APPROXIMATE SELECTIONS IN α-CONVEX METRIC SPACES AND TOPOLOGICAL DEGREE

Francesco S. de Blasi - Giulio Pianigiani

Abstract

The existence of continuous approximate selections is proved for a class of upper semicontinuous multifunctions taking closed α-convex values in a metric space equipped with an appropriate notion of α-convexity. The approach is based on the definition of pseudo-barycenter of an ordered n-tuple of points. As an application, a notion of topological degree for a class of α-convex multifunctions is developed.

1. Introduction

In linear spaces the notion of convexity plays a fundamental role in several problems of analysis, for instance, in the construction of continuous selections (Michael [22]), in fixed point theorems (Kakutani [19], Ky Fan [9]), in topological degree theory (Hukuhara [17], Cellina and Lasota [4], Ma [21], Petryshyn and Fitzpatrick [26]). A full account of the above and other subject-matters related to convexity can be found in the comprehensive monographs by Hu and Papageorgiou [16] and Repovš and Semenov [28].

In non linear spaces, in absence of a natural notion of convex set, different approaches to convexity have been developed so far.

[^0]Michael [23] introduces, in a metric space Y, an axiomatically defined convex structure which permits one to take "convex combinations" of some, but not necessarily all, ordered n-tuples of points of Y; then by defining a convex set in the obvious way, Michael establishes a metric version of his classical continuous selection theorem. For similar ideas see also an earlier paper of Stone [29]. Further developments with application to selection theorems can be found in Michael [23], Curtis [5], [6] and Pasicki [25], [26].

Another axiomatic approach to convexity in non linear spaces has been developed by van de Val in [32], [33], (see also Bielawski, [1]) who defines convex the sets of a given family \mathcal{C} of subsets of Y provided the following conditions are satisfied: \mathcal{C} contains Y and the empty set, the intersection of every family of members of \mathcal{C}, and the union of every up-directed family of members of \mathcal{C}. Several applications, including a generalization of Michael's continuous selection theorem, are presented. Axiomatic convex structures of different type, also useful in selection problems, have been studied by Horvath in [15].

A further different viewpoint to convexity is due to Takahashi [30], who considers a metric space Y to be convex if there exists a function $w: Y \times Y \times$ $[0,1] \rightarrow Y$ satisfying

$$
d\left(z, w\left(y_{1}, y_{2}, t\right)\right) \leq(1-t) d\left(z, y_{1}\right)+t d\left(z, y_{2}\right)
$$

for all $y_{1}, y_{2}, z \in Y$ and $t \in[0,1]$, where d is the metric of Y. Then by defining convex any set $A \subset Y$ such that $w\left(y_{1}, y_{2}, t\right) \in A$, for every $y_{1}, y_{2} \in A$ and $t \in[0,1]$, Takahashi proves some fixed point theorems for nonexpansive mappings in metric spaces. Related results in this direction can be found in Talman [31].

The approach to convexity we develop in the present paper is in the spirit of Michael [23]. As in Curtis [5], [6] and Pasicki [26], it actually rests on appropriate generalizations in a nonlinear space of the notions of a segment joining two points, and of a barycenter of a finite set of points. More precisely, we consider a metric space Y equipped with a continuous function $\alpha: Y \times Y \times[0,1] \rightarrow Y$ which satisfies the following conditions:
(i) $\alpha\left(y_{0}, y_{0}, t\right)=y_{0}$ for every $y_{0} \in Y$ and $t \in[0,1]$,
(ii) $\alpha\left(y_{1}, y_{2}, 0\right)=y_{1}, \alpha\left(y_{1}, y_{2}, 1\right)=y_{2}$ for every $\left(y_{1}, y_{2}\right) \in Y \times Y$,
(iii) there is $0<r_{\alpha} \leq+\infty$ such that for every $\left(y_{1}, y_{2}\right),\left(\bar{y}_{1}, \bar{y}_{2}\right) \in Y \times Y$, with $d\left(y_{1}, \bar{y}_{1}\right)<r_{\alpha}, d\left(y_{2}, \bar{y}_{2}\right)<r_{\alpha}$ one has

$$
h\left(\Lambda_{\alpha}\left(y_{1}, y_{2}\right), \Lambda_{\alpha}\left(\bar{y}_{1}, \bar{y}_{2}\right)\right) \leq \max \left\{d\left(y_{1}, \bar{y}_{1}\right), d\left(y_{2}, \bar{y}_{2}\right)\right\} .
$$

Here $\Lambda_{\alpha}\left(y_{1}, y_{2}\right)=\left\{\alpha\left(y_{1}, y_{2}, t\right) \mid t \in[0,1]\right\}$, and h is the Pompeiu-Hausdorff distance in the space of the non empty compact subsets of Y. Then Y, equipped with the mapping α, is called Lipschitz α-convex metric space (" α " stands for
"arcwise"). Moreover, if α satisfies (i), (ii) and, instead of (iii), the weaker condition (iii) of Definition 3.1 below, then Y is called α-convex.

A subset A of Y is called α-convex if, for every $\left(y_{1}, y_{2}\right) \in A \times A$ and $t \in[0,1]$, one has $\alpha\left(y_{1}, y_{2}, t\right) \in A$.

When Y is normed, (i)-(iii) are trivially satisfied by letting $\alpha\left(y_{1}, y_{2}, t\right)=$ $(1-t) y_{1}+t y_{2}$, with $\left(y_{1}, y_{2}\right) \in Y \times Y$ and $t \in[0,1]$, and thus one recovers the usual notion of convex set.

In a normed space the notion of barycenter of a finite set of points enters naturally in approximation and selection problems for multifunctions, when partitions of unity are employed. In our α-convex metric space setting we introduce, for an ordered n-tuple of points, the notion of pseudo-barycenter. This retains only a few properties of the barycenter, yet it is still useful in approximation and selection problems. In fact, by using pseudo-barycenters and partition of unity techniques, we establish a metric version of Cellina's theorem [3], namely, the existence of approximate continuous selections, for Pompeiu-Hausdorff upper semicontinuous multifunctions with non empty closed bounded α-convex values. A metric version of Michael's selection theorem for lower semicontinuous multifunctions with α-convex values is proved in [7], by a similar approach.

It is worthwhile to point out that, in our axiomatic approach to convexity, we tried to identify a minimum set of readily verifiable conditions, under which a kind of barycentric calculus could be developed. Our conditions (i)-(iii) are perhaps questionable from the point of view of generality, yet they are easily verifiable, and also useful. In fact, condition (iii) makes possible to have that the pseudo-barycenter we define is actually stable in the sense of Proposition 4.12, a crucial property in approximation theory for multifunctions, which is introduced as an axiom by many authors.

The previous approximate selection result is used to define, as in [4], [17], the topological degree for compact vector fields $I-F$, where I is the identity and F is a Pompeiu-Hausdorff upper semicontinuous multifunction with non empty compact α-convex values. When F is compact and convex valued, the above reduces to the topological degree introduced by Hukuhara [17], and developed by Cellina and Lasota [4], Ma [21], Petryshyn and Fitzpatrick [27]. Fixed point theorems of Kakutani-Ky Fan type for multifunctions with α-convex values are considered as well.

For a fairly general class of multifunctions with compact non convex values, approximate continuous selections have been constructed, by a different method, by Górniewicz, Granas and Kryszewski [12] and Górniewicz and Lassonde [13] and hence used to develop an index theory. Moreover, for certain classes of multifunctions with non convex values, a non elementary degree theory was earlier constructed by Granas [14], and extended by Gęba and Granas
[10], Górniewicz [11], Borisovitch, Gelman, Myshkis, Obukhovskiĭ [2] (see [2], [10], [11] for further references), following a homology theory approach.

The paper is organized as follows. Section 2 contains notation and terminology. The notions of α-convex metric space, and pseudo-barycenter of a finite set of points, are considered in Sections 3 and 4, respectively. In Section 5 it is proved the existence of approximate continuous selections for α-convex valued multifunctions. The definition of the topological degree for compact α-convex valued vector fields is given in Section 6. A few properties of this degree including an application to fixed point theory are presented in Section 7.

2. Notation and preliminaries

Throughout Y is a nonempty metric space with distance d, and 2^{Y} the family of all nonempty subsets of Y. If $A \subset Y$, by int $A, \bar{A}, \partial A$ we denote the interior, closure, boundary of A.

For A, B nonempty subsets of Y, put

$$
e(A, B)=\sup _{a \in A} d(a, B) \quad \text { where } d(a, B)=\inf _{b \in B} d(a, b) .
$$

The space of all nonempty closed bounded subsets of Y is equipped with the Pompeiu-Hausdorff metric

$$
h(A, B)=\max \{e(A, B), e(B, A)\}
$$

under which it is complete, if Y is so.
By $U(a, r), U[a, r]$ we mean respectively an open, closed ball in Y with center a and radius r.

In the sequel, if a set $A \subset Y$ is considered as a metric space, it is tacitly assumed that A retains the metric of Y.

Unless the contrary is stated, the Cartesian product $Y \times \tilde{Y}$ of two metric spaces Y, \widetilde{Y}, with distances d, \widetilde{d} is always supposed to have distance given by

$$
\max \{d(x, y), \widetilde{d}(\widetilde{x}, \widetilde{y})\} \quad(x, \widetilde{x}),(y, \widetilde{y}) \in Y \times \widetilde{Y}
$$

Denote by M a metric space.
Definition 2.1. A multifunction $F: M \rightarrow 2^{Y}$ is called Pompeiu-Hausdorff upper semicontinuous ($=h$-u.s.c.) if, for every $x \in M$ and $\varepsilon>0$, there exists $\delta=\delta(x, \varepsilon)>0$ such that $x^{\prime} \in U(x, \delta)$ implies $e\left(F\left(x^{\prime}\right), F(x)\right)<\varepsilon$.

The graph of a multifunction $F: M \rightarrow 2^{Y}$ is the set, denoted graph F, given by

$$
\operatorname{graph} F=\{(x, y) \in M \times Y \mid x \in M, y \in F(x)\}
$$

Definition 2.2. Given a multifunction $F: M \rightarrow 2^{Y}$ and $\varepsilon>0$, then any continuous function $f_{\varepsilon}: M \rightarrow Y$ such that

$$
e\left(\operatorname{graph} f_{\varepsilon}, \operatorname{graph} F\right)<\varepsilon
$$

is called an approximate continuous selection of F.
Definition 2.3. A sequence $\left\{f_{n}\right\}$ of approximate continuous selections f_{n} : $M \rightarrow Y$ of $F: M \rightarrow 2^{Y}$ is said to be graph-convergent to F (for brevity, $f_{n} \xrightarrow{\mathrm{gr}} F$) if

$$
e\left(\text { graph } f_{n}, \operatorname{graph} F\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

For any nonempty set A we put $A^{n}=A \times \ldots \times A$, and denote by $\left(a_{1}, \ldots, a_{n}\right)$ an element of A^{n}, i.e. an ordered n-tuple of points $a_{i} \in A, i=1, \ldots, n$.

Let \mathbb{E} be a normed space.
The convex hull, and the closed convex hull of a set $A \subset \mathbb{E}$ are denoted, respectively, by $\operatorname{co} A$ and $\overline{\operatorname{co}} A$.

For $(p, q) \in \mathbb{E}^{2}$, we denote by $[p, q]$ (resp. $\left.(p, q)\right)$ the closed (resp. open) non oriented segment in \mathbb{E} with end points p and q. When $p \neq q$ the segments $[p, q]$, (p, q) are called non degenerate.

3. α-convex metric spaces

In this section we introduce the notion of α-convexity in metric spaces and we consider some examples.

Set $J=[0,1]$. For any map $\alpha: Y \times Y \times J \rightarrow Y$, and $\left(y_{1}, y_{2}\right) \in Y \times Y$, we agree to call $\left(y_{1}, y_{2}\right)$-locus induced by α the set $\Lambda_{\alpha}\left(y_{1}, y_{2}\right)$ given by

$$
\begin{equation*}
\Lambda_{\alpha}\left(y_{1}, y_{2}\right)=\left\{y \in Y \mid y=\alpha\left(y_{1}, y_{2}, t\right) \text { for some } t \in J\right\} . \tag{3.1}
\end{equation*}
$$

Definition 3.1. Let Y be a metric space, and let $\alpha: Y \times Y \times J \rightarrow Y$ be a continuous mapping satisfying the following conditions:
(a) $\alpha\left(y_{0}, y_{0}, t\right)=y_{0}$ for every $y_{0} \in Y$ and $t \in J$,
(b) $\alpha\left(y_{1}, y_{2}, 0\right)=y_{1}, \alpha\left(y_{1}, y_{2}, 1\right)=y_{2}$ for every $\left(y_{1}, y_{2}\right) \in Y \times Y$,
(c) there is $r_{\alpha}, 0<r_{\alpha} \leq+\infty$, such that, for every $0<\varepsilon<r_{\alpha}$, there exists $0<\eta \leq \varepsilon$ such that, whatever be $\left(y_{1}, y_{2}\right),\left(\bar{y}_{1}, \bar{y}_{2}\right) \in Y \times Y$, with $d\left(y_{1}, \bar{y}_{1}\right)<\varepsilon$ and $d\left(y_{2}, \bar{y}_{2}\right)<\eta$, one has

$$
\begin{equation*}
h\left(\Lambda_{\alpha}\left(y_{1}, y_{2}\right), \Lambda_{\alpha}\left(\bar{y}_{1}, \bar{y}_{2}\right)\right)<\varepsilon . \tag{3.2}
\end{equation*}
$$

Then Y, equipped with the mapping α, is called α-convex metric space. If the continuous function α satisfies (a)-(c), the latter with $\eta=\varepsilon$, then Y is called strongly α-convex metric space.

REmark 3.2. An α-convex metric space is contractible, hence arcwise connected. Observe also that the $\left(y_{1}, y_{2}\right)$-locus $\Lambda_{\alpha}\left(y_{1}, y_{2}\right)$ is not necessarily α convex, and one can have $\Lambda_{\alpha}\left(y_{1}, y_{2}\right) \neq \Lambda_{\alpha}\left(y_{2}, y_{1}\right)$.

Definition 3.3. Let Y be a metric space and let $\alpha: Y \times Y \times J \rightarrow Y$ be a continuous function satisfying (a), (b) of Definition 3.1 and, instead of (c), the following:
(c) $)^{\prime}$ There is $r_{\alpha}, 0<r_{\alpha} \leq+\infty$, such that for every $\left(y_{1}, y_{2}\right),\left(\bar{y}_{1}, \bar{y}_{2}\right) \in Y \times Y$, with $d\left(y_{1}, \bar{y}_{1}\right)<r_{\alpha}, d\left(y_{2}, \bar{y}_{2}\right)<r_{\alpha}$, one has

$$
h\left(\Lambda_{\alpha}\left(y_{1}, y_{2}\right), \Lambda_{\alpha}\left(\bar{y}_{1}, \bar{y}_{2}\right)\right) \leq \max \left\{d\left(y_{1}, \bar{y}_{1}\right), d\left(y_{2}, \bar{y}_{2}\right)\right\} .
$$

Then Y, equipped with the mapping α, is called Lipschitz α-convex metric space.
Definition 3.4. Let Y be a metric space and let $\alpha: Y \times Y \times J \rightarrow Y$ be a continuous function satisfying (a), (b) of Definition 3.1 and, instead of (c), the following condition (c)" (resp. (c)"'"):
(c) ${ }^{\prime \prime}$ There is $r_{\alpha}, 0<r_{\alpha} \leq+\infty$, such that, for every $0<\varepsilon<r_{\alpha}$, there exists $0<\eta \leq \varepsilon$ such that, whatever be $\left(y_{1}, y_{2}\right),\left(\bar{y}_{1}, \bar{y}_{2}\right) \in Y \times Y$, with $d\left(y_{1}, \bar{y}_{1}\right)<\varepsilon$ and $d\left(y_{2}, \bar{y}_{2}\right)<\eta$, one has

$$
d\left(\alpha\left(y_{1}, y_{2}, t\right), \alpha\left(\bar{y}_{1}, \bar{y}_{2}, t\right)\right)<\varepsilon \quad \text { for every } t \in J .
$$

(c) ${ }^{\prime \prime \prime}$ There is $r_{\alpha}, 0<r_{\alpha} \leq+\infty$, such that, for every $\left(y_{1}, y_{2}\right),\left(\bar{y}_{1}, \bar{y}_{2}\right) \in Y \times Y$, with $d\left(y_{1}, \bar{y}_{1}\right)<r_{\alpha}, d\left(y_{2}, \bar{y}_{2}\right)<r_{\alpha}$, one has

$$
d\left(\alpha\left(y_{1}, y_{2}, t\right), \alpha\left(\bar{y}_{1}, \bar{y}_{2}, t\right)\right) \leq \max \left\{d\left(y_{1}, \bar{y}_{1}\right), d\left(y_{2}, \bar{y}_{2}\right)\right\} \quad \text { for every } t \in J .
$$

Then Y, equipped with the mapping α, is called geodesically α-convex metric space (resp. Lipschitz geodesically α-convex metric space).

In the above definitions, α is also called the convexity mapping, or α-mapping, of Y.

Remark 3.5. The notion of geodesically α-convex space is similar to the notion of geodesic structure, introduced by Michael in [23], where α is continuous in t and satisfies some additional conditions which include (a), (b), and (c) ${ }^{\prime \prime}$. It is worthwhile to observe that, from (c)" and the continuity of α in t, it follows that α is actually continuous in (y_{1}, y_{2}, t), as required in Definition 3.4.

Remark 3.6. A normed space \mathbb{E} (with norm $\|\cdot\|$) is Lipschitz α-convex, and geodesically α-convex, if it is endowed with the natural convexity mapping $\alpha_{0}: \mathbb{E} \times \mathbb{E} \times J \rightarrow \mathbb{E}$, given by

$$
\begin{equation*}
\alpha_{0}\left(y_{1}, y_{2}, t\right)=(1-t) y_{1}+t y_{2} . \tag{3.3}
\end{equation*}
$$

Clearly $\Lambda_{\alpha_{0}}\left(y_{1}, y_{2}\right)=\Lambda_{\alpha_{0}}\left(y_{2}, y_{1}\right)=\left[y_{1}, y_{2}\right]$. Thus we have

$$
h\left(\Lambda_{\alpha}\left(y_{1}, y_{2}\right), \Lambda_{\alpha}\left(\bar{y}_{1}, \bar{y}_{2}\right)\right) \leq \max \left\{\left\|y_{1}-\bar{y}_{1}\right\|,\left\|y_{2}-\bar{y}_{2}\right\|\right\}
$$

for every $\left(y_{1}, y_{2}\right),\left(\bar{y}_{1}, \bar{y}_{2}\right) \in \mathbb{E}^{2}$.

Proposition 3.7.

(a_{1}) Y is Lipschitz geodesically α-convex $\Rightarrow Y$ is Lipschitz α-convex $\Rightarrow Y$ is strongly α-convex $\Rightarrow Y$ is α-convex.
$\left(\mathrm{a}_{2}\right) Y$ is geodesically α-convex $\Rightarrow Y$ is α-convex.

Proof. (a_{1}) is obvious.
$\left(\mathrm{a}_{2}\right)$ With $r_{\alpha}, \varepsilon, \eta,\left(y_{1}, y_{2}\right),\left(\bar{y}_{1}, \bar{y}_{2}\right)$ as in $(\mathrm{c})^{\prime \prime}$, and $t \in J$, one has

$$
d\left(\alpha\left(y_{1}, y_{2}, t\right), \Lambda_{\alpha}\left(\bar{y}_{1}, \bar{y}_{2}\right)\right) \leq \max _{s \in J} d\left(\alpha\left(y_{1}, y_{2}, s\right), \alpha\left(\bar{y}_{1}, \bar{y}_{2}, s\right)\right)<\varepsilon
$$

and hence $e\left(\Lambda_{\alpha}\left(y_{1}, y_{2}\right), \Lambda_{\alpha}\left(\bar{y}_{1}, \bar{y}_{2}\right)\right)<\varepsilon$. Combining this with the analogous inequality obtained by interchanging $\Lambda_{\alpha}\left(y_{1}, y_{2}\right)$ and $\Lambda_{\alpha}\left(\bar{y}_{1}, \bar{y}_{2}\right)$, (3.2) follows, and thus Y is α-convex.

Proposition 3.8.

(a_{1}) Let Y be an α-convex metric space, and let r_{α} correspond. Then for each $0<\varepsilon<r_{\alpha}$ there exists $0<\eta \leq \varepsilon$ such that, if $a \in Y$ and $y_{1}, y_{2} \in U(a, \eta)$, then one has $\Lambda_{\alpha}\left(y_{1}, y_{2}\right) \subset U(a, \varepsilon)$.
(a_{2}) Let Y be a strongly α-convex metric space, and let r_{α} correspond. Then, for every $a \in Y$ and $0<\varepsilon<r_{\alpha}$, the set $U(a, \varepsilon)$ is α-convex, hence contractible.

Proof. (a_{1} Let $y_{1}, y_{2} \in U(a, \eta)$ and let η be as in Definition 3.1. Since $a=\Lambda_{\alpha}(a, a)$, one has

$$
\sup _{t \in J} d\left(\alpha\left(y_{1}, y_{2}, t\right), a\right)=e\left(\Lambda_{\alpha}\left(y_{1}, y_{2}\right), \Lambda_{\alpha}(a, a)\right)=h\left(\Lambda_{\alpha}\left(y_{1}, y_{2}\right), \Lambda_{\alpha}(a, a)\right)<\varepsilon
$$

and $\left(a_{1}\right)$ holds. The above argument, with $\eta=\varepsilon$, proves also $\left(a_{2}\right)$.
The following Example 3.9 (resp. Example 3.10) below shows that there exist metric spaces Y which are α-convex (resp. Lipschitz α-convex) and not geodesically α-convex (resp. Lipschitz geodesically α-convex).

Example 3.9. Let $Y=\mathbb{R}^{2}$, and let $\left\{\left(a_{n}, b_{n}\right)\right\},\left\{\left(\bar{a}_{n}, \bar{b}_{n}\right)\right\} \subset Y \times Y$ be sequences such that $\left\|a_{n}\right\|=n, b_{n}=a_{n}+c, \bar{a}_{n}=a_{n}+c / n, \bar{b}_{n}=b_{n}+c / n, n \in \mathbb{N}$,
where $\|c\|=1$. Set

$$
\varphi(a, b, t)= \begin{cases}0 & \text { if }(a, b, t) \in D_{0}=\{(a, b, t) \in Y \times Y \times J \mid t=0\} \\ 1 & \text { if }(a, b, t) \in D_{1}=\{(a, b, t) \in Y \times Y \times J \mid t=1\} \\ t \quad & \text { if }(a, b, t) \in S_{n}=\left\{\left(a_{n}, b_{n}, t\right) \in Y \times Y \times J \mid t \in J\right\} \\ & \text { for some } n \in \mathbb{N}, \\ t^{2} \quad & \text { if }(a, b, t) \in T_{n}=\left\{\left(\bar{a}_{n}, \bar{b}_{n}, t\right) \in Y \times Y \times J \mid t \in J\right\} \\ & \text { for some } n \in \mathbb{N} .\end{cases}
$$

Y is equipped with distance d induced by the Euclidean norm $\|\cdot\|$ of \mathbb{R}^{2}. As φ is continuous on $D_{0} \cup D_{1} \cup\left(\bigcup_{n \in \mathbb{N}}\left(S_{n} \cup T_{n}\right)\right)$, a closed set, and takes values in J, by Tietze's theorem [8, p. 149], it admits a continuous extension, say φ, defined on $Y \times Y \times J$, with values in J.

Now define $\alpha: Y \times Y \times J \rightarrow Y$ by

$$
\alpha\left(y_{1}, y_{2}, t\right)=\left(1-\varphi\left(y_{1}, y_{2}, t\right)\right) y_{1}+\varphi\left(y_{1}, y_{2}, t\right) y_{2} .
$$

Clearly α is continuous, and satisfies conditions (a) and (b) of Definition 3.3. Further, for arbitrary $\left(y_{1}, y_{2}\right),\left(\bar{y}_{1}, \bar{y}_{2}\right) \in Y \times Y$, one has $\Lambda_{\alpha}\left(y_{1}, y_{2}\right)=\left[y_{1}, y_{2}\right]$, $\Lambda_{\alpha}\left(\bar{y}_{1}, \bar{y}_{2}\right)=\left[\bar{y}_{1}, \bar{y}_{2}\right]$, and hence

$$
h\left(\Lambda_{\alpha}\left(y_{1}, y_{2}\right), \Lambda_{\alpha}\left(\bar{y}_{1}, \bar{y}_{2}\right)\right)=h\left(\left[y_{1}, y_{2}\right],\left[\bar{y}_{1}, \bar{y}_{2}\right]\right) \leq \max \left\{\left\|y_{1}-\bar{y}_{1}\right\|,\left\|y_{2}-\bar{y}_{2}\right\|\right\} .
$$

Thus Y is Lipschitz α-convex (with $r_{\alpha}=\infty$), and so α-convex. On the other hand Y is not geodesically α-convex, since (c)" fails. In fact for any $n \in \mathbb{N}$ one has

$$
\begin{aligned}
\alpha\left(a_{n}, b_{n}, t\right)-\alpha\left(\bar{a}_{n}, \bar{b}_{n}, t\right) & =(1-t) a_{n}+t b_{n}-\left(1-t^{2}\right) \bar{a}_{n}-t^{2} \bar{b}_{n} \\
& =(1-t)\left(a_{n}-\bar{a}_{n}\right)+t\left(b_{n}-\bar{b}_{n}\right)+\left(t-t^{2}\right)\left(\bar{b}_{n}-\bar{a}_{n}\right) \\
& =-\frac{c}{n}+\left(t-t^{2}\right) c
\end{aligned}
$$

Whence $\left\|\alpha\left(a_{n}, b_{n}, t\right)-\alpha\left(\bar{a}_{n}, \bar{b}_{n}, t\right)\right\| \geq t-t^{2}-1 / n$, for each $t \in J$. For $t=1 / 2$ and all $n \geq 8$, it follows

$$
\left\|\alpha\left(a_{n}, b_{n}, 1 / 2\right)-\alpha\left(\bar{a}_{n}, \bar{b}_{n}, 1 / 2\right)\right\| \geq 1 / 8
$$

which shows that $(\mathrm{c})^{\prime \prime}$ fails, as $d\left(a_{n}, \bar{a}_{n}\right)=d\left(b_{n}, \bar{b}_{n}\right)=1 / n$.
Example 3.10. Set $Y=\left\{\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2} \mid u_{1} \leq 0\right.$ or $\left.u_{2} \leq 0\right\}$, and equip Y with metric d induced by the Euclidean norm $\|\cdot\|$ of \mathbb{R}^{2}. The non-negative u_{1}-axis, u_{2}-axis of \mathbb{R}^{2} are denoted by γ_{1}, γ_{2}. For $u \in \mathbb{R}^{2}, u \neq 0, l_{u}$ denotes the line which contains 0 and is orthogonal to u. If $\lambda^{\prime}, \lambda^{\prime \prime}$ are non opposite half-lines issuing from 0 , by $\widehat{\lambda^{\prime} \lambda^{\prime \prime}}$ we mean the closed convex angle which is determined by $\lambda^{\prime}, \lambda^{\prime \prime}$.

For $(p, q) \in Y^{2}$, with $p, q \neq 0$, set $T(p, q)=\|p\| /(\|p\|+\|q\|)$. Clearly, for every $(p, q) \in Y^{2}$, with $[p, q] \not \subset Y$, we have $p, q \neq 0$, and hence $0<T(p, q)<1$.

Now define $\alpha: Y \times Y \times J \rightarrow Y(J=[0,1])$ by:

$$
\begin{align*}
(p, q, t) & =(1-t) p+t q, \\
\alpha(p, q, t) & =\left\{\begin{array}{lll}
\left(1-\frac{t}{T(p, q)}\right) p & t \in[0, T(p, q)], & \text { if }[p, q] \subset Y, \\
\frac{t-T(p, q)}{1-T(p, q) q} & t \in[T(p, q), 1], & \text { if }[p, q] \not \subset Y .
\end{array}\right. \tag{3.4}
\end{align*}
$$

It will be shown that Y, endowed with the mapping α, is a Lipschitz α-convex metric space (with $r_{\alpha}=\infty$).

Since conditions (a), (b) of Definition 3.1 are trivially satisfied it suffices to prove:
(j) α is continuous on $Y \times Y \times J$;
(jj) for every $(p, q),(\bar{p}, \bar{q}) \in Y^{2}$, setting $\Lambda=\Lambda_{\alpha}(p, q), \bar{\Lambda}=\Lambda_{\alpha}(\bar{p}, \bar{q})$, we have

$$
\begin{equation*}
h(\Lambda, \bar{\Lambda}) \leq \max \{d(p, \bar{p}), d(q, \bar{q})\} . \tag{3.5}
\end{equation*}
$$

Consider (j). Let $(p, q, t) \in Y \times Y \times J$, and let $\left\{\left(p_{n}, q_{n}, t_{n}\right)\right\} \subset Y \times Y \times J$ be an arbitrary sequence converging to (p, q, t). In view of (3.4), α is continuous at each point (p, q, t) with $[p, q] \not \subset Y$.

Suppose $[p, q] \subset Y$, and let $0 \in(p, q)$ (the argument is similar if $0 \notin(p, q)$). For some $\theta<0$ we have $q=\theta p$ and thus, setting $T=T(p, q)$, we have $T=1 /(1+|\theta|)$. Assume $t<T$. Let $\left\{\left[p_{n_{k}}, q_{n_{k}}\right]\right\}$ (resp. $\left.\left\{\left[p_{m_{k}}, q_{m_{k}}\right]\right\}\right)$ be the infinite subsequence, if exists, consisting of all $\left[p_{n}, q_{n}\right] \not \subset Y\left(\right.$ resp. $\left.\left[p_{n}, q_{n}\right] \subset Y\right)$. Consider $\left\{\left[p_{n_{k}}, q_{n_{k}}\right]\right\}$. Since $t_{n_{k}} \rightarrow t, T_{n_{k}} \rightarrow T$, where $T_{n_{k}}=T\left(p_{n_{k}}, q_{n_{k}}\right)$, there is $k_{0} \in \mathbb{N}$ such that $t_{n_{k}}<T_{n_{k}}$ for all $k \geq k_{0}$. By virtue of (3.4), we have $\lim _{k \rightarrow \infty} \alpha\left(p_{n_{k}}, q_{n_{k}}, t_{n_{k}}\right)=\alpha(p, q, t)$, because $(1-t / T) p=(1-t-|\theta| t) p=(1-$ $t) p+t q$. Likewise, for $\left\{\left[p_{m_{k}}, q_{m_{k}}\right]\right\}$ we have $\lim _{k \rightarrow \infty} \alpha\left(p_{m_{k}}, q_{m_{k}}, t_{m_{k}}\right)=\alpha(p, q, t)$, and thus $\lim _{n \rightarrow \infty} \alpha\left(p_{n}, q_{n}, t_{n}\right)=\alpha(p, q, t)$. A similar reasoning shows that the latter equality remains valid when $t>T$, or $t=T$. Whence (j) is true.
(jj) Let $(p, q),(\bar{p}, \bar{q}) \in Y^{2}$. Clearly (3.5) holds when $\Lambda=[p, q], \bar{\Lambda}=[\bar{p}, \bar{q}]$. If $\Lambda=[0, p] \cup[0, q], \bar{\Lambda}=[0, \bar{p}] \cup[0, \bar{q}]$, with $[p, q] \not \subset Y,[\bar{p}, \bar{q}] \not \subset Y$ then (3.5) is satisfied, because $h(\Lambda, \bar{\Lambda}) \leq \max \{h([0, p],[0, \bar{p}]), h([0, q],[0, \bar{q}])\}$, and $h([0, p],[0, \bar{p}]) \leq$ $d(p, \bar{p}), h([0, q],[0, \bar{q}]) \leq d(q, \bar{q})$.

It remains to consider the cases:
(a_{1})

$$
\begin{aligned}
& \left\{\begin{array}{l}
\Lambda=[p, q], \\
\bar{\Lambda}=[0, \bar{p}] \cup[0, \bar{q}], \quad[\bar{p}, \bar{q}] \not \subset Y
\end{array}\right. \\
& \left\{\begin{array}{l}
\Lambda=[0, p] \cup[0, q], \quad[p, q] \not \subset Y, \\
\bar{\Lambda}=[\bar{p}, \bar{q}] .
\end{array}\right.
\end{aligned}
$$

In (a_{1}) (resp. $\left.\left(\mathrm{a}_{2}\right)\right)$ we assume, without loss of generality, $0 \notin[p, q]$ (resp. $0 \notin$ $[\bar{p}, \bar{q}]$) for, when $0 \in[p, q]$ (resp. $0 \in[\bar{p}, \bar{q}]$), (3.5) follows at once if one writes $[p, q]=[0, p] \cup[0, q]$ (resp. $[\bar{p}, \bar{q}]=[0, \bar{p}] \cup[0, \bar{q}])$.

Claim. In either case (a_{1}), (a_{2}) we have

$$
\begin{equation*}
\{p, q\} \cap E(\Lambda) \neq \phi, \quad \text { where } E(\Lambda)=\left\{e \in \Lambda \mid d(e, \bar{\Lambda})=\max _{x \in \Lambda} d(x, \bar{\Lambda})\right\} \tag{3.6}
\end{equation*}
$$

Observe that, if $\bar{\Lambda}$ is compact convex, the corresponding distance function $d(\cdot, \bar{\Lambda})$ is convex (in general not strictly convex), and thus (3.6) is true, if also Λ is compact convex.

Set $Q_{1}=\left\{\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2} \mid u_{1}>0, u_{2} \leq 0\right\}, Q_{2}=\left\{\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2} \mid u_{1} \leq\right.$ $\left.0, u_{2}>0\right\}$ and, for $u \in Q_{1} \cup Q_{2}$, put $\lambda_{u}=\overline{l_{u} \cap \operatorname{int} Y}$.

Let $\Lambda, \bar{\Lambda}$ be as in $\left(a_{1}\right)$, with $0 \notin \Lambda$. Since $[\bar{p}, \bar{q}] \not \subset Y, \bar{p}$ and \bar{q} are linearly independent, and either $\bar{p} \in Q_{1}$ and $\bar{q} \in Q_{2}$, or $\bar{p} \in Q_{2}$ and $\bar{q} \in Q_{1}$. Clearly $\operatorname{int} \widehat{\lambda_{\bar{p}} \lambda_{\bar{q}}} \neq \phi$. Let $\bar{p} \in Q_{1}, \bar{q} \in Q_{2}$ (the proof is analogous in the other case). For every $x \in \widehat{\gamma_{1} \lambda_{\bar{p}}}$ we have $d(x,[0, \bar{p}]) \leq\|x\|=d(x,[0, \bar{q}])$, where the equality holds, since x and \bar{q} make an angle greater or equal to $\pi / 2$. Likewise we have $d(x,[0, \bar{p}]) \leq\|x\|=d(x,[0, \bar{p}])$ for every $x \in \widehat{\gamma_{2} \lambda_{\bar{q}}}$, and $d(x,[0, \bar{p}])=\|x\|=$ $d(x,[0, \bar{q}])$ for every $x \in \widehat{\lambda_{\bar{p}} \lambda_{\bar{q}}}$. Therefore,

$$
d(x, \bar{\Lambda})= \begin{cases}d(x,[0, \bar{p}]) & \text { if } x \in \widehat{\gamma_{1} \lambda_{\bar{p}}} \tag{3.7}\\ d(x,[0, \bar{p}])=\|x\|=d(x,[0, \bar{q}]) & \text { if } x \in \widehat{\lambda_{\bar{p}} \lambda_{\bar{q}}} \\ d(x,[0, \bar{q}]) & \text { if } x \in \widehat{\gamma_{2} \lambda_{\bar{q}}}\end{cases}
$$

Put $A_{1}=\widehat{\gamma_{1} \lambda_{\bar{p}}} \cup \widehat{\lambda_{\bar{p}} \lambda_{\bar{q}}}, A_{2}=\widehat{\gamma_{2} \lambda_{\bar{q}}} \cup \widehat{\lambda_{\bar{p}} \lambda_{\bar{q}}}$. If Λ, which is compact convex, satisfies $\Lambda \subset A_{1}$ or $\Lambda \subset A_{2}$, then (3.6) holds, in view of (3.7). Suppose $\Lambda \not \subset A_{1}$ and $\Lambda \not \subset A_{2}$, thus we have either $p \in\left(\widehat{\gamma_{2} \lambda_{\bar{q}}}\right) \backslash \lambda_{\bar{q}}$ and $q \in\left(\widehat{\gamma_{1} \lambda_{\bar{p}}}\right) \backslash \lambda_{\bar{p}}$, or viceversa. Since $0 \notin \Lambda$, it follows that $\Lambda \cap \operatorname{int} \widehat{\lambda_{\bar{p}} \lambda_{\bar{q}}} \neq \phi$. Consequently $\Lambda=\Lambda_{1} \cup \Lambda_{2}$, where the segments $\Lambda_{1}=\Lambda \cap A_{1}$ and $\Lambda_{2}=\Lambda \cap A_{2}$ have intersection which is a non degenerate segment. By (3.7) the function $d(\cdot, \Lambda)$ restricted to Λ_{1}, Λ_{2} is convex, and thus it is actually convex also on Λ, proving (3.6).

Let $\Lambda, \bar{\Lambda}$ be as in $\left(a_{2}\right)$, with $0 \notin \bar{\Lambda}$. Likewise in case (a_{1}), suppose $p \in Q_{1}$, $q \in Q_{2}$ (when $p \in Q_{2}, q \in Q_{1}$ the argument is similar). We have $0 \notin E(\Lambda)$. Suppose the contrary, i.e. $d(0, \bar{\Lambda})=\max _{x \in \Lambda} d(x, \bar{\Lambda})$, and let $u \in \bar{\Lambda}$, be such that $\|u\|=d(0, \bar{\Lambda})$. Let π be the closed half-plane containing u, determined by l_{u}, and set $\pi^{\prime}=\mathbb{R}^{2} \backslash \pi$. Observe that $\bar{\Lambda} \subset u+\pi$, otherwise, for some $u^{\prime} \in \bar{\Lambda} \cap\left(u+\pi^{\prime}\right)$, we have $\left\|u^{\prime}\right\|<\|u\|=d(0, \bar{\Lambda})$.

Suppose $u \in Y \backslash\left(Q_{1} \cup Q_{2}\right)$. The points p, q cannot lie both in π, since this implies $[p, q] \subset \pi \subset Y$, against the assumption. Then one of them lies in π^{\prime} and so, for some $x^{\prime} \in \Lambda \cap \pi^{\prime}$ close enough to 0 , we have $d\left(x^{\prime}, \bar{\Lambda}\right) \geq d\left(x^{\prime}, u+\pi\right)>\|u\|=$
$\max _{x \in \Lambda} d(x, \bar{\Lambda})$, a contradiction. When $u \in Q_{1} \cup Q_{2}$, an analogous contradiction follows. Whence $0 \notin E(\Lambda)$.

Now let $e \in E(\Lambda)$. Suppose $e \in[0, p]$ (if $e \in[0, q]$ the argument is similar). Since $d(e, \bar{\Lambda})=\max _{x \in[0, p]} d(x, \bar{\Lambda})$, we have $\{0, p\} \cap E(\Lambda) \neq \phi$. Thus $p \in E(\Lambda)$, for $0 \notin E(\Lambda)$, showing that (3.6) holds also in case (a_{2}).

In either case $\left(a_{1}\right),\left(a_{2}\right)$, in view of (3.6), we have

$$
\max _{x \in \Lambda} d(x, \bar{\Lambda})=\max \{d(p, \bar{\Lambda}), d(q, \bar{\Lambda})\} \leq \max \{d(p, \bar{p}), d(q, \bar{q})\}
$$

and hence $e(\Lambda, \bar{\Lambda}) \leq \max \{d(p, \bar{p}), d(q, \bar{q})\}$. By the Claim, the latter inequality remains valid by interchanging Λ and $\bar{\Lambda}$. Thus (3.5) holds, and also (jj) is proved.

Observe that the family of the α-convex subsets of Y contains, among other sets, those of the form $C \cap Y$, where C is any convex subset of \mathbb{R}^{2} containing the origin. Moreover, each convex (in the usual sense) subset of Y is also α-convex, but not conversely. For instance, the set which is the union of the triangles with vertices $(0,0),(a, 0),(a,-a)$ and $(0,0),(0, a),(-a, a), a>0$, is α-convex but not convex. Further, for each $(p, q) \in Y^{2}, \Lambda_{\alpha}(p, q)$ is convex and $\Lambda_{\alpha}(p, q)=\Lambda_{\alpha}(q, p)$.

Remark 3.11. The space Y in Example 3.10 is Lipschitz α-convex, with $r_{\alpha}=\infty$, but not Lipschitz geodesically α-convex. In fact, for $n \in \mathbb{N}$, by taking $p_{n}=(-1,3) / n, q_{n}=(3,-1) / n, \bar{p}_{n}=(4,-1) / n, \bar{q}_{n}=(8,-5) / n$, we have $\alpha\left(p_{n}, q_{n}, 1 / 2\right)=0, \alpha\left(\bar{p}_{n}, \bar{q}_{n}, 1 / 2\right)=(6,-3) / n$, and hence $d\left(\alpha\left(p_{n}, q_{n}, 1 / 2\right)\right.$, $\left.\alpha\left(\bar{p}_{n}, \bar{q}_{n}, 1 / 2\right)\right)=\sqrt{45} / n$. Moreover, $d\left(p_{n}, \bar{p}_{n}\right)=d\left(q_{n}, \bar{q}_{n}\right)=\sqrt{41} / n$, and thus

$$
d\left(\alpha\left(p_{n}, q_{n}, 1 / 2\right), \alpha\left(\bar{p}_{n}, \bar{q}_{n}, 1 / 2\right)\right)>\max \left\{d\left(p_{n}, \bar{p}_{n}\right), d\left(q_{n}, \bar{q}_{n}\right)\right\},
$$

for every $n \in \mathbb{N}$. Since $d\left(p_{n}, \bar{p}_{n}\right), d\left(q_{n}, \bar{q}_{n}\right)$ vanish as $n \rightarrow \infty$, it follows that there is no $r_{\alpha}>0$ for which condition (c) $)^{\prime \prime \prime}$ of Definition 3.4 is satisfied.

4. Pseudo-barycenters in α-convex metric spaces

In this section, the notion of pseudo-barycenter in an α-convex metric space is introduced, and some of its properties are reviewed. Here we develop, in a different direction, some ideas which go back Michael [23] and Curtis [6] (see also Pasicki [26]).

Definition 4.1. A nonempty set A, contained in an α-convex metric space Y, is called α-convex if, for every $\left(y_{1}, y_{2}\right) \in A \times A$ and $t \in J$, one has $\alpha\left(y_{1}, y_{2}, t\right) \in A$.

Remark 4.2. The empty set is assumed to be α-convex. The intersection of a family of α-convex subsets of Y is α-convex. Furthermore, if $A \subset Y$ is α-convex, also its closure \bar{A} is so.

Throughout Y stands for an α-convex metric space. Set:

$$
\begin{aligned}
\mathcal{K}_{\alpha}(Y) & =\left\{A \in 2^{Y} \mid A \text { is compact and } \alpha \text {-convex }\right\} \\
\mathcal{C}_{\alpha}(Y) & =\left\{A \in 2^{Y} \mid A \text { is closed bounded and } \alpha \text {-convex }\right\} .
\end{aligned}
$$

The spaces $\mathcal{K}_{\alpha}(Y), \mathcal{C}_{\alpha}(Y)$ are equipped with the Pompeiu-Hausdorff metric h.
Remark 4.3. Each singleton subset of Y is in $\mathcal{K}_{\alpha}(Y)$ hence in $\mathcal{C}_{\alpha}(Y)$. Moreover, each set $A \in \mathcal{C}_{\alpha}(Y)$ is contractible.

Put:

$$
\begin{array}{rlrl}
Y^{n}= & \left\{\left(y_{1}, \ldots, y_{n}\right) \mid y_{i} \in Y, i=1, \ldots, n\right\}, & n \geq 1, \\
\Sigma^{n}= & \left\{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \mid 0 \leq \lambda_{i} \leq 1, i=1, \ldots, n, \lambda_{1}+\ldots+\lambda_{n}=1\right\}, & n \geq 1 \\
\Sigma_{0}^{n}= & \left\{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \mid 0 \leq \lambda_{i} \leq 1,\right. & \\
& \left.i=1, \ldots, n-1,0 \leq \lambda_{n}<1, \lambda_{1}+\ldots+\lambda_{n}=1\right\} & & n \geq 2 .
\end{array}
$$

If $\left(y_{1}, \ldots, y_{n}\right) \in Y^{n}$ and $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Sigma^{n}$, we say that λ_{i} is the weight assigned to $y_{i}, i=1, \ldots, n$, or for brevity, that $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is the weight assigned to $\left(y_{1}, \ldots, y_{n}\right)$.

For $\left(y_{1}, \ldots, y_{n}\right) \in Y^{n}$ and $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Sigma^{n}$, we now define the corresponding pseudo-barycenter $b_{n}\left(y_{1}, \ldots, y_{n} ; \lambda_{1}, \ldots, \lambda_{n}\right)$, an analogue of the usual notion of barycenter in a normed space.

For $y_{1} \in Y^{1}$ and $\lambda_{1} \in \Sigma^{1}$, i.e. $\lambda_{1}=1$, put

$$
\begin{equation*}
b_{1}\left(y_{1}, 1\right)=y_{1} . \tag{4.1}
\end{equation*}
$$

For $\left(y_{1}, y_{2}\right) \in Y^{2}$ and $\left(\lambda_{1}, \lambda_{2}\right) \in \Sigma^{2}$, set

$$
\begin{equation*}
b_{2}\left(y_{1}, y_{2} ; \lambda_{1}, \lambda_{2}\right)=\alpha\left(y_{1}, y_{2}, \lambda_{2}\right) . \tag{4.2}
\end{equation*}
$$

Clearly, the maps $b_{1}: Y \times \Sigma^{1} \rightarrow Y, b_{2}: Y^{2} \times \Sigma^{2} \rightarrow Y$ given by (4.1), (4.2) are continuous on $Y \times \Sigma^{1}$, $Y^{2} \times \Sigma^{2}$, respectively. Now suppose that $b_{n-1}: Y^{n-1} \times$ $\Sigma^{n-1} \rightarrow Y$, for some $n-1 \geq 2$, has been constructed and that it is continuous on $Y^{n-1} \times \Sigma^{n-1}$. We will define $b_{n}: Y^{n} \times \Sigma^{n} \rightarrow Y$ and show that it is continuous on $Y^{n} \times \Sigma^{n}$.

To this end, for $\left(y_{1}, \ldots, y_{n}\right) \in Y^{n}$ and $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Sigma_{0}^{n}, n \geq 3$, set

$$
\begin{align*}
& \widetilde{b}_{n}\left(y_{1}, \ldots, y_{n} ; \lambda_{1}, \ldots, \lambda_{n}\right) \tag{4.3}\\
& \quad=\alpha\left(b_{n-1}\left(y_{1}, \ldots, y_{n-1} ; \frac{\lambda_{1}}{1-\lambda_{n}}, \ldots, \frac{\lambda_{n-1}}{1-\lambda_{n}}\right), y_{n}, \lambda_{n}\right) .
\end{align*}
$$

By the induction assumption the map $\widetilde{b}_{n}: Y^{n} \times \Sigma_{0}^{n} \rightarrow Y$, given by (4.3), is continuous on $Y^{n} \times \Sigma_{0}^{n}$. Further, setting $p=\left(y_{1}, \ldots, y_{n} ; \lambda_{1}, \ldots, \lambda_{n}\right), p_{0}=$
$\left(y_{1}^{0}, \ldots, y_{n}^{0} ; 0, \ldots, 1\right)$, we have

$$
\begin{equation*}
\lim _{\substack{p \rightarrow p_{0} \\ p \in Y^{n} \times \Sigma_{0}^{n}}} \widetilde{b}_{n}\left(y_{1}, \ldots, y_{n} ; \lambda_{1}, \ldots, \lambda_{n}\right)=y_{n}^{0} \tag{4.4}
\end{equation*}
$$

In the contrary case, there exists $\varepsilon>0$ and a sequence $\left\{\left(y_{1}^{k}, \ldots, y_{n}^{k} ; \lambda_{1}^{k}, \ldots, \lambda_{n}^{k}\right)\right\}$ $\subset Y^{n} \times \Sigma_{0}^{n}$ converging to $\left(y_{1}^{0}, \ldots, y_{n}^{0} ; 0, \ldots, 1\right)$, as $k \rightarrow \infty$, such that

$$
\begin{equation*}
d\left(\widetilde{b}_{n}\left(y_{1}^{k}, \ldots, y_{n}^{k} ; \lambda_{1}^{k}, \ldots, \lambda_{n}^{k}\right), y_{n}^{0}\right) \geq \varepsilon \quad \text { for every } k \in \mathbb{N} . \tag{4.5}
\end{equation*}
$$

Set $a_{k}=b_{n-1}\left(y_{1}^{k}, \ldots, y_{n-1}^{k} ; \lambda_{1}^{k} /\left(1-\lambda_{n}^{k}\right), \ldots, \lambda_{n-1}^{k} /\left(1-\lambda_{n}^{k}\right)\right)$. Since

$$
\left\{\left(\frac{\lambda_{1}^{k}}{1-\lambda_{n}^{k}}, \ldots, \frac{\lambda_{n-1}^{k}}{1-\lambda_{n}^{k}}\right)\right\} \subset \Sigma^{n-1}
$$

a compact set, passing to subsequences, without changing notation, we can assume that there is $\left(\mu_{1}, \ldots, \mu_{n-1}\right) \in \Sigma^{n-1}$ such that

$$
\left(y_{1}^{k}, \ldots, y_{n-1}^{k} ; \frac{\lambda_{1}^{k}}{1-\lambda_{n}^{k}}, \ldots, \frac{\lambda_{n-1}^{k}}{1-\lambda_{n}^{k}}\right)
$$

converges to $\left(y_{1}^{0}, \ldots, y_{n-1}^{0} ; \mu_{1}, \ldots, \mu_{n-1}\right)$, as $k \rightarrow \infty$. Since b_{n-1} is continuous on $Y^{n-1} \times \Sigma^{n-1}$, one has that for $k \rightarrow \infty, a_{k}$ converges to $a=b_{n-1}\left(y_{1}^{0}, \ldots, y_{n-1}^{0}\right.$; $\left.\mu_{1}, \ldots, \mu_{n-1}\right)$. By the continuity of α, it follows that $\alpha\left(a_{k}, y_{n}^{k}, \lambda_{n}^{k}\right)$ converges to $\alpha\left(a, y_{n}^{0}, 1\right)$, when $k \rightarrow \infty$. But $\alpha\left(a_{k}, y_{n}^{k}, \lambda_{n}^{k}\right)=\widetilde{b}_{n}\left(y_{1}^{k}, \ldots, y_{n}^{k} ; \lambda_{1}^{k}, \ldots, \lambda_{n}^{k}\right)$ and $\alpha\left(a, y_{n}^{0}, 1\right)=y_{n}^{0}$, thus a contradiction to (4.5) follows, and (4.4) holds.

Define $b_{n}: Y^{n} \times \Sigma^{n} \rightarrow Y$ by

$$
\begin{align*}
& b_{n}\left(y_{1}, \ldots, y_{n} ; \lambda_{1}, \ldots, \lambda_{n}\right) \tag{4.6}\\
& \quad= \begin{cases}\widetilde{b}_{n}\left(y_{1}, \ldots, y_{n} ; \lambda_{1}, \ldots, \lambda_{n}\right) & \text { if }\left(\lambda_{1}, \ldots \lambda_{n}\right) \in \Sigma_{0}^{n} \\
y_{n} & \text { if }\left(\lambda_{1}, \ldots, \lambda_{n}\right)=(0, \ldots, 1)\end{cases}
\end{align*}
$$

In view of (4.3) and (4.4), the function b_{n} is continuous on $Y^{n} \times \Sigma^{n}$.
Definition 4.4. For $\left(y_{1}, \ldots, y_{n}\right) \in Y^{n}$ and $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Sigma^{n}, n \geq 1$, the point $b_{n}\left(y_{1}, \ldots, y_{n} ; \lambda_{1}, \ldots, \lambda_{n}\right)$ given by (4.1) if $n=1$, by (4.2) if $n=2$, and by (4.6) if $n \geq 3$, is called pseudo-barycenter of $\left(y_{1}, \ldots, y_{n}\right)$ with weight $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

By the previous argument one has:
Proposition 4.5. For each $n \in \mathbb{N}$ the pseudo-barycenter function $b_{n}: Y^{n} \times$ $\Sigma^{n} \rightarrow Y$ is continuous on $Y^{n} \times \Sigma^{n}$. Furthermore, $b_{n}\left(y_{0}, \ldots, y_{0} ; \lambda_{1}, \ldots, \lambda_{n}\right)=y_{0}$ for every $y_{0} \in Y$ and $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Sigma^{n}$, and $b_{n}\left(y_{1}, \ldots, y_{n} ; 1, \ldots, 0\right)=y_{1}$, $b_{n}\left(y_{1}, \ldots, y_{n} ; 0,1, \ldots, 0\right)=y_{2}, \ldots, b_{n}\left(y_{1}, \ldots, y_{n} ; 0, \ldots, 1\right)=y_{n}$.

Remark 4.6. Let $C \subset Y$ be α-convex. Then, for every $\left(y_{1}, \ldots, y_{n}\right) \in C^{n}$ and $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Sigma^{n}, n \in \mathbb{N}$, the pseudo-barycenter $b_{n}\left(y_{1}, \ldots, y_{n} ; \lambda_{1}, \ldots, \lambda_{m}\right)$ lies in C.

Remark 4.7. The pseudo-barycenter depends on the ordered n-tuple of points $\left(y_{1}, \ldots, y_{n}\right)$ in the sense that, if $\left(y_{i_{1}}, \ldots, y_{i_{n}}\right)$ and $\left(\lambda_{i_{1}}, \ldots, \lambda_{i_{n}}\right)$ are arbitrary permutations of $\left(y_{1}, \ldots, y_{n}\right)$ and $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, it can happen that

$$
b_{n}\left(y_{i_{1}}, \ldots, y_{i_{n}} ; \lambda_{i_{1}}, \ldots, \lambda_{i_{n}}\right) \neq b_{n}\left(y_{1}, \ldots, y_{n} ; \lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Remark 4.8. Let \mathbb{E} be a normed space equipped with its natural convexity mapping α_{0} given by (3.3). In this case the α_{0}-convex sets are the usual convex sets, and we set

$$
\mathcal{K}(\mathbb{E})=\mathcal{K}_{\alpha_{0}}(\mathbb{E}), \quad \mathcal{C}(\mathbb{E})=\mathcal{C}_{\alpha_{0}}(\mathbb{E}) .
$$

Moreover, for each $\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{E}^{n}$ with weight $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Sigma^{n}$, the pseudobarycenter reduces to the barycenter, i.e.

$$
b_{n}\left(y_{1}, \ldots, y_{n} ; \lambda_{1}, \ldots, \lambda_{n}\right)=\lambda_{1} y_{1}+\ldots+\lambda_{n} y_{n}
$$

In view of Proposition 4.5 one has:
Proposition 4.9. Let $\left(y_{1}, \ldots, y_{n}\right) \in Y^{n}$, and let $\lambda_{i}: M \rightarrow[0,1], i=$ $1, \ldots, n$, be n continuous functions defined on a metric space M, such that $\lambda_{1}(x)+\ldots+\lambda_{n}(x)=1$ for every $x \in M$. Then the function $\Phi: M \rightarrow Y$ given by

$$
\Phi(x)=b_{n}\left(y_{1}, \ldots, y_{n} ; \lambda_{1}(x), \ldots, \lambda_{n}(x)\right)
$$

is continuous.
Proposition 4.10. Let $\left(y_{1}, \ldots, y_{n}\right) \in Y^{n}$ and $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Sigma^{n}$, $n \geq 2$. Let $\left(i_{1}, \ldots, i_{k}\right), 1 \leq k \leq n-1$, be a subset of $(1, \ldots, n)$ with $i_{1}<\ldots<i_{k}$, such that

$$
\lambda_{i}>0 \quad \text { if } i \in\left\{i_{1}, \ldots, i_{k}\right\}, \quad \lambda_{i}=0 \quad \text { if } i \in\{1, \ldots, n\} \backslash\left\{i_{1}, \ldots, i_{k}\right\} .
$$

Then one has:

$$
\begin{equation*}
b_{n}\left(y_{1}, \ldots, y_{n} ; \lambda_{1}, \ldots, \lambda_{n}\right)=b_{k}\left(y_{i_{1}}, \ldots, y_{i_{k}} ; \lambda_{i_{1}}, \ldots, \lambda_{i_{k}}\right) . \tag{4.7}
\end{equation*}
$$

Proof. The statement is true for $n=2$. If, for some $n \geq 3,(4.7)_{n-1}$ is true, it will be proved that also $(4.7)_{n}$ is so. Let $\left(\lambda_{i_{1}}, \ldots, \lambda_{i_{k}}\right)$ be as in the statement.

Case 1. $i_{k} \leq n-1$. Hence $\lambda_{n}=0$, and thus

$$
\begin{aligned}
b_{n}\left(y_{1}, \ldots, y_{n} ; \lambda_{1}, \ldots, \lambda_{n}\right) & =\alpha\left(b_{n-1}\left(y_{1}, \ldots, y_{n-1} ; \lambda_{1}, \ldots, \lambda_{n-1}\right), y_{n}, 0\right) \\
& =b_{n-1}\left(y_{1}, \ldots, y_{n-1} ; \lambda_{1}, \ldots, \lambda_{n-1}\right) \\
& =b_{k}\left(y_{i_{1}}, \ldots, y_{i_{k}} ; \lambda_{i_{1}}, \ldots, \lambda_{i_{k}}\right)
\end{aligned}
$$

where the latter equality is obvious, if $k=n-1$, while it follows from the induction assumption, if $1 \leq k \leq n-2$. Therefore, if $i_{k} \leq n-1,(4.7)_{n}$ is true.

Case 2. $i_{k}=n$. Thus, $\lambda_{n}=\lambda_{i_{k}}>0$. If $\lambda_{i_{k}}<1$, then $k \geq 2$. We have

$$
\begin{aligned}
& b_{n}\left(y_{1}, \ldots, y_{n} ; \lambda_{1}, \ldots, \lambda_{n}\right) \\
& \quad=\alpha\left(b_{n-1}\left(y_{1}, \ldots, y_{n-1} ; \frac{\lambda_{1}}{1-\lambda_{n}}, \ldots, \frac{\lambda_{n-1}}{1-\lambda_{n}}\right), y_{n}, \lambda_{n}\right)
\end{aligned}
$$

As $\left(\lambda_{1} /\left(1-\lambda_{n}\right), \ldots, \lambda_{n-1} /\left(1-\lambda_{n}\right)\right) \in \Sigma^{n-1}$ and $1 \leq k-1 \leq n-1$, the induction hypothesis implies

$$
\begin{aligned}
b_{n-1}\left(y_{1}, \ldots, y_{n-1} ; \frac{\lambda_{1}}{1-\lambda_{n}}, \ldots\right. & \left., \frac{\lambda_{n-1}}{1-\lambda_{n}}\right) \\
& =b_{k-1}\left(y_{i_{1}}, \ldots, y_{i_{k-1}} ; \frac{\lambda_{i_{1}}}{1-\lambda_{i_{k}}}, \ldots, \frac{\lambda_{i_{k-1}}}{1-\lambda_{i_{k}}}\right)
\end{aligned}
$$

Whence,

$$
\begin{align*}
& b_{n}\left(y_{1}, \ldots, y_{n} ; \lambda_{1}, \ldots, \lambda_{n}\right) \tag{4.8}\\
& \quad=\alpha\left(b_{k-1}\left(y_{i_{1}}, \ldots, y_{i_{k-1}} ; \frac{\lambda_{i_{1}}}{1-\lambda_{i_{k}}}, \ldots, \frac{\lambda_{i_{k-1}}}{1-\lambda_{i_{k}}}\right), y_{i_{k}}, \lambda_{i_{k}}\right) \\
& \quad=b_{k}\left(y_{i_{1}}, \ldots, y_{i_{k}} ; \lambda_{i_{1}}, \ldots, \lambda_{i_{k}}\right)
\end{align*}
$$

If $\lambda_{i_{k}}=1$, one has $k=1$, for $\lambda_{1}=\ldots=\lambda_{n-1}=0$, and thus
(4.9) $\quad b_{n}\left(y_{1}, \ldots, y_{n} ; \lambda_{1}, \ldots, \lambda_{n}\right)=b_{n}\left(y_{1}, \ldots, y_{n} ; 0, \ldots, 1\right)=y_{n}=b_{1}\left(y_{i_{1}}, 1\right)$.

In view of (4.8) and (4.9), (4.7) $)_{n}$ is true, if $i_{k}=n$. Hence in both Cases 1 and 2 , $(4.7)_{n}$ holds, completing the proof.

Let Y be an α-convex metric space. Given an ordered n-tuple $\left(y_{1}, \ldots, y_{n}\right) \in$ $Y^{n}, n \geq 2$, the set $\Lambda_{\alpha}\left(y_{1}, \ldots, y_{n}\right)$ given by

$$
\begin{aligned}
\Lambda_{\alpha}\left(y_{1}, \ldots, y_{n}\right)=\left\{z \in Y \mid z=b_{n}\left(y_{1}, \ldots, y_{n} ;\right.\right. & \left.\lambda_{1}, \ldots, \lambda_{n}\right) \\
& \text { for some } \left.\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Sigma^{n}\right\} .
\end{aligned}
$$

we agree to call $\left(y_{1}, \ldots, y_{n}\right)$-locus induced by b_{n},
REMARK 4.11. For $n=2$, the $\left(y_{1}, y_{2}\right)$-locus induced by b_{2} coincides with the $\left(y_{1}, y_{2}\right)$-locus induced by α, given by (3.1). Clearly $\Lambda_{\alpha}\left(y_{1}, \ldots, y_{n}\right)$ is a compact set. Further, if $\left(y_{i_{1}}, \ldots, y_{i_{n}}\right)$ is an arbitrary permutation of $\left(y_{1}, \ldots, y_{n}\right)$, one can have that $\Lambda_{\alpha}\left(y_{i_{1}}, \ldots, y_{i_{n}}\right) \neq \Lambda_{\alpha}\left(y_{1}, \ldots, y_{n}\right)$.

The last statement of the following proposition is a kind of stability property which is very useful in approximation problems for multifunctions.

Proposition 4.12. Let Y be an α-convex metric space, and let r_{α} correspond as in Definition 3.1. Then, for each $0<\varepsilon<r_{\alpha}$, there exists $0<\eta \leq \varepsilon$ such that, for every $\left(y_{1}, \ldots, y_{n}\right),\left(z_{1}, \ldots, z_{n}\right) \in Y^{n}, n \geq 2$ arbitrary, with $d\left(y_{i}, z_{i}\right)<\eta, i=1, \ldots, n$, one has

$$
\begin{equation*}
h\left(\Lambda_{\alpha}\left(y_{1}, \ldots, y_{n}\right), \Lambda_{\alpha}\left(z_{1}, \ldots, z_{n}\right)\right)<\varepsilon . \tag{4.10}
\end{equation*}
$$

Moreover, for every nonempty α-convex set $C \subset Y,\left(y_{1}, \ldots, y_{n}\right) \in Y^{n}$ with $d\left(y_{i}, C\right)<\eta, i=1, \ldots, n$, and $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Sigma^{n}, n \geq 2$, one has

$$
d\left(b_{n}\left(y_{1}, \ldots, y_{n} ; \lambda_{1}, \ldots, \lambda_{n}\right), C\right)<\varepsilon
$$

Proof. Let $0<\varepsilon<r_{\alpha}$, and let $0<\eta \leq \varepsilon$ be as in Definition 3.1.
To show $(4.10)_{n}$ is equivalent to prove that, for every $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Sigma^{n}$, there exists $\left(\mu_{1}, \ldots, \mu_{n}\right) \in \Sigma^{n}$ such that

$$
\begin{equation*}
d\left(b_{n}\left(y_{1}, \ldots, y_{n} ; \lambda_{1}, \ldots, \lambda_{n}\right), b_{n}\left(z_{1}, \ldots, z_{n} ; \mu_{1}, \ldots, \mu_{n}\right)\right)<\varepsilon \tag{4.11}
\end{equation*}
$$

and, furthermore, that the analogous inequality, obtained by interchanging the roles of $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $\left(\mu_{1}, \ldots, \mu_{n}\right)$, holds as well.

It suffices to prove $(4.11)_{n}$, as the proof of the other inequality is similar.
For $n=2,(4.11)_{n}$ holds, by Definition 3.1. It will be shown that $(4.11)_{n+1}$ is true provided that $(4.11)_{n}$ is so, for some $n \geq 2$.

Let $\left(y_{1}, \ldots, y_{n+1}\right),\left(z_{1}, \ldots, z_{n+1}\right) \in Y^{n+1}$, with $d\left(y_{i}, z_{i}\right)<\eta, i=1, \ldots, n+1$, be given, and let $\left(\lambda_{1}, \ldots, \lambda_{n+1}\right) \in \Sigma^{n+1}$ be arbitrary.

Let $0 \leq \lambda_{n+1}<1$. Setting

$$
c_{n}=b_{n}\left(y_{1}, \ldots, y_{n} ; \lambda_{1} /\left(1-\lambda_{n+1}\right), \ldots, \lambda_{n} /\left(1-\lambda_{n+1}\right)\right),
$$

one has

$$
\begin{equation*}
b_{n+1}\left(y_{1}, \ldots, y_{n+1} ; \lambda_{1}, \ldots, \lambda_{n+1}\right)=\alpha\left(c_{n}, y_{n+1}, \lambda_{n+1}\right) \tag{4.12}
\end{equation*}
$$

Since $c_{n} \in \Lambda_{\alpha}\left(y_{1}, \ldots, y_{n}\right)$, by the induction hypothesis there is a point $e_{n}=$ $b_{n}\left(z_{1}, \ldots, z_{n} ; \theta_{1}, \ldots, \theta_{n}\right)$, for some $\left(\theta_{1}, \ldots, \theta_{n}\right) \in \Sigma^{n}$, such that $d\left(c_{n}, e_{n}\right)<\varepsilon$. From this and the hypothesis $d\left(y_{n+1}, z_{n+1}\right)<\eta$, in view of Definition 3.1(c), one has $h\left(\Lambda_{\alpha}\left(c_{n}, y_{n+1}\right), \Lambda_{\alpha}\left(e_{n}, z_{n+1}\right)\right)<\varepsilon$. Further, $\alpha\left(c_{n}, y_{n+1}, \lambda_{n+1}\right) \in \Lambda_{\alpha}\left(c_{n}, y_{n+1}\right)$ and thus there exists $0 \leq \rho \leq 1$ such that

$$
\begin{equation*}
d\left(\alpha\left(c_{n}, y_{n+1}, \lambda_{n+1}\right), \alpha\left(e_{n}, z_{n+1}, \rho\right)\right)<\varepsilon . \tag{4.13}
\end{equation*}
$$

As $\alpha\left(e_{n}, z_{n+1}, \cdot\right)$ is continuous, without loss of generality, one can assume that $\rho<1$. Put now $\left(\mu_{1}, \ldots, \mu_{n+1}\right)=\left((1-\rho) \theta_{1}, \ldots,(1-\rho) \theta_{n}, \rho\right)$, and observe that $\left(\mu_{1}, \ldots, \mu_{n+1}\right) \in \Sigma^{n+1}$. Since

$$
\mu_{n+1}<1 \quad \text { and } \quad\left(\mu_{1} /\left(1-\mu_{n+1}\right), \ldots, \mu_{n} /\left(1-\mu_{n+1}\right)\right)=\left(\theta_{1}, \ldots, \theta_{n}\right)
$$

one has

$$
\alpha\left(b_{n}\left(z_{1}, \ldots, z_{n} ; \frac{\mu_{1}}{1-\mu_{n+1}}, \ldots, \frac{\mu_{n}}{1-\mu_{n+1}}\right), z_{n+1}, \mu_{n+1}\right)=\alpha\left(e_{n}, z_{n+1}, \rho\right),
$$

that is,

$$
\begin{equation*}
b_{n+1}\left(z_{1}, \ldots, z_{n+1} ; \mu_{1}, \ldots, \mu_{n+1}\right)=\alpha\left(e_{n}, z_{n+1}, \rho\right) \tag{4.14}
\end{equation*}
$$

Combining (4.13) with (4.12) and (4.14) gives

$$
\begin{align*}
& d\left(b_{n+1}\left(y_{1}, \ldots, y_{n+1} ; \lambda_{1}, \ldots, \lambda_{n+1}\right)\right. \tag{4.15}\\
& \left.\qquad b_{n+1}\left(z_{1}, \ldots, z_{n+1} ; \mu_{1}, \ldots, \mu_{n+1}\right)\right)<\varepsilon .
\end{align*}
$$

Let $\lambda_{n+1}=1$. Clearly, $\left(\lambda_{1}, \ldots, \lambda_{n+1}\right)=(0, \ldots, 1)$. Thus, by taking $\left(\mu_{1}, \ldots, \mu_{n+1}\right)=(0, \ldots, 1),(4.15)$ follows trivially, as the left hand side equals $d\left(y_{n+1}, z_{n+1}\right)$ and so it is strictly less than $\eta \leq \varepsilon$. Therefore $(4.11)_{n}$ holds for every $n \geq 2$.

The second statement follows from the previous one and the α-convexity of C. This completes the proof.

REmARK 4.13. Let $\left(y_{1}, \ldots, y_{n+1}\right) \in Y^{n+1}$, where $y_{k}=y_{k+1}$ for some $1 \leq$ $k \leq n$, and let $\left(\lambda_{1}, \ldots, \lambda_{n+1}\right) \in \Sigma^{n+1}$ be arbitrary. Unlike the barycenter, for the pseudo-barycenter it can happen that $b_{n+1}\left(y_{1}, \ldots, y_{n+1} ; \lambda_{1}, \ldots, \lambda_{n+1}\right) \neq$ $b_{n}\left(y_{1}, \ldots, y_{k}, y_{k+2}, \ldots, y_{n+1} ; \lambda_{1}, \ldots, \lambda_{k}+\lambda_{k+1}, \lambda_{k+2}, \ldots, \lambda_{n+1}\right)$.

Remark 4.14. The definition of pseudo-barycenter and some of its properties, including Proposition 4.5, 4.9 and 4.10, remain valid if in Definition 3.1 the continuous mapping $a: Y \times Y \times J \rightarrow Y$ satisfies only conditions (a), (b). Condition (c) plays a crucial role in the proof of Proposition 4.12.

Proposition 4.15 (Dugundji [8, p. 83]). Let X, Z be topological spaces. Let $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ be a covering of X, where the sets $A_{\lambda} \subset X$ are open, and let $\left\{\varphi_{\lambda}\right\}_{\lambda \in \Lambda}$ be a family of continuous functions $\varphi_{\lambda}: A_{\lambda} \rightarrow Z$ such that for every $\lambda, \mu \in \Lambda$, with $A_{\lambda} \cap A_{\mu} \neq \phi$,

$$
\varphi_{\lambda}(x)=\varphi_{\mu}(x) \quad \text { for every } x \in A_{\lambda} \cap A_{\mu} .
$$

Then, there is a unique continuous function $f: X \rightarrow Z$, which is an extension of each φ_{λ}, that is, for each $\lambda \in \Lambda$,

$$
f(x)=\varphi_{\lambda}(x) \quad \text { for every } x \in A_{\lambda} .
$$

5. Approximate selections

In this section we present an α-convex version of an approximate selection theorem established by Cellina [3] in linear spaces.

The support of a map $f: M \rightarrow \mathbb{R}, M$ a metric space, is the closed set $\operatorname{supp} f=$ $\{\overline{x \in M \mid f(x) \neq 0\}}$.

Proposition 5.1. Let M be a metric space, Y an α-convex metric space, C an α-convex subset of Y. Let $F: M \rightarrow \mathcal{C}_{\alpha}(Y)$ be a Pompeiu-Hausdorff upper semicontinuous multifunction such that $F(x) \subset C$, for every $x \in M$. Then, for each $\varepsilon>0$, there exists a continuous function $f_{\varepsilon}: M \rightarrow C$ such that

$$
\begin{equation*}
e\left(\operatorname{graph} f_{\varepsilon}, \operatorname{graph} F\right) \leq \varepsilon \tag{5.1}
\end{equation*}
$$

Proof. Let $0<\varepsilon<r_{\alpha}$, where r_{α} is as in Definition 3.1. By Proposition 4.12 there exists $0<\eta \leq \varepsilon$ such that, for every nonempty α-convex set $C \subset Y$, $\left(y_{1}, \ldots, y_{n}\right) \in Y^{n}$, with $d\left(y_{i}, C\right)<\eta, i=1, \ldots, n$, and $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Sigma^{n}, n \geq 1$ arbitrary, one has

$$
\begin{equation*}
d\left(b_{n}\left(y_{1}, \ldots, y_{n} ; \lambda_{1}, \ldots, \lambda_{n}\right), C\right)<\varepsilon . \tag{5.2}
\end{equation*}
$$

Since F is h-u.s.c. for every $x \in M$ there exists a $\sigma(x)$, with

$$
\begin{equation*}
0<\sigma(x)<\eta \tag{5.3}
\end{equation*}
$$

such that

$$
\begin{equation*}
x^{\prime} \in U(x, \sigma(x)) \quad \text { implies } \quad e\left(F\left(x^{\prime}\right), F(x)\right)<\eta . \tag{5.4}
\end{equation*}
$$

Arguing as in Hu and Papageorgiou in [16, Theorem 4.11, p. 106], consider the family $\mathcal{U}=\{U(x, \sigma(x) / 4)\}_{x \in M} . \mathcal{U}$ is an open covering of M, a paracompact space, and thus it admits an open neighbourhood finite refinement $\mathcal{V}=\left\{V_{\beta}\right\}_{\beta \in B}$. For every $V_{\beta} \in \mathcal{V}$, the set

$$
\mathcal{F}\left(V_{\beta}\right)=\left\{U(x, \sigma(x) / 4) \mid V_{\beta} \subset U(x, \sigma(x) / 4)\right\}
$$

is nonempty. In each $\mathcal{F}\left(V_{\beta}\right)$ fix one set, say $U\left(x_{\beta}, \sigma\left(x_{\beta}\right) / 4\right)$. Furthermore, with each $V_{\beta} \in \mathcal{V}$, associate a point $\left(u_{\beta}, y_{\beta}\right) \in M \times Y$, where

$$
\begin{equation*}
u_{\beta} \in V_{\beta} \quad \text { and } \quad y_{\beta} \in F\left(u_{\beta}\right) \tag{5.5}
\end{equation*}
$$

In view of Dugundji [8, p. 170], there is a partition $\left\{p_{V_{\beta}}\right\}_{\beta \in B}$ of unity subordinated to \mathcal{V}, i.e. a family of continuous functions $p_{V_{\beta}}: M \rightarrow[0,1]$ such that:
(j) $\operatorname{supp} p_{V_{\beta}} \subset V_{\beta}$ for every $\beta \in B$,
(jj) $\left\{\operatorname{supp} p_{V_{\beta}}\right\}_{\beta \in B}$ is a neighbourhood finite closed covering of M,
(jjj) $\sum_{\beta \in B} p_{V_{\beta}}(x)=1$ for every $x \in M$.
By Zermelo's theorem [8, p. 31], \mathcal{V} admits a partial ordering \prec which makes \mathcal{V} into a well ordered set. In the sequel \mathcal{V} is assumed to be equipped with the well ordering \prec.

Let $u \in M$ be arbitrary. Since \mathcal{V} is neighbourhood finite, there exists an open neighbourhood W_{u} of u such that the family

$$
\mathcal{V}_{W_{u}}=\left\{V_{\beta} \in \mathcal{V} \mid V_{\beta} \cap W_{u} \neq \phi\right\}
$$

is nonempty and finite, say

$$
\mathcal{V}_{W_{u}}=\left(V_{\beta_{1}}, \ldots, V_{\beta_{k}}\right) \quad \text { where } V_{\beta_{1}} \prec \ldots \prec V_{\beta_{k}}
$$

for some $k \geq 1$. Let $\left(u_{\beta_{1}}, \ldots, u_{\beta_{k}}\right),\left(y_{\beta_{1}}, \ldots, y_{\beta_{k}}\right)$ and $\left(U\left(x_{\beta_{1}}, \sigma\left(x_{\beta_{1}}\right) / 4\right), \ldots\right.$, $\left.U\left(x_{\beta_{k}}, \sigma\left(x_{\beta_{k}}\right) / 4\right)\right)$ correspond. For $x \in W_{u}$, set

$$
\varphi_{W_{u}}(x)=b_{k}\left(y_{\beta_{1}}, \ldots, y_{\beta_{k}} ; p_{V_{\beta_{1}}}(x), \ldots, p_{V_{\beta_{k}}}(x)\right) .
$$

Clearly $\varphi_{W_{u}}(x) \in C$, thus the above equality defines a mapping $\varphi_{W_{u}}: W_{u} \rightarrow C$ which is continuous on W_{u}, in view of Proposition 4.9. It will be shown that

$$
\begin{equation*}
e\left(\operatorname{graph} \varphi_{W_{u}}, \operatorname{graph} F\right)<\varepsilon \tag{5.6}
\end{equation*}
$$

To this end, let $x \in W_{u}$ be arbitrary. The set $\mathcal{V}_{W_{u}}^{x}$ of all $V_{\beta} \in \mathcal{V}$ such that $p_{V_{\beta}}(x)>0$ is a nonempty subset of $\mathcal{V}_{W_{u}}$, for $x \in \operatorname{supp} p_{V_{\beta}} \subset V_{\beta}$. Hence for some $1 \leq p \leq k$ and $1 \leq i_{1}<\ldots<i_{p} \leq k$, one has

$$
\begin{equation*}
\mathcal{V}_{W_{u}}^{x}=\left(V_{\beta_{i_{1}}}, \ldots, V_{\beta_{i_{p}}}\right) \quad \text { where } V_{\beta_{i_{1}}} \prec \ldots \prec V_{\beta_{i_{p}}} \tag{5.7}
\end{equation*}
$$

and thus Proposition 4.10 implies

$$
\begin{equation*}
\varphi_{W_{u}}(x)=b_{p}\left(y_{\beta_{i_{1}}}, \ldots, y_{\beta_{i_{p}}} ; p_{V_{\beta_{i_{1}}}}(x), \ldots, p_{V_{\beta_{i_{p}}}}(x)\right) . \tag{5.8}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
x \in \operatorname{supp} p_{V_{\beta_{i_{s}}}} \subset V_{\beta_{i_{s}}} \subset U\left(x_{\beta_{i_{s}}}, \sigma\left(x_{\beta_{i_{s}}}\right) / 4\right), \quad s=1, \ldots, p \tag{5.9}
\end{equation*}
$$

Set $\sigma\left(x_{\beta_{i_{m}}}\right)=\max \left\{\sigma\left(x_{\beta_{i_{s}}}\right) \mid s=1, \ldots, p\right\}$, for some $1 \leq m \leq p$. In view of (5.9), one has

$$
\begin{align*}
d\left(x_{\beta_{i_{s}}}, x_{\beta_{i_{m}}}\right) & \leq d\left(x_{\beta_{i_{s}}}, x\right)+d\left(x, x_{\beta_{i_{m}}}\right) \tag{5.10}\\
& <\frac{1}{4} \sigma\left(x_{\beta_{i_{s}}}\right)+\frac{1}{4} \sigma\left(x_{\beta_{i_{m}}}\right) \leq \frac{1}{2} \sigma\left(x_{\beta_{i_{m}}}\right)
\end{align*}
$$

for $s=1, \ldots, p$. Whence,

$$
\begin{equation*}
V_{\beta_{i_{s}}} \subset U\left(x_{\beta_{i_{s}}}, \sigma\left(x_{\beta_{i_{s}}}\right) / 4\right) \subset U\left(x_{\beta_{i_{m}}}, \sigma\left(x_{\beta_{i_{m}}}\right)\right) \tag{5.11}
\end{equation*}
$$

for $s=1, \ldots, p$, if $z \in U\left(x_{\beta_{i_{s}}}, \sigma\left(x_{\beta_{i_{s}}}\right) / 4\right)$, by virtue of (5.10) one has

$$
d\left(z, x_{\beta_{i_{m}}}\right) \leq d\left(z, x_{\beta_{i_{s}}}\right)+d\left(x_{\beta_{i_{s}}}, x_{\beta_{i_{m}}}\right)<\frac{1}{4} \sigma\left(x_{\beta_{i_{s}}}\right)+\frac{1}{2} \sigma\left(x_{\beta_{i_{m}}}\right)<\sigma\left(x_{\beta_{i_{m}}}\right)
$$

From (5.11) it follows that $u_{\beta_{i_{s}}} \in U\left(x_{\beta_{i_{m}}}, \sigma\left(x_{\beta_{i_{m}}}\right)\right)$, for $u_{\beta_{i_{s}}} \in V_{\beta_{i_{s}}}$. Then

$$
d\left(y_{\beta_{i_{s}}}, F\left(x_{\beta_{i_{m}}}\right)\right)<\eta, \quad s=1, \ldots, p
$$

for $y_{\beta_{i_{s}}} \in F\left(u_{\beta_{i_{s}}}\right)$. In view of (5.2), one has

$$
d\left(b_{p}\left(y_{\beta_{i_{1}}}, \ldots, y_{\beta_{i_{p}}} ; p_{V_{\beta_{i_{1}}}}(x), \ldots, p_{V_{\beta_{i_{p}}}}(x)\right), F\left(x_{\beta_{i_{m}}}\right)\right)<\varepsilon
$$

and, by (5.8),

$$
\begin{equation*}
d\left(\varphi_{W_{u}}(x), F\left(x_{\beta_{i_{m}}}\right)\right)<\varepsilon . \tag{5.12}
\end{equation*}
$$

On the other hand $x \in \operatorname{supp} p_{V_{\beta_{i_{s}}}}$, and thus (5.11) yields $x \in U\left(x_{\beta_{i_{m}}}, \sigma\left(x_{\beta_{i_{m}}}\right)\right)$. By (5.3), $\sigma\left(x_{\beta_{i_{m}}}\right)<\eta \leq \varepsilon$, and hence

$$
\begin{equation*}
d\left(x, x_{\beta_{i_{m}}}\right)<\varepsilon . \tag{5.13}
\end{equation*}
$$

From (5.12) and (5.13), since $x \in W_{u}$ is arbitrary, (5.6) follows.

Now define $f_{\varepsilon}: M \rightarrow C$ by

$$
f_{\varepsilon}(x)=\varphi_{W_{u}}(x) \quad \text { if } x \in W_{u} \text { for some } u \in M
$$

The family $\left\{W_{u}\right\}_{u \in M}$ is an open covering of M. The above definition is meaningful if one shows that, for every $W_{u}, W_{u^{\prime}}, u, u^{\prime} \in M$, with $W_{u} \cap W_{u^{\prime}} \neq \phi$, one has

$$
\begin{equation*}
\varphi_{W_{u}}(x)=\varphi_{W_{u^{\prime}}}(x) \quad \text { for every } x \in W_{u} \cap W_{u^{\prime}} . \tag{5.14}
\end{equation*}
$$

In fact, let $x \in W_{u} \cap W_{u^{\prime}}$. Clearly

$$
\mathcal{V}_{W_{u}}^{x}=\left\{V_{\beta} \in \mathcal{V}_{W_{u}} \mid p_{V_{\beta}}(x)>0\right\}=\left\{V_{\beta} \in \mathcal{V}_{W_{u^{\prime}}} \mid p_{V_{\beta}}(x)>0\right\}=\mathcal{V}_{W_{u^{\prime}}}^{x}
$$

Whence, in view of (5.7) one has $\mathcal{V}_{W_{u^{\prime}}}^{x}=\mathcal{V}_{W_{u}}^{x}=\left(V_{\beta_{i_{1}}}, \ldots, V_{\beta_{i_{p}}}\right)$, where $V_{\beta_{i_{1}}} \prec$ $\ldots \prec V_{\beta_{i_{p}}}$. Therefore, if $u_{\beta_{i_{s}}} \in V_{\beta_{i_{s}}}$ and $y_{\beta_{i_{s}}} \in F\left(u_{\beta_{i_{s}}}\right)$ correspond to $V_{\beta_{i_{s}}}$, $s=1, \ldots, p$, according (5.5), by Proposition 4.10 one has

$$
\varphi_{W_{u}}(x)=b_{p}\left(y_{\beta_{1}}, \ldots, y_{\beta_{p}} ; p_{V_{\beta_{1}}}(x), \ldots, p_{V_{\beta_{p}}}(x)\right)=\varphi_{W_{u^{\prime}}}(x),
$$

and thus (5.14) follows, as $x \in W_{u} \cap W_{u^{\prime}}$ is arbitrary. Since each $\varphi_{W_{u}}$ is continuous, also f_{ε} is so, by Proposition 4.15. Furthermore, in view of (5.6), f_{ε} satisfies (5.1). This completes the proof.

Corollary 5.2. Let M be a metric space, Y an α-convex metric space, C a compact α-convex subset of Y. Let $F: M \rightarrow \mathcal{K}_{\alpha}(Y)$ be a h-u.s.c. multifunction such that $F(x) \subset C$, for every $x \in M$. Then, for each $\varepsilon>0$, there exists a continuous and compact function $f_{\varepsilon}: M \rightarrow C$ such that

$$
\begin{equation*}
e\left(\operatorname{graph} f_{\varepsilon}, \operatorname{graph} F\right)<\varepsilon \tag{5.15}
\end{equation*}
$$

Remark 5.3. Proposition 5.1 and Corollary 5.2 remain valid for multifunctions with α-convex bounded values, as one can easily see from the above proofs.

Corollary 5.4. Let M be a metric space, and \mathbb{E} a Banach space.
(a) If $F: M \rightarrow \mathcal{C}(\mathbb{E})$ is h-u.s.c. multifunction, then, for each $\varepsilon>0$ there exists a continuous function $f_{\varepsilon}: M \rightarrow \mathbb{E}$ which satisfies (5.15).
(b) If $F: M \rightarrow \mathcal{K}(\mathbb{E})$ is a h-u.s.c. multifunction with precompact range $R=$ $\bigcup_{x \in M} F(x)$ then, for each $\varepsilon>0$, there exists a continuous and compact function $f_{\varepsilon}: M \rightarrow \mathbb{E}$ satisfying (5.15), with values $f_{\varepsilon}(x) \in \overline{\mathrm{co}} R$, for every $x \in M$.

Proof. (a) follows from Proposition 5.1 and Remark 4.7. (b) follows from Corollary 5.2, by taking $C=\overline{\mathrm{co}} R$, a convex compact set by Mazur's theorem.

The following proposition is known yet, for the sake of completeness, the proof is included.

Proposition 5.5. Let M be a metric space, and Y an α-convex metric space. Let $F: M \rightarrow \mathcal{C}_{\alpha}(Y)$ be h-u.s.c. and let $\left\{f_{n}\right\}$ be a sequence of continuous functions $f_{n}: M \rightarrow Y$ such that $f_{n} \xrightarrow{\mathrm{gr}} F$ as $n \rightarrow \infty$. If $x_{n} \rightarrow x$ and $f_{n}\left(x_{n}\right) \rightarrow y$ as $n \rightarrow \infty$, then one has $y \in F(x)$.

Proof. Let $\varepsilon>0$, and denote by d, d_{1}, ρ the metric of $M, Y, M \times Y$, respectively. Take $n_{0} \in \mathbb{N}$ so that $n \geq n_{0}$ implies

$$
\rho\left(\left(z, f_{n}(z)\right), \operatorname{graph} F\right) \leq e\left(\operatorname{graph} f_{n}, \operatorname{graph} F\right)<\varepsilon / 2 \quad \text { for every } z \in M
$$

Thus, for each $n \geq n_{0}$, there exists $\left(\xi_{n}, \eta_{n}\right)$, where $\xi_{n} \in M$ and $\eta_{n} \in F\left(\xi_{n}\right)$, such that $\rho\left(\left(x_{n}, f_{n}\left(x_{n}\right)\right),\left(\xi_{n}, \eta_{n}\right)\right)<\varepsilon / 2$. Whence,

$$
d\left(x_{n}, \xi_{n}\right)<\varepsilon / 2, \quad d_{1}\left(f_{n}\left(x_{n}\right), \eta_{n}\right)<\varepsilon / 2 \quad \text { for every } n \geq n_{0}
$$

Since $x_{n} \rightarrow x$ and $f_{n}\left(x_{n}\right) \rightarrow y$, as $n \rightarrow \infty$, for n large enough, say $n \geq n_{1} \geq n_{0}$, one has

$$
\begin{aligned}
d\left(\xi_{n}, x\right) & \leq d\left(\xi_{n}, x_{n}\right)+d\left(x_{n}, x\right)<\varepsilon / 2+\varepsilon / 2=\varepsilon \\
d_{1}\left(\eta_{n}, y\right) & \leq d_{1}\left(\eta_{n}, f_{n}\left(x_{n}\right)\right)+d_{1}\left(f_{n}\left(x_{n}\right), y\right)<\varepsilon / 2+\varepsilon / 2=\varepsilon .
\end{aligned}
$$

Consequently $\left(\xi_{n}, \eta_{n}\right) \rightarrow(x, y)$, as $n \rightarrow \infty$. Since $\eta_{n} \in F\left(\xi_{n}\right)$, and F is h-u.s.c. with closed values, letting $n \rightarrow \infty$ gives $y \in F(x)$, completing the proof.

6. Topological degree

In this section we use the approximate continuous selection result established in Section 5 in order to define the topological degree for a class of multifunctions with α-convex values. When the values are convex, this reduces to the topological degree defined by Hukuhara in [17] and Cellina and Lasota in [4].

Throughout \mathbb{E} is a real Banach space, D a nonempty open bounded subset of \mathbb{E}, and p a point of $\mathbb{E} . I$ is the identity mapping on \mathbb{E}, and O the origin of \mathbb{E}.

Furthermore, Y is a closed subset of \mathbb{E} containing O, equipped with a convexity mapping $\alpha: Y \times Y \times J \rightarrow Y$, i.e. Y is an α-convex metric space in the sense of Definition 3.1.

Denote by $\mathcal{F}\left(\bar{D}, \mathcal{K}_{\alpha}(Y)\right)$ the set of all multifunctions $F: \bar{D} \rightarrow \mathcal{K}_{\alpha}(Y)$ such that:
(j) F is h-u.s.c.
(jj) F is compact, i.e. there is a compact α-convex set $A \subset Y$ (A depending on F) such that $F(x) \subset A$, for every $x \in \bar{D}$.
Occasionally, the set A in (jj) corresponding to F is denoted by A_{F}.
Remark 6.1. Since $O \in Y$ and, by Remark 4.3, $\mathcal{K}_{\alpha}(Y)$ contains all singleton subsets of Y, it follows that the mapping Θ defined by $\Theta(x)=\{0\}$, for every $x \in \bar{D}$, is an element of $\mathcal{F}\left(\bar{D}, \mathcal{K}_{\alpha}(Y)\right)$ and, obviously, of $\mathcal{F}(\bar{D}, \mathcal{K}(\mathbb{E}))$.

For $F \in \mathcal{F}\left(\bar{D}, \mathcal{K}_{\alpha}(Y)\right)$, put:

$$
\mathcal{A}_{F}(\bar{D}, A)=\left\{\left\{f_{n}\right\} \mid f_{n}: \bar{D} \rightarrow A \text { is continuous compact, } f_{n} \xrightarrow{\mathrm{gr}} F\right\},
$$

where $\left\{f_{n}\right\}$ stands for $\left\{f_{n}\right\}_{n=1}^{\infty}$. By Corollary 5.2, one has:
Proposition 6.2. $\mathcal{A}_{F}(\bar{D}, A)$ is nonempty, for every $F \in \mathcal{F}\left(\bar{D}, \mathcal{K}_{\alpha}(Y)\right)$.
Definition 6.3. Let $F \in \mathcal{F}\left(\bar{D}, \mathcal{K}_{\alpha}(Y)\right)$, and let $p \notin \bigcup_{x \in \partial D}(I-F)(x)$. Let $\left\{f_{n}\right\} \in \mathcal{A}_{F}(\bar{D}, A)$. The topological degree $\operatorname{Deg}(I-F, D, p)$ of $I-F$ at p relative to D is defined by

$$
\begin{equation*}
\operatorname{Deg}(I-F, D, p)=\lim _{n \rightarrow \infty} \operatorname{deg}\left(I-f_{n}, D, p\right) \tag{6.1}
\end{equation*}
$$

where $\operatorname{deg}\left(I-f_{n}, D, p\right)$ denotes the Leray-Schauder topological degree of $I-f_{n}$ at p relative to D.

In the sequel we shall use some properties of the Leray-Schauder topological degree, that can be found in Istrǎtescu [18] and Llyod [20].

The above definition is meaningful by virtue of the following proposition.
Proposition 6.4. Let $F \in \mathcal{F}\left(\bar{D}, \mathcal{K}_{\alpha}(Y)\right)$, and let $p \notin \bigcup_{x \in \partial D}(I-F)(x)$. Let $\left\{f_{n}\right\},\left\{g_{n}\right\} \in \mathcal{A}_{F}(\bar{D}, A)$. Then one has
(a) There exists $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\operatorname{deg}\left(I-f_{n}, D, p\right)=\operatorname{deg}\left(I-f_{m}, D, p\right) \quad \text { for all } n, m \geq n_{0} \tag{6.2}
\end{equation*}
$$

(b) There exists $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\operatorname{deg}\left(I-f_{n}, D, p\right)=\operatorname{deg}\left(I-g_{n}, D, p\right) \quad \text { for all } n \geq n_{0} \tag{6.3}
\end{equation*}
$$

Proof. By Proposition 6.2, the set $\mathcal{A}_{F}(\bar{D}, A)$ is nonempty.
(b) Let $\left\{f_{n}\right\} \in \mathcal{A}_{F}(\bar{D}, A)$. Define $H_{n, m}: \bar{D} \times[0,1] \rightarrow Y$ by

$$
H_{n, m}(x, t)=\alpha\left(f_{n}(x), f_{m}(x), t\right)
$$

Clearly $H_{n, m}$ is well defined, continuous and compact.
There is $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
p \notin \bigcup_{n, m \geq n_{0}} \bigcup_{(x, t) \in \partial D \times[0,1]}\left(x-H_{n, m}(x, t)\right) . \tag{6.4}
\end{equation*}
$$

Supposing the contrary, there exist subequences $\left\{n_{k}\right\},\left\{m_{k}\right\} \subset \mathbb{N}$ and a sequence $\left\{\left(x_{k}, t_{k}\right)\right\} \subset \partial D \times[0,1]$, such that

$$
\begin{equation*}
p=x_{k}-\alpha\left(f_{n_{k}}\left(x_{k}\right), f_{m_{k}}\left(x_{k}\right), t_{k}\right) \quad \text { for every } k \in \mathbb{N} . \tag{6.5}
\end{equation*}
$$

Hence, for all $k \in \mathbb{N}$, one has $x_{k} \in p+\alpha(A, A,[0,1])$, where the latter is a compact set, since A and $[0,1]$ are so, and α is continuous. Passing to subsequences, without changing notation, for some $t \in[0,1], x \in \partial D$, and $y, z \in A$ one has
$t_{k} \rightarrow t, x_{k} \rightarrow x, f_{n_{k}}\left(x_{k}\right) \rightarrow y$, and $f_{m_{k}}\left(x_{k}\right) \rightarrow z$, as $k \rightarrow \infty$. Since F is h-u.s.c. with compact α-convex values, Proposition 5.5 implies that $y, z \in F(x)$, and hence $\alpha(y, z, t) \in F(x)$. From (6.5), letting $k \rightarrow \infty$, one has $p=x-\alpha(y, z, t)$, and thus $p \in x-F(x)$. This contradicts the hypothesis, consequently, for some $n_{0} \in \mathbb{N}$, (6.5) holds.

For $n, m \geq n_{0}$ each $H_{n, m}$ is continuous compact and satisfies (6.4).
Whence, by the homotopy property of the Leray-Schauder degree, (6.2) follows and (a) is proved.
(b) Let $\left\{f_{n}\right\},\left\{g_{n}\right\} \in \mathcal{A}_{F}(\bar{D}, A)$. Define $H_{n}: \bar{D} \times[0,1] \rightarrow Y$ by

$$
H_{n}(x, t)=\alpha\left(f_{n}(x), g_{n}(x), t\right)
$$

H_{n} is well defined continuous and compact. There exists $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
p \notin \bigcup_{n \geq n_{0}} \bigcup_{(x, t) \in \partial D \times[0,1]}\left(x-H_{n}(x, t)\right) \tag{6.6}
\end{equation*}
$$

In the contrary case, there exist a subsequence $\left\{n_{k}\right\} \subset \mathbb{N}$ and a sequence $\left\{\left(x_{k}, t_{k}\right)\right\} \subset \partial D \times[0,1]$, such that

$$
\begin{equation*}
p=x_{k}-\alpha\left(f_{n_{k}}\left(x_{k}\right), g_{n_{k}}\left(x_{k}\right), t_{k}\right) \quad \text { for every } k \in \mathbb{N} . \tag{6.7}
\end{equation*}
$$

As before, passing to subsequences, without changing notation, for some $t \in$ $[0,1], x \in \partial D$, and $y, z \in A$, one has $t_{k} \rightarrow k, x_{k} \rightarrow x, f_{n_{k}}\left(x_{k}\right) \rightarrow y$, and $g_{n_{k}}\left(x_{k}\right) \rightarrow z$, when $k \rightarrow \infty$, and hence $\alpha(y, z, t) \in F(x)$. Letting $k \rightarrow \infty$, (6.7) gives $p=x-\alpha(y, z, t)$, and thus $p \in x-F(x)$. Since this contradicts the hypothesis, there exists $n_{0} \in \mathbb{N}$ for which (6.6) holds.

For $n \geq n_{0}$ each H_{n} is continuous compact and satisfies (6.6). Hence (6.3) follows, proving (b).

Proposition 6.5. Let $F \in \mathcal{F}\left(\bar{D}, \mathcal{K}_{\alpha}(Y)\right)$ and let $p \notin \bigcup_{x \in \partial D}(I-F)(x)$. Then, the topological degree $\operatorname{Deg}(I-F, D, p)$ of $I-F$ at p relative to D is well defined.

Proof. By Proposition 6.2, the set $\mathcal{A}_{F}(\bar{D}, A)$ is nonempty. Furthermore, by Proposition 6.4, the limit (6.1) exists and it is independent of the sequence $\left\{f_{n}\right\} \in \mathcal{A}_{F}(\bar{D}, A)$.

Remark 6.6. If $F \in \mathcal{F}(\bar{D}, \mathcal{K}(\mathbb{E}))$ and $p \notin \bigcup_{x \in \partial D}(I-F)(x)$, then $\operatorname{Deg}(I-$ $F, D, p)$ reduces to the topological degree of $I-F$ at p relative to D defined by Hukuhara in [17] and, in particular, to Leray-Schauder's degree, when F is single valued.

7. Properties of the topological degree

In this section, we present a few properties of the topological degree introduced before, including an application to fixed point theory.

Throughout \mathbb{E} and Y are as in Section 6. Furthermore, D is a nonempty open bounded subset of \mathbb{E}, and p a point of \mathbb{E}.

Proposition 7.1 (Invariance under homotopy). Let $F_{1}, F_{2} \in \mathcal{F}\left(\bar{D}, \mathcal{K}_{\alpha}(Y)\right)$, and suppose that the multifunction $H: \bar{D} \times[0,1] \rightarrow 2^{Y}$ given by

$$
H(x, t)=\alpha\left(F_{1}(x), F_{2}(x), t\right)
$$

is such that $p \notin \bigcup_{(x, t) \in \partial D \times[0,1]}(x-H(x, t))$. Then, one has

$$
\begin{equation*}
\operatorname{Deg}\left(I-F_{1}, D, p\right)=\operatorname{Deg}\left(I-F_{2}, D, p\right) \tag{7.1}
\end{equation*}
$$

Proof. Let $\left\{f_{n}^{1}\right\} \in \mathcal{A}_{F_{1}}\left(\bar{D}, A_{1}\right),\left\{f_{n}^{2}\right\} \in \mathcal{A}_{F_{2}}\left(\bar{D}, A_{2}\right)$, where $A_{1}, A_{2} \subset Y$ are compact α-convex sets corresponding to F_{1}, F_{2}, respectively. Define $K_{n}: \bar{D} \times$ $[0,1] \rightarrow Y$ by

$$
\begin{equation*}
K_{n}(x, t)=\alpha\left(f_{n}^{1}(x), f_{n}^{2}(x), t\right) . \tag{7.2}
\end{equation*}
$$

K_{n} is well defined continuous and compact.
There exists $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
p \notin \bigcup_{n \geq n_{0}} \bigcup_{(x, t) \in \partial D \times[0,1]}\left(x-K_{n}(x, t)\right) . \tag{7.3}
\end{equation*}
$$

Supposing the contrary, there exist subsequences $\left\{f_{n_{k}}^{1}\right\},\left\{f_{n_{k}}^{2}\right\}$ and a sequence $\left\{\left(x_{k}, t_{k}\right)\right\} \subset \partial D \times[0,1]$, such that

$$
\begin{equation*}
p=x_{k}-\alpha\left(f_{n_{k}}^{1}\left(x_{k}\right), f_{n_{k}}^{2}\left(x_{k}\right), t_{k}\right) \quad \text { for every } k \in \mathbb{N} . \tag{7.4}
\end{equation*}
$$

As $\left\{f_{n_{k}}^{1}\left(x_{k}\right)\right\} \subset A_{1},\left\{f_{n_{k}}^{2}\left(x_{k}\right)\right\} \subset A_{2},\left\{x_{k}\right\} \subset p+\alpha\left(A_{1}, A_{2},[0,1]\right)$, and $\left\{t_{k}\right\} \subset$ [0,1], passing to subsequences, whithout changing notation, for some $x \in \partial D$, $y_{1} \in A_{1}, y_{2} \in A_{2}$, and $t \in[0,1]$, one has $x_{k} \rightarrow x, f_{n_{k}}^{1}\left(x_{k}\right) \rightarrow y_{1}, f_{n_{k}}^{2}\left(x_{k}\right) \rightarrow y_{2}$, $t_{k} \rightarrow t$, when $k \rightarrow \infty$. Furthermore, $y_{1} \in F_{1}(x), y_{2} \in F_{2}(x)$, by Proposition 5.5. Letting $k \rightarrow \infty,(7.4)$ gives $p=x-\alpha\left(y_{1}, y_{2}, t\right)$, and thus $p \in x-H(x, t)$, a contradiction. Therefore, for some $n_{0} \in \mathbb{N}$, (7.3) holds.

By the homotopy property of the Leray-Schauder degree, in view of (7.2) and (7.3), one has

$$
\operatorname{deg}\left(I-f_{n}^{1}, D, p\right)=\operatorname{deg}\left(I-f_{n}^{2}, D, p\right) \quad \text { for all } n \geq n_{0}
$$

Hence, letting $n \rightarrow \infty$, (7.1) follows, completing the proof.

Proposition 7.2 (Inclusions solving property). Let $F \in \mathcal{F}\left(\bar{D}, \mathcal{K}_{\alpha}(Y)\right)$, let $p \notin \bigcup_{x \in \partial D}(I-F)(x)$, and suppose that $\operatorname{Deg}(I-F, D, p) \neq 0$. Then, there exists $x \in D$ such that

$$
\begin{equation*}
p \in x-F(x) \tag{7.5}
\end{equation*}
$$

Proof. Let $\left\{f_{n}\right\} \in \mathcal{A}_{F}(\bar{D}, A)$. By Definition 6.3 and Proposition 6.4(a), there is $n_{0} \in \mathbb{N}$ such that $n \geq n_{0}$ implies $\operatorname{deg}\left(I-f_{n}, D, p\right)=\operatorname{Deg}(I-F, D, p)$. The latter is non zero, hence by a property of the Leray-Schauder degree, for each $n \geq n_{0}$ there exists $x_{n} \in D$ such that

$$
\begin{equation*}
p=x_{n}-f_{n}\left(x_{n}\right) \tag{7.6}
\end{equation*}
$$

Since $\left\{f_{n}\left(x_{n}\right)\right\} \subset A$, a compact set, passing to subsequences, without changing notation, one can assume that $x_{n} \rightarrow x, f_{n}\left(x_{n}\right) \rightarrow y$, as $n \rightarrow \infty$, for some $x \in \bar{D}$ and $y \in A$. Furthermore $y \in F(x)$, by Proposition 5.5. Then from (7.6), letting $n \rightarrow \infty,(7.5)$ follows and, clearly, $x \in D$. This completes the proof.

Proposition 7.3 (Normalization). If $p \in D$ then $\operatorname{Deg}(I-\Theta, D, p)=1$.
Proof. Since $\Theta \in \mathcal{F}\left(\bar{D}, \mathcal{K}_{\alpha}(Y)\right)$, by Remark 6.1, $\operatorname{Deg}(I-\Theta, D, p)$ is defined. By Remark 6.6, $\operatorname{Deg}(I-\Theta, D, p)=\operatorname{deg}(I-\Theta, D, p)$ and, as the latter is 1 , the statement follows.

Proposition 7.4 (Continuity in p). Let $F \in \mathcal{F}\left(\bar{D}, \mathcal{K}_{\alpha}(Y)\right)$, and let $p, q \in C$, where C is an open component of $\mathbb{E} \backslash \bigcup_{x \in \partial D}(I-F)(x)$. Then one has:

$$
\begin{equation*}
\operatorname{Deg}(I-F, D, p)=\operatorname{Deg}(I-F, D, q) \tag{7.7}
\end{equation*}
$$

Proof. Let $\left\{f_{n}\right\} \in \mathcal{A}_{F}(\bar{D}, A)$. Let $\gamma:[0,1] \rightarrow C$ be a continuous path joining p and q. For $\varepsilon>0$ put

$$
\Gamma_{\varepsilon}=\bigcup_{t \in[0,1]} U(\gamma(t), \varepsilon)
$$

where $U(\gamma(t), \varepsilon)$ denotes the open ball in \mathbb{E} with center $\gamma(t)$ and radius $\varepsilon>0$. Γ_{ε} is open connected and $\Gamma_{\varepsilon} \subset C$, if ε is small enough, say $\varepsilon<\varepsilon_{0}$.

There exist $0<\varepsilon<\varepsilon_{0}$ and $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\Gamma_{\varepsilon} \subset \mathbb{E} \backslash\left(\bigcup_{n \geq n_{0}} \bigcup_{x \in \partial D}\left(I-f_{n}\right)(x)\right) \tag{7.8}
\end{equation*}
$$

In the contrary case, there exist a subsequence $\left\{f_{n_{k}}\right\}$ and sequences $\left\{x_{k}\right\} \subset \partial D$, $\left\{t_{k}\right\} \subset[0,1]$, such that

$$
\begin{equation*}
\gamma\left(t_{k}\right) \in x_{k}-f_{n_{k}}\left(x_{k}\right)+\frac{1}{k} U \quad \text { for every } k \in \mathbb{N} \tag{7.9}
\end{equation*}
$$

where U stands for the open unit ball in \mathbb{E}. Since $\left\{\gamma\left(t_{k}\right)\right\} \subset \gamma([0,1]),\left\{f_{n_{k}}\left(x_{k}\right)\right\} \subset$ A, and $\gamma([0,1]), A$ are compact, passing to subsequences, without changing notation, one has $\gamma\left(t_{k}\right) \rightarrow z, f_{n_{k}}\left(x_{k}\right) \rightarrow y, x_{k} \rightarrow x$, for some $z \in \gamma([0,1]), y \in A$, and $x \in \partial D$. Furthermore $y \in F(x)$, by Proposition 5.5. Letting $k \rightarrow \infty,(7.9)$ gives $z=x-y \in x-F(x)$. As $z \in \gamma([0,1]) \subset C$ and $x \in \partial D$, a contradiction follows and thus, for some $0<\varepsilon<\varepsilon_{0}$ and $n_{0} \in \mathbb{N}$, (7.8) holds.

Since Γ_{ε} is open connected, contains p and q, and satisfies (7.8), by a property of the Leray-Schauder degree one has $\operatorname{deg}\left(I-f_{n}, D, p\right)=\operatorname{deg}\left(I-f_{n}, D, q\right)$, for every $n \geq n_{0}$. Letting $n \rightarrow \infty$, (7.7) follows, completing the proof.

Proposition 7.5. Let D be a nonempty open bounded subset of \mathbb{E}, with $0 \in D \subset Y$. Suppose D is α-convex. Let $F: \bar{D} \rightarrow \mathcal{K}_{\alpha}(Y)$ be a h-u.s.c. and compact multifunction with corresponding set $A_{F} \subset D$. Then F has a fixed point.

Proof. From the hypothesis, $F, \Theta \in \mathcal{F}\left(\bar{D}, \mathcal{K}_{\alpha}(Y)\right)$. Define $H: \bar{D} \times[0,1] \rightarrow 2^{Y}$ by

$$
\begin{equation*}
H(x, t)=\alpha(0, F(x), t) . \tag{7.10}
\end{equation*}
$$

We have

$$
\begin{equation*}
0 \notin \bigcup_{(x, t) \in \partial D \times[0,1]}(x-H(x, t)) . \tag{7.11}
\end{equation*}
$$

In the contrary case, there are $x \in \partial D$ and $t \in[0,1]$ such that $x \in \alpha(0, F(x), t)$, and thus $x=\alpha(0, y, t)$, for some $y \in F(x)$. Since $0 \in D$ and $F(x) \subset A \subset D$, where D is α-convex, one has $\alpha(0, y, t) \in D$ and, from the contradiction, (7.11) follows.

In view of (7.11), Proposition 7.1 gives $\operatorname{Deg}(I-F, D, 0)=\operatorname{Deg}(I-\Theta, D, 0)$, where the latter is 1, by Proposition 7.3. Whence, by Proposition 7.2, $x \in F(x)$ for some $x \in D$, completing the proof.

Definition 7.6. Let C be a nonempty open bounded subset of \mathbb{E} with $C \subset Y$. Suppose C is α-convex. A point $a \in C$ is called absorbing for \bar{C} if $\alpha(a, y, t) \in C$ for all $y \in \bar{C}$ and $t \in[0,1)$.

Remark 7.7. Suppose \mathbb{E} is equipped with the (natural) convexity mapping α_{0} given by (3.3), and let C be a nonempty open bounded convex subset of \mathbb{E}. Then, each point $a \in C$ is absorbing for \bar{C}. This is no longer true if convexity is replaced by α-convexity.

Proposition 7.8. Let D be a nonempty open bounded subset of \mathbb{E}, with $0 \in D \subset Y$. Suppose that D is α-convex, and that 0 is an absorbing point of \bar{D}.

Let $F: \bar{D} \rightarrow \mathcal{K}_{\alpha}(Y)$ be a h-u.s.c. and compact multifunction, with corresponding set $A_{F} \subset \bar{D}$. Then, F has a fixed point.

Proof. Without loss of generality, one can assume

$$
\begin{equation*}
0 \notin \bigcup_{x \in \partial D}(I-F)(x) \tag{7.12}
\end{equation*}
$$

Now, let $H: \bar{D} \times[0,1] \rightarrow 2^{Y}$ be given by (7.10), and observe that $F, \Theta \in$ $\mathcal{F}\left(\bar{D}, \mathcal{K}_{\alpha}(Y)\right)$.

Under the above assumptions, (7.11) holds. In the contrary case, there are $x \in \partial D$ and $t \in[0,1]$ such that $x \in \alpha(0, F(x), t)$. The cases $t=0, t=1$ imply respectively $x=0, x \in F(x)$, which are excluded by the assumptions $0 \in D$, and (7.12). Whence $x=\alpha(0, y, t)$, for some $0<t<1$ and $y \in F(x)$. Since $y \in \bar{D}$ and 0 is absorbing for \bar{D}, one has $\alpha(0, y, t) \in D$. As $x \in \partial D$, a contradiction follows, and so (7.11) holds. In view of (7.11), one can conclude as in the proof of Proposition 7.5.

Remark 7.9. If, in Proposition 7.8, one takes $Y=\mathbb{E}$, with the natural convexity mapping α_{0}, and assumes $0 \in D$, then the classical fixed point theorem of Kakutani-Ky Fan (see [19] and [9]) follows at once.

Proposition 7.10. Let Y be a compact α-convex metric space. Then, every h-u.s.c. multifunction $F: Y \rightarrow \mathcal{K}_{\alpha}(Y)$ has a fixed point.

Proof. By Corollary 5.2, there exists a sequence $\left\{f_{n}\right\}$ of continuous functions $f_{n}: Y \rightarrow Y$ such that $f_{n} \xrightarrow{\mathrm{gr}} F$, as $n \rightarrow \infty$. By [7, Corollary 3.3], each f_{n} has a fixed point $x_{n}=f_{n}\left(x_{n}\right)$. Since Y is compact, passing to subsequences (without changing notation), one can assume that $x_{n} \rightarrow x$ and $f_{n}\left(x_{n}\right) \rightarrow x$ as $n \rightarrow \infty$, for some $x \in Y$. Then, by Proposition 5.5, one has $x \in F(x)$, completing the proof.

References

[1] R. Bielawski, Simplicial convexity and its applications, J. Math. Anal. Appl. 127 (1987), 155-161.
[2] Y. G. Borisovitch, B. D. Gelman, A. D. Myshkis and V. V. Obukhovskir̆, Topological methods in the fixed point theory of multivalued mappings, Russian Math. Surveys 35 (1980), 65-143.
[3] A. Cellina, A theorem on the approximation of compact set-valued mappings, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 47 (1969), 149-163.
[4] A. Cellina and A. Lasota, A new approach to the definition of topological degree of multivalued mappings, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 47 (1969), 434-440.
[5] D. W. Curtis, Some theorems and examples on local equiconnectedness and its specializations, Fund. Math. 72 (1971), 101-113.
[6] D. W. Curtis, Application of a selection theorem to hyperspace contractibility, Canad. J. Math. 27 (1985), 747-759.
[7] F. S. De Blasi and G. Pianigiani, Continuous selections in α-convex metric spaces, Centro Vito Volterra, Universitá di Roma "Tor Vergata", preprint No 526, July 2002.
[8] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
[9] Ky Fan, Fixed points and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121-126.
[10] K. Gęba and A. Granas, Infinite dimensional cohomology theory, J. Math. Pures Appl. 5 (1973), 147-270.
[11] L. Górniewicz, Homological methods in fixed point theory of multivalued maps, Dissertationes Math. (Rozprawy Mat.) 129 (1976), 1-71.
[12] L. Górniewicz, A. Granas and W. Kryszewski, On the homotopy method in the fixed point index theory of multivalued mappings of compact absolute neighborhoud retracts, J. Math. Anal. Appl. 161 (1991), 457-473.
[13] L. Górniewicz and M. Lassonde, Approximation and fixed points for compositions of R_{δ}, Topology App. 55 (1994), 239-250.
[14] A. Granas, Sur la notion de degré topologique pour une certaine classe de transformations multivalentes dans les espaces de Banach, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 7 (1959), 191-194.
[15] C. D. Horvath, Contractibility and generalized convexity, J. Math. Anal. Appl. 156 (1991), 341-357.
[16] S. Hu and N. S. Papageorgiou, Handbook of multivalued analysis, vol. I, II, Kluwer, Dordrecht, 1997.
[17] M. Hukuhara, Sur l'application semi-continue dont la valeur est un compact convexe, Funkcial. Ekvac. 10 (1967), 43-66.
[18] V.I. Istrătescu, Fixed point theory, Reidel, Dordrecht, 1981.
[19] S. Kakutani, A generalization of Brouwer's fixed point theorem, Duke Math. J. 8 (1941), 457-459.
[20] N.G. Lloyd, Degree theory, Cambridge University Press, Cambridge, 1978.
[21] T.W. Ma, Topological degree for set-valued compact vector fields in locally convex spaces, Dissertationes Math. (Rozprawy Mat.) 92 (1972), 1-43.
[22] E. Michael, Continuous selections I, Ann. Math. 63 (1956), 361-382.
[23] \qquad , Convex structures and continuous selections, Canad. J. Math. 11 (1959), 556575.
[24] , Paraconvex sets, Math. Scand. 7 (1959), 372-376.
[25] L. Pasicki, Retracts in metric spaces, Proc. Amer. Math. Soc. 78 (1980), 595-600.
[26] , Applications of weeds, Zeszyty Nauk. Akad. Górn.-Hutniczej, Mat. Fiz. Chem. 5 (1989), 89-108.
[27] W. V. Petryshyn and P. M. Fitzpatrick, A degree theory, fixed point theorems and mappings theorems for multivalued noncompact mappings, Trans. Amer. Math. Soc. 194 (1974), 1-25.
[28] D. Repov̌s and P. V. Semenovt, Continuous Selections of Multivalued Mappings, Kluwer, Dordrecht, 1998.
[29] M. H. Stone, Postulates for the barycentric calculus, Ann. Mat. Pura Appl. (4) 29 (1949), 25-30.
[30] W. Takahashi, A convexity in metric spaces and nonexpansive mappings I, Kodai Math. Sem. Rep. 22 (1970), 142-149.
[31] L. A. Talman, Fixed points for condensing multifunctions in metric spaces with convex structure, Kodai Math. Sem. Rep. 29 (1977), 62-70.
[32] M. van de Vel, Finite dimensional convex structures I: general results, Topology Appl. 14 (1982), 201-225.
[33] , A selection theorem for topological convex structures, Trans. Amer. Math. Soc. 336 (1993), 463-496.

Manuscript received April 20, 2004
Francesco S. de Blasi
Centro Vito Volterra
Dipartimento di Matematica
Università di Roma II (Tor Vergata)
Via della Ricerca Scientifica
00133 Roma, ITALY
E-mail address: deblasi@mat.uniroma2.it

Giulio Pianigiani
Dipartimento di Matematica
per le Decisioni
Università di Firenze
Via Lombroso, 6/17
50134 Firenze, ITALY
E-mail address: giulio.pianigiani@dmd.unifi.it

[^0]: 2000 Mathematics Subject Classification. Primary 54C65; Secondary 54C60, 47H11.
 Key words and phrases. Continuous approximate selection, multifunction, convex metric space, pseudo-barycenter, topological degree.

