FIXED POINTS OF MULTIVALUED MAPPINGS
 WITH $E L C^{K}$ VALUES

Dariusz Miklaszewski

Abstract

We prove some fixed point theorems for the Hausdorff continuous multivalued mappings with equilocally connected values in dimension $n-1$ or $n-2$ on n-dimensional discs and closed manifolds.

1. Introduction

The aim of this paper is to find some conditions which guarantee that the mapping $f: X \rightarrow 2^{X}$ with compact nonempty values has a fixed point $x \in X$. The space X will be regarded as a disc or a closed oriented topological manifold. This is well known that

- the upper semicontinuous (u.s.c.) mappings with acyclic values satisfy the Lefschetz (and in particular Brouwer's) Fixed Point Theorem (see [7]),
- there is a fixed point free mapping of the disc D^{2} with values homeomorphic to S^{1}, which is continuous with respect to the Hausdorff metric ϱ_{s} (see [17]).
Górniewicz conjectured that the lack of the acyclicity of the values can be compensated in the fixed point theory by the stronger continuity of the mapping,

[^0]e.g. with respect to the Borsuk metric of continuity ϱ_{c} or Borsuk metric of homotopy $\varrho_{h},\left(\varrho_{h} \geq \varrho_{c} \geq \varrho_{s}\right)$ (see [1]). This idea leads us to get some fixed point theorems for ϱ_{s}-continuous mappings with equilocally connected values (in the homotopy sense) in dimension $(\operatorname{dim}(X)-i)$ for $i=1$. We apply the Górniewicz method of spheric mappings, to pass from the case $i=1$ to $i=2$ (see [8]).

2. Results

Our first result solves a problem formulated in [8] and called the Górniewicz conjecture in [14].

Theorem 2.1. There exists a fixed point free ϱ_{c}-continuous mapping of D^{4} with compact connected values.

The proof is based on the Jezierski example of a fixed point free ϱ_{s}-continuous mapping of D^{2} with values being finite sets (see [12]).

The next task consists in replacing ϱ_{c} by ϱ_{h}.
Recall that the family $\left\{X_{\lambda}: \lambda \in \Lambda\right\}$ is $e L C^{k}$ (equilocally connected in dimension k) if and only if for every $\varepsilon>0$ there is $\delta(\varepsilon)>0$ such that for all $\lambda, x \in X_{\lambda}$, $r=0, \ldots, k$, every map $\omega: S^{r} \rightarrow K(x, \delta(\varepsilon)) \cap X_{\lambda}$ has a continuous extension $\bar{\omega}: D^{r+1} \rightarrow K(x, \varepsilon) \cap X_{\lambda}$.

Theorem 2.2. For every mapping $f: D^{n} \rightarrow 2^{D^{n}}$ the following conditions
(a) f is ϱ_{h}-continuous,
(b) f is ϱ_{s}-continuous and $\left\{f(x): x \in D^{n}\right\}$ is $e L C^{n-1}$,
are equivalent. Under each of these conditions, f has a continuous single-valued selector and a fixed point.

Theorem 2.2(b) is close to the Michael Theorem in [13, Theorem 1.2] (note that we do not assume $f(x)$ to be C^{n-1}, but D^{n} is the very special space and ϱ_{s}-continuity is stronger than l.s.c.). The proof of the next result is based on the concept of the spheric mapping (see [8]). We recall the notation used in [8].

Let Y be a compact subset of \mathbb{R}^{n}. Then $B(Y)$ denotes the sum of all bounded components of $\mathbb{R}^{n} \backslash Y ; D(Y)$ - the unbounded component of $\mathbb{R}^{n} \backslash Y ; \widetilde{Y}=$ $Y \cup B(Y)$. The bounded components of $\mathbb{R}^{n} \backslash Y$ are these with compact closure, which is important when we forget the metric in \mathbb{R}^{n}. To shorten notation, we use $B f(x), D f(x), \widetilde{f}(x)$ instead of $B(f(x)), D(f(x)), \widetilde{f(x)}$.

Figure 1 shows a 1-dimensional continuum Y in \mathbb{R}^{2} shaped as two hearts joined by two wedding rings and a 2-dimensional continuum \tilde{Y} which has a form of the gingerbread "katarzynka" baked in the town Toruń as a souvenir connected with a beautiful ancient legend.

Figure 1
Theorem 2.3. If
(a) $f: D^{n} \rightarrow 2^{D^{n}}$ is ϱ_{s}-continuous,
(b) $\left\{f(x): x \in D^{n}\right\}$ is eLC C^{n-2},
(c) $\left\{\widetilde{f}(x): x \in D^{n}\right\}$ is $e L C^{n-1}$,
then f has a fixed point.
Author does not know, if the assumption (c) in the Theorem 2.3 is necessary for $n>2$.

Problem 2.4. Let $n \geq 2$. Is it true that if $\left\{Y_{\lambda}: \lambda \in \Lambda\right\}$ is $e L C^{n-2}$ in \mathbb{R}^{n}, then $\left\{\widetilde{Y_{\lambda}}: \lambda \in \Lambda\right\}$ is eLC C^{n-1} ?
(Author does not know the answer to this question even for the one point set Λ, when the letter e in $e L C$ can be omitted).

For $n=2$ the assumption (c) is superfluous, which can be proved without solving Problem 2.4.

Theorem 2.5. If $f: D^{2} \rightarrow 2^{D^{2}}$ is ϱ_{s}-continuous and $\left\{f(x): x \in D^{2}\right\}$ is $e L C^{0}$ then f has a fixed point.

We will give two different proofs of Theorem 2.5: the first shows that f is approximable by the singlevalued continuous mappings, the latter - that f is spheric with \tilde{f} permissible in the sense of [4].

EXAMPLE 2.6. Let us recall, that every ϱ_{c}-continuous mapping $f: D^{2} \rightarrow 2^{D^{2}}$ with compact connected values has a fixed point (see [8, Theorem 4.4]). The map f defined by $f(x)=\left\{y \in D^{2}:\|y\| \geq\|x\|\right\}$ is not ϱ_{c}-continuous but satisfies the assumptions of Theorem 2.5.

Let Γ_{f} denote the graph $\{(x, y): y \in f(x)\}$ and $p: \Gamma_{f} \rightarrow D^{n}$ - the projection $p(x, y)=x$. It appears that many conditions on the multivalued mapping f in fixed point theorems are equivalent to some fibre properties of p.

Example 2.7. Let $U=\left\{x \in D^{n}: f(x)\right.$ is not a one point set $\}$. Every ϱ_{s}-continuous mapping $f: D^{n} \rightarrow 2^{D^{n}}$ such that $p: \Gamma_{f \mid U} \rightarrow U$ is a locally trivial fibration with the fibre S^{n-2} has a fixed point, see [15], [16]. For $n \neq 6$ we can assume equivalently, that f is ϱ_{c}-continuous and takes values which are one
point sets or $(n-2)$ - dimensional spheres embedded in D^{n}, (see [15] and the references given there). For such mappings $\left\{f(x): x \in D^{n}\right\}$ is $e L C^{n-3}$.

Example 2.8. There is a fixed point free ϱ_{s}-continuous mapping $f: D^{n} \rightarrow$ $2^{D^{n}}$ such that $\left\{f(x): x \in D^{n}\right\}$ is $e L C^{n-3}$. Set

$$
f(x)=\left\{y \in S^{n-1}:\langle y, x\rangle \leq(1-\|x\|)\|x\|\right\} .
$$

We can now formulate our main results for multivalued mappings on the manifolds. Let $L(\cdot ; \cdot)$ denote the Lefschetz number.

Theorem 2.9. Let M be a metrizable compact connected n-dimensional topological manifold without boundary. Suppose that M is K-oriented for a field K. Let
(a) $f: M \rightarrow 2^{M}$ be ϱ_{s}-continuous with connected values,
(b) $s: M \rightarrow M$ be continuous with $L(s ; K) \neq 0$,
(c) $W: M \rightarrow 2^{M}$ be u.s.c.
and such that $W(x)$ is homeomorphic to the disc $D^{n}, s(x) \in W(x)$ and $f(x) \subset$ $\operatorname{int}_{M}(W(x))$ for every $x \in M$. Assume that $\{f(x): x \in M\}$ is eLC ${ }^{n-1}$, (which forces $p: \Gamma_{f} \rightarrow M$ to be a Hurewicz fibration with a fibre $\left.F \simeq f(x)\right)$. If the fibration p is orientable with respect to $H_{*}(\cdot ; K)$ and

$$
H_{n-1}(M \times F ; K)=H_{n-1}(M ; K),
$$

then f has a fixed point.
Definition 2.10. The function s in Theorem 2.9 will be called a positioning function for f.

The positioning function is defined to be a selector of the map W only for simplicity of the formulation of Theorem 2.9. As well we can assume s to be a sufficiently close graph - approximation of W. It seems, that the existence of the pair (s, W) is a proper assumption which makes it legitimate to apply the notion of the Lefschetz number to find fixed points of f, nevertheless $L(s ; K)$ is not uniquely determined by f. Note, that the inclusion $f(x) \subset \operatorname{int}_{M}(W(x)) \cong \mathbb{R}^{n}$ makes $\widetilde{f}(x)$ well defined.

Corollary 2.11. Let $f: M \rightarrow 2^{M}$ be ϱ_{s}-continuous with \tilde{f} satisfying all other assumptions on f in Theorem 2.9. If $\{f(x): x \in M\}$ is eLC C^{n-2} and the positioning function for f is not homotopic to the identity on M, then f has a fixed point.
2.1. Proof of Theorem 2.1. We shall define a fixed point free ϱ_{c}-continuous mapping $f: D^{4} \rightarrow 2^{D^{4}}$ with compact connected values. Recall that

$$
\varrho_{c}(X, Y)=\max \left\{d_{c}(X, Y), d_{c}(Y, X)\right\}
$$

with $d_{c}(X, Y)=\inf \{\max \{\|\alpha(x)-x\|: x \in X\}\}$, where the infimum is taken over all continuous functions $\alpha: X \rightarrow Y ;\left(X, Y \subset D^{4}\right)$. The disc D^{4} will be identified with $D^{2} \times D^{2}$. This is well known, [12], that there exists a ϱ_{s}-continuous homotopy $H: S^{1} \times I \rightarrow 2^{S^{1}}$ joining $H(z, 0)=\left\{z_{0}\right\}$ and $H(z, 1)=\{z\}$ such that $H(z, t)$ is a finite subset of S^{1} which has at most 3 elements for every $(z, t) \in S^{1} \times I$. The multivalued retraction $r: D^{2} \rightarrow 2^{S^{1}}$ is the standard one:

$$
r(x)= \begin{cases}\left\{z_{0}\right\} & \text { for }\|x\| \leq 1 / 2 \\ H(x /\|x\|, 2\|x\|-1) & \text { for }\|x\| \in[1 / 2,1]\end{cases}
$$

We define $J: D^{2} \rightarrow 2^{S^{1}}$ by

$$
J(x)= \begin{cases}-r(3 x) & \text { for }\|x\| \leq 1 / 3 \\ \{-x /\|x\|\} & \text { for }\|x\| \in[1 / 3,1]\end{cases}
$$

Of course, J is ϱ_{s}-continuous and has finite values. Since $\varrho_{s}=\varrho_{c}$ on finite sets, J is ϱ_{c}-continuous. The mapping J is fixed point free, moreover $x \notin[1 / 2,1] J(x)$ for every $x \in D^{2}$. This is easy to check that the join of sets $A \subset S^{1} \times\{0\}$ and $B \subset\{0\} \times S^{1}$ in $D^{2} \times D^{2}$ is well defined by

$$
A * B=\{(1-t) a+t b: t \in[0,1], a \in A, b \in B\}
$$

Let $\phi_{1}, \phi_{2}, f: D^{2} \times D^{2} \rightarrow 2^{D^{2} \times D^{2}}$ be given by

$$
\phi_{1}(x, y)=J(x) \times\{0\}, \quad \phi_{2}(x, y)=\{0\} \times J(y), \quad f(p)=\phi_{1}(p) * \phi_{2}(p) .
$$

We check now that f is ϱ_{c}-continuous. Take an $\varepsilon>0$. Since ϕ_{i} is ϱ_{c}-continuous, there is a positive δ such that

$$
\|p-q\|<\delta \Rightarrow \varrho_{c}\left(\phi_{i}(p), \phi_{i}(q)\right)<\varepsilon
$$

for $i=1,2$. Fix $p, q \in D^{2} \times D^{2}$ with $\|p-q\|<\delta$. By the definition of ϱ_{c}, there is a continuous map $\alpha_{i}: \phi_{i}(p) \rightarrow \phi_{i}(q)$ such that $\left\|\alpha_{i}(v)-v\right\|<\varepsilon$, for every $v \in \phi_{i}(p)$. Let $\alpha_{1} * \alpha_{2}: f(p) \rightarrow f(q)$ be the join of maps α_{1} and α_{2}. Take $x=(1-t) u_{1}+t u_{2} \in f(p)$ with $u_{i} \in \phi_{i}(p)$. Thus

$$
\begin{aligned}
\left\|\alpha_{1} * \alpha_{2}(x)-x\right\| & =\left\|(1-t) \alpha_{1}\left(u_{1}\right)+t \alpha_{2}\left(u_{2}\right)-(1-t) u_{1}-t u_{2}\right\| \\
& \leq(1-t)\left\|\alpha_{1}\left(u_{1}\right)-u_{1}\right\|+t\left\|\alpha_{2}\left(u_{2}\right)-u_{2}\right\|<\varepsilon
\end{aligned}
$$

Hence $d_{c}(f(p), f(q))<\varepsilon$. Likewise, $\varrho_{c}(f(p), f(q))<\varepsilon$.
The mapping f is fixed point free. Otherwise, there is $(x, y) \in D^{2} \times D^{2}$ such that

$$
(x, y) \in f(x, y)=\{((1-t) a, t b): t \in[0,1], a \in J(x), b \in J(y)\}
$$

Thus $x=(1-t) a \in[1 / 2,1] J(x)$, for $t \in[0,1 / 2]$ and $y=t b \in[1 / 2,1] J(y)$ for $t \in[1 / 2,1]$, a contradiction.

The values of f being joins of some finite sets are compact and connected (these are graphs of 4 homotopy types: •, $\bigcirc, \ominus, \oplus$). One can check that $\left\{f(p): p \in D^{2} \times D^{2}\right\}$ is not $e L C^{0}$.
2.2. Proof of Theorem 2.2. Let $f: D^{n} \rightarrow 2^{D^{n}}$ be ϱ_{h}-continuous. By [1], the ϱ_{h}-continuity of f is equivalent to the conjunction of two conditions:
(a) f is ϱ_{s}-continuous,
(b) $\left\{f(x): x \in D^{n}\right\}$ is equally locally contractible.

According to [1, Proof, p. 200], the projection $p: \Gamma_{f} \rightarrow D^{n}$ is strongly regular in the sense of [6, Definition, p. 373]. By [6, Theorem 1], p is the Hurewicz fibration. Since D^{n} is contractible, p has a section. The second coordinate of this section is a continuous selector of f, which proves Theorem 2.2(a). Since $f(x) \subset \mathbb{R}^{n},(\mathrm{~b})$ is equivalent to
(b') $\left\{f(x): x \in D^{n}\right\}$ is $e L C^{n-1}$,
(see [1, Proof, pp. 187-188]), which shows that conditions (a) and (b) in Theorem 2.2 are equivalent.

2.3. Preparation for proving Theorem 2.3.

Lemma 2.12. Let X be a compact ANR and $x \in \mathbb{R}^{n} \backslash X$. Then $x \in B(X)$ if and only if there is a singular $(n-1)$-cycle Z_{n-1} in X with rational coefficients, which does not bound in $\mathbb{R}^{n} \backslash\{x\}$.

Proof. Choose $r_{1}, r_{2}>0$ such that

$$
\breve{D}_{1} \stackrel{\text { def }}{=}\left\{y \in \mathbb{R}^{n}:\|y-x\|<r_{1}\right\} \subset \mathbb{R}^{n} \backslash X
$$

and

$$
D_{2} \stackrel{\text { def }}{=}\left\{y \in \mathbb{R}^{n}:\|y-x\| \leq r_{2}\right\} \supset X .
$$

The part "if" does not require that X is $A N R$. By assumption, the homomorphism $j_{*}: H_{n-1} X \rightarrow H_{n-1}\left(\mathbb{R}^{n} \backslash\{x\}\right)$ (induced by inclusion) is nontrivial. Suppose, contrary to our claim that $x \in D(X)$. Fix in \mathbb{R}^{n} a point $y \notin D_{2}$. Since $D(X)$ is a domain in \mathbb{R}^{n}, there are points $z_{0}=x, z_{1}, \ldots, z_{q}=y$ such that each interval $z_{i} z_{i+1}$ lies in $D(X)$. The diagram

with $T_{i}(z)=z+z_{i+1}-z_{i}$ is homotopy commutative for $i=0, \ldots, q-1$. Indeed, $H(z, t)=(1-t) z+t T_{i}(z)$ is a homotopy $H: j_{i+1} \simeq T_{i} \circ j_{i}$. It follows that $j_{q^{*}}: H_{n-1} X \rightarrow H_{n-1}\left(\mathbb{R}^{n} \backslash\{y\}\right)$ is a nontrivial homomorphism. But $X \subset D_{2} \subset$ $\mathbb{R}^{n} \backslash\{y\}$ and $H_{n-1} D_{2}=0$, a contradiction.

We now prove "only if". Let $A=D_{2} \backslash \breve{D}_{1}, S^{n}=\mathbb{R}^{n} \cup\{\infty\}, x \in B(X)$. Consider the following commutative diagram

with inclusions $\beta: X \rightarrow A$ and $\alpha: \mathbb{R}^{n} \backslash A \rightarrow \mathbb{R}^{n} \backslash X$. We have

$$
\alpha:\left(\mathbb{R}^{n} \backslash D_{2}\right) \cup \breve{D}_{1} \rightarrow D(X) \cup B(X)
$$

$\mathbb{R}^{n} \backslash D_{2} \subset D(X), \breve{D}_{1} \subset B_{\mu} \subset B(X)=\bigcup_{\lambda} B_{\lambda}$, where $\left\{B_{\lambda}\right\}$ is a family of all bounded components of $\mathbb{R}^{n} \backslash X$. Thus $\alpha_{*}: H_{0}\left(\mathbb{R}^{n} \backslash A\right) \rightarrow H_{0}\left(\mathbb{R}^{n} \backslash X\right)$ is the homomorphism

$$
(s, t) \in Q \oplus Q \rightarrow Q \oplus \bigoplus_{\lambda} Q \ni\left(s, i_{\mu}(t)\right),
$$

where $i_{\mu}: Q \rightarrow \bigoplus_{\lambda} Q$ denotes the μ-th canonical inclusion. Choose $y \in \mathbb{R}^{n} \backslash$ D_{2}. Since $\widetilde{H}_{0}\left(\mathbb{R}^{n} \backslash A\right)=\operatorname{coker}\left(H_{0}\{y\} \rightarrow H_{0}\left(\mathbb{R}^{n} \backslash A\right)\right)$ and the same is true for X in place of $A, \widetilde{\alpha}_{*}=i_{\mu} \neq 0$. Consequently $\beta^{*} \neq 0$. Since A and X are compact $A N R \mathrm{~s}$ and the (co)homology coefficients are in Q, it follows that $\beta_{*}: H_{n-1} X \rightarrow H_{n-1} A$ is nontrivial. Clearly, the same holds for the composition $j_{*}: H_{n-1} X \rightarrow H_{n-1} A \rightarrow H_{n-1}\left(\mathbb{R}^{n} \backslash\{x\}\right)$, which proves the lemma.

Lemma 2.13. Let X, X_{1}, X_{2}, \ldots be compact subsets of \mathbb{R}^{n} such that $\left\{X_{k}\right.$: $k=1,2, \ldots\}$ is $e L C^{n-2}$ and $\lim _{k \rightarrow \infty} \varrho_{s}\left(X_{k}, X\right)=0$. Then

$$
\forall x \in B(X) \exists k_{0} \forall k>k_{0} \quad x \in B\left(X_{k}\right)
$$

Proof. Let η denote a positive number. Fix $x \in B(X)$ and a compact polyhedron P such that

$$
X \subset P \subset O_{\eta}(X) \stackrel{\text { def }}{=}\left\{p \in \mathbb{R}^{n}: \operatorname{dist}(p, X)<\eta\right\}
$$

Clearly, $\varrho_{s}(X, P)<\eta$. Since $D(P) \subset D(X), x \in \widetilde{P}$. Assuming that $\eta<$ $\operatorname{dist}(x, X)$ gives $x \in B(P)$. By Lemma 2.12, there is a singular $(n-1)$-cycle
$Z_{n-1}=\sum_{\sigma} c_{\sigma} \sigma$ in P with $c_{\sigma} \in Q$, which does not bound in $\mathbb{R}^{n} \backslash\{x\}$. There is no loss of generality in assuming that

$$
\forall \sigma\left(c_{\sigma} \neq 0 \Rightarrow \operatorname{diam}\left(\sigma\left(\Delta_{n-1}\right)\right)<\eta\right)
$$

(we apply to Z_{n-1} the multiple barycentric subdivision, if necessary).
Choose $k_{0} \in N$ with $\varrho_{s}\left(X_{k}, X\right)<\eta$ for every $k>k_{0}$ and take such a k. Hence $\varrho_{s}\left(X_{k}, P\right)<2 \eta$. The main point of this proof is the construction of the $(n-1)$-cycle $\phi\left(Z_{n-1}\right)$ in X_{k}, which is homologous to Z_{n-1} in $\mathbb{R}^{n} \backslash\{x\}$. Finding such $\phi\left(Z_{n-1}\right)$ will complete the proof, by Lemma 2.12.

Let $\delta: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a function, which appears in the definition of the $e L C^{n-2}$ property for the family $\left\{X_{k}: k \in N\right\}$. Set $\mu(\varepsilon)=\delta(\varepsilon / 4)$. Let $\mu^{(r)}$ denote the r-th iteration of the function μ. Fix the positive numbers

$$
\varepsilon<\operatorname{dist}(x, X) \quad \text { and } \quad \eta<\min \left\{\frac{1}{5} \mu^{(n-1)}(\varepsilon), \frac{1}{8} \varepsilon\right\} .
$$

Let Ξ be the set of all simplices of the cycle Z_{n-1} and all their faces. Thus $\Xi=\bigcup_{i=0}^{n-1} \Xi_{i}, \Xi_{n-1}=\left\{\sigma: c_{\sigma} \neq 0\right\}, \Xi_{i-1}=\left\{\tau \circ F_{p}^{i}: \tau \in \Xi_{i}, 0 \leq p \leq i\right\}$ for $1 \leq i \leq n-1 ;\left(F_{p}^{i}: \Delta_{i-1} \rightarrow \Delta_{i}\right.$ is the p-th face mapping $)$.

Our strategy is to make a copy $\phi(\tau)$ in X_{k} of every simplex $\tau \in \Xi$. Take $\tau \in \Xi_{0}$. By an obvious convention, $\tau \in P$. We choose $\phi(\tau)$ to be any point of X_{k} such that $\|\phi(\tau)-\tau\|<2 \eta$.

Take $\tau \in \Xi_{1}$. We have

$$
\begin{aligned}
\left\|\phi\left(\tau \circ F_{1}^{1}\right)-\phi\left(\tau \circ F_{0}^{1}\right)\right\| \leq & \left\|\phi\left(\tau \circ F_{1}^{1}\right)-\tau \circ F_{1}^{1}\right\| \\
& +\left\|\tau \circ F_{1}^{1}-\tau \circ F_{0}^{1}\right\|+\left\|\tau \circ F_{0}^{1}-\phi\left(\tau \circ F_{0}^{1}\right)\right\| \\
< & 2 \eta+\operatorname{diam}\left(\tau\left(\Delta_{1}\right)\right)+2 \eta<5 \eta<\mu^{(n-1)}(\varepsilon) \\
= & \delta\left(\mu^{(n-2)}(\varepsilon) / 4\right) .
\end{aligned}
$$

We choose $\phi(\tau): \Delta_{1} \rightarrow X_{k}$ to be any path joining $\phi\left(\tau \circ F_{1}^{1}\right)$ and $\phi\left(\tau \circ F_{0}^{1}\right)$ in $K\left(\phi\left(\tau \circ F_{0}^{1}\right), \mu^{(n-2)}(\varepsilon) / 4\right) \cap X_{k}$.

Suppose that ϕ is defined on Ξ_{i-1} for an $i \leq n-1$ in this way, that $\phi(\tau)\left(\Delta_{i-1}\right)$ lies in an open ball of the radius $\mu^{(n-i)}(\varepsilon) / 4$ in X_{k}, for every $\tau \in \Xi_{i-1}$.

Take $\tau \in \Xi_{i}$. We have diam $\left(\phi\left(\tau \circ F_{p}^{i}\right)\left(\Delta_{i-1}\right)\right)<\mu^{(n-i)}(\varepsilon) / 2$ for $p=0, \ldots, i$. Define $\omega: \partial \Delta_{i} \rightarrow X_{k}$ by $\omega\left(F_{p}^{i}(x)\right)=\phi\left(\tau \circ F_{p}^{i}\right)(x)$. Clearly,

$$
\operatorname{diam}\left(\omega\left(\partial \Delta_{i}\right)\right)<\mu^{(n-i)}(\varepsilon)=\delta\left(\mu^{(n-i-1)}(\varepsilon) / 4\right.
$$

Take any point $q \in \omega\left(\partial \Delta_{i}\right)$. We choose $\phi(\tau)$ to be a continuous extension $\widetilde{\omega}: \Delta_{i} \rightarrow X_{k}$ of ω such that $\widetilde{\omega}\left(\Delta_{i}\right) \subset K\left(q, \mu^{(n-i-1)}(\varepsilon) / 4\right)$. In particular,

$$
\phi(\tau) \circ F_{p}^{i}=\phi\left(\tau \circ F_{p}^{i}\right) \quad \text { for } \tau \in \Xi_{i} .
$$

This condition on Ξ_{i-1} makes ω well defined. Since $F_{p}^{i} \circ F_{q}^{i-1}=F_{q}^{i} \circ F_{p-1}^{i-1}$ for $q<p$ (see [11]),

$$
\begin{aligned}
\omega\left(F_{p}^{i} \circ F_{q}^{i-1}(y)\right) & =\phi\left(\tau \circ F_{p}^{i}\right)\left(F_{q}^{i-1}(y)\right)=\phi\left(\tau \circ F_{p}^{i} \circ F_{q}^{i-1}\right)(y) \\
& =\phi\left(\tau \circ F_{q}^{i} \circ F_{p-1}^{i-1}\right)(y)=\phi\left(\tau \circ F_{q}^{i}\right)\left(F_{p-1}^{i-1}(y)\right) \\
& =\omega\left(F_{q}^{i} \circ F_{p-1}^{i-1}(y)\right) .
\end{aligned}
$$

The induction completes the construction of ϕ on Ξ. In particular,

$$
\operatorname{diam}\left(\phi(\sigma)\left(\Delta_{n-1}\right)\right)<\mu^{(0)}(\varepsilon) / 2=\varepsilon / 2
$$

Now, we define the $(n-1)$-chain $\phi\left(Z_{n-1}\right)$ in X_{k} to be $\sum_{\sigma} c_{\sigma} \phi(\sigma)$. Since

$$
\partial Z_{n-1}=\sum_{\sigma} \sum_{p=0}^{n-1}(-1)^{p} c_{\sigma} \cdot \sigma \circ F_{p}^{n-1}=0
$$

we see that

$$
\partial \phi\left(Z_{n-1}\right)=\sum_{\sigma} \sum_{p=0}^{n-1}(-1)^{p} c_{\sigma} \cdot \phi(\sigma) \circ F_{p}^{n-1}=\sum_{\sigma} \sum_{p=0}^{n-1}(-1)^{p} c_{\sigma} \cdot \phi\left(\sigma \circ F_{p}^{n-1}\right)=0
$$

What is left is to show that the cycle $\phi\left(Z_{n-1}\right)$ is homologous to Z_{n-1} in $\mathbb{R}^{n} \backslash\{x\}$.

We follow the notation of [11]: E_{0}, \ldots, E_{q} - the vertices of $\Delta_{q} ; \delta_{q}=\mathrm{id}_{\Delta_{q}}$; $S_{q}(Y)$ - the group of the singular q - chains in Y (with rational coefficients); $P_{q}: S_{q}(Y) \rightarrow S_{q+1}(Y \times I)$ - the homomorphism defined by

$$
\begin{aligned}
P_{q}(\sigma) & =S_{q+1}(\sigma \times \mathrm{id}) \circ P_{q}\left(\delta_{q}\right), \quad \text { for } \sigma: \Delta_{q} \rightarrow Y \\
P_{q}\left(\delta_{q}\right) & =\sum_{i=0}^{q}(-1)^{i} \cdot\left(\left(E_{0}, 0\right) \ldots\left(E_{i}, 0\right)\left(E_{i}, 1\right) \ldots\left(E_{q}, 1\right)\right)
\end{aligned}
$$

Let $\lambda_{t}: Y \rightarrow Y \times I$ be given by $\lambda_{t}(y)=(y, t)$. By [11],

$$
\partial \circ P_{q}+P_{q-1} \circ \partial=S_{q}\left(\lambda_{1}\right)-S_{q}\left(\lambda_{0}\right)
$$

Now, we define $G_{q}(\sigma, \tau): \Delta_{q} \times I \rightarrow \mathbb{R}^{n} \backslash\{x\}$ by

$$
G_{q}(\sigma, \tau)(E, t)=(1-t) \sigma(E)+t \tau(E),
$$

for all q-simplices σ, τ in $\mathbb{R}^{n} \backslash\{x\}$ such that the above expression takes values apart from $\{x\}$. Note that

$$
\begin{aligned}
\operatorname{dist}((1-t) \sigma(E) & +t \phi(\sigma)(E), X) \\
\leq & t\left\|\phi(\sigma)(E)-\phi(\sigma)\left(E_{0}\right)\right\|+t\left\|\phi(\sigma)\left(E_{0}\right)-\sigma\left(E_{0}\right)\right\| \\
& +t\left\|\sigma\left(E_{0}\right)-\sigma(E)\right\|+\operatorname{dist}(\sigma(E), X) \\
\leq & \varepsilon / 2+2 \eta+\eta+\varrho_{s}(P, X)<\varepsilon / 2+4 \eta<\varepsilon<\operatorname{dist}(x, X)
\end{aligned}
$$

for every $\sigma \in \Xi_{q}$ and $E \in \Delta_{q}$.

It follows that $G_{q}(\sigma, \phi(\sigma))$ is well defined for every $\sigma \in \Xi_{q}$. Clearly, $\sigma=$ $G_{q}(\sigma, \phi(\sigma)) \circ \lambda_{0}$ and $\phi(\sigma)=G_{q}(\sigma, \phi(\sigma)) \circ \lambda_{1}$. Moreover,

$$
G_{q}(\sigma, \tau) \circ(F \times i d)=G_{q-1}(\sigma \circ F, \tau \circ F)
$$

for any $F: \Delta_{q-1} \rightarrow \Delta_{q}$. Thus

$$
\begin{aligned}
\phi(\sigma)-\sigma & =S_{q}\left(G_{q}(\sigma, \phi(\sigma))\right) \circ\left(S_{q}\left(\lambda_{1}\right)-S_{q}\left(\lambda_{0}\right)\right)\left(\delta_{q}\right) \\
& =S_{q}\left(G_{q}(\sigma, \phi(\sigma))\right) \circ\left(\partial P_{q}+P_{q-1} \partial\right)\left(\delta_{q}\right) \\
& =\partial S_{q+1}\left(G_{q}(\sigma, \phi(\sigma))\right) P_{q}\left(\delta_{q}\right)+S_{q}\left(G_{q}(\sigma, \phi(\sigma))\right) P_{q-1} \partial\left(\delta_{q}\right)
\end{aligned}
$$

The second summand is equal to

$$
\begin{aligned}
\sum_{j=0}^{q}(-1)^{j} S_{q} & \left(G_{q}(\sigma, \phi(\sigma))\right) \circ P_{q-1}\left(F_{j}^{q}\right) \\
& =\sum_{j=0}^{q}(-1)^{j} S_{q}\left(G_{q}(\sigma, \phi(\sigma))\right) \circ S_{q}\left(F_{j}^{q} \times \mathrm{id}\right) \circ P_{q-1}\left(\delta_{q-1}\right) \\
& =\sum_{j=0}^{q}(-1)^{j} S_{q}\left(G_{q-1}\left(\sigma \circ F_{j}^{q}, \phi(\sigma) \circ F_{j}^{q}\right)\right) \circ P_{q-1}\left(\delta_{q-1}\right)
\end{aligned}
$$

Take $q=n-1$. The cycle $\phi\left(Z_{n-1}\right)-Z_{n-1}$ is homologous in $\mathbb{R}^{n} \backslash\{x\}$ to

$$
\sum_{\sigma} c_{\sigma} \cdot \sum_{j=0}^{q}(-1)^{j} S_{q}\left(G_{q-1}\left(\sigma \circ F_{j}^{q}, \phi\left(\sigma \circ F_{j}^{q}\right)\right)\right) \circ P_{q-1}\left(\delta_{q-1}\right),
$$

which equals to zero, because

$$
\sum_{\sigma} c_{\sigma} \cdot \sum_{j=0}^{q}(-1)^{j} \sigma \circ F_{j}^{q}=\partial Z_{n-1}=0
$$

2.4. Proof of Theorem 2.3. This proof is based on the notion of the spheric mapping. There are various definitions of spheric mappings, [8], [9], [2], [3], which lead to the similar proofs of the corresponding fixed point theorems. We will prove that $f: D^{n} \rightarrow 2^{D^{n}}$ satisfying assumptions of our theorem is spheric in the following sense:
(1) f is u.s.c. and compact-valued,
(2) the graph $\Gamma_{B f}$ is open in $D^{n} \times \mathbb{R}^{n}$,
(3) \tilde{f} has a fixed point.

The only point which needs our attention is (2). Indeed, if f is ϱ_{s}-continuous then f is u.s.c. and l.s.c.; if f is u.s.c. then \tilde{f} is u.s.c. ([8]), if f is l.s.c. and (2) then \tilde{f} is l.s.c.; if \tilde{f} is u.s.c. and l.s.c. then \widetilde{f} is ϱ_{s}-continuous. Theorem 2.2(b) now yields (3).

Suppose, (2) is false. Then
$\exists(x, y) \in \Gamma_{B f} \exists\left\{\left(x_{k}, y_{k}\right)\right\} \lim _{k \rightarrow \infty}\left(x_{k}, y_{k}\right)=(x, y) \quad$ and $\quad \forall k\left(x_{k}, y_{k}\right) \notin \Gamma_{B f}$.
Thus $y \in B f(x), y_{k} \in f\left(x_{k}\right) \cup D f\left(x_{k}\right)$. Since $\lim _{k \rightarrow \infty} \varrho_{s}\left(f\left(x_{k}\right), f(x)\right)=0$, Lemma 2.13 shows that $y \in B f\left(x_{k}\right)$ for $k>k_{0}$. By connectedness of the interval $y y_{k}$, there is $c_{k} \in y y_{k}$ such that $c_{k} \in f\left(x_{k}\right)$ for $k>k_{0}$. This gives $y \in f(x)$, a contradiction.

2.5. Two proofs of Theorem 2.5.

Proof I. Let us identify D^{2} with I^{2} and consider a ϱ_{s} - continuous mapping $f: I^{2} \rightarrow I^{2}$ with $e L C^{0}$ values. Fix $\eta>0$. Choose $\varepsilon>0$ small enough that for all $x \in I^{2}$ and $y, y^{\prime} \in f(x)$ with $\left\|y-y^{\prime}\right\|<4 \varepsilon$ there is a path $\sigma: I \rightarrow I^{2}$ from y to y^{\prime} in $f(x)$ satisfying $\operatorname{diam}(\sigma(I))<\eta$. Take $\delta>0$ such that $\varrho_{s}\left(f(x), f\left(x^{\prime}\right)\right)<\varepsilon$ for all x, x^{\prime} with $\left\|x-x^{\prime}\right\|<\delta$. We assume that $\delta<\varepsilon<\eta$.

Let us divide I^{2} into squares, each with the edge of the same length less than δ. Our purpose is to find a single-valued continuous map $s: I^{2} \rightarrow I^{2}$ which approximates f.

Figure 2

We follow the notation of the Figure 2. Fix $A \in f(a)$. Then choose $B \in f(b)$, $C \in f(c)$ and $D, P \in f(d)$ such that $\|B-A\|,\|C-A\|,\|D-C\|,\|P-B\|$ are all less than ε. It follows that $\|D-P\|<4 \varepsilon$.

Set $p=(b+d) / 2$ and $s(a)=A, s(b)=B, s(c)=C, s(d)=D, s(p)=P$. Find a path $\sigma: I \rightarrow I^{2}$ from P to D in $f(d)$ with $\operatorname{diam}(\sigma(I))<\eta$. Choose $r_{0}=0, r_{1}, \ldots, r_{k}=1$ in I such that $\operatorname{diam}\left(\sigma\left(\left[r_{i}, r_{i+1}\right]\right)\right)<\varepsilon$ for $i<k$. Set $p_{i}=p+i / k \cdot(d-p)$ and $s\left((1-t) p_{i}+t p_{i+1}\right)=\sigma\left((1-t) r_{i}+t r_{i+1}\right)$ for $t \in I$. Define $P_{i}=s\left(p_{i}\right)$ and note, that $\left\|P_{i+1}-P_{i}\right\|<\varepsilon$. Extend s to be linear on the intarvals $a b, a c, c d, b p$; e.g. $s((1-t) b+t p)=(1-t) B+t P$.

Let U be the square $a b d c$. Clearly, $\operatorname{diam}(s(\partial U))<3 \varepsilon+\eta$. Since the convex sets are $A R$'s, there is an extension $s: U \rightarrow \operatorname{conv}(s(\partial U))$. Obviously, $\operatorname{diam}(s(U))<3 \varepsilon+\eta$. Let $q=\left(b^{\prime}+e\right) / 2$ and V be the rectangle $b b^{\prime} q p$ in I^{2}.

Choose $Q \in f(e)$ such that $\|Q-P\|<\varepsilon$ and repeat the construction of s on V after that on U. We stress that $s(q)=Q \in f(e)$, moreover s maps the interval $p^{\prime} q$ into $f(e)$, where $p^{\prime}=\left(b^{\prime}+q\right) / 2$.

Since $P_{i} \in f(d)$, there is $Q_{i} \in f(e)$ with $\left\|Q_{i}-P_{i}\right\|<\varepsilon$ for $i=0, \ldots, k$ and $Q_{0}=Q$. Set $E=Q_{k}, q_{i}=q+i / k \cdot(e-q), s\left(q_{i}\right)=Q_{i}$. Thus $\left\|Q_{i+1}-Q_{i}\right\|<3 \varepsilon$. Find a path $\alpha_{i}: I \rightarrow I^{2}$ from Q_{i} to Q_{i+1} in $f(e)$ with $\operatorname{diam}\left(\alpha_{i}(I)\right)<\eta$.

Let V_{i} be the rectangle $p_{i} q_{i} q_{i+1} p_{i+1}$. We extend s to be linear on intervals $p_{i} q_{i}$ and by $s\left((1-t) q_{i}+t q_{i+1}\right)=\alpha_{i}(t)$ on $q_{i} q_{i+1}$. Thus $\operatorname{diam}\left(s\left(\partial V_{i}\right)\right)<2 \varepsilon+\eta$. Clearly, there is an extension $s: V_{i} \rightarrow \operatorname{conv}\left(s\left(\partial V_{i}\right)\right)$ with $\operatorname{diam}\left(s\left(V_{i}\right)\right)<2 \varepsilon+\eta$ for $i=0, \ldots, k-1$.

The map s is now defined on U and on the square $b b^{\prime} e d=V \cup \bigcup_{i=0}^{k-1} V_{i}$. In the same manner we extend s, square by square, on the first row of our subdivision of I^{2}. It is worth pointing out that passing to the third square, we forget points q_{i} and define $p_{j}^{\prime}=p^{\prime}+j / k^{\prime} \cdot\left(e-p^{\prime}\right)$ with k^{\prime} such that $\operatorname{diam}\left(s\left(p_{j}^{\prime} p_{j+1}^{\prime}\right)\right)<\varepsilon$ for $j=0, \ldots, k^{\prime}-1$. The definition of s on the other rows is straightforward.

It remains to prove that $s: I^{2} \rightarrow I^{2}$ approximates f. For every $x \in I^{2}$ there are $R=r^{0} r^{1} r^{2} r^{3}$ and $T=t^{0} t^{1} t^{2} t^{3}$ such that:

- R is a rectangle, T is a square and $x \in R \subset T$,
- $\operatorname{diam}(T)<\sqrt{2} \cdot \delta$ and $\operatorname{diam}(s(R))<3 \varepsilon+\eta$,
- $s\left(r^{2}\right) \in f\left(t^{2}\right)$.

Write $O_{\varepsilon} J=\left\{v \in I^{2}: \operatorname{dist}(v, J)<\varepsilon\right\}$ for $J \subset I^{2}$. Thus $s(x) \in s(R) \subset$ $O_{3 \varepsilon+\eta}\left\{s\left(r^{2}\right)\right\} \subset O_{4 \eta} f\left(t^{2}\right) \subset O_{4 \eta} f\left(O_{2 \delta}\{x\}\right) \subset O_{6 \eta} f(x)$.

Proof II. Another way of proving Theorem 2.5 is analysis similar to that in the proof of Theorem 2.3. The only difference is the argument which shows that \tilde{f} has a fixed point. We will see that the values of \widetilde{f} have a fixed finite number of acyclic components. Therefore \tilde{f} is in a class of mappings which is equipped with the fixed point index, [4].

Let $\mathrm{nc}(X)$ denote the number of the components of the space X. Since $f(x)$ is compact and $L C^{0}, \operatorname{nc}(f(x))<\infty$. By the Alexander duality, $\check{H}^{i}(\widetilde{f}(x))=$ $\widetilde{H}_{1-i}(D f(x))=0$ for $i \geq 1$.

It suffices to show that $\operatorname{nc}(\tilde{f}(x))$ is finite and does not depend on x. Since every component of $\widetilde{f}(x)$ contains a point of the set $f(x)$, we have $\mathrm{nc}(\tilde{f}(x)) \leq$ $\mathrm{nc}(f(x))<\infty$. Because $\left\{f(x): x \in D^{2}\right\}$ is $e L C^{0}$, there is an $\varepsilon>0$ such that the distance of any two components of $f(x)$ is not less than ε, for every $x \in D^{2}$. The same is true for the components of $\widetilde{f}(x)$. Indeed, if C, C^{\prime} are two components of $\widetilde{f}(x)$, then

$$
\partial C \subset f(x), \quad \partial C^{\prime} \subset f(x), \quad \operatorname{dist}\left(C, C^{\prime}\right)=\operatorname{dist}\left(\partial C, \partial C^{\prime}\right) \geq \varepsilon
$$

Since \tilde{f} is ϱ_{s}-continuous, there is $\delta>0$ such that $\operatorname{nc}\left(\tilde{f}\left(x^{\prime}\right)\right) \geq \operatorname{nc}(\tilde{f}(x))$ whenever $\left\|x-x^{\prime}\right\|<\delta$. Thus $\operatorname{nc}\left(\tilde{f}\left(x^{\prime}\right)\right)=\operatorname{nc}(\tilde{f}(x))$ for every $x^{\prime} \in O_{\delta}\{x\}$. The connectedness of D^{2} finishes the proof.
2.6. Proof of Theorem 2.9. Let us consider the composition

$$
M \xrightarrow{D} M^{2} \xrightarrow{1 \times s} M^{2} \xrightarrow{j}\left(M^{2}, M^{2} \backslash \Delta\right)
$$

with $M^{2}=M \times M, D(x)=(x, x), j-$ an inclusion and $\Delta-$ the diagonal in M^{2}.
Let $U \in H^{n}\left(M^{2}, M^{2} \backslash \Delta\right)$ denote a K-orientation class of the manifold M and $\lambda(s)=D^{*} \circ(1 \times s)^{*} \circ j^{*}(U)-$ the Lefschetz class of the positioning function s for f. The following diagram

is homotopy commutative. This is because mappings $i(x, y)=(x, y)$ (with $y \in$ $f(x))$ and $(1 \times s) \circ D \circ p(x, y)=(x, s(x))$ are two continuous selectors of so called J-mapping $\Psi(x, y)=\{x\} \times W(x)$, see [10], between compact ANRs. This is due to the fact that if $p: E \rightarrow B$ is a Hurewicz fibration with fibre F and any two of E, B, F are ANRs, then the third is also, [5], [6].

To obtain a contradiction, suppose that f is fixed point free. From this the following diagram

commutes, (h, k-inclusions).
Since $L(s ; K) \neq 0$, we see that $\lambda(s) \neq 0$. By our diagrams,

$$
p^{*}(\lambda(s))=p^{*} D^{*}(1 \times s)^{*} j^{*}(U)=i^{*} j^{*}(U)=h^{*} k^{*} j^{*}(U)=0
$$

(The last equality follows from the long exact sequence of the pair $\left(M^{2}, M^{2} \backslash \Delta\right)$.) Hence $p^{*}: H^{n}(M) \rightarrow H^{n}\left(\Gamma_{f}\right)$ is not a monomorphism. Equivalently,

$$
p_{*}: H_{n}\left(\Gamma_{f}\right) \rightarrow H_{n}(M) \quad \text { is not an epimorphism. }
$$

On the other hand, p_{*} can be described in terms of the Leray-Serre spectral sequence as the composition

$$
H_{n}\left(\Gamma_{f}\right) \xrightarrow{\text { onto }} E_{n, 0}^{\infty} \xrightarrow{\mu} E_{n, 0}^{2} \cong H_{n}(M),
$$

(see [18]). The monomorphism μ is the composition of inclusions

$$
E_{n, 0}^{r+1}=\operatorname{ker}\left(E_{n, 0}^{r} \rightarrow E_{n-r, r-1}^{r}\right) \subset E_{n, 0}^{r},
$$

for $r=n, \ldots, 2$. Clearly, $E_{n, 0}^{n+1}=E_{n, 0}^{\infty}$. By assumption,

$$
0=H_{n-r}(M ; K) \otimes_{K} H_{r-1}(F ; K)=E_{n-r, r-1}^{2},
$$

which suffices to conclude that $E_{n-r, r-1}^{r}=0$ and μ is an isomorphism. Thus p_{*} is an epimorphism, a contradiction.
2.7. Proof of the Corollary 2.11. Suppose, contrary to our claim, that f is fixed point free. By Theorem 2.9, there is an $x_{0} \in \widetilde{f}\left(x_{0}\right)$. Thus $x_{0} \in B f\left(x_{0}\right)$. Since $\{f(x): x \in M\}$ is $e L C^{n-2}$, the graph $\Gamma_{B f}$ is an open subset of $M \times M$. If $x \in \widetilde{f}(x)$ for every $x \in M$, then both mappings $i d_{M}$ and s are continuous selectors of the J-mapping $W,[10]$. Hence $i d_{M} \simeq s$, which contradicts our assumption. Otherwise, both $\{x \in M: x \notin \widetilde{f}(x)\}$ and $\{x \in M: x \in B f(x)\}$ are nonempty open subsets of M, contrary to the connectedness of M.

References

[1] K. Borsuk, On some metrization of the hyperspace of compact sets, Fund. Math. 41 (1954), 168-202.
[2] A. Dawidowicz, Spherical maps, Fund. Math. 127 (1987), 187-196.
[3] _, Méthodes homologiques dans la théorie des applications et des champs de vecteurs sphériques dans les espaces de Banach, Dissertationes Math. 326 (1993).
[4] Z. Dzedzej, Fixed point index theory for a class of nonacyclic multivalued maps, Dissertationes Math. 253 (1985).
[5] E. Fadell, On fiber spaces, Trans. Amer. Math. Soc. 90 (1959), 1-14.
[6] S. Ferry, Strongly regular mappings with compact ANR fibres are Hurewicz fiberings, Pacific J. Math. 75 (1978), 373-382.
[7] L. Górniewicz, Homological methods in fixed point theory of multi-valued maps, Dissertationes Math. 129 (1976).
[8] , Present state of the Brouwer fixed point theorem for multivalued mappings, Ann. Sci. Math. Québec 22 (1998), 169-179.
[9] , Fixed point theorems for multivalued maps of subsets of Euclidean spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 111-116.
[10] L. Górniewicz, A. Granas and W. Kryszewski, Sur la méthode de l'homotopie dans le théorie des points fixes pour les applications multivoques. (Partie 1, 2), C. R. Acad. Sci. Paris Sér. I 307 (1988), 489-492; 308 (1989), 449-452.
[11] M. J. Greenberg, Lectures on Algebraic Topology, W. A. Benjamin Inc., 1967.
[12] J. Jezierski, An example of finitely-valued fixed point free map, Zeszyty Nauk. Wydz. Mat. Fiz. Chem. Uniw. Gdańskiego 6 (1987).
[13] E. A. Michael, Continuous selections II, Ann. of Math. 64 (1956), 562-580.
[14] D. Miklaszewski, A fixed point theorem for multivalued mappings with nonacyclic values, Topol. Methods Nonlinear Anal. 17 (2001), 125-131.
[15] \qquad , A fixed point conjecture for Borsuk continuous set-valued mappings, Fund. Math. 175 (2002), 69-78.
[16] , On the mod 2 Euler characteristic class, preprint.
[17] B. O'Neill, A fixed point theorem for multivalued functions, Duke Math. J. 14 (1947), 689-693.
[18] R. M. Switzer, Algebraic Topology - Homotopy and Homology, Springer, 1975.

Dariusz Miklaszewski
Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
Chopina 12/18
87-100 Toruń, POLAND

E-mail address: miklasze@mat.uni.torun.pl

[^0]: 2000 Mathematics Subject Classification. 54H25, 55M20.
 Key words and phrases. set-valued mapping, fixed point, fibration, local connectedness in dimension k.

