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PERIODIC SOLUTIONS FOR NONAUTONOMOUS SYSTEMS
WITH NONSMOOTH QUADRATIC

OR SUPERQUADRATIC POTENTIAL

Dumitru Motreanu — Viorica V. Motreanu

Nikolaos S. Papageorgiou

Abstract. We study a semilinear nonautonomous second order periodic

system with a nonsmooth potential function which exhibits a quadratic
or superquadratic growth. We establish the existence of a solution, using

minimax methods of the nonsmooth critical point theory.

1. Introduction

In this paper we study the following second order periodic system with a non-
smooth potential function:

(1.1)

{
−x′′(t)−A(t)x(t) ∈ ∂j(t, x(t)) a.e. on T = [0, b],

x(0) = x(b), x′(0) = x′(b).

Here t 7→ A(t) is a continuous map on T = [0, b], for some b > 0, with values in
the space of symmetric N ×N matrices, j(t, · ) is a nonsmooth locally Lipschitz
function and ∂j(t, · ) stands for its subdifferential in the sense of Clarke (see
Section 2).
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When A = 0, the problem has been studied extensively and various existence
results have been proved under the assumption that the potential function j(t, · )
is smooth (i.e. a C1-function). We refer to the works of Berger–Schechter [2],
Mawhin–Willem [13], Long [9], Tang [17], Tang–Wu [18] (semilinear systems)
and Manasevich–Mawhin [10], Mawhin [11], [12], Papageorgiou–Papageorgiou
[15] (nonlinear systems driven by the ordinary vector p-Laplacian). The case
where A(t) = k2ω2I, with k ∈ N, ω = 2N/b and I the N ×N identity matrix,
was considered by Mawhin–Willem [13, p. 61] under the assumption that the
right-hand side nonlinearity has the form ∇F (t, x), it is a Carathéodory function
and it is monotone in x ∈ RN (hence F (t, · ) is a C1, convex function). Their
approach uses the dual action principle. In Mawhin–Willem [13, p. 88] we also
find the general problem with A(t) a general N ×N matrix and the right-hand
side nonlinearity ∇F (t, x) satisfying

|F (t, x)| ≤ g(t) and ‖∇F (t, x)‖ ≤ g(t)

for almost all t ∈ T and all x ∈ RN , with g ∈ L1(T )+ . The potential function
F (t, · ) is still a C1 but it is no longer convex. Recently, Tang–Wu [19] extended
the work of Mawhin–Willem to systems with subquadratic smooth potential,
that is, they assumed that F (t, · ) ∈ C1(RN ) and for almost all t ∈ T and all
x ∈ RN , we have

‖∇F (t, x)‖ ≤ g(t) + f(t)‖x‖α

with g, f ∈ L1(T )+ and 0 ≤ α < 1.
Our work here complements the aforementioned work of Tang–Wu [19] by

considering systems where the potential function is quadratic or superquadratic.
In addition, our potential function is in general nonsmooth.

Our approach is variational based on the nonsmooth critical point theory
as this was initially formulated by Chang [3] and extended more recently by
Motreanu–Panagiotopoulos [14] and Kourogenis–Papageorgiou [8]. This theory
is based on the subdifferential calculus for locally Lipschitz functions due to
Clarke [4]. For the convenience of the reader in the next section we recall the
basic definitions and facts from Clarke’s theory and the nonsmooth critical point
theory, which will be needed in the sequel.

2. Mathematical background

We start with the subdifferential theory for locally Lipschitz functions. For
more details on this subject we refer to Clarke [4] and Denkowski–Migorski–
Papageorgiou [5].

Let X be a Banach space and X∗ its topological dual. By 〈 · , · 〉 we denote
the duality brackets for the pair (X,X∗). A function ϕ:X → R is said to be
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locally Lipschitz, if for every x ∈ X, we can find an open set U ⊆ X with x ∈ U
and a constant kU > 0 (depending on U) such that

|ϕ(z)− ϕ(y)| ≤ kU‖z − y‖ for all z, y ∈ U.

From convex analysis we know that a function ψ:X → R = R ∪ {∞},which is
convex, lower semicontinuous and not identically +∞ is locally Lipschitz in the
interior of its effective domain domψ = {x ∈ X : ψ(x) < ∞}. So a continuous,
convex function ψ:X → R is locally Lipschitz. In particular, if X is finite
dimensional, every convex function ψ:X → R is locally Lipschitz.

Given a locally Lipschitz function ϕ:X → R and x, h ∈ X, the generalized
directional derivative of ϕ at x ∈ X in the direction h ∈ X is defined by

ϕ0(x;h) = lim sup
x′→x
λ↓0

ϕ(x′ + λh)− ϕ(x′)
λ

.

The function h 7→ ϕ0(x;h) is sublinear, continuous and so it is the support
function of the nonempty, convex and w∗-compact set ∂ϕ(x) defined by

∂ϕ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ ϕ0(x;h) for all h ∈ X}.

The multifunction x 7→ ∂ϕ(x) is known as the generalized (or Clarke) subdiffer-
ential of ϕ. This multifunction has a graph which is closed in X × X∗

w∗ (here
by X∗

w∗ we denote the Banach space X∗ furnished with the w∗-topology). This
fact follows easily from the upper semicontinuity of the map (x, h) 7→ ϕ0(x;h).

If ϕ,ψ:X → R are two locally Lipschitz functions, then

∂(ϕ+ ψ)(x) ⊆ ∂ϕ(x) + ∂ψ(x) and λ∂ϕ(x) = ∂ϕ(λx)

for all x ∈ X and all λ ∈ R. If ϕ:X → R is continuous, convex (thus locally Lip-
schitz too), then the generalized subdifferential coincides with the subdifferential
in the sense of convex analysis, given by

∂ϕ(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ ϕ(y)− ϕ(x) for all y ∈ X}.

If ϕ ∈ C1(X) then ∂ϕ(x) = {ϕ′(x)}.
A point x ∈ X is a critical point of the locally Lipschitz function ϕ:X → R

if 0 ∈ ∂ϕ(x). Then c = ϕ(x) is a critical value of ϕ. It is easy to check that
if x ∈ X is a local extremum (i.e. a local minimum or a local maximum), then
0 ∈ ∂ϕ(x) (i.e. x is a critical point).

In the smooth critical point theory, a compactness-type condition, known as
the Palais–Smale condition (PS-condition for short) plays a central role. In the
present nonsmooth setting this condition takes the following form. A locally Lip-
schitz function ϕ:X → R satisfies the nonsmooth PS-condition if every sequence
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{xn}n≥1 ⊂ X such that {ϕ(xn)}n≥1 is bounded and m(xn) → 0 as n → ∞,
where

(2.1) m(xn) = min{‖x∗‖ : x∗ ∈ ∂ϕ(xn)},

has a strongly convergent subsequence.
We will need some basic results from nonsmooth critical point theory, which

can be found in Kandilakis–Kourogenis–Papageorgiou [7], Kourogenis–Papage-
orgiou [8] and Motreanu–Panagiotopoulos [14].

In all these results X is a reflexive Banach space and ϕ:X → R is a Lipschitz
functional satisfying the nonsmooth PS-condition.

The first result is the nonsmooth Mountain Pass Theorem.

Theorem 2.1. If there exist x0, x1 ∈ X and ρ > 0 such that ‖x0 − x1‖ > ρ

and
inf{ϕ(x) : ‖x‖ = ρ} = mρ > max{ϕ(x0), ϕ(x1)},

then ϕ has a critical point x ∈ X and ϕ(x) ≥ mϕ.

The second result is known as the nonsmooth Generalized Mountain Pass
Theorem.

Theorem 2.2. If X = Y ⊕ V with dimY < ∞, R > ρ > 0, e ∈ V with
‖e‖ = ρ,

C = {x = y + λe : ‖x‖ ≤ R, y ∈ Y, λ ≥ 0},
C0 = {x = y + λe : ‖x‖ = R, y ∈ Y, λ ≥ 0 or ‖x‖ ≤ R, λ = 0},
D = {v ∈ V : ‖v‖ = ρ}

and
inf
D
ϕ = mD > max

C0
ϕ,

then ϕ has a critical point x ∈ X and ϕ(x) ≥ mD .

The next result is a multiplicity result, known as the nonsmooth Local Link-
ing Theorem.

Theorem 2.3. If X = Y ⊕ V with dimY <∞, ϕ is bounded below, inf ϕ <
0 = ϕ(0) and there exists ρ > 0 such that ϕ(x) ≤ 0 for x ∈ Y , ‖x‖ ≤ ρ and
ϕ(x) ≥ 0 for x ∈ V , ‖x‖ ≤ ρ, then ϕ has at least two nontrivial critical points.

The final result is also a multiplicity result known as the nonsmooth Sym-
metric Mountain Pass Theorem.

Theorem 2.4. If ϕ is even and

(a) there exists a subspace V of X of finite codimension such that

ϕ|∂Br∩V ≥ β > 0 (Br = {x ∈ X : ‖x‖ < r}),
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(b) for any k ≥ 1 there is a k-dimensional subspace Yk of X such that ϕ|Yk

is anticoercive, i.e.

ϕ(x) → −∞ as ‖x‖ → ∞, x ∈ Yk,

then ϕ has a sequence {(xn,−xn)}n≥1 of distinct pairs of nontrivial critical
points.

3. Existence theorems

In this section we prove the existence of solutions for problem (1.1). To do
this we will need the following hypothesis on the mapping A in (1.1).

H(A) A:T → RN×N is a continuous map such that for all t ∈ T , A(t) is
a symmetric N ×N matrix.

Remark 3.1. From Linear Algebra we know that for every t ∈ T , the matrix
A(t) has real eigenvalues λ1(t) ≥ . . . ≥ λN (t) and

λN (t)‖x‖2 ≤ (A(t)x, x)RN ≤ λ1(t)‖x‖2 for all x ∈ RN .

Moreover, for every k ∈ {1, . . . , N}, the map t 7→ λk(t) is continuous on T .

Let W 1,2
per((0, b),RN ) = {x ∈ W 1,2((0, b),RN ) : x(0) = x(b)} which is a Hil-

bert space endowed with the norm defined by

‖x‖2 = ‖x‖2
2 + ‖x′‖2

2 for all x ∈W 1,2
per((0, b),RN ).

The space W 1,2
per((0, b),RN ) is compactly embedded in C(T,RN ). For a later use,

denote by C > 0 a constant satisfying

(3.1) ‖u‖∞ ≤ C‖u‖ for all x ∈W 1,2
per((0, b),RN ).

Because of the continuous embedding of W 1,2((0, b),RN ) into C(T,RN ), we
see that the pointwise evaluations at t = 0 and t = b make sense. Let Â ∈
L(C(T,RN ), C(T,RN )) be defined by

(Âx)(t) = A(t)x(t) for all t ∈ T and all x ∈ C(T,RN ).

As in Mawhin–Willem [13, p. 89] and Showalter [16, p. 78], using the spectral
theorem for compact self-adjoint operators in a Hilbert space, for the differen-
tial operator x 7→ −x′′ − Âx we have a sequence of eigenfunctions which is an
orthonormal basis for L2(T,RN ) and an orthogonal basis for W 1,2

per((0, b),RN ).
Moreover, we have the orthogonal direct sum decomposition

(3.2) W 1,2
per((0, b),RN ) = V− ⊕ V0 ⊕ V+
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where

H− = span{x ∈W 1,2
per((0, b),RN ) : −x′′ − Âx = λx for some λ < 0},

H0 = ker(−x′′ − Âx),

H+ = span{x ∈W 1,2
per((0, b),RN ) : −x′′ − Âx = λx for some λ > 0}.

Remark that dimH−, dimH0 < ∞. Moreover, dimH− = 0 if and only if A(t)
is positive semidefinite for all t ∈ T (see Mawhin–Willem [13, p. 89]).

We start by proving some useful inequalities satisfied by the elements in the
component subspaces H− and H+ .

Proposition 3.2.

(a) There exists a β1 > 0 such that

‖x′‖2
2 −

∫ b

0

(A(t)x(t), x(t))RN dt ≥ β1‖x‖2 for all x ∈ H+.

(b) There exists a β2 > 0 such that

‖x′‖2
2 −

∫ b

0

(A(t)x(t), x(t))RN dt ≤ −β2‖x‖2 for all x ∈ H−.

Proof. (a) Let ψ:H+ → R be a C1-function defined by

ψ(x) = ‖x′‖2
2 −

∫ b

0

(A(t)x(t), x(t))RN dt.

Evidently if x ∈ H+, then x′′ ∈ L2(T,RN ) and so by Green’s identity we have

‖x′‖2
2 = 〈−x′′, x〉

where by 〈 · , · 〉 we denote the duality brackets for the pair

(W 1,2
per((0, b),RN ),W 1,2

per((0, b),RN )∗).

So we have
ψ(x) = 〈−x′′, x〉 − 〈Â(x), x〉 ≥ 0

(recall the definition of H+).
If the inequality in part (a) of the statement were not true, then exploiting

the 2-homogeneity of ψ, we could find a sequence {xn}n≥1 ⊂ H+ with ‖xn‖ = 1
such that

ψ(xn) = ‖x′n‖2
2 −

∫ b

0

(A(t)xn(t), xn(t))RN dt ↓ 0 as n→∞.

By passing to a subsequence if necessary, we may assume that

xn
w→x in W 1,2

per((0, b),RN ) and xn → x in L2(T,RN )
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(recall that W 1,2
per((0, b),RN ) is embedded compactly in L2(T,RN )). Because the

norm functional in a Banach space is weakly lower semicontinuous, we obtain

‖x′‖2
2 −

∫ b

0

(A(t)x(t), x(t))RN dt ≤ 0 with x ∈ H+

which implies that

‖x′‖2
2 −

∫ b

0

(A(t)x(t), x(t))RN dt = 0,

and thus x ≡ 0. But then x′n, xn → 0 in L2(T,RN ), hence

xn → 0 in W 1,2
per((0, b),RN ) as n→∞,

which contradicts the fact that ‖xn‖ = 1 for all n ≥ 1.
(b) The proof of the inequality for the elements in H− is done similarly. �

For the first existence result we need the following hypotheses on the non-
smooth potential j(t, x):

H(j)1 j:T × RN → R is a function such that j( · , 0) ∈ L1(T ) and

(a) for all x ∈ RN , t 7→ j(t, x) is measurable,
(b) for almost all t ∈ T , x 7→ j(t, x) is locally Lipschitz,
(c) for almost all t ∈ T , all x ∈ RN and all u ∈ ∂j(t, x), we have

‖u‖ ≤ a(t) + c(t)‖x‖p−1 with a, c ∈ L1(T )+, 1 ≤ p <∞,

(d) there exist µ > 2, M > 0 and c0 > 0 such that for almost all t ∈ T and
all ‖x‖ ≥M , we have

c0 ≤ µj(t, x) ≤ −j0(t, x;−x),

(e) lim supx→0(2j(t, x)/‖x‖2) ≤ 0 uniformly for almost all t ∈ T ,
(f) if λm ≤ 0 is the biggest nonpositive eigenvalue of x 7→ −x′′ − Âx, then

for almost all t ∈ T and all x ∈ RN , we have λm‖x‖2/2 ≤ j(t, x).

Example 3.3. The following function satisfies hypotheses H(j)1:

j(t, x) =


λm

2
‖x‖2 if ‖x‖ ≤ 1,

a(t)
p
‖x‖p +

λm

2
− a(t)

p
if ‖x‖ > 1,

with a ∈ L1(T ), a(t) ≥ a0 a.e. t ∈ T , for constants a0 > 0 and 2 < p < ∞.
Assumptions H(j)1 are verified taking 2 < µ < p in H(j)1(d).

The next lemma shows that hypotheses H(j)1 imply that the potential j(t, · )
is strictly superquadratic.



276 D. Motreanu — V. V. Motreanu — N. S. Papageorgiou

Proposition 3.4. If hypotheses H(j)1 hold, then there exist c1, c2 ∈ L1(T )+
with c0/Mµ ≤ c1(t) a.e. on T such that

c1(t)‖x‖µ − c2(t) ≤ j(t, x) for almost all t ∈ T and all x ∈ RN .

Proof. Let N0 be the Lebesque-null subset of T outside of which hypothe-
ses H(j)1(b)–(f) hold. Let t ∈ T \ N0 and x ∈ RN with ‖x‖ ≥ M . Set
β(t, r) = j(t, rx), r ≥ 1. Clearly, β(t, · ) is locally Lipschitz. Moreover, from
the nonsmooth chain rule (see [4, p. 45], or [5, p. 610]), we have that

(3.3) −r∂β(t, r) ⊆ (∂j(t, rx),−rx)RN .

Recall that β(t, · ) is differentiable almost everywhere on R and at every point
of differentiability r ∈ R, we have dβ(t, r)/dr ∈ ∂β(t, r). So from (3.3) and
hypothesis H(j)1(d), we have

r
d

dr
β(t, r) ≥ −j0(t, rx;−rx) ≥ µj(t, rx) = µβ(t, r) for almost all r ≥ 1,

which implies that

µ

r
≤ dβ(t, r)/dr

β(t, r)
for almost all r ≥ 1.

Integrating from 1 to r > 1, we obtain

ln rµ ≤ ln
β(t, r)
β(t, 1)

,

and thus we have rµβ(t, 1) ≤ β(t, r). So we have shown that for all t ∈ T \N0,
all x ∈ RN with ‖x‖ ≥M and all r ≥ 1, we have

(3.4) rµj(t, x) ≤ j(t, rx).

In view of (3.4), for ‖x‖ ≥M we have

j(t, x) = j

(
t,
‖x‖
M

M
x

‖x‖

)
≥ ‖x‖µ

Mµ
j

(
t,
Mx

‖x‖

)
≥ ‖x‖µ

Mµ
min{j(t, y) : ‖y‖ = M} = c1(t)‖x‖µ,

with c1 ∈ L1(T )+, c1(t) ≥ c0/M
µ a.e. on T . On the other hand, if ‖x‖ < M , from

hypothesis H(j)1(c) and the mean value theorem for locally Lipschitz functions,
we have that

|j(t, x)| ≤ c2(t) for a.a. t ∈ T , with c2 ∈ L1(T )+.

Therefore finally we obtain that

j(t, x) ≥ c1(t)‖x‖µ − c2(t) for a.a. t ∈ T and all x ∈ RN . �

We are ready for the first existence theorem concerning problem (1.1).
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Theorem 3.5. If hypotheses H(A) and H(j)1 hold, then problem (1.1) has
a nontrivial solution x ∈ C1(T,RN ).

Proof. Consider the locally Lipschitz Euler functional

ϕ:W 1,2
per((0, b),RN ) → R

for problem (1.1) defined by

ϕ(x) =
1
2
‖x′‖2

2 −
1
2

∫ b

0

(A(t)x(t), x(t))RN dt−
∫ b

0

j(t, x(t)) dt

for all x ∈W 1,2
per((0, b),RN ).

Claim 1. ϕ satisfies the nonsmooth PS-condition.

To this end, let {xn}n≥1 ⊂W 1,2
per((0, b),RN ) be a sequence such that

|ϕ(xn)| ≤M1 for some M1 > 0, all n ≥ 1 and m(xn) → 0 as n→∞

(see (2.1)). Since ∂ϕ(xn) ⊆ W 1,2
per((0, b),RN )∗ is nonempty, weakly compact

and the norm functional in a Banach space is weakly lower semicontinuous, by
Weierstrass theorem we can find x∗n ∈ ∂ϕ(xn) such that m(xn) = ‖x∗n‖, n ≥ 1.
So ‖x∗n‖ → 0 as n→∞. Note that

x∗n = V (xn)− Âxn − un, n ≥ 1,

where V ∈ L(W 1,2
per((0, b),RN ),W 1,2

per((0, b),RN )∗) defined by

〈V (x), y〉 =
∫ b

0

(x′(t), y′(t))RN dt for all x, y ∈W 1,2
per((0, b),RN )

and un ∈ L1(T,RN ) is such that un(t) ∈ ∂j(t, xn(t)) a.e. on T (see H(j)1(c)).
Evidently V is monotone, so it is maximal monotone (see [6, p. 37]). Let η ∈
(2, µ). From the choice of the sequence {xn}n≥1 ⊂W 1,2

per((0, b),RN ), we have

(3.5)
η

2
‖x′n‖2 − η

2

∫ b

0

(A(t)xn(t), xn(t))RN dt−
∫ b

0

ηj(t, xn(t)) dt ≤ ηM1

and |〈x∗n, xn〉| ≤ εn‖xn‖ with εn ↓ 0. Hence

−‖x′n‖2
2 +

∫ b

0

(A(t)xn(t), xn(t))RN dt+
∫ b

0

(un(t), xn(t))RN dt ≤ εn‖xn‖,

which implies that

(3.6) − ‖x′n‖2
2 +

∫ b

0

(A(t)xn(t), xn(t))RN dt

−
∫ b

0

j0(t, xn(t);−xn(t)) dt ≤ εn‖xn‖.
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Adding (3.5) and (3.6), we obtain

(3.7)
(
η

2
− 1

)
‖x′n‖2

2 −
(
η

2
− 1

) ∫ b

0

(A(t)xn(t), xn(t))RN dt

−
∫ b

0

[ηj(t, xn(t)) + j0(t, xn(t);−xn(t))] dt ≤ εn‖xn‖+ ηM1.

Recall that xn = xn +x0
n + x̂n with xn ∈ H−, x0

n ∈ H0 and x̂n ∈ H+ (see (3.2)).
Set vn = xn + x0

n. Exploiting the orthogonality among the component spaces,
from (3.7) we obtain(

η

2
− 1

)[
‖x̂′n‖2

2 −
∫ b

0

(A(t)x̂n(t), x̂n(t))RN dt

]
(3.8)

+
(
η

2
− 1

)[
‖v′n‖2

2 −
∫ b

0

(A(t)vn(t), vn(t))RN dt

]
−

∫ b

0

[µj(t, xn(t)) + j0(t, xn(t);−xn(t))] dt

+ (µ− η)
∫ b

0

j(t, xn(t)) dt ≤ εn‖xn‖+ ηM1.

From Proposition 3.2, we know that

(3.9) ‖x̂′n‖2
2 −

∫ b

0

(A(t)x̂n(t), x̂n(t))RN dt ≥ ξ1‖x̂n‖2 for all n ≥ 1

with ξ1 > 0. Also we have

(3.10) ‖v′n‖2
2 −

∫ b

0

(A(t)vn(t), vn(t))RN dt ≥ λ1‖vn‖2
2 ≥ −|λ1|‖vn‖2

2,

where λ1 is the first eigenvalue of x 7→ −x′′ − Âx. Moreover, from hypotheses
H(j)1(c) and (d) and the mean value theorem for locally Lipschitz functions, we
have

(3.11) −
∫ b

0

[µj(t, xn(t)) + j0(t, xn(t);−xn(t))] dt

= −
∫
{‖xn(t)‖≥M}

[µj(t, xn(t)) + j0(t, xn(t);−xn(t))] dt

−
∫
{‖xn(t)‖<M}

[µj(t, xn(t)) + j0(t, xn(t);−xn(t))] dt ≥ −β1

for some β1 > 0 and all n ≥ 1. Finally Proposition 3.4 implies that

(3.12) (µ− η)
∫ b

0

j(t, xn(t)) dt ≥ (µ− η)c‖xn‖µ
µ − (µ− η)‖c2‖1
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for some c > 0 and all n ≥ 1. Returning to (3.8) and using (3.9)–(3.12), we
obtain (

η

2
− 1

)
[ξ1‖x̂n‖2 − |λ1| ‖vn‖2

2] + c3‖xn‖µ
µ ≤M2 + εn‖xn‖

for some c3,M2 > 0 and all n ≥ 1. Because H− ⊕H0 is finite dimensional, all
norms are equivalent and so(

η

2
− 1

)
ξ1‖x̂n‖2 + c3‖xn‖µ

µ − c4‖vn‖2
µ ≤M2 + εn‖xn‖

for some c4 > 0 and all n ≥ 1. Since vn is the projection of xn on H− ⊕ H0

and µ > 2, we have ‖vn‖2 ≤ ‖xn‖2 ≤ c5‖xn‖µ for some c5 > 0 and all n ≥ 1.
Using once again the fact that H− ⊕H0 is finite dimensional, we conclude that
‖vn‖µ ≤ c6‖xn‖µ for some c6 > 0 and all n ≥ 1. Therefore

(3.13)
(
η

2
− 1

)
ξ1‖x̂n‖2 + c3‖vn‖µ

µ − c7‖vn‖2
µ ≤M2 for all n ≥ 1

for some c7 > 0, a possibly smaller ξ1 > 0 and a new constant c3 > 0. Since
η > 2 and µ > 2, from (3.13) we infer that

{x̂n}n≥1 ⊂W 1,2
per((0, b),RN ) and {vn}n≥1 ⊂ Lµ(T,RN ) ⊂ L2(T,RN )

are both bounded sequences. Due to the finite dimensionality of H− ⊕ H0, it
follows that

{vn}n≥1 ⊂W 1,2
per((0, b),RN ) is bounded,

and so
{xn}n≥1 ⊂W 1,2

per((0, b),RN ) is bounded.

By passing to a suitable subsequence if necessary, we may assume that

xn
w→x in W 1,2

per((0, b),RN ) and xn → x in L2(T,RN ).

Recall that∣∣∣∣〈V (xn), xn − x〉 −
∫ b

0

(Axn, xn − x)RN dt−
∫ b

0

(un, xn − x)RN dt

∣∣∣∣
≤ εn‖xn − x‖.

Note by hypotheses H(A) and H(j)1(c) that∫ b

0

(Axn, xn − x)RN dt→ 0 and
∫ b

0

(un, xn − x)RN dt→ 0 as n→∞

(see also (3.1)). It follows that 〈V (xn), xn〉 → 〈V (x), x〉, which implies that
‖x′n‖2 → ‖x′‖2. Recall that x′n

w→x′ in L2(T,RN ) and that Hilbert spaces have
Kadec–Klee property. So we conclude that x′n → x′ in L2(T,RN ), therefore
xn → x in W 1,2

per((0, b),RN ).
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Claim 2. There exist ρ > 0 and β > 0 such that ϕ(x) ≥ β for all x ∈ H+,
‖x‖ = ρ.

Because of hypothesis H(j)1(e), given ε > 0, we can find δ = δ(ε) such that

(3.14) j(t, x) ≤ ε

2
‖x‖2

for almost all t ∈ T and all ‖x‖ ≤ δ. On the other hand by the mean value
theorem for locally Lipschitz functions, we have

|j(t, x)− j(t, y)| = |(u∗, x− y)RN |

for almost all t ∈ T , all x, y ∈ RN with ‖x‖ ≥ δ = ‖y‖ and with u∗ ∈ ∂j(t, z)
where z ∈ ]x, y[ = {z ∈ RN : z = θx + (1 − θ)y, 0 < θ < 1}. So because of
hypothesis H(j)1(c), we have

|j(t, x)| ≤ a1(t) + c1(t)‖x‖p + |j(t, y)|

for almost all t ∈ T , all x, y ∈ RN with ‖x‖ ≥ δ = ‖y‖ and with a1, c1 ∈ L1(T )+.
We deduce that

|j(t, x)| ≤ a2(t) + c1(t)‖x‖p

for almost all t ∈ T , all ‖x‖ ≥ δ = ‖y‖ and with a2 ∈ L1(T )+. So we can find
τ > 2, β1 ∈ L1(T )+ such that

(3.15) j(t, x) ≤ β1(t)‖x‖τ for a.a. t ∈ T and all ‖x‖ ≥ δ.

From (3.14) and (3.15) it follows that

(3.16) j(t, x) ≤ ε

2
‖x‖2 + β1(t)‖x‖τ for a.a. t ∈ T and all x ∈ RN .

Then, in view of Proposition 3.2 and (3.16), for x ∈ H+ we have

ϕ(x) =
1
2
‖x′‖2

2 −
1
2

∫ b

0

(A(t)x(t), x(t))RN dt−
∫ b

0

j(t, x(t)) dt

≥ ξ1
2
‖x‖2 −

∫ b

0

j(t, x(t)) dt ≥ ξ1
2
‖x‖2 − εc

2
‖x‖2 − c8‖x‖τ

for some c, c8 > 0. Choosing ε > 0 sufficiently small, we obtain ϕ(x) ≥ c9‖x‖2−
c8‖x‖τ for some c9 > 0 and all x ∈ H+. Because τ > 2, we can find ρ > 0 small
such that ϕ(x) ≥ β > 0 for all x ∈ H+ with ‖x‖ = ρ. This proves Claim 2.

Claim 3. ϕ|H−⊕H0 ≤ 0.

For v ∈ H− ⊕H0, we have by H(j)1(f) that

ϕ(v) ≤ 1
2
‖v′‖2

2 −
1
2

∫ b

0

(A(t)v(t), v(t))RN dt− λm

2
‖v‖2

2 ≤ 0,

which proves Claim 3.
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Now let e ∈ C1(T,RN ) be an eigenfunction corresponding to the eigenvalue
λm+1 > 0 with ‖e‖ = ρ. Set w = v + re, v ∈ H− ⊕H0, r > 0. Exploiting the
orthogonality of the component spaces and using Proposition 3.4 and (3.1), we
obtain

ϕ(w) =
1
2
‖w′‖2

2 −
1
2

∫ b

0

(Aw,w)RN dt−
∫ b

0

j(t, w(t)) dt

≤ 1
2
‖v′‖2

2 −
1
2

∫ b

0

(Av, v)RN dt

+
r2

2
‖e′‖2

2 −
r2

2

∫ b

0

(Ae, e)RN dt− c10‖w‖µ
µ + ‖c2‖1

≤ r2λm+1

2
‖e‖2

2 − c10‖w‖µ
µ + ‖c2‖1

for some c10 > 0. Since µ > 2, we conclude that ϕ(w) → −∞ as ‖w‖ → ∞
(since H− ⊕H0 is of finite dimension). Therefore we can find R > ρ large such
that if ‖w‖ = R then

(3.17) ϕ(w) < 0 < β.

We consider the half-ball

Q = {w = v + re : v ∈ H− ⊕H0, ‖w‖ ≤ R, r ≥ 0}.

Then ∂Q = {w = v + re : v ∈ H− ⊕H0, ‖w‖ = R, r ≥ 0 or ‖w‖ ≤ R, r = 0}.
Because of Claims 1–3 and relation (3.19) we can use Theorem 2.2 and obtain
x ∈W 1,2

per((0, b),RN ) such that

ϕ(0) ≤ 0 < β ≤ ϕ(x) and 0 ∈ ∂ϕ(x).

From the inequality, we see that x 6= 0. From the inclusion we obtain

(3.18) V (x)− Âx− u = 0 with u ∈ L1(T,RN ), u(t) ∈ ∂j(t, x(t)) a.e. on T

(see Clarke [4, p. 80]). From the representation theorem for the elements of
W−1,2((0, b),RN ) = W 1,2

0 ((0, b),RN )∗ (see [5, p. 362]), we know that x′′ ∈
W−1,2((0, b),RN ). Let 〈 · , · 〉0 denote the duality brackets for the pair

(W 1,2
0 ((0, b),RN ),W−1,2((0, b),RN )).

Then because of (3.18), using as a test function ψ ∈ C1
c ((0, b),RN ) and Green’s

identity, we have that

(3.19) 〈−x′′, ψ〉0 −
∫ b

0

(A(t)x(t), ψ(t))RN dt =
∫ b

0

(u(t), ψ(t))RN dt.

Since C1
c ((0, b),RN ) is dense in W 1,2

0 ((0, b),RN ), from (3.19) it follows that

(3.20) −x′′(t)−A(t)x(t) = u(t) a.e. on T, x(0) = x(b),
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thus x′′ ∈ L1(T,RN ), and so x ∈ C1(T,RN ) ∩W 2,1((0, b),RN ). Then for y ∈
W 1,2

per((0, b),RN ) we have

〈V (x), y〉 −
∫ b

0

(A(t)x(t), y(t))RN dt =
∫ b

0

(u(t), y(t))RN dt.

We obtain

(x′(b), y(b))RN − (x′(0), y(0))RN

−
∫ b

0

(x′′(t), y(t))RN dt−
∫ b

0

(A(t)x(t), y(t))RN dt =
∫ b

0

(u(t), y(t))RN dt.

By (3.20) we get

(x′(0), y(0))RN = (x′(b), y(b))RN for all y ∈W 1,2
per((0, b),RN ),

which yields x′(0) = x′(b). Therefore x ∈ C1(T,RN ) is a nontrivial solution of
problem (1.1). �

We can weaken the hypotheses on the nonsmooth potential j(t, x) if we as-
sume that dim(H−⊕H0) = 0. In this case λ1 > 0, the linear differential operator
x 7→ −x′′ − Âx is maximal monotone, coercive and for all c ∈ RN \ {0} we have∫ b

0
(A(t)c, c)RN dt < 0 (hence if A(t) ≡ A for all t ∈ T , then A is negative definite).
Now the hypotheses on the nonsmooth potential j(t, x) are the following:

H(j)2 j:T ×RN → R is a function such that j( · , 0) = 0 almost everywhere on T
and

(a) for all x ∈ RN , t 7→ j(t, x) is measurable,
(b) for almost all t ∈ T , x 7→ j(t, x) is locally Lipschitz,
(c) for almost all t ∈ T , all x ∈ RN and all u ∈ ∂j(t, x), we have

‖u‖ ≤ a(t) + c(t)‖x‖r−1 with a, c ∈ L1(T )+, 1 ≤ r <∞,

(d) there exists µ > 2 such that for almost all t ∈ T and all x ∈ RN , we
have

µj(t, x) ≤ −j0(t, x;−x),

(e) there exists θ ∈ L∞(T )+ such that θ(t) ≤ λ1 a.e. on T with strict
inequality on a set of positive measure and

lim sup
x→0

2j(t, x)
‖x‖2

≤ θ(t) uniformly for almost all t ∈ T ,

(f) there exists x0 ∈ RN \ {0} such that
∫ b

0
j(t, x0) dt > 0.
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Example 3.6. The following function satisfies hypotheses H(j)2. For sim-
plicity we drop the t-dependence:

j(x) =


−1
p
‖x‖p if ‖x‖ ≤ 1,

1
µ
‖x‖µ − 1

µ
− 1
p

if ‖x‖ > 1,

with p < 2 < µ.

In the case of H(j)2 the hypotheses allow both subquadratic and superqua-
dratic potentials.

Theorem 3.7. If hypotheses H(A) and H(j)2 hold and dim(H− ⊕H0) = 0,
then problem (1.1) has a nontrivial solution x ∈ C1(T,RN ).

Proof. Again we consider the locally Lipschitz functional ϕ defined for
x ∈W 1,2

per((0, b),RN ) by

ϕ(x) =
1
2
‖x′‖2

2 −
1
2

∫ b

0

(A(t)x(t), x(t))RN dt−
∫ b

0

j(t, x(t)) dt.

Claim 1. ϕ satisfies the nonsmooth PS-condition.

Let a sequence {xn}n≥1 ⊂W 1,2
per((0, b),RN ) be such that

|ϕ(xn)| ≤M1 for some M1 > 0, all n ≥ 1 and m(xn) → 0 as n→∞.

As before we can find x∗n ∈ ∂ϕ(xn) such that m(xn) = ‖x∗n‖, n ≥ 1. Then

|〈x∗n, xn〉| ≤ εn‖xn‖ with εn ↓ 0.

So we obtain(
µ

2
− 1

)
‖x′n‖2

2 −
(
µ

2
− 1

) ∫ b

0

(A(t)xn(t), xn(t))RN dt

+
∫ b

0

[(un(t), xn(t))RN − µj(t, xn(t))] dt ≤ εn‖xn‖+ µM1.

By Proposition 3.2(a) it follows that(
µ

2
− 1

)
ξ1‖xn‖2 +

(
µ

2
− 1

) ∫ b

0

[−j0(t, xn(t);−xn(t))− µj(t, xn(t))] dt

≤ εn‖xn‖+ µM1.

Taking into account hypothesis H(j)2(d) we deduce(
µ

2
− 1

)
ξ1‖xn‖2 ≤M2 for some M2 > 0, all n ≥ 1

and thus {xn}n≥1 ⊂ W 1,2
per((0, b),RN ) is bounded. From this as in the proof of

Theorem 3.5 we conclude that ϕ satisfies the nonsmooth PS-condition.
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Claim 2. There exist ρ > 0 and β > 0 such that ϕ(x) ≥ β for all x ∈
W 1,2

per((0, b),RN ) with ‖x‖ = ρ.

As in the proof of Theorem 3.5, from hypothesis H(j)2(e), we see that given
ε > 0, we can find cε ∈ L1(T )+ such that

(3.21) j(t, x) ≤ 1
2

(θ(t) + ε) ‖x‖2 + cε(t)‖x‖τ

for almost all t ∈ T , all x ∈ RN and with τ > 2, cε ∈ L1(T )+. Then for all
x ∈W 1,2

per((0, b),RN ) we have

(3.22) ϕ(x) =
1
2
‖x′‖2

2 −
1
2

∫ b

0

(A(t)x(t), x(t))RN dt−
∫ b

0

j(t, x(t)) dt

≥ 1
2
‖x′‖2

2 −
1
2

∫ b

0

(A(t)x(t), x(t))RN dt

− 1
2

∫ b

0

θ(t)‖x(t)‖2 dt− ε

2
‖x‖2

2 − c1‖x‖τ

for some c1 > 0 (see (3.21)). For all x ∈W 1,2
per((0, b),RN ) let

ψ(x) = ‖x′‖2
2 −

∫ b

0

(A(t)x(t), x(t))RN dt−
∫ b

0

θ(t)‖x(t)‖2 dt.

We will show that

(3.23) ψ(x) ≥ ξ3‖x‖2 for some ξ3 > 0 and all x ∈W 1,2
per((0, b),RN ).

By virtue of the hypothesis H(j)2(d) on θ, we have ψ ≥ 0. Due to the 2-
homogeneity of ψ, arguing by contradiction, we can find a sequence {xn}n≥1 ⊂
W 1,2

per((0, b),RN ) such that

ψ(xn) ↓ 0 in W 1,2
per((0, b),RN ) with ‖xn‖ = 1 for all n ≥ 1.

We may assume that

xn
w→x in W 1,2

per((0, b),RN ) and xn → x in C(T,RN ).

So in the limit as n→∞, from ψ(xn) ↓ 0, we obtain

(3.24) ‖x′‖2
2 −

∫ b

0

(A(t)x(t), x(t))RN dt−
∫ b

0

θ(t)‖x(t)‖2 dt ≤ 0,

which implies that

‖x′‖2
2 −

∫ b

0

(A(t)x(t), x(t))RN dt ≤
∫ b

0

θ(t)‖x(t)‖2 dt ≤ λ1‖x‖2
2,

and so

‖x′‖2
2 −

∫ b

0

(A(t)x(t), x(t))RN dt = λ1‖x‖2
2.
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Hence x ∈ C1
per(T,RN ) is an eigenfunction corresponding to the eigenvalue

λ1 > 0. This means that x(t) 6= 0 a.e. on T and so from (3.24) we infer
that

‖x′‖2
2 −

∫ b

0

(A(t)x(t), x(t))RN dt < λ1‖x‖2
2.

which is a contradiction. This proves (3.23). Using (3.23) in (3.22) and choosing
ε > 0 sufficiently small we obtain

ϕ(x) ≥ ξ3
2
‖x‖2 − ε

2
‖x‖2

2 − c1‖x‖τ ≥ c2‖x‖2 − c1‖x‖τ

for some c2 > 0. Because τ > 2, we can find ρ > 0 small such that

ϕ(x) ≥ β > 0 for all x ∈W 1,2
per((0, b),RN ) with ‖x‖ = ρ.

Claim 3. For almost all t ∈ T , all x ∈ RN and all r ≥ 1 we have

rµj(t, x) ≤ j(t, rx).

On R+ \ {0} the function r 7→ 1/rµ is continuous convex, hence locally
Lipschitz. So for almost all t ∈ T , r 7→ (1/rµ)j(t, rx) is locally Lipschitz and

∂r

(
1
rµ
j(t, rx)

)
⊆ − µ

rµ+1
j(t, rx) +

1
rµ

(∂j(t, rx), x)RN

(see [4, p. 48], or [5, p. 612]). In the above inclusion by ∂r we denote the
subdifferential with respect to r ≥ 1. Using the mean value theorem for locally
Lipschitz functions, we can find λ ∈ (1, r) (depending in general on t) with r > 1
such that

1
rµ
j(t, rx)− j(t, x) =

r − 1
λµ+1

(−µj(t, λx) + (u∗, λx)RN )

where u∗ ∈ ∂j(t, λx). Because of hypothesis H(j)2(d) we have that

−µj(t, λx) + (u∗, λx)RN ≥ −µj(t, λx)− j0(t, λx;−λx)) ≥ 0

for almost all t ∈ T , which implies that j(t, rx) ≥ rµj(t, x) for almost all t ∈ T ,
all x ∈ RN and all r ≥ 1. This proves Claim 3.

Using the definition of ϕ and Claim 3 for r ≥ 1 we have

(3.25) ϕ(rx0) ≤ − r2

2

∫ b

0

(A(t)x0(t), x0(t))RN dt− rµ

∫ b

0

j(t, x0) dt.

By H(j)2(f), (3.25) and since µ > 2 it follows that

ϕ(rx0) → −∞ as r →∞.

So for r ≥ 1 large, we will have

ϕ(rx0) ≤ ϕ(0) = 0 < β ≤ inf{ϕ(x) : ‖x‖ = ρ}
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(see Claim 2). This and Claim 1 permit the use of Theorem 2.1. So we obtain
x ∈W 1,2

per((0, b),RN ) such that

ϕ(0) = 0 < β ≤ ϕ(x) and 0 ∈ ∂ϕ(x).

From the inequality we see that x 6= 0, while from the inclusion, as in the proof
of Theorem 3.5, we conclude that x ∈ C1(T,RN ) is a solution of problem (1.1).�

In the case of Theorem 3.7 the kernel of the linear differential operator
x 7→ −x′′ − Âx with periodic boundary conditions is trivial. This convenient
situation allowed us to incorporate in our framework both subquadratic and
superquadratic systems. In the next existence theorem, we still require that
dimH− = 0, but now dimH0 > 0 (i.e. the linear differential operator x 7→
−x′′ − Âx with periodic boundary conditions has a nontrivial kernel). Now
our hypotheses on j(t, x) incorporate in our setting quadratic or superquadratic
systems.

The hypotheses on the nonsmooth potential are the following:

H(j)3 j:T × RN → R is a function such that j(t, 0) = 0 a.e. on T and

(a) for all x ∈ RN , t 7→ j(t, x) is measurable,
(b) for almost all t ∈ T , x 7→ j(t, x) is locally Lipschitz,
(c) for almost all t ∈ T , all x ∈ RN and all u ∈ ∂j(t, x), we have

‖u‖ ≤ a(t) + c(t)‖x‖r−1 with a, c ∈ L1(T )+, 1 ≤ r <∞,

(d) there exists θ ∈ L1(T )+ such that θ(t) ≤ 0 a.e. on T with strict inequal-
ity on a set of positive measure and

lim sup
‖x‖→∞

2j(t, x)
‖x‖2

≤ θ(t) uniformly for almost all t ∈ T ,

(e) there exists x0 ∈ H0 such that
∫ b

0
j(t, x0(t)) dt > 0.

Example 3.8. The following locally Lipschitz function satisfies hypotheses
H(j)3:

j(t, x) =


1
r
‖x‖r if ‖x‖ ≤ 1,

θ(t)
2

‖x‖2 − θ(t)
2

+
1
r

if ‖x‖ > 1,

with θ ∈ L1(T )+ as in hypothesis H(j)3(d) and 1 ≤ r < ∞. Here to verify
H(j)3(e) we choose x0 ∈ H0 with 0 < ‖x0‖ < 1.
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Theorem 3.9. If hypotheses H(A) and H(j)3 hold and dimH− = 0, then
problem (1.1) has a nontrivial solution x ∈ C1(T,RN ).

Proof. We consider the locally Lipschitz Euler functional ϕ. We claim that
ϕ is coercive. We argue indirectly. So suppose the claim is not true. Then we
can find {xn}n≥1 ⊂W 1,2

per((0, b),RN ) such that

ϕ(xn) ≤M1 for some M1 > 0, all n ≥ 1 and ‖xn‖ → ∞.

We have xn = x0
n + x̂n with x0

n ∈ H0, x̂n ∈ H+, n ≥ 1.
First assume that

(3.26)
‖x̂n‖
‖xn‖

→ 0 as n→∞.

Set yn = xn/‖xn‖, n ≥ 1. We may assume that

yn
w→ y in W 1,2

per((0, b),RN ) and yn → y in C(T,RN ), with y ∈ H0.

Then we have

ϕ(xn)
‖xn‖2

=
1
2
‖y′n‖2

2 −
1
2

∫ b

0

(Ayn(t), yn(t))RN dt−
∫ b

0

j(t, xn(t))
‖xn‖2

dt ≤ M1

‖xn‖2
,

which implies by passing to the limit that

1
2
‖y′‖2

2 −
1
2

∫ b

0

(Ay(t), y(t))RN dt ≤ lim inf
n→∞

∫ b

0

j(t, xn(t))
‖xn‖2

dt.

Since ‖y′‖2
2 =

∫ b

0
(A(t)y(t), y(t))RN dt (because y ∈ H0), we obtain

(3.27) 0 ≤ lim inf
n→∞

∫ b

0

j(t, xn(t))
‖xn‖2

dt.

Claim.

lim sup
n→∞

∫ b

0

j(t, xn(t))
‖xn‖2

dt < 0.

From Tang–Wu [18] (see the proof of Lemma 3 in that paper), we know that
given ε1 > 0, we can find m1 = m1(ε1) > 0 such that

|{t ∈ T : ‖v(t)‖ < m1‖v‖}|1 < ε1 for all v ∈ H0 \ {0}

(by | · |1 we denote the Lebesgue measure on R). In a similar way, we can show
that given ε2 > 0, we can find m2 = m2(ε2) > 0 such that

|{t ∈ T : ‖w(t)‖ > m2‖w‖}|1 < ε2 for all w ∈ H+ \ {0}

(see also Bartolo–Benci–Fortunato [1]). For every n ≥ 1, we introduce the sets

E1n = {t ∈ T : ‖x0
n(t)‖ ≥ m1‖x0

n‖},
E2n = {t ∈ T : ‖wn(t)‖ ≤ m2‖wn‖}.

The convergence in (3.26) ensures that x0
n 6= 0 for n sufficiently large.
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Clearly we have |T \E1n| < ε1 and |T \E2n| < ε2. If ε1 + ε2 < b and because
(T \ E1n) ∪ (T \ E2n) = T \ (E1n ∩ E2n), we infer that E1n ∩ E2n 6= ∅. For all
n ≥ 1 and all t ∈ E1n ∩ E2n, we have

(3.28)
‖xn(t)‖
‖xn‖

≥ ‖x0
n(t)‖
‖xn‖

− ‖wn(t)‖
‖xn‖

≥ m1‖x0
n‖

‖xn‖
− m2‖wn‖

‖xn‖
.

Similarly for all n ≥ 1 and all t ∈ E1n ∩ E2n, using (3.1) it follows

(3.29)
‖xn(t)‖
‖xn‖

≤ ‖wn(t)‖
‖xn‖

+
‖x0

n(t)‖
‖xn‖

≤ m2‖wn‖
‖xn‖

+
C‖x0

n‖
‖xn‖

.

By virtue of hypothesis H(j)3(c) and (d) and the mean value theorem for locally
Lipschitz functions (see [4, p. 41] or [5, p. 609]), given ε > 0 we can find ξε ∈
L1(T )+ such that for almost all t ∈ T and all x ∈ RN , we have

(3.30) j(t, x) ≤ 1
2
(θ(t) + ε)‖x‖2 + ξε(t).

Then for all n ≥ 1, we have from (3.30) that∫
E1n∩E2n

j(t, xn(t))
‖xn‖2

dt

≤ 1
2

∫
E1n∩E2n

(θ(t) + ε)
‖xn(t)‖2

‖xn‖2
dt+

1
‖xn‖2

∫
E1n∩E2n

ξε(t) dt

≤ 1
2

∫
E1n∩E2n

θ(t)
‖xn(t)‖2

‖xn‖2
dt+

ε

2

∫
E1n∩E2n

‖xn(t)‖2

‖xn‖2
dt+

‖ξε‖1

‖xn‖2
.

Recall that θ(t) ≤ 0 a.e. on T (see hypothesis H(j)3(d)). So using (3.28) and
(3.29), we find∫

E1n∩E2n

j(t, xn(t))
‖xn‖2

dt ≤ 1
2

(
m1‖x0

n‖
‖xn‖

− m2‖wn‖
‖xn‖

)2 ∫
E1n∩E2n

θ(t) dt

+
ε

2

(
m2‖wn‖
‖xn‖

+
C‖x0

n‖
‖xn‖

)2

|E1n ∩ E2n|1 +
‖ξε‖1

‖xn‖2
.

From (3.26) and taking into account that ‖x0
n‖/‖xn‖ → 1 and ‖xn‖ → ∞, we

can find n0 = n0(ε) ≥ 1 such that for all n ≥ n0 we have that

(3.31)
∫

E1n∩E2n

j(t, xn(t))
‖xn‖2

dt ≤ 1
2

(m1 − ε)2
∫

E1n∩E2n

θ(t) dt+
ε

2
(C + ε)2b+ ε.

Note that

(3.32)
∫

E1n∩E2n

θ(t) dt =
∫ b

0

θ(t) dt−
∫

(T\E1n)∪(T\E2n)

θ(t) dt.

Since θ ∈ L∞(T ), θ(t) ≤ 0 a.e. on T and |(T \ E1n) ∪ (T \ E2n)|1 < ε1 + ε2, we
have

(3.33) −
∫

(T\E1n)∪(T\E2n)

θ(t) dt ≤ ‖θ‖∞ |(T\E1n)∪(T\E2n)|1 < ‖θ‖∞(ε1+ε2).
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Therefore using (3.32) and (3.33) in (3.31), for all n ≥ n0 it turns out

(3.34)
∫

E1n∩E2n

j(t, xn(t))
‖xn‖2

dt ≤ 1
2

(m1 − ε)2
∫ b

0

θ(t) dt

+
1
2

(m1 − ε)2‖θ‖∞(ε1 + ε2) +
ε

2
(C + ε)2b+ ε.

On the other hand, for all n ≥ 1 and all t ∈ E2n \ E1n, we have

(3.35)
‖xn(t)‖
‖xn‖

≤ ‖x0
n(t)‖
‖xn‖

+
‖wn(t)‖
‖xn‖

<
m1‖x0

n‖
‖xn‖

+
m2‖wn‖
‖xn‖

.

Moreover. by (3.30) we can write for all n ≥ 1∫
E2n\E1n

j(t, xn(t))
‖xn‖2

dt ≤ ‖ξε‖1

‖xn‖2
+
ε

2

∫
E2n\E1n

‖xn(t)‖2

‖xn‖2
dt.

Because of (3.35), we see that∫
E2n\E1n

j(t, xn(t))
‖xn‖2

dt <
‖ξε‖1

‖xn‖2
+
ε

2

(
m1‖x0

n‖
‖xn‖

+
m2‖wn‖
‖xn‖

)2

|E2n \ E1n|1.

Again from (3.26), ‖x0
n‖/‖xn‖ → 1 and ‖xn‖ → ∞, we can find n1 = n1(ε) ≥ 1

such that for all n ≥ n1 we have

(3.36)
∫

E2n\E1n

j(t, xn(t))
‖xn‖2

dt ≤ ε+ (m1 + ε)2
ε

2
|E2n \ E1n|1

≤ ε+ (m1 + ε)2
ε

2
|T \ E1n|1 ≤ ε+ (m1 + ε)2

ε

2
ε1.

Finally for all n ≥ 1, we have from (3.30) and (3.1) that∫
T\E2n

j(t, xn(t))
‖xn‖2

dt ≤ ‖ξε‖1

‖xn‖2
+
ε

2

∫
T\E2n

‖xn(t)‖2

‖xn‖2
dt

≤ ‖ξε‖1

‖xn‖2
+
ε

2

∫
T\E2n

‖x0
n(t)‖2 + ‖wn(t)‖2

‖xn‖2
dt

≤ ‖ξε‖1

‖xn‖2
+
ε

2
C2 |T \ E2n|1 +

ε

2
‖wn‖2

2

‖xn‖2

≤ ‖ξε‖1

‖xn‖2
+
ε

2
C2 ε2 +

ε

2
‖wn‖2

‖xn‖2
.

Because of (3.26), we see that we can find n2 = n2(ε) ≥ 1 such that for all
n ≥ n2 ≥ 1 we have

(3.37)
∫

T\E2n

j(t, xn(t))
‖xn‖2

dt ≤ ε+
ε

2
C2 ε2.
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From (3.34), (3.36) and (3.37), we see that for n ≥ n3 = max{n1, n2, n3} we
have ∫ b

0

j(t, xn(t))
‖xn‖2

dt ≤ 1
2

(m1 − ε)2
∫ b

0

θ(t) dt+
1
2

(m1 − ε)2‖θ‖∞(ε1 + ε2)

+
ε

2
(C + ε)2b+ (m1 + ε)2

ε

2
ε1 +

ε

2
C2 ε2 + 3ε.

Recall that ε, ε2 > 0 were arbitrary. So we let ε, ε2 ↓ 0. It follows that

(3.38) lim sup
n→∞

∫ b

0

j(t, xn(t))
‖xn‖2

dt ≤ 1
2
m2

1

∫ b

0

θ(t) dt+
1
2
m2

1‖θ‖∞ε1.

Because ε1 > 0 was arbitrary and
∫ b

0
θ(t) dt < 0, we choose ε1 > 0 small enough

so that

ε1‖θ‖∞ < −
∫ b

0

θ(t) dt.

Then from (3.38) we conclude that the claim is true when wn 6= 0 for n sufficiently
large as admitted.

Comparing the claim with (3.27), we reach a contradiction.
Next assume that

‖x̂n‖
‖xn‖

→ η ∈ (0, 1] as n→∞.

Then ‖y0
n‖2 → 1− η2. Because of the orthogonality of the component spaces H0

and H+ and the fact that θ ≤ 0, we have

ϕ(xn) ≥ 1
2
‖x̂′n‖2

2 −
1
2

∫ b

0

(A(t)x̂n(t), x̂n(t))RN dt− ε

2
‖xn‖2 − ‖ξε‖1

(see (3.30)), which implies that

M1

‖xn‖2
≥ 1

2
‖ŷ′n‖2

2 −
1
2

∫ b

0

(A(t)ŷn(t), ŷn(t))RN dt− ε

2
‖yn‖2 − ‖ξε‖1

‖xn‖2

≥ ξ1 − ε

2
‖ŷn‖2 − ε

2
‖y0

n‖2 − ‖ξε‖1

‖xn‖2

(ξ1 is the first positive eigenvalue). Passing to the limit as n→∞, we obtain

0 ≥ ξ1 − ε

2
η2 − ε

2
(1− η2) =

ξ1
2
η2 − ε

2
.

Choose ε < ξ1η
2 to reach a contradiction.

Therefore we have proved that ϕ is coercive. Also it is easy to see that it
is weakly lower semicontinuous on W 1,2

per((0, b),RN ). Involving the Weierstrass
theorem, we can find x ∈W 1,2

per((0, b),RN ) such that

ϕ(x) = inf ϕ
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and thus 0 ∈ ∂ϕ(x). From the inclusion we infer that x ∈ C1(T,RN ) is a solution
of problem (1.1). Moreover, if x0 ∈ H0 is as in hypothesis H(j)3(e), then

ϕ(x0) = −
∫ b

0

j(t, x0(t)) dt < 0

and so ϕ(x) ≤ ϕ(x0) < 0 = ϕ(0), hence x 6= 0. �

Next we pass to multiplicity results. For the first multiplicity result we re-
quire that dimH− = 0 and we impose the following conditions on the nonsmooth
potential j(t, x):

H(j)4 j:T × RN → R is a function such that j(t, 0) = 0 a.e. on T and

(a) for all x ∈ RN , t 7→ j(t, x) is measurable,
(b) for almost all t ∈ T , x 7→ j(t, x) is locally Lipschitz,
(c) for almost all t ∈ T , all x ∈ RN and all u ∈ ∂j(t, x), we have

‖u‖ ≤ a(t) + c(t)‖x‖r−1 with a, c ∈ L1(T )+, 1 ≤ r <∞,

(d) there exists θ ∈ L∞(T ) such that θ(t) ≤ 0 a.e. on T with strict inequality
on a set of positive measure and

lim sup
‖x‖→∞

2j(t, x)
‖x‖2

≤ θ(t) uniformly for almost all t ∈ T ,

(e) there exists η ∈ L∞(T )+ such that if λm > 0 is the first positive eigen-
value of x 7→ −x′′− Âx, then η(t) ≤ λm a.e. on T with strict inequality
on a set of positive measure and

lim sup
‖x‖→0

2j(t, x)
‖x‖2

≤ η(t) uniformly for almost all t ∈ T ,

(f) there exists δ > 0 such that for almost all t ∈ T and all ‖x‖ ≤ δ, we
have j(t, x) ≥ 0.

Example 3.10. The following nonsmooth locally Lipschitz function satisfies
hypotheses H(j)4:

j(t, x) =


η(t)
r

‖x‖r if ‖x‖ ≤ 1,

θ(t)
2

‖x‖2 − θ(t)
2

+
η(t)
r

if ‖x‖ > 1,

with 2 ≤ r < ∞ and with θ, η ∈ L∞(T ) as in hypotheses H(j)4(d) and (e),
respectively.

Due to hypothesis H(j)4(d), the next multiplicity result applies to quadratic
or superquadratic systems.
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Theorem 3.11. If hypotheses H(A) and H(j)4 hold and dimH− = 0, then
problem (1.1) has at least two nontrivial solutions x1, x2 ∈ C1(T,RN ).

Proof. As in the proof of Theorem 3.9 we can check that ϕ is coercive.
Hence it is bounded below and satisfies the nonsmooth PS-condition. Also be-
cause of hypothesis H(j)4(e), given ε > 0, we can find δ = δ(ε) such that

(3.39) j(t, x) ≤ 1
2

(η(t) + ε)‖x‖2

for almost all t ∈ T and all ‖x‖ ≤ δ. In addition from hypothesis H(j)4(c) and
the mean value theorem for locally Lipschitz functions, we have

(3.40) |j(t, x)| ≤ βε(t)‖x‖τ

for almost all t ∈ T , all ‖x‖ ≥ δ and with βε ∈ L1(T )+, τ > 2. So from (3.39)
and (3.40) it follows that

(3.41) j(t, x) ≤ 1
2

(η(t) + ε)‖x‖2 + βε(t)‖x‖τ for a.a. t ∈ T and all x ∈ RN .

In view of (4.41), for x ∈ H+ we have

(3.42) ϕ(x) =
1
2
‖x′‖2

2 −
1
2

∫ b

0

(A(t)x(t), x(t))RN dt−
∫ b

0

j(t, x(t)) dt

≥ 1
2
‖x′‖2 − 1

2

∫ b

0

(A(t)x(t), x(t))RN dt

− 1
2

∫ b

0

η(t)‖x(t)‖2 dt− ε

2
‖x‖2

2 − c1‖x‖τ

for some c1 > 0 (see also (3.1)). As we did for (3.23), we can show that there is
c2 > 0 such that

‖x′‖2
2 −

∫ b

0

(A(t)x(t), x(t))RN dt−
∫ b

0

η(t)‖x(t)‖2 dt ≥ c2‖x‖2

for all x ∈ H+. Using this in (3.42), we obtain

ϕ(x) ≥ 1
2

(c2 − ε)‖x‖2 − c1‖x‖τ for all x ∈ H+.

Choose ε < c2. Because τ > 2, if we choose ρ1 > 0 small we will have

ϕ(x) ≥ 0 for all x ∈ H+, ‖x‖ ≤ ρ1.

Since H0 is finite dimensional, all norms are equivalent and so we can find 0 <
ρ ≤ ρ1 such that if x0 ∈ H0 with ‖x0‖ ≤ ρ, then ‖x0‖∞ ≤ δ. Thus by virtue of
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hypothesis H(j)4(f) we have j(t, x0(t)) ≥ 0 for a.e. t ∈ T . So we have

ϕ(x0) =
1
2
‖(x0)′‖2

2 −
1
2

∫ b

0

(A(t)x0(t), x0(t))RN dt−
∫ b

0

j(t, x0(t)) dt

= −
∫ b

0

j(t, x0(t)) dt ≤ 0 for x0 ∈ H0 with ‖x0‖ ≤ ρ.

If inf ϕ = 0, then all x0 ∈ H0 \ {0} with ‖x0‖ ≤ ρ are critical points of ϕ, hence
solutions of problem (1.1). If inf ϕ < 0 = ϕ(0), then we can apply Theorem
2.3 and obtain x1, x2 ∈ W 1,2

per((0, b),RN ) with x1, x2 6= 0 such that 0 ∈ ∂ϕ(xi),
i = 1, 2. These are two nontrivial solutions of problem (1.1). �

As for the existence theory, if we assume that dim(H− ⊕ H0) = 0 and we
impose a symmetry condition on the potential j(t, · ), we can strengthen our
conclusion and produce a whole infinite sequence of solutions. The precise hy-
potheses on the nonsmooth potential j(t, x) are the following:

H(j)5 j:T × RN → R is a function such that j(t, 0) = 0 a.e. on T and

(a) for all x ∈ RN , t 7→ j(t, x) is measurable,
(b) for almost all t ∈ T , x 7→ j(t, x) is locally Lipschitz and even,
(c) for almost all t ∈ T , all x ∈ RN and all u ∈ ∂j(t, x), we have

‖u‖ ≤ a(t) + c(t)‖x‖r−1 with a, c ∈ L1(T )+, 1 ≤ r <∞,

(d) there exist µ > 2, M > 0 and β ∈ L∞(T )+, β 6= 0 a.e. on T such that

β(t)‖x‖µ ≤ µj(t, x) ≤ −j0(t, x;−x) for a.a. t ∈ T and all ‖x‖ ≥M ,

(e) there exists θ ∈ L∞(T )+ such that if λ1 > 0 is the first eigenvalue of
x 7→ −x′′ − Âx, we have θ(t) ≤ λ1 a.e. on T with strict inequality on
a set of positive measure and

lim sup
‖x‖→0

2j(t, x)
‖x‖2

≤ θ(t) uniformly for almost all t ∈ T .

Example 3.12. Because of hypothesis H(j)5(d), this multiplicity result ap-
plies to strictly superquadratic systems. The following nonsmooth locally Lip-
schitz function j(t, x) satisfies hypotheses H(j)5:

j(t, x) =


θ(t)
2

‖x‖2 if ‖x‖ ≤ 1,

1
µ
‖x‖µ +

θ(t)
2

− 1
µ

if ‖x‖ > 1,

where µ > 2 and θ ∈ L∞(T )+ as in hypotheses H(j)5(e) with θ(t) ≤ 2/µ.

We have the following multiplicity result.
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Theorem 3.13. If hypotheses H(A) and H(j)5 hold and dim(H−⊕H0) = 0,
then problem (1.1) has infinitely many distinct pairs (x,−x), x ∈ C1(T,RN )
of solutions.

Proof. From the proof of Theorem 3.7 we know that the locally Lipschitz
Euler functional ϕ satisfies the nonsmooth PS-condition.

Let Y ⊂ W 1,2
per((0, b),RN ) be a finite dimensional subspace and let γ > M ,

where M > 0 is as in hypothesis H(j)5(d). Set β1 = β/mu and

ξ0 = inf
{ ∫

{‖y(t)‖>M}
β1(t)‖y(t)‖µ dt : y ∈ Y, ‖y‖∞ = γ

}
> 0.

Because Y is finite dimensional, all the norms are equivalent. So for all y ∈ Y

we can write

(3.43) ϕ(y) =
1
2
‖y′‖2

2 −
1
2

∫ b

0

(Ay(t), y(t))RN dt−
∫ b

0

j(t, y(t)) dt

≤ η‖y‖2
∞ −

∫ b

0

j(t, y(t)) dt

= η‖y‖2
∞ −

∫
{‖y(t)>M‖}

j(t, y(t)) dt−
∫
{‖y(t)≤M‖}

j(t, y(t)) dt

≤ η‖y‖2
∞ −

∫
{‖y(t)>M‖}

β1(t)‖y(t)‖2 dt+ η1

for some η > 0 and η1 > 0 (see hypotheses H(j)5(c) and (d)). Since we will send
‖y‖ to ∞, then ‖y‖∞ will also go to ∞ and so we may assume that ‖y‖∞ > γ.
So

{t ∈ T : ‖y(t)‖ > M} ⊇
{
t ∈ T :

γ

‖y‖∞
‖y(t)‖ > M

}
and we have

−
∫
{‖y(t)>M‖}

β1(t)‖y(t)‖µ dt ≤ −
∫
{ γ
‖y‖∞

‖y(t)‖>M}
β1(t)‖y(t)‖µ dt

= −‖y‖
µ
∞

γµ

∫
{ γ
‖y‖∞

‖y(t)‖>M}
β1(t)γµ

(
‖y(t)‖
‖y‖∞

)µ

dt ≤ − ξ0‖y‖µ
∞

γµ
.

We use this estimate in (3.43). Hence we obtain

ϕ(y) ≤ η‖y‖2
∞ − ξ0

γµ
‖y‖µ

∞ + η1.

Since µ > 2 and the norms on Y are equivalent, it follows that

ϕ(y) → −∞ as ‖y‖ → ∞, y ∈ Y.

On the other hand because of hypothesis H(j)5(e), as in the proof of Theo-
rem 3.5 (Claim 2), we can find ρ > 0 small such that

ϕ(x) ≥ β0 > 0 for all x ∈W 1,2
per((0, b),RN ) with ‖x‖ = ρ.
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Therefore we can apply Theorem 2.4 and obtain a sequence {(xn,−xn)}n≥1,
xn ∈ W 1,2

per((0, b),RN ) of distinct critical points of ϕ. So 0 ∈ ∂ϕ(±xn) for all
n ≥ 1 and from this we infer that xn ∈ C1(T,RN ) and the pairs {(xn,−xn)}n≥1

are solutions of problem (1.1). �
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