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APPROXIMATION AND LERAY–SCHAUDER
TYPE RESULTS FOR Uκ

c MAPS

Naseer Shahzad

Abstract. The paper presents new approximation and fixed point results

for Uκ
c maps in Hausdorff locally convex spaces.

1. Introduction

In 1969, Ky Fan [2] proved an interesting result that combined fixed point
theory with the study of proximity maps. Its normed space version is stated as
follows:

Let C be a nonempty, compact, convex subset of a normed space E. Then
for any continuous mapping f from C to E, there exists an x0 ∈ C with

‖x0 − f(x0)‖ = inf
y∈C

‖f(x0)− y‖.

During the last three decades, various multi-valued and single-valued ver-
sions of Fan’s result have been established by a number of authors; see, for
instance, [1], [3], [5]–[7], [9], [10], [12], [13], [18], [19]. Recently, Lin and Park in
[7] obtained a multivalued version of Ky Fan’s result for α-condensing Uκ

c maps
defined on a closed ball in a Banach space. More recently, O’Regan and Shahzad
in [12] extended their result to countably condensing maps. The purpose of this
paper is to prove some Ky Fan type approximation results for Φ-condensing
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Uκ
c multimaps, where C is a closed convex subset of a Hausdorff locally con-

vex space E with 0 ∈ int(C). Since every α-condensing map F :C → 2E is
Φ-condensing if C is complete, the results of Lin and Park (see [7]) can be con-
sidered as special cases of our work. We also derive, as an application, the
Leray–Schauder principle for Uκ

c multimaps, which was proved by Lin and Yu
in [8]. The Leray–Schauder type results for compact admissible multimaps and
approximable multimaps were obtained in [15] and [16].

2. Preliminaries

Let E be a Hausdorff locally convex space. For a nonempty set Y ⊆ E, 2Y

denotes the family of nonempty subsets of Y . If L is a lattice with a minimal ele-
ment 0, a mapping Φ: 2E → L is called a generalized measure of noncompactness
provided that the following conditions hold:

(a) Φ(A) = 0 if and only if A is compact.
(b) Φ(co(A)) = Φ(A); here co(A) denotes the closed convex hull of A.
(c) Φ(A ∪B) = max{Φ(A),Φ(B)}.

It is clear that if A ⊆ B, then Φ(A) ≤ Φ(B). Examples of the generalized
measure of noncompactness are the Kuratowskĭı measure and the Hausdorff mea-
sure of noncompactness (see [15]), which are defined below. Let C be a nonempty
subset of a Banach space X. The Kuratowskĭı measure of noncompactness is the
map α: 2C → L defined by

α(A) = inf{ε > 0 | A can be covered by a finite number of sets

each of diamter less than ε},

for A ∈ 2C . The Hausdorff measure of noncompactness is the map χ: 2C → L

defined by

χ(A) = inf{ε > 0 | A can be covered by a finite number of balls

with radius less than ε},

for A ∈ 2C .
Let C be a nonempty subset of a Hausdorff locally convex space E and

F :C → 2E . Then F is called Φ-condensing provided that Φ(A) = 0 for any
A ⊆ C with Φ(F (A)) ≥ Φ(A). Note that any compact map or any map defined
on a compact set is Φ-condensing.

Let X and Y be subsets of Hausdorff topological vector spaces E1 and E2

respectively. Let F :X → K(Y ); here K(Y ) denotes the family of nonempty
compact subsets of Y . Then F is Kakutani if F is upper semicontinuous with
convex values. A nonempty topological space is called acyclic if all its reduced
Čech homology groups over the rationals are trivial. Now F is acyclic if F is up-
per semicontinuous with acyclic values. The map F is said to be an O’Neill map



Approximation Results 339

if F is continuous and if the values of F consist of one or m acyclic components
(here m is fixed).

For our next definition let X and Y be metric spaces. A continuous single
valued map p:Y → X is called a Vietoris map if the following two conditions
hold:

(a) for each x ∈ X, the set p−1(x) is acyclic,
(b) p is a proper map i.e., for every compact A ⊆ X we have that p−1(A)

is compact.

A multifunction φ:X → K(Y ) is admissible (strongly) in the sense of Gór-
niewicz [4], if there exists a metric space Z and two continuous maps p:Z → X

and q:Z → Y such that

(a) p is a Vietoris map, and
(b) φ(x) = q(p−1(x)), for any x ∈ X.

Let X be a nonempty convex subset of a Hausdorff topological vector space E

and Y a topological space. A ploytope P in X is any convex hull of a nonempty
finite subset of X; or a nonempty compact convex subset of X contained in
a finite dimentional subpace of E. Given a class X of maps, X (X, Y ) denotes
the set of maps F :X → 2Y belonging to X , and Xc the set of finite compositions
of maps in X . A class U of maps is defined by the following properties:

(a) U contains the class C of single valued continuous functions,
(b) each F ∈ Uc is upper semicontinuous and compact valued,
(c) for any polytope P , F ∈ Uc(P, P ) has a fixed point, where the interme-

diate spaces of composites are suitably chosen for each U .

An important class related to Uc(X, Y ) is given below.
F ∈ Uκ

c (X, Y ) if for any compact subset K of X, there is a G ∈ Uc(K, Y )
with G(x) ⊆ F (x) for each x ∈ K.

Examples of Uκ
c maps are the Kakutani maps, the acyclic maps, the O’Neill

maps, and the maps admissible in the sense of Górniewicz. Note that U(X, Y ) ⊆
Uc(X, Y ) ⊆ Uκ

c (X, Y ).
Let Q be a subset of a Hausdorff topological space X. We let Q (respectively,

∂(Q), int(Q)) to denote the closure (respectively, boundary, interior) of Q.
Let C be a subset of a Hausdorff topological vector space E and x ∈ X.

Then the inward set IC(x) is defined by

IC(x) = {x + r(y − x) | y ∈ C, r ≥ 0}.

If C is convex and x ∈ C, then

IC(x) = x + {r(y − x) | y ∈ C, r ≥ 1}.

We shall need the following results in the sequel.
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Lemma 2.1 ([14]). Let C be a nonempty, convex subset of a Hausdorff locally
convex space E. Suppose F ∈ Uκ

c (C,C) is a compact map. Then F has a fixed
point in C.

Lemma 2.2 ([11]). Let C be a nonempty, closed, convex subset of a Hausdorff
topological vector space E. Suppose G:C → 2C is a Φ-condensing map. Then
there exists a nonempty compact convex subset K of C such that G(K) ⊂ K.

Let C be a convex subset of a Hausdorff locally convex space E with 0 ∈
int(C). The Minkowski functional p of C is defined by

p(x) = inf{r > 0 | x ∈ rC}.

Now, we list some properties of the Minkowski functional:

(a) p is continuous on E,
(b) p(x + y) ≤ p(x) + p(y), x, y ∈ E,
(c) p(λx) = λp(x), λ ≥ 0, x ∈ E,
(d) 0 ≤ p(x) < 1 if x ∈ int(C),
(e) p(x) > 1, if x 6∈ C,
(f) p(x) = 1, if x ∈ ∂C.

For x ∈ E, set dp(x, C) = inf{p(x− y) | y ∈ C}.

3. Main results

Theorem 3.1. Let C be a closed, convex subset of a Hausdorff locally convex
space E with 0 ∈ C and U a convex open neighbourhood of 0. Suppose F ∈
Uκ

c (U∩C,C) is a Φ-condensing map. Then there exist x0 ∈ U∩C and y0 ∈ F (x0)
with

p(y0 − x0) = dp(y0, U ∩ C) = dp(y0, IU (x0) ∩ C),

here p is the Minkowski functional of U . More precisely, either

(a) F has a fixed point x0 ∈ U ∩ C, or
(b) there exist x0 ∈ ∂C(U) and y0 ∈ F (x0) with

0 < p(y0 − x0) = dp(y0, U ∩ C) = dp(y0, IU (x0) ∩ C).

Here ∂C(U) denotes the boundary of U relative to C.

Proof. Let r:E → U be defined by

r(x) =

{
x if x ∈ U ,

x/p(x) if x 6∈ U ,

that is
r(x) =

x

max{1, p(x)}
, for x ∈ E.
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Since 0 ∈ U = int(U), p is continuous and so r is continuous. Let f be the
restriction of r to C. Since C is convex and 0 ∈ C, it follows that f(C) ⊆ U ∩C.
Also f ∈ C(C,U ∩ C). Since Uκ

c is closed under composition, f ◦ F ∈ Uκ
c (U ∩

C,U ∩ C). Let G = f ◦ F . We show that G is Φ-condensing. Let A be a subset
of U ∩ C such that Φ(A) ≤ Φ(G(A)). Then G(A) ⊆ co({0} ∪ F (A)) and so

Φ(A) ≤ Φ(G(A)) ≤ Φ(co({0} ∪ F (A))) ≤ Φ({0} ∪ F (A))

= max{Φ({0}),Φ(F (A))} = Φ(F (A)),

which gives A is compact. This shows that G is Φ-condensing and so, by
Lemma 2.2, there exists a nonempty compact convex subset K of U ∩ C such
that G(K) ⊂ K. Since G ∈ Uκ

c (U ∩ C,U ∩ C) and K is compact, there exists
T ∈ Uc(K, U ∩ C) such that T (x) ⊂ G(x) for all x ∈ K. This implies that
T (K) ⊂ G(K) ⊂ K and T is compact. Since T ∈ Uc(K, K), by Lemma 2.1, T

has a fixed point x0 ∈ K, that is, x0 ∈ T (x0) ⊂ G(x0). Clearly x0 ∈ U ∩ C.
Therefore, there exists some y0 ∈ F (x0) with x0 = f(y0). Now, we consider two
cases:

(a) y0 ∈ U ∩ C or
(b) y0 ∈ C \ U .

Suppose y0 ∈ U ∩ C. Then x0 = f(y0) = y0. As a result

p(y0 − x0) = 0 = dp(y0, U ∩ C)

and x0 is a fixed point of F . On the other hand, if y0 ∈ C \ U , then

x0 = f(y0) =
y0

p(y0)
.

So, for any x ∈ U ∩ C,

p(y0 − x0) = p

(
y0 −

y0

p(y0)

)
=

(
p(y0)− 1

p(y0)

)
p(y0)

= p(y0)− 1 ≤ p(y0)− p(x) = p((y0 − x) + x)− p(x) ≤ p(y0 − x),

which gives

p(y0 − x0) = inf{p(y0 − z) | z ∈ U ∩ C} = dp(y0, U ∩ C).

Since p(y0 − x0) = p(y0)− 1, we have p(y0 − x0) > 0.
Let z ∈ IU (x0) ∩ C \ (U ∩ C). Then there exists y ∈ U and c ≥ 1 with

z = x0 + c(y − x0). Suppose that

p(y0 − z) < p(y0 − x0).

The convexity of C implies that

1
c
z +

(
1− 1

c

)
x0 ∈ C.
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Since
1
c
z +

(
1− 1

c

)
x0 = y ∈ U,

it follows that

p(y0 − y) = p

[
1
c
(y0 − z) +

(
1− 1

c

)
(y0 − x0)

]
≤ 1

c
p(y0 − z) +

(
1− 1

c

)
p(y0 − x0) < p(y0 − x0).

This contradicts the choice of y0. Consequently, we have

p(y0 − x0) ≤ p(y0 − z) for all z ∈ IU (x0) ∩ C.

The continuity of p further implies that

p(y0 − x0) ≤ p(y0 − z) for all z ∈ IU (x0) ∩ C.

Hence
0 < p(y0 − x0) = dp(y0, U ∩ C) = dp(y0, IU (x0) ∩ C).

If x0 ∈ U , then IU (x0) = E and so dp(y0, IU (x0) ∩ C) = 0. Thus x0 ∈ ∂C(U). �

Essentially the same reasoning as before yields the following result.

Theorem 3.2. Let C be a closed, convex subset of a Hausdorff locally spa-
ce E with 0 ∈ int(C). Suppose F ∈ Uk

c (C,E) is a Φ-condensing map. Then
there exist x0 ∈ C and y0 ∈ F (x0) with

p(y0 − x0) = dp(y0, C) = dp(y0, IC(x0)),

here p is the Minkowski functional of C in E. More precisely, either

(a) F has a fixed point x0 ∈ C, or
(b) there exist x0 ∈ ∂(C) and y0 ∈ F (x0) with

0 < p(y0 − x0) = dp(y0, C) = dp(y0, IC(x0)).

Since p(x) = ‖x‖/R is the Minkowski functional on BR, we have the following
result.

Corollary 3.3. Let E be a normed space. Suppose F ∈ Uk
c (BR, E) is a

Φ-condensing map. Then there exist x0 ∈ BR and y0 ∈ F (x0) with

‖y0 − x0‖ = d(y0, BR) = d(y0, IBR
(x0)).

More precisely, either

(a) F has a fixed point x0 ∈ BR or
(b) there exist x0 ∈ ∂(BR) and y0 ∈ F (x0) with

0 < ||y0 − x0|| = d(y0, BR) = d(y0, IBR
(x0)).
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Remark 3.1. Theorem 1 of Lin and Park [7] and a result of Lin [6] can be
considered as special cases of Corollary 3.3.

As applications of our approximation theorems, we now derive some fixed
point results.

Theorem 3.4. Let C be a closed, convex subset of a Hausdorff locally convex
space E with 0 ∈ C and U a convex open neighbourhood of 0. Suppose F ∈
Uk

c (U ∩ C,C) is a Φ-condensing map. If F satisfies any one of the following
conditions for any x ∈ ∂C(U) \ F (x):

(a) for each y ∈ F (x), p(y − z) < p(y − x) for some z ∈ IU (x) ∩ C,
(b) for each y ∈ F (x), there exists λ with |λ| < 1 such that λx + (1− λ)y ∈

IU (x) ∩ C,
(c) F (x) ⊆ IU (x) ∩ C,
(d) F (x) ∩ {λx | λ > 1} = ∅,
(e) for each y ∈ F (x), p(y − x) 6= p(y)− 1,
(f) for each y ∈ F (x), there exists α ∈ (1,∞) such that

pα(y)− 1 ≤ pα(y − x),

(g) for each y ∈ F (x), there exists β ∈ (0, 1) such that pβ(y)−1 ≥ pβ(y−x),

then F has a fixed point.

Proof. Theorem 3.1 guarantees that either

(1) F has a fixed point in U ∩ C or
(2) there exist x0 ∈ ∂C(U) and y0 ∈ F (x0) with x0 = f(y0) such that

0 < p(y0)− 1 = p(y0 − x0) = dp(y0, U ∩ C) = dp(y0, IU (x0) ∩ C),

where p is the Minkowski functional of U and f is the restriction of the
continuous retraction r to C.

Suppose (2) holds (with some x0 and y0) and x0 6∈ F (x0). We shall show
contradictions in all conditions (a)–(g).

If F satisfies condition (a), then we have p(y0 − z) < p(y0 − x0), for some
z ∈ IU (x0) ∩ C. This contradicts the choice of x0.

If F satisfies condition (b), then there exists λ with |λ| < 1 such that λx0 +
(1− λ)y0 ∈ IU (x0) ∩ C. This implies that

p(y0 − x0) ≤ p(y0 − (λx0 + (1− λ)y0)) = p(λ(y0 − x0))

= |λ|p(y0 − x0) < p(y0 − x0),

which is a contradiction.
The proof for condition (c) is obvious.
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If F satisfies condition (d), then λx0 6= y0 for each λ > 1. But we have
x0 = f(y0) = y0/p(y0). Therefore, y0 = λ0x0 with λ0 = p(y0) > 1, which is a
contradiction.

If F satisfies condition (e), then p(y0 − x0) 6= p(y0)− 1 and this contradicts
p(y0 − x0) = p(y0)− 1.

If F satisfies condition (f), then there exists α ∈ (1,∞) with pα(y0) − 1 ≤
pα(y0 − x0). Set λ0 = 1/p(y0). Then λ0 ∈ (0, 1) and

(p(y0)− 1)α

pα(y0)
= (1− λ0)α < 1− λα

0 =
pα(y0)− 1

pα(y0)
≤ pα(y0 − x0)

pα(y0)
.

This implies that p(y0 − x0) > p(y0) − 1. This contradicts the fact that p(y0 −
x0) = p(y0)− 1.

Finally if F satisfies condition (g), then, as above (see the proof of (f)), we
can get a contradiction to p(y0 − x0) = p(y0)− 1. �

Remark 3.2. We have derived the Leray–Schauder principle as an applica-
tion of Theorem 3.1 (see Theorem 3.4(d)), which was established by Lin and Yu
in [8].

Essentially the same reasoning as in Theorem 3.4 (with Theorem 3.2 replacing
Theorem 3.1) yields the following result.

Theorem 3.5. Let C be a closed, convex subset of a Hausdorff locally convex
space E with 0 ∈ int(C). Suppose F ∈ Uk

c (C,E) is a Φ-condensing map. If F

satisfies any one of the following conditions for any x ∈ ∂(C) \ F (x):

(a) for each y ∈ F (x), p(y − z) < p(y − x), for some z ∈ IC(x),
(b) for each y ∈ F (x), there exists λ with |λ| < 1 such that

λx + (1− λ)y ∈ IC(x),

(c) F (x) ⊆ IC(x),
(d) F (x) ∩ {λx | λ > 1} = ∅,
(e) for each y ∈ F (x), p(y − x) 6= p(y)− 1,
(f) for each y ∈ F (x), there exists α ∈ (1,∞) such that

pα(y)− 1 ≤ pα(y − x),

(g) for each y ∈ F (x), there exists β ∈ (0, 1) such that pβ(y)−1 ≥ pβ(y−x),

then F has a fixed point.

Corollary 3.6. Let E be a normed space. Suppose F ∈ Uk
c (BR, E) is a

Φ-condensing map. If F satisfies any one of the following conditions for any
x ∈ ∂(BR) \ F (x):

(a) for each y ∈ F (x), ‖y − z‖ < ‖y − x‖, for some z ∈ IBR
(x),
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(b) for each y ∈ F (x), there exists λ with |λ| < 1 such that λx + (1− λ)y ∈
IBR

(x),
(c) F (x) ⊆ IBR

(x),
(d) F (x) ∩ {λx | λ > 1} = ∅,
(e) for each y ∈ F (x), ‖y − x‖ 6= ‖y‖ −R,
(f) for each y ∈ F (x), there exists α ∈ (1,∞) such that ‖y‖α−R ≤ ‖y−x‖α,
(g) for each y ∈ F (x), there exists β ∈ (0, 1) such that ‖y‖β−R ≥ ‖y−x‖β,

then F has a fixed point.

Remark 3.3. Corollary 3.6 contains, as special cases, Theorem 2 of Lin and
Park [7] as well as a result of Lin [6].

Essentially the same reasoning as above gives the following results in Hilbert
spaces (here the retraction r is replaced by the proximity map p), which extend
Theorem 3 and Theorem 4 of Lin and Park [7].

Theorem 3.7. Let C be a nonempty, closed, convex subset of a Hilbert
space H. Suppose F ∈ Uk

c (C,H) is a Φ-condensing map. Then there exist x0

and y0 ∈ F (x0) with

‖y0 − x0‖ = d(y0, C) = d(y0, IC(x0)),

here ‖ · ‖ is the norm induced by the inner product. More precisely, either

(a) F has a fixed point x0 ∈ C or
(b) there exist x0 ∈ ∂(C) and y0 ∈ F (x0) with

0 < ‖y0 − x0‖ = d(y0, C) = d(y0, IC(x0)).

Theorem 3.8. Let C be a nonempty, closed, convex subset of a Hilbert
space H. Suppose F ∈ Uk

c (C,H) is a Φ-condensing map. If F satisfies any one
of the following conditions for any x ∈ ∂(C) \ F (x):

(a) for each y ∈ F (x), ‖y − z‖ < ‖y − x‖, for some z ∈ IC(x),
(b) for each y ∈ F (x), there exists λ with |λ| < 1 such that λx + (1− λ)y ∈

IC(x),
(c) F (x) ⊆ IC(x),

then F has a fixed point.

Acknowledgements. The author wishes to thank the referee for his valu-
able suggestions.
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