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OPTIMAL FEEDBACK CONTROL
IN THE PROBLEM OF THE MOTION

OF A VISCOELASTIC FLUID

Valeri Obukhovskĭı — Pietro Zecca — Viktor Zvyagin

Abstract. We study an optimization problem for the feedback control

system emerging as a regularized model for the motion of a viscoelastic fluid
subject to the Jeffris–Oldroyd rheological relation. The approach includes

systems governed by the classical Navier–Stokes equation as a particular

case. Using the topological degree theory for condensing multimaps we
prove the solvability of the approximating problem and demonstrate the

convergence of approximate solutions to a solution of a regularized one. At
last we show the existence of a solution minimizing a given convex, lower

semicontinuous functional.

1. Introduction

In recent decades a cospicuous number of works were devoted to various as-
pects of mathematical control theory for systems governed by partial differential
equations. In this connection, an essential assumption in many approaches (see
e.g. the well known monograph [9] of J. L. Lions), is the uniqueness of the solu-
tion corresponding to a given boundary value problem. However, this suggestion
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looks fairly restrictive for a large variety of nonlinear equations of mathematical
physics. In particular it is the case for equations arising in problems of hydro-
dynamics (a natural example is the well known Navier–Stokes equation).

For Navier–Stokes and Euler systems and some of their generalizations, so-
lutions for control problems, when uniqueness theorems are unknown, were ob-
tained by A. V. Fursikov (see [4]–[6]). Various problems of optimal control for
systems governed by Navier–Stokes equations were also considered in a number
of works (see, e.g. [1], [7]).

In the present paper we study an optimal control problem for a system emerg-
ing as a regularized model for the motion of a viscoelastic fluid subject to the
Jeffris–Oldroyd rheological relation. Let us note that in the last few years many
authors studied the solvability of the initial-boundary problem for equations with
the Jeffris–Oldroyd rheological relation. In this paper we deal with the feedback
control system governed by equations whose solvability was proved in the works
[11] and [12].

The paper is organized as follows. In the first section, we give the statement
of the optimal control problem and define the main notions. Then, we present
the regularized problem describing the motion of a viscoelastic fluid. The ap-
proach includes the classical Navier–Stokes equation as a particular case. In the
second section, we prove the solvability of the approximating inclusion, using
some a priori estimates and topological degree theory for condensing multimaps
as a main tool.

In the next section we prove the convergence (in some generalized sense) of
solutions of approximating problems to a solution of the regularized one. In the
last section we prove the existence of a solution minimizing a given convex, lower
semicontinuous functional.

2. The setting of the problem

We consider an optimal control problem for the motion of a viscoelastic fluid
filling a domain Ω ⊂ Rn, 2 ≤ n ≤ 4. It will be assumed that Ω is a bounded
domain with locally Lipschitz boundary Γ.

Let the function v: [0, T ]×Ω → Rn describes the velocity vector of a particle
at the moment t ∈ [0, T ] in the point x ∈ Ω. The density ρ of the fluid is assumed
to be constant; the pressure of the fluid at the moment t in the point x ∈ Ω is
characterized by the value p(t, x). By the symbol E(v) we will denote the tensor
of velocities of deformations

Eij(v) =
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
, 1 ≤ i, j ≤ n,

E(v) = (Eij(v)).
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Trajectories of the motion of fluid particles are determined by the field of
velocities v as solutions of the integral equation

(2.1) z(τ ; t, x) = x +
∫ τ

t

v(s, z(s; t, x)) ds, τ, t ∈ [0, T ], x ∈ Ω.

We will use L2(Ω)n, Lp(Ω)n, W 1
2 (Ω)n, C(Ω)n and C1(Ω)n as standard nota-

tions for the corresponding spaces of functions ϕ: Ω → Rn. The scalar product
in L2(Ω)n will be denoted by (v, w)L2(Ω)n .

Let us denote

V = {v ∈ W 1
2 (Ω)n : v|Γ = 0, div v = 0}.

We will consider V as a Hilbert space with the scalar product

(v, w)V =
∫

Ω

n∑
i,j=1

Eij(v) · Eij(w) dx

generating the corresponding norm ‖v‖. In the space V this norm is equivalent
to the norm induced from the space W 1

2 (Ω)n.
Let H be the closure of V with respect to the norm of the space L2(Ω)n and

V ∗ the dual space of V .
By the symbol C1D(Ω) we denote the set of all continuously differentiable

bijective maps ζ: Ω → Ω such that ζ|Γ is the identity, and

det
(

∂ζ

∂x

)
= 1, x ∈ Ω.

Let us suppose that this set is endowed with the norm from the space C(Ω)n.
We consider also the set

CG = C([0, T ]× [0, T ];C1D(Ω)).

Notice that
CG ⊂ C([0, T ]× [0, T ];C1(Ω)n).

Then, CG can be considered as a metric space with the metric induced by the
norm of the space C([0, T ]× [0, T ];C(Ω)n).

Let us mention that the solvability of the equation (2.1) for a given v is
known only for the case v ∈ L1([0, T ];C(Ω)). moreover, the uniqueness can
be guaranteed for v ∈ L1([0, T ];C1(Ω)) with v|[0,T ]×Γ = 0. In our case v ∈
L2([0, T ];V ), so one of the possible ways to avoid this difficulty is the smoothing
of the field of velocities. To do so, let us introduce the regularization map

γδ:H → C1(Ω)n ∩ V, δ > 0

with the properties that γδ(v) → v in H while δ → 0 and the operator

Sδ:L2([0, T ];H) → L2([0, T ];C1(Ω)n ∩ V )
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generated by γδ is continuous. The construction of Sδ is given in [12].
Let us substitute the equation (2.1) by the equation

(2.2) z(τ ; t, x) = x +
∫ τ

t

Sδv(s, z(s; t, x)) ds, τ, t ∈ [0, T ], x ∈ Ω.

For each v ∈ L2([0, T ];V ) this equation has a unique solution Zδ(v) in the
class CG, i.e.

z(τ ; t, x) = Zδ(v)(τ ; t, x).

In the sequel we will use the following notations for functional spaces:

E = L2([0, T ];V ), E∗ = L2([0, T ];V ∗), E∗
1 = L1([0, T ];V ∗).

We introduce a feedback control in the system, realized by the choice of the
external force from the set U(v) ⊂ E∗. As a domain of the feedback multimap
U we consider the space W1 ⊂ C([0, T ];V ∗)

W1 = {v : v ∈ E, v′ ∈ E∗
1}

endowed with the norm ‖v‖W1 = ‖v‖E + ‖v′‖E∗1
.

It will be assumed that the feedback multimap U satisfies the following con-
ditions:

(U1) U is upper semicontinuous and takes values in the collection Kv(E∗) of
all convex, compact subsets of E∗,

(U2) U is globally bounded, i.e. there exists a constant M > 0 such that

‖U(v)‖E∗ := sup{‖u‖E∗ : u ∈ U(v)} ≤ M

for all v ∈ W1,
(U3) the value U(D) of every bounded set D ⊂ W1 is a relatively compact

set in E∗,
(U4) U is weakly closed in the following sense: if {vl}∞l=1 ⊂ W1, vl ⇀ v0,

ul ∈ U(vl) and ul
E∗→ u0, then u0 ∈ U(v0).

Remark 2.1. Condition (U4) is fulfilled when the feedback multimap U

satisfies the following “convexity” condition:

U(λv0 + (1− λ)v1) ⊇ λU(v0) + (1− λ)U(v1)

for every v0, v1 ∈ W1, 0 ≤ λ ≤ 1.
In fact, from Mazur’s lemma (see e.g. [3]) it follows that there exists a double

sequence of nonnegative numbers {αik}∞i,k=1 such that:

(a)
∑∞

k=1 αik = 1 for all i = 1, 2, . . . ,
(b) for every i = 1, 2, . . . there exists a number k0(i) such that αik = 0 for

all k > k0(i),
(c) the sequence ṽi =

∑∞
k=1 αikvk strongly converges to v0.
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Then,

ũi =
∞∑

k=1

αikuk ∈
∞∑

k=1

αikU(vk) ⊆ U(ṽi).

Since obviously ũi → u0 and the multimap U is closed ([8], Theorem 1.1.4) we
obtain the desired u0 ∈ U(v0).

Under above conditions the controlled motion of the fluid can be described
in the form of the following regularized problem (cf. [11])

(2.3) ρ

(
∂v

∂t
+

n∑
i=1

vi
∂v

∂xi

)
− µ1Div

∫ t

0

e−(t−s)/λE(v)(s, Zδ(v)(s; t, x)) ds

− µ0Div E(v) + grad p ∈ ρU(v), (t, x) ∈ [0, T ]× Ω,

div v = 0, (t, x) ∈ [0, T ]× Ω,(2.4)

v|[0,T ]×Ω = 0,(2.5)

v(0, x) = v0(x), x ∈ Ω,(2.6) ∫
Ω

p dx = 0,(2.7)

where µ0, µ1 are constants (µ0 > 0).

Remark 2.2. Taking µ1 = 0 we obtain the control system governed by the
classical Navier–Stokes equation.

Denote by (f, v) the action of the functional f from V ∗ on the function v ∈ V .
Let us introduce the following operators:

(1) A:V → V ∗,

(A(v), h) = µ0(E(v), E(h))L2(Ω), v, h ∈ V,

(2) K:V → V ∗,

(K(v), h) =
n∑

i,j=1

ρ

(
vivj ,

∂hi

∂xj

)
L2(Ω)

, v, h ∈ V,

(3) for v ∈ E and z ∈ CG the functional C(v, z) on V for every fixed
t ∈ [0, T ] can be given by the formula

(C(v, z)(t), h) = µ1

( ∫ t

0

e−(t−s)/λE(v)(s, z(s; t, x)) ds, E(h)
)

L2(Ω)n

.

In the sequel we will identify H ≡ H∗. Then taking into account the embed-
dings V ⊆ H ≡ H∗ ⊆ V ∗, the action of an element v ∈ E on h ∈ V for almost
all t ∈ [0, T ] will be determined by the equality

(v(t), h) = (v(t), h)L2(Ω)n .
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So we have the representation

d

dt
(v(t), h)L2(Ω)n =

d

dt
(v(t), h) = (v′(t), h)

where v′(t) is considered as a locally integrable function with values in V ∗.

Definition 2.3. Given v0 ∈ H, by weak solution of the regularized problem
(2.3)–(2.7) we mean a function v ∈ E with derivative v′ ∈ E∗

1 satisfying the
relations

ρv′ + A(v)−K(v) + C(v, Zδ(v)) ∈ U(v),(2.8)

v(0) = v0.(2.9)

It is clear that each weak solution belongs to the space W1.
Denote QT = [0, T ]× Ω.

Definition 2.4. If v is a weak solution of the problem (2.3)–(2.7) then the
control u ∈ U(v) satisfying the relation

(2.10) ρv′ + A(v)−K(v) + C(v, Zδ(v)) = u

is said to be the control corresponding to v. The pair (v, u) satisfying (2.10) will
be called an admissible solution of the regularized control problem (2.8)–(2.9)
and hence of the problem (2.3)–(2.7).

We will consider the following optimization problem: to find an admissible
solution (v, u) minimizing a given convex, lower semicontinuous cost functional
J :E × E∗ → R (see Section 5 below).

3. The approximating problem

To find an admissible solution of problem (2.3)–(2.7) we construct first ap-
proximating inclusions substituting the operator K by operators Kε, ε > 0 in
such a way that all the members of the inclusion (2.8) will belong to the same
space E∗.

For a given ε > 0 , define the operator Kε:V → V ∗ by the formula

(Kε(v), h) = ρ

( n∑
i,j=1

vivj

1 + ε‖v‖2
,
∂hi

∂xj

)
L2(Ω)

and consider the approximating problem

ρv′ + A(v)−Kε(v) + C(v, Zδ(v)) ∈ U(v),(3.1)

v(0) = v0.(3.2)

in the space W = {v : v ∈ E, v′ ∈ E∗} with norm ‖v‖W = ‖v‖E + ‖v′‖E∗ .
It is known (see [9], [10]) that W is a Banach space and W ⊂ C([0, T ];H).
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Introduce the maps L,G, Nε:W → E∗ × H and the multimap Ũ :W →
Kv(E∗ ×H) in the following way:

L(v) = (ρv′ + A(v), v(0, · )),
G(v) = (C(v, Zδ(v)), 0),

Nε(v) = (Kε(v), 0),

Ũ(v) = (U(v), v0).

Then, problem (3.1)–(3.2) can be written in the form of the following operator
inclusion:

(3.3) L(v)−Nε(v) + G(v) ∈ Ũ(v)

Our first goal is to prove the following existence result.

Theorem 3.1. For every ε > 0 and v0 ∈ H inclusion (3.3) and hence
problem (3.1)–(3.2) have a solution (vε, uε) ∈ W × E∗.

To prove Theorem 3.1 let us describe some properties of operators involved
in the inclusion (3.3).

As it was mentioned above, W ⊂ E ∩ C([0, T ];H). For functions v ∈ E ∩
C([0, T ];H) let us introduce the norm

‖v‖EC = max
0≤t≤T

‖v(t)‖H + ‖v‖E

and the equivalent norms

‖v‖k,EC = ‖v‖EC

where v(t) = e−kt ·v(t), k ≥ 0. Equivalent norms ‖·‖k,E , ‖·‖k,E∗×H , ‖·‖k,L2(QT )

are defined similarly.

Proposition 3.2 ([2], [12]).

(a) The linear operator L:W → E∗ ×H is bounded and invertible, and for
any couple of functions v, w ∈ W the following estimate holds:

‖v − w‖k,EC ≤ C1‖L(v)− L(w)‖k,E∗×H

for every k ≥ 0, where the constant C1 does not depend on v, w and k.
(b) The map Nε:W → E∗ ×H is completely continuous for ε > 0 and for

any v ∈ W the following estimate holds

‖Nε(v)‖E∗×H ≤ C2

ε
.

(c) C(v, z) ∈ E∗ for every v ∈ E, z ∈ CG and the map C:E × CG → E∗

is continuous and bounded. Moreover, for every k > 0 the following
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estimate holds:

(3.4) ‖C(v, z)− C(w, z)‖k,E∗ ≤ µ1

√
T

2k
‖v − w‖k,E .

(d) The map Zδ:W1 → CG is completely continuous.

From (a) of the above statement it follows that solving inclusion (3.3) is
equivalent to to the studying of of the fixed point problem in the space W

(3.5) v ∈ Fε(v)

where the multimap Fε:W → Kv(W ) is defined as

(3.6) Fε(v) = L−1Nε(v)− L−1G(v) + L−1Ũ(v).

It follows from basic properties of multivalued maps (see, e.g. [8]) that Fε

is an upper semicontinuous multimap with convex, compact values. We will
show that this multimap is condensing with respect to the Hausdorff measure of
noncompactness (MNC) in W (see [8]).

Let χk be the Hausdorff MNC in W generated by the norm ‖ · ‖k,E .

Proposition 3.3. The multimap Fε (ε > 0) is χk-condensing provided k is
sufficienty large.

Proof. Let D ⊂ W be an arbitrary bounded set. Consider the map G:W ×
W → W defined as

G(v, w) = L−1(C(v, Zδ(w)), 0).

From Proposition 3.2(a), (c), (d) it follows that for every fixed v ∈ W the set
G(v,D) is relatively compact. Further, for every fixed z ∈ Zδ(D) the map
C( · , z) is µ1

√
T/2k-Lipschitz with respect to the norms ‖ · ‖k,E and ‖ · ‖k,E∗ ,

hence (C( · , z), 0) is Lipschitz with the same constant with respect to ‖·‖k,E and
‖ ·‖k,E∗×H . Then from Proposition 3.2(a) it follows that G(·, w) is C1µ1

√
T/2k-

Lipschitz with respect to norms ‖ · ‖k,E and ‖ · ‖k,EC . Since, for any v ∈ W it
is

‖v‖k,E ≤ ‖v‖k,EC

we obtain that
G( · , w):W → W

is C1µ1

√
T/2k-Lipschitz with respect to the ‖ · ‖k,E norm.

Now, choosing k > 0 so that

C1µ1

√
T

2k
< 1

and applying Proposition 2.2.2 in [8] we obtain that the map G(v) = G(v, v) is
χk-condensing.
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From Proposition 3.2(b) and (a) it follows that the set L−1Nε(D) is relatively
compact and property (U3) implies the same for the set L−1Ũ(D). Applying
the well known properties of the Hausdorff MNC (see e.g. [8]) we conclude the
proof. �

Consider now the one-parameter family

(3.7) ρv′ + A(v)− λKε(v) + λC(v, Zδ(v)) ∈ λU(v), λ ∈ [0, 1]

including the approximation problem (3.1) for λ = 1.
We are going to obtain an apriori estimate for the solutions of this family.

Proposition 3.4. For any solution v ∈ W of the initial problem (3.7), (3.2)
the following estimates hold:

‖v‖EC ≤ C3(1 + M + ‖v0‖H),(3.8)

‖v′‖E∗ ≤ C4(1 + M + ‖v0‖H),(3.9)

where M is the constant in condition (U2) and the constants C3 and C4 depend
on ε.

Proof. Let v ∈ W be any solution of problem (3.7), (3.2). Then

(3.10) L(v) ∈ λ(Nε(v)−G(v) + Ũ(v)), λ ∈ [0, 1].

Since L(0) = 0, from Proposition 3.2(a) it follows that

(3.11) ‖v‖k,EC ≤ C1‖L(v)‖k,E∗×H .

Analogously, C(0, Zδ(v)) = 0 and from (3.4) we have that

(3.12) ‖C(v, Zδ(v))‖k,E∗ ≤ µ1

√
T

2k
‖v‖k,E .

From (3.10), (3.12), Proposition 3.2(b) and property (U3), applying the estimate
(3.11) we obtain

‖v‖k,EC ≤ C1

(
C2

ε
+ µ1

√
T

2k
‖v‖k,E + M + ‖v0‖H

)
≤ C1

(
C2

ε
+ µ1

√
T

2k
‖v‖k,EC + M + ‖v0‖H

)
i.e. (

1− C1µ1

√
T

2k

)
‖v‖k,EC ≤ C1

(
C2

ε
+ M + ‖v0‖H

)
.

Choosing k sufficiently large and taking into account the equivalence of norms
‖ · ‖k,EC and ‖ · ‖EC we get the estimate (3.8). To obtain the estimate (3.9) it
is sufficient to express explicitely v′ from inclusion (3.7):

(3.13) v′ ∈ −1
ρ
(A(v)− λKε(v) + λC(v, Zδ(v))) +

λ

ρ
U(v),
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to note that all operators in the right hand side of (3.13) are bounded in E and
apply estimate (3.8). �

Proof of Theorem 3.1. From Proposition 3.3 it follows that for every
ε > 0 there exists a ball BR ⊂ W centered at the origin and of a sufficiently
large radious R such that

v /∈ λFε(v) for all v ∈ ∂BR, λ ∈ [0, 1].

Applying the topological degree theory to the condensing family of multifields
i− λFε (see [8, Chapter 3]) we obtain that

deg(i− Fε, ∂BR) = deg(i, ∂BR) = 1.

This result implies the existence of a fixed point of the multimap Fε in the ball
BR and hence the solvability of the approximating problem (3.1)–(3.2). �

4. The regularizated problem

In this section we show that for ε → 0 the solutions of the approximating
problems are converging, in the sense of distributions, to a solution of the regu-
larized problem (2.8)–(2.9). It is known from [10] that W1 ⊂ E ∩L∞([0, T ];H).
For functions v ∈ E ∩ L∞([0, T ];H) introduce the norm

‖v‖EL = ‖v‖E + ‖v‖L∞([0,T ];H)

and the equivalent norms

‖v‖k,EL = ‖v‖EL, where v(t) = e−ktv(t), k ≥ 0.

Proposition 4.1. For every solution vε ∈ W1 of the approximating problem
((3.1)–(3.2) with ε > 0 the following estimates hold

‖vε‖EL ≤ C5(M + ‖v0‖H),(4.1)

‖v′ε‖E∗1
≤ C6(M + ‖v0‖H)2,(4.2)

where constants C5 and C6 are independent from ε.

Proof. To prove (4.1) let us make the substitution

vε(t) = ektvε(t)

and multiply the approximating equation

(4.3) ρv′ε + A(vε)−Kε(vε) + C(vε, Zδ(vε)) = uε

by e−kt. Then we obtain

(4.4) ρv′ε + ρvε + A(vε)−Kε(vε) + C(v, Zδ(ektvε)) = uε
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where

Kε(vε) = e−ktKε(ektvε),

C(vε, Zδ(ektvε)) = e−ktC(ektvε, Zδ(ektvε)),

uε = e−ktuε,

and the functional ρkvε is defined by the equality (ρkvε, h) = ρk(vε, h)L2(Ω) for
u ∈ V .

Let us consider the action of functionals in the left and right hand side of
the equality (4.4) on the function vε:

(4.5)
1
2
ρ

d

dt
‖vε(t)‖2H + ρk‖vε(t)‖2H + (A(vε(t)), vε(t))

− (Kε(vε(t)), vε(t)) + (C(vε, Zδ(ektvε))(t), vε(t)) = (uε(t), vε(t)).

It is known from [2] that (Kε(vε(t)), vε(t)) = 0 for all t ∈ [0, T ]. So, inte-
grating by part (4.5) in t on the interval [0, t] we obtain

1
2
ρ‖vε(t)‖2H + ρk‖vε‖2L2([0,t];H) + µ0‖vε‖2L2([0,t];V ) −

1
2
ρ‖v0‖2H

+
∫ t

0

(C(vε, Zδ(ekτvε))(τ), vε(τ)) dτ =
∫ t

0

(uε(τ), vε(τ)) dτ.

Taking w = 0 in the inequality (3.4) and applying the Cauchy inequality we can
write

1
2
ρ‖vε(t)‖2H + ρk‖vε‖2L2([0,T ];H) + µ0‖vε‖2L2([0,T ];V )

− 1
2
ρ‖v0‖2H + µ1

√
T

2k
‖vε‖2E ≤ ‖uε‖E∗‖vε‖E .

Taking k sufficiently large so that µ1

√
T/(2k) < µ0/2 and using again the

Cauchy inequality we arrive to

ρ‖vε‖2L∞([0,T ];H) +2ρk‖vε‖2L2(QT ) +µ0‖vε‖2E−ρ‖v0‖2H −
1
2
µ0‖vε‖2E ≤ 2

µ0
‖uε‖2E∗ .

From the above inequality we get

1
2
ρ‖vε‖2L∞([0,T ];H) + 2ρk‖vε‖2L2(QT ) +

1
2
µ0‖vε‖2E ≤ ρ‖v0‖2H +

2
µ0
‖uε‖2E∗

that gives the required estimate (4.1).
To obtain (4.2) let us express, as earlier, the derivative v′ε from (4.3):

v′ε = −1
ρ
(A(vε)−Kε(vε) + C(vε, Zδ(vε))− uε).

It follows that

‖v′ε‖E∗1
≤ C7(‖A(vε)‖E∗ + ‖Kε(vε)‖E∗1

+ ‖C(vε, Zδ(vε))‖E∗ + ‖uε‖E∗).
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In the paper [12] the following estimate is obtained:

(4.6) ‖Kε(vε)‖E∗1
≤ C8‖vε‖2L2([0,T ];L4(Ω)n) ≤ C9‖vε‖2E .

This estimate, the boundedness of operators A and C on E and the estimate
(4.1) imply (4.2). �

We are now in position to formulate the main result of this section.

Theorem 4.2. The regularized problem (2.8)–(2.9) admits an admissible so-
lution (ṽ, ũ) ∈ W1 × E∗.

Proof. Let us take any sequence of positive numbers εl → 0. From The-
orem 3.1 we know that every corresponding approximating problem (3.1)–(3.2)
has a solution (vl, ul) ∈ W1 × E∗, i.e.

(4.7) ρv′l + A(vl)−Kεl
(vl) + C(vl, Zδ(vl)) = ul ∈ U(vl)

From the estimates (4.1), (4.2) it follows that the sequence {vl} is bounded
with respect to the norm ‖ ·‖EL while the sequence {v′l} is bounded with respect
to the norm ‖ · ‖E∗1

. Then, without loss of generality, we can assume that

vl ⇀ ṽ weakly in E,

vl ⇀ ṽ ∗-weakly in L∞([0, T ];H),

vl → ṽ strongly in L2(QT )n,

v′l ⇀ v′ in the sense of distributions.

From conditions (U3), (U4) it follows that we can assume, without loss of gen-
erality, that

ul → ũ ∈ U(ṽ) strongly on E∗.

Since a bounded linear operator is weakly continuous, we can assume, without
loss of generality, that

A(vl) ⇀ A(ṽ) weakly in E∗,

E(vl)(s, x) ⇀ E(ṽ)(s, x) weakly in L2(QT )n.

Following [12] it can be proved that

C(vl, Zδ(vl)) ⇀ C(ṽ, Zδ(ṽ)) weakly in E∗,

and from Lemma 2.2 of [2] it is known that

Kεl
(vl) ⇀ K(ṽ) in the sense of distributions.

Now, it remains only to pass to the limit in the sense of distributions in relation
(4.7) while εl → 0 to obtain

ρṽ′ + A(ṽ)−K(ṽ) + C(ṽ, Zδ(ṽ)) = ũ ∈ U(ṽ).
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Note that ṽ ∈ E implies that ṽ′ ∈ E∗
1 and hence ṽ ∈ W1. The pair (ṽ, ũ) is the

required one. �

5. The optimization problem

In this section we consider the problem of existence of an optimal admissible
solution (v, u).

We suppose that the given convex cost functional J :E × E∗ → R satisfies
the following conditions:

(J1) J is lower semicontinuous in the sense that, given a sequence {vl, ul} ⊂
E × E∗, conditions ‖vl − v0‖E → 0, ‖ul − u0‖E∗ → 0 imply

J(v0, u0) ≤ lim
l→∞

J(vl,ul),

(J2) J is bounded below, i.e. there exists a constant L such that

−∞ < L ≤ J(v, u) ≤ ∞ for all (v, u) ∈ E × E∗.

Let us denote by Σ ⊂ W1 × E∗ the set of all admissible solutions of the
regularized control problem (2.8)–(2.9). Our goal is to solve the following opti-
mization problem:

(P) To find an admissible solution (v, u) of (2.8)–(2.9) such that

J(v, u) = inf
(v,u)∈Σ

J(v, u).

Theorem 5.1. Under conditions (J1), (J2) problem (P) has a solution.

Proof. From Theorem 4.2 we know that Σ 6= ∅, therefore there exists a
minimizing sequence (vl, ul) ∈ Σ such that

lim
l→∞

J(vl, ul) = inf
(v,u)∈Σ

J(v, u).

Notice that the sequence {vl} is bounded in W1. In fact, the estimate

‖K(v)‖E∗1
≤ C‖v‖2E ,

similar to (4.6) holds for the operator K and we can repeat the same line of
reasoning as in the proof of Proposition 4.1. Then, we can assume, as earlier,
that without loss of generality,

vl ⇀ v weakly in E,

vl ⇀ v ∗-weakly in L∞(0, T ;H),

vl → v strongly in L2(QT ),

v′l ⇀ v′ in the sense of distributions,

ul → u ∈ U(v) strongly in E∗.
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We have also the convergences

A(vl) ⇀ A(v) weakly in E∗,

E(vl)(s, x) ⇀ E(v)(s, x) weakly in L2(QT )n2
,

C(vl, Zδ(vl)) ⇀ C(v, Zδ(v)) weakly in E∗,

K(vl) ⇀ K(v) in the sense of distributions.

Now, passing to the limit in the relation

ρv′l + A(vl)−K(vl) + C(vl, Zδ(vl)) = ul ∈ U(vl)

we obtain that (v, u) ∈ Σ.
Since the functional J is lower semicontinuous also with respect to the weak

topology, we have that
J(v, u) ≤ inf

(v,u)∈Σ
J(v, u)

implying that (v, u) is the desired solution of problem (P). �

As an example of J satisfying (J1) and (J2) we can consider the integral
functional of the form

J(v, u) =
∫ T

0

ϕ(v(t, · ), u(t, · )) dt

where ϕ:V × V ∗ → R is a given convex, continuous, bounded from below func-
tional.

To present a more particular situation, consider the problem of damping of
a viscoelastic fluid supposing that the external forces are chosen in the form
of combinations of coercions created by a finite number of sources depending
on the state of the system. More precisely, let continuous maps fi:W1 → E∗,
i = 1, . . . , m satisfy the following conditions:

(f1) each fi is globally bounded and transforms bounded sets into relatively
compact ones,

(f2) each fi is weakly closed in the sense that {vl}∞l=1 ⊂ W1, vl ⇀ v0,
fi(vl) → u0 imply u0 = fi(v0).

Define the feedback multimap U :W1 → Kv(E∗) as

U(v) =
{

u =
m∑

i=1

λifi(v) :
m∑

i=1

λi = 1
}

.

It is easy to verify that U satisfies conditions (U1)–(U4) and hence we may con-
clude, by Theorem 11, that there exists an admissible solution (v, u) of problem
(2.8)–(2.9) minimizing the functional

J(u, v) =
∫ T

0

(‖v(s, · )‖2V + ‖u(s, · )‖2V ∗) ds.
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