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FIXED POINTS OF MULTIVALUED MAPPINGS
WITH ELCK VALUES

Dariusz Miklaszewski

Abstract. We prove some fixed point theorems for the Hausdorff contin-
uous multivalued mappings with equilocally connected values in dimension
n − 1 or n − 2 on n-dimensional discs and closed manifolds.

1. Introduction

The aim of this paper is to find some conditions which guarantee that the
mapping f :X → 2X with compact nonempty values has a fixed point x ∈ X .
The space X will be regarded as a disc or a closed oriented topological manifold.
This is well known that

• the upper semicontinuous (u.s.c.) mappings with acyclic values sat-
isfy the Lefschetz (and in particular Brouwer’s) Fixed Point Theorem
(see [7]),
• there is a fixed point free mapping of the discD2 with values homeomor-
phic to S1, which is continuous with respect to the Hausdorff metric �s
(see [17]).

Górniewicz conjectured that the lack of the acyclicity of the values can be
compensated in the fixed point theory by the stronger continuity of the mapping,
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e.g. with respect to the Borsuk metric of continuity �c or Borsuk metric of ho-
motopy �h, (�h ≥ �c ≥ �s) (see [1]). This idea leads us to get some fixed point
theorems for �s-continuous mappings with equilocally connected values (in the
homotopy sense) in dimension (dim(X)− i) for i = 1. We apply the Górniewicz
method of spheric mappings, to pass from the case i = 1 to i = 2 (see [8]).

2. Results

Our first result solves a problem formulated in [8] and called the Górniewicz
conjecture in [14].

Theorem 2.1. There exists a fixed point free �c-continuous mapping of D4

with compact connected values.

The proof is based on the Jezierski example of a fixed point free �s-continuous
mapping of D2 with values being finite sets (see [12]).

The next task consists in replacing �c by �h.

Recall that the family {Xλ:λ ∈ Λ} is eLCk (equilocally connected in dimen-
sion k) if and only if for every ε > 0 there is δ(ε) > 0 such that for all λ, x ∈ Xλ,
r = 0, . . . , k, every map ω:Sr → K(x, δ(ε)) ∩ Xλ has a continuous extension
ω:Dr+1 → K(x, ε) ∩Xλ.

Theorem 2.2. For every mapping f :Dn → 2Dn the following conditions
(a) f is �h-continuous,
(b) f is �s-continuous and {f(x) : x ∈ Dn} is eLCn−1,

are equivalent. Under each of these conditions, f has a continuous single-valued
selector and a fixed point.

Theorem 2.2(b) is close to the Michael Theorem in [13, Theorem 1.2] (note
that we do not assume f(x) to be Cn−1, but Dn is the very special space and
�s-continuity is stronger than l.s.c.). The proof of the next result is based on the
concept of the spheric mapping (see [8]). We recall the notation used in [8].

Let Y be a compact subset of Rn. Then B(Y ) denotes the sum of all bounded
components of R

n \ Y ; D(Y ) – the unbounded component of R
n \ Y ; Ỹ =

Y ∪B(Y ). The bounded components of Rn \ Y are these with compact closure,
which is important when we forget the metric in R

n. To shorten notation, we
use Bf(x), Df(x), f̃(x) instead of B(f(x)), D(f(x)), f̃(x).

Figure 1 shows a 1-dimensional continuum Y in R
2 shaped as two hearts

joined by two wedding rings and a 2-dimensional continuum Ỹ which has a form
of the gingerbread “katarzynka” baked in the town Toruń as a souvenir connected
with a beautiful ancient legend.
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Figure 1

Theorem 2.3. If

(a) f :Dn → 2Dn is �s-continuous,
(b) {f(x) : x ∈ Dn} is eLCn−2,
(c) {f̃(x) : x ∈ Dn} is eLCn−1,

then f has a fixed point.

Author does not know, if the assumption (c) in the Theorem 2.3 is necessary
for n > 2.

Problem 2.4. Let n ≥ 2. Is it true that if {Yλ : λ ∈ Λ} is eLCn−2 in R
n,

then {Ỹλ : λ ∈ Λ} is eLCn−1?
(Author does not know the answer to this question even for the one point

set Λ, when the letter e in eLC can be omitted).
For n = 2 the assumption (c) is superfluous, which can be proved without

solving Problem 2.4.

Theorem 2.5. If f :D2 → 2D2 is �s-continuous and {f(x) : x ∈ D2} is
eLC0 then f has a fixed point.

We will give two different proofs of Theorem 2.5: the first shows that f is
approximable by the singlevalued continuous mappings, the latter – that f is
spheric with f̃ permissible in the sense of [4].

Example 2.6. Let us recall, that every �c-continuous mapping f :D2 → 2D2
with compact connected values has a fixed point (see [8, Theorem 4.4]). The map
f defined by f(x) = {y ∈ D2 : ‖y‖ ≥ ‖x‖} is not �c-continuous but satisfies the
assumptions of Theorem 2.5.

Let Γf denote the graph {(x, y) : y ∈ f(x)} and p: Γf → Dn – the projection
p(x, y) = x. It appears that many conditions on the multivalued mapping f in
fixed point theorems are equivalent to some fibre properties of p.

Example 2.7. Let U = {x ∈ Dn : f(x) is not a one point set}. Every
�s-continuous mapping f :Dn → 2Dn such that p: Γf |U → U is a locally trivial
fibration with the fibre Sn−2 has a fixed point, see [15], [16]. For n �= 6 we
can assume equivalently, that f is �c-continuous and takes values which are one
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point sets or (n − 2) - dimensional spheres embedded in Dn, (see [15] and the
references given there). For such mappings {f(x) : x ∈ Dn} is eLCn−3.

Example 2.8. There is a fixed point free �s-continuous mapping f :Dn →
2D

n

such that {f(x) : x ∈ Dn} is eLCn−3. Set
f(x) = {y ∈ Sn−1 : 〈y, x〉 ≤ (1− ‖x‖)‖x‖}.

We can now formulate our main results for multivalued mappings on the
manifolds. Let L( · ; · ) denote the Lefschetz number.

Theorem 2.9. Let M be a metrizable compact connected n-dimensional
topological manifold without boundary. Suppose that M is K-oriented for a
field K. Let

(a) f :M → 2M be �s-continuous with connected values,
(b) s:M →M be continuous with L(s;K) �= 0,
(c) W :M → 2M be u.s.c.

and such that W (x) is homeomorphic to the disc Dn, s(x) ∈ W (x) and f(x) ⊂
intM (W (x)) for every x ∈ M . Assume that {f(x) : x ∈ M} is eLCn−1, (which
forces p: Γf → M to be a Hurewicz fibration with a fibre F � f(x)). If the
fibration p is orientable with respect to H∗( · ;K) and

Hn−1(M × F ;K) = Hn−1(M ;K),
then f has a fixed point.

Definition 2.10. The function s in Theorem 2.9 will be called a positioning
function for f .

The positioning function is defined to be a selector of the map W only for
simplicity of the formulation of Theorem 2.9. As well we can assume s to be a
sufficiently close graph – approximation ofW . It seems, that the existence of the
pair (s,W ) is a proper assumption which makes it legitimate to apply the notion
of the Lefschetz number to find fixed points of f , nevertheless L(s;K) is not
uniquely determined by f . Note, that the inclusion f(x) ⊂ intM (W (x)) ∼= R

n

makes f̃(x) well defined.

Corollary 2.11. Let f :M → 2M be �s-continuous with f̃ satisfying all
other assumptions on f in Theorem 2.9. If {f(x) : x ∈ M} is eLCn−2 and the
positioning function for f is not homotopic to the identity on M , then f has
a fixed point.

2.1. Proof of Theorem 2.1. We shall define a fixed point free �c-continu-
ous mapping f :D4 → 2D4 with compact connected values. Recall that

�c(X,Y ) = max{dc(X,Y ), dc(Y,X)}
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with dc(X,Y ) = inf{max{‖α(x) − x‖ : x ∈ X}}, where the infimum is taken
over all continuous functions α:X → Y ; (X,Y ⊂ D4). The disc D4 will be
identified withD2×D2. This is well known, [12], that there exists a �s-continuous
homotopy H :S1 × I → 2S1 joining H(z, 0) = {z0} and H(z, 1) = {z} such
that H(z, t) is a finite subset of S1 which has at most 3 elements for every
(z, t) ∈ S1 × I. The multivalued retraction r:D2 → 2S1 is the standard one:

r(x) =

{ {z0} for ‖x‖ ≤ 1/2,
H(x/‖x‖, 2‖x‖ − 1) for ‖x‖ ∈ [1/2, 1].

We define J :D2 → 2S1 by

J(x) =

{ −r(3x) for ‖x‖ ≤ 1/3,
{−x/‖x‖} for ‖x‖ ∈ [1/3, 1].

Of course, J is �s-continuous and has finite values. Since �s = �c on finite sets,
J is �c-continuous. The mapping J is fixed point free, moreover x /∈ [1/2, 1]J(x)
for every x ∈ D2. This is easy to check that the join of sets A ⊂ S1 × {0} and
B ⊂ {0} × S1 in D2 ×D2 is well defined by

A ∗B = {(1− t)a+ tb : t ∈ [0, 1], a ∈ A, b ∈ B}.
Let φ1, φ2, f :D2 ×D2 → 2D2×D2 be given by
φ1(x, y) = J(x) × {0}, φ2(x, y) = {0} × J(y), f(p) = φ1(p) ∗ φ2(p).

We check now that f is �c-continuous. Take an ε > 0. Since φi is �c-continuous,
there is a positive δ such that

‖p− q‖ < δ ⇒ �c (φi(p), φi(q)) < ε,
for i = 1, 2. Fix p, q ∈ D2 × D2 with ‖p − q‖ < δ. By the definition of �c,
there is a continuous map αi:φi(p)→ φi(q) such that ‖αi(v)− v‖ < ε, for every
v ∈ φi(p). Let α1 ∗ α2: f(p) → f(q) be the join of maps α1 and α2. Take
x = (1− t)u1 + tu2 ∈ f(p) with ui ∈ φi(p). Thus

‖α1 ∗ α2(x)− x‖ = ‖(1− t)α1(u1) + tα2(u2)− (1− t)u1 − tu2‖
≤ (1− t)‖α1(u1)− u1‖+ t‖α2(u2)− u2‖ < ε.

Hence dc(f(p), f(q)) < ε. Likewise, �c(f(p), f(q)) < ε.
The mapping f is fixed point free. Otherwise, there is (x, y) ∈ D2×D2 such

that

(x, y) ∈ f(x, y) = {((1 − t)a, tb) : t ∈ [0, 1], a ∈ J(x), b ∈ J(y)}.
Thus x = (1 − t)a ∈ [1/2, 1]J(x), for t ∈ [0, 1/2] and y = tb ∈ [1/2, 1]J(y) for
t ∈ [1/2, 1], a contradiction.
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The values of f being joins of some finite sets are compact and connected
(these are graphs of 4 homotopy types: •, ©, �, ⊕). One can check that
{f(p) : p ∈ D2 ×D2} is not eLC0.
2.2. Proof of Theorem 2.2. Let f :Dn → 2Dn be �h-continuous. By [1],

the �h-continuity of f is equivalent to the conjunction of two conditions:

(a) f is �s-continuous,
(b) {f(x) : x ∈ Dn} is equally locally contractible.
According to [1, Proof, p. 200], the projection p: Γf → Dn is strongly regular

in the sense of [6, Definition, p. 373]. By [6, Theorem 1], p is the Hurewicz
fibration. Since Dn is contractible, p has a section. The second coordinate
of this section is a continuous selector of f , which proves Theorem 2.2(a). Since
f(x) ⊂ R

n, (b) is equivalent to

(b’) {f(x) : x ∈ Dn} is eLCn−1,
(see [1, Proof, pp. 187–188]), which shows that conditions (a) and (b) in Theo-
rem 2.2 are equivalent.

2.3. Preparation for proving Theorem 2.3.

Lemma 2.12. Let X be a compact ANR and x ∈ R
n \X. Then x ∈ B(X) if

and only if there is a singular (n− 1)-cycle Zn−1 in X with rational coefficients,
which does not bound in R

n \ {x}.
Proof. Choose r1, r2 > 0 such that

D̆1
def={y ∈ R

n : ‖y − x‖ < r1} ⊂ R
n \X

and
D2
def={y ∈ R

n : ‖y − x‖ ≤ r2} ⊃ X.
The part “if” does not require that X is ANR. By assumption, the homo-

morphism j∗:Hn−1X → Hn−1(Rn \ {x}) (induced by inclusion) is nontrivial.
Suppose, contrary to our claim that x ∈ D(X). Fix in R

n a point y /∈ D2. Since
D(X) is a domain in R

n, there are points z0 = x, z1, . . . , zq = y such that each
interval zizi+1 lies in D(X). The diagram

X

id

��

ji∗
�� R
n \ {zi}
∼=Ti∗

��

X
ji+1∗

�� R
n \ {zi+1}

with Ti(z) = z+zi+1−zi is homotopy commutative for i = 0, . . . , q−1. Indeed,
H(z, t) = (1 − t)z + tTi(z) is a homotopy H : ji+1 � Ti ◦ ji. It follows that
jq∗ : Hn−1X → Hn−1(Rn \ {y}) is a nontrivial homomorphism. But X ⊂ D2 ⊂
R
n \ {y} and Hn−1D2 = 0, a contradiction.
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We now prove “only if”. Let A = D2 \ D̆1, Sn = R
n ∪ {∞}, x ∈ B(X).

Consider the following commutative diagram

Ȟn−1A

∼=
��

β∗
�� Ȟn−1X

∼= Alexander duality
��

H1(Sn, Sn \A)
∼=

��

�� H1(Sn, Sn \X)
∼= excision

��

H1(Rn,Rn \A)
∼=

��

�� H1(Rn,Rn \X)
∼= �∂

��

H̃0(Rn \A)
�α∗

�� H̃0(Rn \X)

with inclusions β:X → A and α:Rn \A→ R
n \X . We have

α: (Rn \D2) ∪ D̆1 → D(X) ∪B(X),

R
n \ D2 ⊂ D(X), D̆1 ⊂ Bµ ⊂ B(X) =

⋃
λBλ, where {Bλ} is a family of all

bounded components of R
n \ X . Thus α∗:H0(Rn \ A) → H0(Rn \ X) is the

homomorphism

(s, t) ∈ Q⊕Q→ Q⊕
⊕
λ

Q � (s, iµ(t)),

where iµ:Q →
⊕
λQ denotes the µ-th canonical inclusion. Choose y ∈ R

n \
D2. Since H̃0(Rn \ A) = coker(H0{y} → H0(Rn \ A)) and the same is true
for X in place of A, α̃∗ = iµ �= 0. Consequently β∗ �= 0. Since A and X
are compact ANRs and the (co)homology coefficients are in Q, it follows that
β∗:Hn−1X → Hn−1A is nontrivial. Clearly, the same holds for the composition
j∗:Hn−1X → Hn−1A→ Hn−1(Rn \ {x}), which proves the lemma. �

Lemma 2.13. Let X, X1, X2, . . . be compact subsets of R
n such that {Xk :

k = 1, 2, . . .} is eLCn−2 and limk→∞ �s(Xk, X) = 0. Then

∀x ∈ B(X) ∃k0 ∀k > k0 x ∈ B(Xk).

Proof. Let η denote a positive number. Fix x ∈ B(X) and a compact
polyhedron P such that

X ⊂ P ⊂ Oη(X)def={p ∈ R
n : dist(p,X) < η}.

Clearly, �s(X,P ) < η. Since D(P ) ⊂ D(X), x ∈ P̃ . Assuming that η <
dist(x,X) gives x ∈ B(P ). By Lemma 2.12, there is a singular (n − 1)-cycle
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Zn−1 =
∑
σ cσσ in P with cσ ∈ Q, which does not bound in R

n \ {x}. There is
no loss of generality in assuming that

∀σ (cσ �= 0⇒ diam(σ(∆n−1)) < η),

(we apply to Zn−1 the multiple barycentric subdivision, if necessary).
Choose k0 ∈ N with �s(Xk, X) < η for every k > k0 and take such a k.

Hence �s(Xk, P ) < 2η. The main point of this proof is the construction of the
(n− 1)-cycle φ(Zn−1) in Xk, which is homologous to Zn−1 in R

n \ {x}. Finding
such φ(Zn−1) will complete the proof, by Lemma 2.12.

Let δ:R+ → R+ be a function, which appears in the definition of the eLCn−2

property for the family {Xk : k ∈ N}. Set µ(ε) = δ(ε/4). Let µ(r) denote the
r-th iteration of the function µ. Fix the positive numbers

ε < dist(x,X) and η < min
{
1
5
µ(n−1)(ε),

1
8
ε

}
.

Let Ξ be the set of all simplices of the cycle Zn−1 and all their faces. Thus
Ξ =
⋃n−1
i=0 Ξi, Ξn−1 = {σ : cσ �= 0}, Ξi−1 = {τ ◦ F ip : τ ∈ Ξi, 0 ≤ p ≤ i} for

1 ≤ i ≤ n− 1; (F ip : ∆i−1 → ∆i is the p -th face mapping).
Our strategy is to make a copy φ(τ) in Xk of every simplex τ ∈ Ξ. Take

τ ∈ Ξ0. By an obvious convention, τ ∈ P . We choose φ(τ) to be any point of Xk
such that ‖φ(τ) − τ‖ < 2η.
Take τ ∈ Ξ1. We have

‖φ(τ ◦ F 11 )− φ(τ ◦ F 10 )‖ ≤ ‖φ(τ ◦ F 11 )− τ ◦ F 11 ‖
+ ‖τ ◦ F 11 − τ ◦ F 10 ‖+ ‖τ ◦ F 10 − φ(τ ◦ F 10 )‖
< 2η + diam(τ(∆1)) + 2η < 5η < µ(n−1)(ε)

= δ(µ(n−2)(ε)/4).

We choose φ(τ):∆1 → Xk to be any path joining φ(τ ◦ F 11 ) and φ(τ ◦ F 10 ) in
K
(
φ(τ ◦ F 10 ), µ(n−2)(ε)/4

) ∩Xk.
Suppose that φ is defined on Ξi−1 for an i ≤ n−1 in this way, that φ(τ)(∆i−1)

lies in an open ball of the radius µ(n−i)(ε)/4 in Xk, for every τ ∈ Ξi−1.
Take τ ∈ Ξi. We have diam

(
φ(τ ◦ F ip)(∆i−1)

)
< µ(n−i)(ε)/2 for p = 0, . . . , i.

Define ω: ∂∆i → Xk by ω(F ip(x)) = φ(τ ◦ F ip)(x). Clearly,

diam(ω(∂∆i)) < µ(n−i)(ε) = δ(µ(n−i−1)(ε)/4.

Take any point q ∈ ω(∂∆i). We choose φ(τ) to be a continuous extension
ω̃: ∆i → Xk of ω such that ω̃(∆i) ⊂ K(q, µ(n−i−1)(ε)/4). In particular,

φ(τ) ◦ F ip = φ(τ ◦ F ip) for τ ∈ Ξi.
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This condition on Ξi−1 makes ω well defined. Since F ip ◦ F i−1q = F iq ◦ F i−1p−1 for
q < p (see [11]),

ω(F ip ◦ F i−1q (y)) = φ(τ ◦ F ip)(F i−1q (y)) = φ(τ ◦ F ip ◦ F i−1q )(y)
= φ(τ ◦ F iq ◦ F i−1p−1)(y) = φ(τ ◦ F iq)(F i−1p−1(y))
= ω(F iq ◦ F i−1p−1(y)).

The induction completes the construction of φ on Ξ. In particular,

diam(φ(σ)(∆n−1)) < µ(0)(ε)/2 = ε/2.

Now, we define the (n− 1)-chain φ(Zn−1) in Xk to be
∑
σ cσφ(σ). Since

∂Zn−1 =
∑
σ

n−1∑
p=0

(−1)pcσ · σ ◦ Fn−1p = 0,

we see that

∂φ(Zn−1) =
∑
σ

n−1∑
p=0

(−1)pcσ · φ(σ) ◦ Fn−1p =
∑
σ

n−1∑
p=0

(−1)pcσ · φ(σ ◦ Fn−1p ) = 0.

What is left is to show that the cycle φ(Zn−1) is homologous to Zn−1 in
R
n \ {x}.
We follow the notation of [11]: E0, . . . , Eq – the vertices of ∆q; δq = id∆q ;

Sq(Y ) – the group of the singular q – chains in Y (with rational coefficients);
Pq:Sq(Y )→ Sq+1(Y × I) – the homomorphism defined by

Pq(σ) = Sq+1(σ × id) ◦ Pq(δq), for σ: ∆q → Y,

Pq(δq) =
q∑
i=0

(−1)i · ((E0, 0) . . . (Ei, 0)(Ei, 1) . . . (Eq , 1)) .

Let λt:Y → Y × I be given by λt(y) = (y, t). By [11],
∂ ◦ Pq + Pq−1 ◦ ∂ = Sq(λ1)− Sq(λ0).

Now, we define Gq(σ, τ):∆q × I → R
n \ {x} by

Gq(σ, τ)(E, t) = (1 − t)σ(E) + tτ(E),
for all q-simplices σ, τ in R

n \ {x} such that the above expression takes values
apart from {x}. Note that
dist((1 − t)σ(E) + tφ(σ)(E), X)

≤ t‖φ(σ)(E) − φ(σ)(E0)‖ + t‖φ(σ)(E0)− σ(E0)‖
+ t‖σ(E0)− σ(E)‖ + dist(σ(E), X)

≤ ε/2 + 2η + η + �s(P,X) < ε/2 + 4η < ε < dist(x,X),
for every σ ∈ Ξq and E ∈ ∆q.
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It follows that Gq(σ, φ(σ)) is well defined for every σ ∈ Ξq. Clearly, σ =
Gq(σ, φ(σ)) ◦ λ0 and φ(σ) = Gq(σ, φ(σ)) ◦ λ1. Moreover,

Gq(σ, τ) ◦ (F × id) = Gq−1(σ ◦ F, τ ◦ F ),

for any F : ∆q−1 → ∆q. Thus

φ(σ) − σ = Sq(Gq(σ, φ(σ))) ◦ (Sq(λ1)− Sq(λ0))(δq)
= Sq(Gq(σ, φ(σ))) ◦ (∂Pq + Pq−1∂)(δq)
= ∂Sq+1(Gq(σ, φ(σ)))Pq(δq) + Sq(Gq(σ, φ(σ)))Pq−1∂(δq).

The second summand is equal to

q∑
j=0

(−1)jSq(Gq(σ, φ(σ))) ◦ Pq−1(F qj )

=
q∑
j=0

(−1)jSq(Gq(σ, φ(σ))) ◦ Sq(F qj × id) ◦ Pq−1(δq−1)

=
q∑
j=0

(−1)jSq
(
Gq−1(σ ◦ F qj , φ(σ) ◦ F qj )

) ◦ Pq−1(δq−1).
Take q = n− 1. The cycle φ(Zn−1)− Zn−1 is homologous in R

n \ {x} to
∑
σ

cσ ·
q∑
j=0

(−1)jSq
(
Gq−1(σ ◦ F qj , φ(σ ◦ F qj ))

) ◦ Pq−1(δq−1),
which equals to zero, because

∑
σ

cσ ·
q∑
j=0

(−1)jσ ◦ F qj = ∂Zn−1 = 0. �

2.4. Proof of Theorem 2.3. This proof is based on the notion of the
spheric mapping. There are various definitions of spheric mappings, [8], [9],
[2], [3], which lead to the similar proofs of the corresponding fixed point theorems.
We will prove that f :Dn → 2Dn satisfying assumptions of our theorem is spheric
in the following sense:

(1) f is u.s.c. and compact-valued,
(2) the graph ΓBf is open in Dn × R

n,
(3) f̃ has a fixed point.

The only point which needs our attention is (2). Indeed, if f is �s-continuous
then f is u.s.c. and l.s.c.; if f is u.s.c. then f̃ is u.s.c. ([8]), if f is l.s.c. and (2)
then f̃ is l.s.c.; if f̃ is u.s.c. and l.s.c. then f̃ is �s-continuous. Theorem 2.2(b)
now yields (3).



Fixed Points of Multivalued Mappings with eLCk
Values 193

Suppose, (2) is false. Then

∃(x, y) ∈ ΓBf ∃{(xk, yk)} lim
k→∞
(xk, yk) = (x, y) and ∀k (xk, yk) /∈ ΓBf .

Thus y ∈ Bf(x), yk ∈ f(xk) ∪ Df(xk). Since limk→∞ �s(f(xk), f(x)) = 0,
Lemma 2.13 shows that y ∈ Bf(xk) for k > k0. By connectedness of the interval
yyk, there is ck ∈ yyk such that ck ∈ f(xk) for k > k0. This gives y ∈ f(x),
a contradiction.

2.5. Two proofs of Theorem 2.5.

Proof I. Let us identify D2 with I2 and consider a �s - continuous mapping
f : I2 → I2 with eLC0 values. Fix η > 0. Choose ε > 0 small enough that for all
x ∈ I2 and y, y′ ∈ f(x) with ‖y− y′‖ < 4ε there is a path σ: I → I2 from y to y′
in f(x) satisfying diam(σ(I)) < η. Take δ > 0 such that �s(f(x), f(x′)) < ε for
all x, x′ with ‖x− x′‖ < δ. We assume that δ < ε < η.
Let us divide I2 into squares, each with the edge of the same length less

than δ. Our purpose is to find a single-valued continuous map s: I2 → I2 which
approximates f .

Figure 2

We follow the notation of the Figure 2. Fix A ∈ f(a). Then choose B ∈ f(b),
C ∈ f(c) and D,P ∈ f(d) such that ‖B −A‖, ‖C −A‖, ‖D − C‖, ‖P −B‖ are
all less than ε. It follows that ‖D − P‖ < 4ε.
Set p = (b + d)/2 and s(a) = A, s(b) = B, s(c) = C, s(d) = D, s(p) = P .

Find a path σ: I → I2 from P to D in f(d) with diam(σ(I)) < η. Choose
r0 = 0, r1, . . . , rk = 1 in I such that diam(σ([ri, ri+1])) < ε for i < k. Set
pi = p + i/k · (d − p) and s((1 − t)pi + tpi+1) = σ((1 − t)ri + tri+1) for t ∈ I.
Define Pi = s(pi) and note, that ‖Pi+1 − Pi‖ < ε. Extend s to be linear on the
intarvals ab, ac, cd, bp; e.g. s((1 − t)b+ tp) = (1− t)B + tP .
Let U be the square abdc. Clearly, diam(s(∂U)) < 3ε + η. Since the

convex sets are AR’s, there is an extension s:U → conv(s(∂U)). Obviously,
diam(s(U)) < 3ε + η. Let q = (b′ + e)/2 and V be the rectangle bb′qp in I2.
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Choose Q ∈ f(e) such that ‖Q− P‖ < ε and repeat the construction of s on V
after that on U . We stress that s(q) = Q ∈ f(e), moreover s maps the interval
p′q into f(e), where p′ = (b′ + q)/2.

Since Pi ∈ f(d), there is Qi ∈ f(e) with ‖Qi − Pi‖ < ε for i = 0, . . . , k and
Q0 = Q. Set E = Qk, qi = q+ i/k · (e− q), s(qi) = Qi. Thus ‖Qi+1 −Qi‖ < 3ε.
Find a path αi: I → I2 from Qi to Qi+1 in f(e) with diam(αi(I)) < η.
Let Vi be the rectangle piqiqi+1pi+1. We extend s to be linear on intervals

piqi and by s((1 − t)qi + tqi+1) = αi(t) on qiqi+1. Thus diam(s(∂Vi)) < 2ε+ η.
Clearly, there is an extension s:Vi → conv(s(∂Vi)) with diam(s(Vi)) < 2ε+ η for
i = 0, . . . , k − 1.
The map s is now defined on U and on the square bb′ed = V ∪⋃k−1i=0 Vi. In the

same manner we extend s, square by square, on the first row of our subdivision
of I2. It is worth pointing out that passing to the third square, we forget points
qi and define p′j = p

′ + j/k′ · (e− p′) with k′ such that diam(s(p′jp′j+1)) < ε for
j = 0, . . . , k′ − 1. The definition of s on the other rows is straightforward.
It remains to prove that s: I2 → I2 approximates f . For every x ∈ I2 there

are R = r0r1r2r3 and T = t0t1t2t3 such that:

• R is a rectangle, T is a square and x ∈ R ⊂ T ,
• diam(T ) < √2 · δ and diam(s(R)) < 3ε+ η,
• s(r2) ∈ f(t2).

Write OεJ = {v ∈ I2 : dist(v, J) < ε} for J ⊂ I2. Thus s(x) ∈ s(R) ⊂
O3ε+η{s(r2)} ⊂ O4ηf(t2) ⊂ O4ηf(O2δ{x}) ⊂ O6ηf(x). �

Proof II. Another way of proving Theorem 2.5 is analysis similar to that
in the proof of Theorem 2.3. The only difference is the argument which shows
that f̃ has a fixed point. We will see that the values of f̃ have a fixed finite
number of acyclic components. Therefore f̃ is in a class of mappings which is
equipped with the fixed point index, [4].

Let nc(X) denote the number of the components of the space X . Since f(x)
is compact and LC0, nc(f(x)) < ∞. By the Alexander duality, Ȟi(f̃(x)) =
H̃1−i(Df(x)) = 0 for i ≥ 1.
It suffices to show that nc(f̃(x)) is finite and does not depend on x. Since

every component of f̃(x) contains a point of the set f(x), we have nc(f̃(x)) ≤
nc(f(x)) <∞. Because {f(x) : x ∈ D2} is eLC0, there is an ε > 0 such that the
distance of any two components of f(x) is not less than ε, for every x ∈ D2. The
same is true for the components of f̃(x). Indeed, if C,C′ are two components
of f̃(x), then

∂C ⊂ f(x), ∂C′ ⊂ f(x), dist(C,C′) = dist(∂C, ∂C′) ≥ ε.
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Since f̃ is �s-continuous, there is δ > 0 such that nc(f̃(x′)) ≥ nc(f̃(x)) when-
ever ‖x − x′‖ < δ. Thus nc(f̃(x′)) = nc(f̃(x)) for every x′ ∈ Oδ{x}. The
connectedness of D2 finishes the proof. �

2.6. Proof of Theorem 2.9. Let us consider the composition

M
D−→ M2 1×s−−−−→ M2 j−→ (M2,M2 \∆)

with M2 =M ×M , D(x) = (x, x), j – an inclusion and ∆ – the diagonal inM2.
Let U ∈ Hn (M2,M2 \∆) denote a K-orientation class of the manifold M

and λ(s) = D∗ ◦ (1× s)∗ ◦ j∗(U) – the Lefschetz class of the positioning function
s for f . The following diagram

Γf

�p

��

i �� M2

M
D

�� M2

1×s
��

is homotopy commutative. This is because mappings i(x, y) = (x, y) (with y ∈
f(x)) and (1×s)◦D◦p(x, y) = (x, s(x)) are two continuous selectors of so called
J-mapping Ψ(x, y) = {x}×W (x), see [10], between compact ANRs. This is due
to the fact that if p:E → B is a Hurewicz fibration with fibre F and any two
of E, B, F are ANRs, then the third is also, [5], [6].
To obtain a contradiction, suppose that f is fixed point free. From this the

following diagram

Γf

h

��

i �� M2
j

�� (M2,M2 \∆)

M2 \∆
id

�� M2 \∆
k

��

commutes, (h, k-inclusions).
Since L(s;K) �= 0, we see that λ(s) �= 0. By our diagrams,

p∗(λ(s)) = p∗D∗(1× s)∗j∗(U) = i∗j∗(U) = h∗k∗j∗(U) = 0.

(The last equality follows from the long exact sequence of the pair (M2,M2\∆).)
Hence p∗:Hn(M)→ Hn(Γf ) is not a monomorphism. Equivalently,

p∗:Hn(Γf )→ Hn(M) is not an epimorphism.

On the other hand, p∗ can be described in terms of the Leray–Serre spectral
sequence as the composition

Hn(Γf )
onto−−−−→ E∞n,0 µ−−−−→ E2n,0 ∼= Hn(M),
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(see [18]). The monomorphism µ is the composition of inclusions

Er+1n,0 = ker(E
r
n,0 → Ern−r,r−1) ⊂ Ern,0,

for r = n, . . . , 2. Clearly, En+1n,0 = E
∞
n,0. By assumption,

0 = Hn−r(M ;K)⊗K Hr−1(F ;K) = E2n−r,r−1,
which suffices to conclude that Ern−r,r−1 = 0 and µ is an isomorphism. Thus p∗
is an epimorphism, a contradiction.

2.7. Proof of the Corollary 2.11. Suppose, contrary to our claim, that f
is fixed point free. By Theorem 2.9, there is an x0 ∈ f̃(x0). Thus x0 ∈ Bf(x0).
Since {f(x) : x ∈ M} is eLCn−2, the graph ΓBf is an open subset of M ×M .
If x ∈ f̃(x) for every x ∈ M , then both mappings idM and s are continuous
selectors of the J-mapping W , [10]. Hence idM � s, which contradicts our
assumption. Otherwise, both {x ∈M : x /∈ f̃(x)} and {x ∈M : x ∈ Bf(x)} are
nonempty open subsets of M , contrary to the connectedness of M .
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le théorie des points fixes pour les applications multivoques. (Partie 1, 2), C. R. Acad.
Sci. Paris Sér. I 307 (1988), 489–492; 308 (1989), 449–452.

[11] M. J. Greenberg, Lectures on Algebraic Topology, W. A. Benjamin Inc., 1967.

[12] J. Jezierski, An example of finitely-valued fixed point free map, Zeszyty Nauk. Wydz.
Mat. Fiz. Chem. Uniw. Gdańskiego 6 (1987).

[13] E. A. Michael, Continuous selections II, Ann. of Math. 64 (1956), 562–580.

[14] D. Miklaszewski, A fixed point theorem for multivalued mappings with nonacyclic
values, Topol. Methods Nonlinear Anal. 17 (2001), 125–131.

[15] , A fixed point conjecture for Borsuk continuous set-valued mappings, Fund.
Math. 175 (2002), 69–78.



Fixed Points of Multivalued Mappings with eLCk
Values 197

[16] , On the mod 2 Euler characteristic class, preprint.

[17] B. O’Neill, A fixed point theorem for multivalued functions, Duke Math. J. 14 (1947),
689–693.

[18] R. M. Switzer, Algebraic Topology – Homotopy and Homology, Springer, 1975.

Manuscript received October 28, 2003

Dariusz Miklaszewski

Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
Chopina 12/18
87-100 Toruń, POLAND

E-mail address: miklasze@mat.uni.torun.pl

TMNA : Volume 24 – 2004 – N
o
1


