(Ω ∩ {f < 0}) are isomorphic.

Proof. Take positive constants c and 0 < ρ < 1 such that the Łojasiewicz
inequality holds on U0 = f−1((−y0, 0)), i.e. ‖∇f(x)‖ ≥ c|f(x)|ρ for x ∈ U0.
The set of non-trivial trajectories attracted by P is equal to the set of tra-

jectories attracted by P ∩ cl(U0). Hence we may assume that P = P ∩ cl(U0).
There is a proper non-negative C-map p:M → R of class C1 such that P =

Z(p). Let N be a positive integer with N(1− ρ) > 1. From Theorem 2.18, Γ(y)
is homeomorphic to Γ(y′) for y′ small enough. From Theorem 2.24, H

∗
(Γ(y))
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is isomorphic to H∗(F (y′)). Corollary 2.11 implies that Ω ∩ {f < 0} has the
homotopy type of a compact manifold F (y′), and then the groups H

∗
(Γ(y)) and

H
∗
(Ω ∩ {f < 0}) = H∗(Ω ∩ {f < 0}) are isomorphic. �

Remark 2.26. If P is a compact component of {x ∈ Z(f) | d f(x) = 0},
then one may also apply Churchill’s results [2] and get the same result as above.

Example 2.27. Suppose that M is a 3-dimensional manifold, and there
exists a diffeomorphism h:R3 → h(R3) ⊂M such that

sign f ◦ h(x, y, z) = sign ((1− x2 − y2)y2 − z2).

Take P = h([−1, 1] × {0} × {0}). P is not isolated in in {x ∈ Z(f) | d f(x) =
0} ⊃ h(R × {0} × {0}), so one cannot apply the Churchill result. One may
check that Ω = h((−3/2, 3/2)× (−1/2, 1/2)× (−1/2, 1/2)) satisfies assumptions
of the above theorem, and Ω ∩ {f < 0} has the homotopy type of the bouquet
S1 ∨ S1 ∨ S1. Hence H0(Γ(y)) = Z, H1(Γ(y)) = Z ⊕ Z ⊕ Z, and Hk(Γ(y)) = 0
for k > 1.

3. Trajectories joining two C-sets

Let f :M → R be a proper analytic function. Assume that f has no critical
points in U = f−1((y1, y2)). Then there are constants c > 0, 0 < ρ < 1 such that
‖∇f(x)‖ ≥ c|f(x)−yi|ρ for all x in U which are sufficiently close to Zi = f−1(yi)
(i = 1, 2).
Let Pi ⊂ Zi be a closed C-set. In this section we shall give necessary condi-

tions for existence of a trajectory of the gradient field emanating from P1 and
attracted by P2.
Take x ∈ U . Let φ(t, x), where a(x) < t < b(x), denote the maximal solution

in U of the equation ẋ = ∇f/‖∇f‖ with φ(0, x) = x. Put

α(x) = lim
t→a(x)

φ(t, x), ω(x) = lim
t→b(x)

φ(t, x).

For x ∈ Z1 (resp. x ∈ Z2) put α(x) = x (resp. ω(x) = x). Then α: f−1([y1, y2))
→ Z1, as well as ω: f−1((y1, y2]) → Z2, is a continuous retraction by a strong
deformation.

Theorem 3.1. Let σ: f−1([y1, y2)) → Z1 be a continuous retraction by a
strong deformation. Let Ω ⊂ {f > y1} be an open neighbourhood of P2 such
that for any open neighbourhood T ⊂ Ω of P2 there is an open neighbourhood
Ω′ ⊂ T such that the inclusion Ω′∩U ⊂ Ω∩U is a homotopy equivalence. Denote
by σ∗:H∗(Z1, Z1 \ P1) → H∗(Ω ∩ U) the homomorphism of cohomology groups
induced by Ω∩U 3 x 7→ σ(x) ∈ (Z1, Z1 \P1). If σ∗ 6= 0 then there is x ∈ U such
that α(x) ∈ P1 and ω(x) ∈ P2.
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Proof. Suppose that σ∗ 6= 0. Since α is homotopy equivalent to σ, then
α∗:H∗(Z1, Z1 \ P1)→ H∗(Ω ∩ U) is a non-trivial homomorphism.
Take y ∈ (y1, y2) which lies very close to y2, so that Γ(y) = f−1(y) ∩

ω−1(P2) ⊂ Ω ∩ U induces an isomorphism of the Čech–Alexander cohomology
groups. Hence, the homomorphism H∗(Z1, Z1 \ P1) → H

∗
(Γ(y)), induced by

Γ(y) 3 x 7→ α(x) ∈ (Z1, Z1 \ P1), is non-trivial. Thus there exists x ∈ Γ(y) such
that α(x) ∈ P1, and clearly ω(x) ∈ P2. �
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