MULTIPLE PERIODIC SOLUTIONS OF ASYMPTOTICALLY LINEAR HAMILTONIAN SYSTEMS VIA CONLEY INDEX THEORY

Guinua Fei

Abstract

In this paper we study the existence of periodic solutions of asymptotically linear Hamiltonian systems which may not satisfy the Palais-Smale condition. By using the Conley index theory and the Galerkin approximation methods, we establish the existence of at least two nontrivial periodic solutions for the corresponding systems.

1. Introduction

In this paper we study the following Hamiltonian system

$$
\begin{equation*}
\dot{z}=J H^{\prime}(t, z) \tag{1.1}
\end{equation*}
$$

where $H^{\prime}(t, z)$ denotes the gradient of $H(t, z)$ with respect to the z variable, $J=\left(\begin{array}{cc}0 & -I_{N} \\ I_{N} & 0\end{array}\right)$ is the standard $2 N \times 2 N$ symplectic matrix, and N is a positive integer. Denote by (x, y) and $|x|$ the usual inner product and norm in $\mathbb{R}^{2 N}$, respectively. We assume the system (1.1) is asymptotically linear both at the origin and at infinity, i.e.

$$
\begin{align*}
\left|H^{\prime}(t, z)-B_{0}(t) z\right| & =o(|z|), \tag{1.2}\\
\left|H^{\prime}(t, z)-B_{\infty}(t) z\right| & =o(|z|), \tag{1.3}\\
& \text { as }|z| \rightarrow \infty
\end{align*}
$$

2000 Mathematics Subject Classification. Primary 58E05, 58F05, 34C25.
Key words and phrases. Periodic solution, Hamiltonian systems, Conley index, Maslovtype index, Galerkin approximation.
where $B_{0}(t)$ and $B_{\infty}(t)$ are $2 N \times 2 N$ symmetric matrices, continuous and 1periodic in t. Obviously, 0 is a trivial solution. We are interested in the nontrivial 1-periodic solutions.

The existence of periodic solutions of asymptotically linear Hamiltonian systems was first studied by H. Amann and E. Zehnder ([3], [4]). They considered the case that $B_{0}(t)$ and $B_{\infty}(t)$ are constant matrices and $B_{\infty}(t)$ is nondegenerate. Later, for nonconstant matrices $B_{0}(t)$ and $B_{\infty}(t)$, C. Conley and E. Zehnder in [10] studied the problem with nondegenerate $B_{0}(t)$ and $B_{\infty}(t)$. After then, many works have been done about this problem (see [1], [5], [6], [8], [11]-[15], [18]-[21], [25]-[27]. $B_{0}(t)$ and $B_{\infty}(t)$ are allowed to be degenerate and nonconstant, and the Landesman-Lazer type condition and the strong resonance condition are often used (see [8], [14]). Since the corresponding functional is strongly indefinite, many variational methods have been developed to handle it ([2], [7], [17], [22], [23]).

The goal of this paper is to establish the existence of multiple periodic solutions of the system (1.1). We combine Conley index theory with the Galerkin approximation procedure to show that the system (1.1) possesses at least two nontrivial 1-periodic solutions if the "twist" between the origin and the infinity is large enough. From now on, denote

$$
\begin{aligned}
G_{\infty}(t, z) & =H(t, z)-\frac{1}{2}\left(B_{\infty}(t) z, z\right) \\
G_{0}(t, z) & =H(t, z)-\frac{1}{2}\left(B_{0}(t) z, z\right)
\end{aligned}
$$

We assume the following conditions for H.
(H1) $H \in C^{2}\left([0,1] \times \mathbb{R}^{2 N}, \mathbb{R}\right)$ is a 1-periodic function in t, and satisfies
$\left|H^{\prime \prime}(t, z)\right| \leq a_{1}|z|^{s}+a_{2}, \quad$ for all $(t, z) \in \mathbb{R} \times \mathbb{R}^{2 N}$, where $s \in(1, \infty), a_{1}, a_{2}>0$.
$\left(\mathrm{H} 2^{ \pm}\right)$There exist $2<\alpha_{0}<2 \beta_{0}$ and $c_{1}, c_{2}, L_{0}>0$ such that

$$
\begin{align*}
& \pm\left(G_{0}^{\prime}(t, z), z\right) \geq c_{1}|z|^{\alpha_{0}} \quad \text { for all }|z| \leq L_{0} \\
&\left|G_{0}^{\prime}(t, z)\right| \leq c_{2}|z|^{\beta_{0}} \quad \text { for all }|z| \leq L_{0} \tag{1.4}
\end{align*}
$$

$\left(\mathrm{H}^{ \pm}\right)$There exist $c_{3}, c_{4}, c_{5}>0, L_{\infty}>0$ and $\delta>0$ such that

$$
\begin{array}{rlrl}
\pm\left(G_{\infty}^{\prime}(t, z), z\right) & \geq \frac{c_{3}}{|z|^{\delta}} \quad\left|G_{\infty}^{\prime}(t, z)\right| \leq c_{5} & \text { for all }|z| \geq L_{\infty} \\
\left|G_{\infty}^{\prime}(t, z)\right||z| \leq c_{4}\left|\left(G_{\infty}^{\prime}(t, z), z\right)\right| & \text { for all }|z| \geq L_{\infty}
\end{array}
$$

According to [10], [19], [21], for a given continuous 1-periodic and symmetric matrix function $B(t)$, one can assign a pair of integers $(i, n) \in \mathbb{Z} \times\{0, \ldots, 2 N\}$ to it, which is called the Maslov-type index of $B(t)$. Let $\left(i_{0}, n_{0}\right)$ and $\left(i_{\infty}, n_{\infty}\right)$ be the Maslov-type indices of $B_{0}(t)$ and $B_{\infty}(t)$, respectively. Our first result reads as:

Theorem 1.1. Suppose that H satisfies (H1). Then the system (1.1) possesses a nontrivial 1-periodic solution if one of the following four cases occurs:
(a) $\left(\mathrm{H} 2^{+}\right)$and $\left(\mathrm{H}^{+}\right)$hold, $i_{\infty}+n_{\infty} \neq i_{0}+n_{0}$,
(b) $\left(\mathrm{H} 2^{+}\right)$and $\left(\mathrm{H}^{-}\right)$hold, $i_{\infty} \neq i_{0}+n_{0}$,
(c) $\left(\mathrm{H} 2^{-}\right)$and $\left(\mathrm{H}^{+}\right)$hold, $i_{\infty}+n_{\infty} \neq i_{0}$,
(d) $\left(\mathrm{H}^{-}\right)$and $\left(\mathrm{H}^{-}\right)$hold, $i_{\infty} \neq i_{0}$.

Moreover, the system (1.1) possesses at least two nontrivial 1-periodic solutions if one of the following four cases occurs:
(e) $\left(\mathrm{H}^{+}\right)$and $\left(\mathrm{H}^{+}\right)$hold, $\left|i_{\infty}+n_{\infty}-i_{0}-n_{0}\right|>2 N+1$,
(f) $\left(\mathrm{H}^{+}\right)$and $\left(\mathrm{H}^{-}\right)$hold, $\left|i_{\infty}-i_{0}-n_{0}\right|>2 N+1$,
(g) ($\mathrm{H} 2^{-}$) and $\left(\mathrm{H}^{+}\right)$hold, $\left|i_{\infty}+n_{\infty}-i_{0}\right|>2 N+1$,
(h) ($\mathrm{H} 2^{-}$) and ($\mathrm{H} 3^{-}$) hold, $\left|i_{\infty}-i_{0}\right|>2 N+1$.

Remark 1.2 . (a) It is easy to show that ($\mathrm{H} 2^{ \pm}$) and ($\mathrm{H} 3^{ \pm}$) imply (1.2) and (1.3), respectively. Under $\left(\mathrm{H} 3^{ \pm}\right)$, the Palais-Smale condition may not hold and the strong resonance method ([8], [14]) may not work here, too. See Example 3.6 for more details.
(b) Conditions (b) and (c) of Theorem 1.1 include a special case that $B_{0}(t)=$ $B_{\infty}(t)$, i.e. the system (1.1) may be resonance at 0 and at ∞ with the same asymptotical matrix. As far as I know, this case has been studied only in [14], [15], [25], where the Palais-Smale condition is always required.
(c) In order to get the second nontrivial solution, one usually assumes that the first obtained one is nondegenerate (see [18]). Here in (e)-(h), we do not require any condition on the first obtained solution. Conditions (e)-(h) of Theorem 1.1 are a kind of generalization of the corresponding results in [19], [20], where $B_{\infty}(t)$ is assumed to be nondegenerate.
(d) To prove Theorem 1.1, we first apply the Galerkin approximation procedure to consider functions $\left\{f_{m}\right\}$ defined on finite dimensional spaces $\left\{E_{m}\right\}$. Then we construct the isolating blocks $D_{\infty m}$ at ∞ and D_{m} at 0 in a way that $\left\{D_{\infty m}\right\}$ are uniformly bounded. This allows us to avoid the Palais-Smale condition. The different Conley indices of $D_{\infty m}$ and D_{m} give us the critical point z_{m} of f_{m}, which converges to the first nontrivial solution. The Morse type inequality of Conley index theory gives us the second nontrivial solution.
(e) Special attention is paid on the control of the small eigenvalues of $P_{n}(A-$ B) P_{n}. (See Theorem 2.3 and Remark 2.4.) This is a very important part in building the uniformly bounded isolating blocks.

Now we consider the case with unbounded $\left|G_{\infty}^{\prime}(t, z)\right|$. Assume
$\left(\mathrm{H} 4^{ \pm}\right)$There exist $1 \leq \alpha_{\infty}<2,0<\beta_{\infty}<\alpha_{\infty} / 2$ and $c_{6}, c_{7}, L_{\infty}>0$ such that

$$
\begin{align*}
& \pm\left(G_{\infty}^{\prime}(t, z), z\right) \geq c_{6}|z|^{\alpha_{\infty}} \quad \text { for all }|z| \geq L_{\infty} \\
&\left|G_{\infty}^{\prime}(t, z)\right| \leq c_{7}|z|^{\beta_{\infty}} \quad \text { for all }|z| \geq L_{\infty} \tag{1.5}
\end{align*}
$$

Theorem 1.3. Suppose that H satisfies (H1). Then the same conclusions as those in Theorem 1.1 hold if we replace $\left(\mathrm{H} 3^{ \pm}\right)$by $\left(\mathrm{H} 4^{ \pm}\right)$.

Remark 1.4. (a) It is easy to see that $\left(\mathrm{H} 4^{ \pm}\right)$implies (1.3). The PalaisSmale condition does hold under $\left(\mathrm{H} 4^{ \pm}\right)$. But we do not need it in our approach.
(b) [25, Theorem 1.3] is a special case of our Theorem 1.3(a)-(d), where $B_{\infty}(t)$ and $B_{0}(t)$ are required to be finitely degenerate and the conditions about $G_{\infty}(t, z)$ and $G_{0}(t, z)$ are special cases of $\left(\mathrm{H} 4^{ \pm}\right)$.
(c) In [15], under different conditions about $G_{\infty}(t, z)$ and $G_{0}(t, z)$, they got a result similar to Theorem 1.3(a)-(d) by computing the critical groups $C_{*}(f, 0)$ and $C_{*}(f, \infty)$.

This paper is organized as follows. In Section 2, we introduce the Galerkin approximation scheme and Conley index theory. In Section 3, we construct the isolating blocks and prove our results.

2. Conley index and Galerkin approximation

First of all, we recall some results about the Conley index. Let η : $\left(\mathbb{R}^{n} \times\right.$ $\mathbb{R}) \rightarrow \mathbb{R}^{n}$ be the flow on \mathbb{R}^{n}. Let $D \subset \mathbb{R}^{n}$ be a closed set and $x \in \partial D$ be a boundary point. Then x is called a strict egress (strict ingress, bounce-off, respectively) point of D, if there are $c, d>0$ such that for $0<t \leq c: \eta(x, t) \notin D$ $(\eta(x, t) \in \operatorname{int}(D), \eta(x, t) \notin D$, respectively) and for $0<-t \leq d: \eta(x, t) \in \operatorname{int}(D)$ $\left(\eta(x, t) \notin D, \eta(x, t) \notin D\right.$, respectively). We use $D^{e}\left(D^{i}, D^{b}\right.$, respectively) to denote the set of strict egress (strict ingress, bounce-off) points of the closed set D. Let $D^{-}=D^{e} \cup D^{b}$.

A closed set $D \subset \mathbb{R}^{n}$ is called an isolating block if $\partial D=D^{e} \cup D^{i} \cup D^{b}$ and $D^{-}=D^{e} \cup D^{b}$ is closed.

Let $D \subset \mathbb{R}^{n}$ be a bounded isolating block under the flow η. We define

$$
\begin{equation*}
I(\eta, D)=\sum_{k \geq 0} r^{k}\left(D, D^{-}\right) t^{k} \tag{2.1}
\end{equation*}
$$

where $r^{k}\left(D, D^{-}\right)=\operatorname{rank}\left(H_{k}\left(D, D^{-}\right)\right)$is the rank of the k-th homology group $H_{k}\left(D, D^{-}\right)$.

Let $h: \mathbb{R}^{n} \rightarrow \mathbb{R} \in C^{2} . \eta$ is the gradient flow generated by

$$
\frac{d x(t)}{d t}=-h^{\prime}(x(t))
$$

Let $D_{\infty}, D_{0} \subset \mathbb{R}^{n}$ be two bounded isolating blocks under the flow η such that $D_{0} \subset \operatorname{int}\left(D_{\infty}\right)$. Using the results in [9], [10], [24], one can prove the following theorem.

Theorem 2.1.
(a) If $\theta \in D_{0}$ is the only critical point of h in D_{∞},

$$
I\left(\eta, D_{\infty}\right)=I\left(\eta, D_{0}\right) .
$$

(b) Suppose θ is the only critical point of h in D_{0} and all critical points of h in $D_{\infty} \backslash D_{0}$, say $\left\{x_{1}, \ldots, x_{m}\right\}$, are nondegenerate with the Morse indices $\left\{i_{1}, \ldots, i_{m}\right\}$ respectively. Then

$$
\sum_{j=1}^{m} t^{i_{j}}+I\left(\eta, D_{0}\right)=I\left(\eta, D_{\infty}\right)+(1+t) Q(t)
$$

where $Q(t)$ is a polynomial with nonnegative integer coefficients.
Proof. (a) The conclusion comes from the fact that the Conley homotopy index is independent of the choice of index pairs (see [24]).
(b) Obviously, there is an admissible Morse decomposition of D_{∞} with Morse sets $\left\{\theta, x_{1}, \ldots, x_{m}\right\}$ (see Salamon [24]). The conclusion comes directly from the Morse type inequality for $\left\{\theta, x_{1}, \ldots, x_{m}\right\}$ (see [9], [10], [20]). We omit the details.

Now we focus on the Galerkin approximation. We would rather work in an abstract framework. Let E be a seperable Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$. Assume
(A) A is a bounded selfadjoint operator with a finite dimensional kernel, and its zero eigenvalue is isolated in the spectrum of A.
Note that the restriction $\left.A\right|_{\operatorname{Im}(A)}$ is invertible.
The following definition of a Galerkin approximation procedure is due to [8].
Definition 2.2. Let $\Gamma=\left\{P_{m}: m=1,2, \ldots\right\}$ be a sequence of orthogonal projections. We call Γ an approximation scheme with respect to A, if the following properties hold:
(a) $E_{m}=P_{m} E$ is finite dimensional, for all $n \geq 1$,
(b) $P_{m} \rightarrow I$ strongly as $n \rightarrow \infty$,
(c) $\left[P_{m}, A\right]=P_{m} A-A P_{m} \rightarrow 0$ in the operator norm.

For a self adjoint bounded operator T, denote $T^{\#}=\left(T_{\operatorname{Im}(T)}\right)^{-1}$, and denote by $M^{+}(T), M^{-}(T)$ and $M^{0}(T)$ the positive definite, negative definite and null subspaces of T, respectively. For $d>0$, we also use $M_{d}^{+}(T), M_{d}^{-}(T)$ and $M_{d}^{0}(T)$
to denote the eigenspaces corresponding to the eigenvalues λ belonging to $[d, \infty)$, $(-\infty,-d]$ and $(-d, d)$, respectively.

For a linear symmetric compact operator B, it is easy to show that

$$
\begin{gather*}
\operatorname{dim} \operatorname{ker}(A-B)<\infty, \quad \text { and } \\
\tau_{m}=\left\|\left(I-P_{m}\right) B\right\|+\left\|B\left(I-P_{m}\right)\right\| \rightarrow 0 \quad \text { as } m \rightarrow \infty \tag{2.2}
\end{gather*}
$$

where $\Gamma=\left\{P_{m}: m=1,2, \ldots\right\}$ is an approximation scheme with respect to A. Let $P_{B}: E \rightarrow \operatorname{ker}(A-B)$ be the orthogonal projection. Obviously, P_{B} is compact. Then by (2.2) and Definition 2.2(c),
(2.3) $\varepsilon_{m}=\left\|P_{m} A-A P_{m}\right\|+\tau_{m}+\left\|\left(I-P_{m}\right) P_{B}\right\|(1+\|A-B\|) \rightarrow 0 \quad$ as $m \rightarrow \infty$.

Theorem 2.3. Let B be a linear symmetric compact operator. For any fixed constant $0<d \leq\left\|(A-B)^{\#}\right\|^{-1} / 4$, there exists $m^{*}>0$ such that for $m \geq m^{*}$ we have
(a) $\operatorname{dim} M_{2 \varepsilon_{m}}^{0}\left(P_{m}(A-B) P_{m}\right)=\operatorname{dim} \operatorname{ker}(A-B)$,
(b) $E_{m}=M_{d}^{+}\left(P_{m}(A-B) P_{m}\right) \oplus M_{d}^{-}\left(P_{m}(A-B) P_{m}\right) \oplus M_{2 \varepsilon_{m}}^{0}\left(P_{m}(A-B) P_{m}\right)$, where ε_{m} is given by (2.3), and $2 \varepsilon_{m}<\min (1, d)$.

Proof. Step 1. Set $E^{0}=P_{B} E=\operatorname{ker}(A-B)$. Then there exists $m_{0}>0$ such that for $m \geq m_{0}$,

$$
\begin{equation*}
\operatorname{dim} P_{m} E^{0}=\operatorname{dim} E^{0} \tag{2.4}
\end{equation*}
$$

For otherwise, there exist $\left\{m_{k}\right\}$ such that $\operatorname{dim} P_{m_{k}} E^{0}<\operatorname{dim} E^{0}$. This implies that there exist $\left\{x_{k}\right\} \subseteq E^{0}$ such that

$$
\begin{equation*}
P_{m_{k}} x_{k}=0, \quad\left\|x_{k}\right\|=1 \tag{2.5}
\end{equation*}
$$

Since $\operatorname{dim} E^{0}<\infty$, passing to a subsequence if necessary, $x_{k} \rightarrow x^{*}$ as $k \rightarrow \infty$. By (2.5) we have

$$
1=\left\|x_{*}\right\|=\lim _{k \rightarrow \infty}\left\|P_{m_{k}} x^{*}-P_{m_{k}} x_{k}\right\| \leq \lim _{k \rightarrow \infty}\left\|x^{*}-x_{k}\right\|=0
$$

a contradiction. Therefore (2.4) holds. Moreover, for any $x \in P_{m} E^{0}$, there is a unique $\widetilde{x} \in E^{0}$ such that $x=P_{m} \widetilde{x}$. By (2.3), for m large enough,

$$
x=P_{m} \widetilde{x}=\widetilde{x}-\left(I-P_{m}\right) P_{B} \widetilde{x} \quad \text { and } \quad\|x\| \geq\left(1-\varepsilon_{m}\right)\|\widetilde{x}\| .
$$

Therefore we have

$$
\begin{aligned}
P_{m}(A-B) P_{m} x & =P_{m}(A-B) P_{m} \widetilde{x}=P_{m}(A-B)\left(P_{m}-I\right) P_{B} \widetilde{x} \\
\left\|P_{m}(A-B) P_{m} x\right\| & \leq \varepsilon_{m}\|\widetilde{x}\| \leq \frac{\varepsilon_{m}}{1-\varepsilon_{m}}\|x\|
\end{aligned}
$$

By (2.3), there exists $m_{1} \geq m_{0}$ such that for $m \geq m_{1}$

$$
\begin{equation*}
\left\|P_{m}(A-B) P_{m} x\right\| \leq \frac{4}{3} \varepsilon_{m}\|x\| \quad \text { for all } x \in P_{m} E^{0} \tag{2.6}
\end{equation*}
$$

Step 2. For $m \geq m_{1}$, let Y_{m} be the orthogonal complement of $P_{m} E^{0}$ in E_{m}, i.e. $E_{m}=Y_{m} \oplus P_{m} E^{0}$. Then there exists $m_{2} \geq m_{1}$ such that for $m \geq m_{2}$,

$$
\begin{equation*}
\left\|P_{m}(A-B) P_{m} y\right\| \geq 2 d\|y\| \quad \text { for all } y \in Y_{m} \tag{2.7}
\end{equation*}
$$

In fact, for all $y \in Y_{m}$ and for all $x \in E^{0}$, we have

$$
0=\left\langle y, P_{m} x\right\rangle=\left\langle P_{m} y, x\right\rangle=\langle y, x\rangle .
$$

By Step 1 , we know that $y \perp E^{0}$, i.e. $y \in \operatorname{Im}(A-B)$. Moreover,

$$
\begin{aligned}
P_{m}(A-B) P_{m} y & =(A-B) y+\left(P_{m}-I\right)(A-B) P_{m} y \\
& =(A-B) y+\left(P_{m}-I\right) A P_{m} y-\left(P_{m}-I\right) B y
\end{aligned}
$$

By (2.2) and Definition 2.2(c),

$$
\left\|\left(P_{m}-I\right) A P_{m}\right\|+\left\|\left(P_{m}-I\right) B\right\| \rightarrow 0 \quad \text { as } m \rightarrow \infty
$$

This means that there exists $m_{2} \geq m_{1}$ such that (2.7) holds.
Step 3. There exists $m^{*} \geq m_{2}$ such that for $m \geq m^{*}$, we have $2 \varepsilon_{m}<d$ and

$$
\begin{equation*}
\operatorname{dim} M_{2 \varepsilon_{m}}^{0}\left(P_{m}(A-B) P_{m}\right)=\operatorname{dim} P_{m} E^{0} \tag{2.8}
\end{equation*}
$$

In fact, if $\operatorname{dim} M_{2 \varepsilon_{m}}^{0}\left(P_{m}(A-B) P_{m}\right)>\operatorname{dim} P_{m} E^{0}$, there must exist $y \neq 0$ and $y \in M_{2 \varepsilon_{m}}^{0}\left(P_{m}(A-B) P_{m}\right) \cap Y_{m}$. This implies that

$$
\begin{aligned}
\left\|P_{m}(A-B) P_{m} y\right\| & \leq 2 \varepsilon_{m}\|y\| \\
\left\|P_{m}(A-B) P_{m} y\right\| & \geq 2 d\|y\| \quad(\text { by }(2.7)) .
\end{aligned}
$$

We get a contradiction. If $\operatorname{dim} M_{2 \varepsilon_{m}}^{0}\left(P_{m}(A-B) P_{m}\right)<\operatorname{dim} P_{m} E^{0}$, there must exist $y \neq 0$ and $y \in P_{m} E^{0} \cap\left(M_{2 \varepsilon_{m}}^{+}\left(P_{m}(A-B) P_{m}\right) \oplus M_{2 \varepsilon_{m}}^{-}\left(P_{m}(A-B) P_{m}\right)\right)$. This implies that

$$
\begin{aligned}
\left\|P_{m}(A-B) P_{m} y\right\| & \leq \frac{4}{3} \varepsilon_{m}\|y\| \quad(\text { by }(2.6)), \\
\left\|P_{m}(A-B) P_{m} y\right\| & \geq 2 \varepsilon_{m}\|y\|
\end{aligned}
$$

and we get a contradiction again. Thus (2.8) holds. By (2.4) we have (a).
Step 4. For $m \geq m^{*}$, we have

$$
\begin{equation*}
\operatorname{dim} M_{d}^{+}\left(P_{m}(A-B) P_{m}\right) \oplus M_{d}^{-}\left(P_{m}(A-B) P_{m}\right)=\operatorname{dim} Y_{m} . \tag{2.9}
\end{equation*}
$$

In fact, if $\operatorname{dim} M_{d}^{+}\left(P_{m}(A-B) P_{m}\right) \oplus M_{d}^{-}\left(P_{m}(A-B) P_{m}\right)>\operatorname{dim} Y_{m}$, there must exist $y \neq 0$ and $y \in\left(M_{d}^{+}\left(P_{m}(A-B) P_{m}\right) \oplus M_{d}^{-}\left(P_{m}(A-B) P_{m}\right)\right) \cap P_{m} E^{0}$. This implies

$$
\begin{aligned}
\left\|P_{m}(A-B) P_{m} y\right\| & \geq d\|y\| \\
\left\|P_{m}(A-B) P_{m} y\right\| & \leq \frac{4}{3} \varepsilon_{m}\|y\| \quad(\text { by }(2.6))
\end{aligned}
$$

We get a contradicton. If $\operatorname{dim}\left(M_{d}^{+}\left(P_{m}(A-B) P_{m}\right) \oplus M_{d}^{-}\left(P_{m}(A-B) P_{m}\right)\right)<$ $\operatorname{dim} Y_{m}$, there must exist $y \in Y_{m} \cap M_{d}^{0}\left(P_{m}(A-B) P_{m}\right.$ and $y \neq 0$. This implies

$$
\begin{aligned}
\left\|P_{m}(A-B) P_{m} y\right\| & \geq 2 d\|y\| \quad(\text { by }(2.7)), \\
\left\|P_{m}(A-B) P_{m} Y\right\| & \leq d\|y\| .
\end{aligned}
$$

We get a contradiction again. Therefore (2.9) holds. By (2.8), (2.9) and the fact $E_{m}=Y_{m} \oplus P_{m} E^{0}$, we have (b).

Remark 2.4. (a) Since $A-B$ may not commute with P_{m}, how to compute the Morse index of $P_{m}(A-B) P_{m}$ becomes a very difficult part in applications. Theorem 2.3 shows a way to describe the behavior of the operator $P_{m}(A-B) P_{m}$.
(b) All eigenvalues of $P_{m}(A-B) P_{m}$ split into two parts for m large enough. One part falls into $(-\infty,-d] \cup[d, \infty)$ and they will stay there as $m \rightarrow \infty$. Another part falls into $\left(-2 \varepsilon_{m}, 2 \varepsilon_{m}\right)$ and they will go to 0 as $m \rightarrow \infty$.
(c) There is no eigenvalues of $P_{m}(A-B) P_{m}$ in $\left(-d,-2 \varepsilon_{m}\right] \cup\left[2 \varepsilon_{m}, d\right)$ and $\varepsilon_{m} \rightarrow 0$ as $m \rightarrow \infty$.

Remark 2.5. The idea in Theorem 2.3 and Remark 2.4 is very close to the idea of the L-index of a compact selfadjoint operator given by M. Izydorek in [16]. The author wants to thank the referee for pointing out this.

3. Periodic solutions of Hamiltonian systems

Let $S^{1}=\mathbb{R} / \mathbb{Z}, E=W^{1 / 2,2}\left(S^{1}, \mathbb{R}^{2 N}\right)$. Then E is a Hilbert space with norm $\|\cdot\|$ and inner product $\langle\cdot, \cdot\rangle$, and E consists of those $z(t)$ in $L^{2}\left(S^{1}, \mathbb{R}^{2 N}\right)$ whose Fourier series

$$
z(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos (2 \pi n t)+b_{n} \sin (2 \pi n t)\right)
$$

satisfies

$$
\|z\|^{2}=\left|a_{0}\right|^{2}+\frac{1}{2} \sum_{n=1}^{\infty} n\left(\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}\right)<\infty
$$

where $a_{j}, b_{j} \in \mathbb{R}^{2 N}$. For a given continuous 1-periodic and symmetric matrix function $B(t)$, we define

$$
\begin{equation*}
\langle A x, y\rangle=\int_{0}^{1}(-J \dot{x}, y) d t, \quad\langle B x, y\rangle=\int_{0}^{1}(B(t) x, y) d t \tag{3.1}
\end{equation*}
$$

on E. Then A satisfies (A) in Section 2 with $\operatorname{ker} A=\mathbb{R}^{2 N}$, and B is a linear symmetric compact operator ([21]). For $B(t)$, by [10], [19], [21], we can define its Maslov-type index as a pair of integers $(i(B), n(B)) \in \mathbb{Z} \times\{0, \ldots, 2 N\}$. Using the Floquet theory, we have

$$
n(B)=\operatorname{dim} \operatorname{ker}(A-B)
$$

Let $B_{0}(t)$ and $B_{\infty}(t)$ be the matrix functions in (1.2) and (1.3) with the Maslov-type index $\left(i_{0}, n_{0}\right)$ and $\left(i_{\infty}, n_{\infty}\right)$, respectively. Let B_{0} and B_{∞} be operators, defined by (3.1), corresponding to $B_{0}(t)$ and $B_{\infty}(t)$. Then we have

$$
n_{0}=\operatorname{dim} \operatorname{ker}\left(A-B_{0}\right), \quad n_{\infty}=\operatorname{dim} \operatorname{ker}\left(A-B_{\infty}\right)
$$

Let $\ldots \leq \lambda_{2}^{\prime} \leq \lambda_{1}^{\prime}<0<\lambda_{1} \leq \lambda_{2} \leq \ldots$ be the eigenvalues of $A-B_{0}$, and Let $\left\{e_{j}^{\prime}\right\}$ and $\left\{e_{j}\right\}$ be the eigenvectors of $A-B_{0}$ corresponding to $\left\{\lambda_{j}^{\prime}\right\}$ and $\left\{\lambda_{j}\right\}$, respectively. For $m \geq 0$, set

$$
\begin{aligned}
E_{0} & =\operatorname{ker}\left(A-B_{0}\right) \\
E_{m} & =E_{0} \oplus \operatorname{span}\left\{e_{1}, \ldots, e_{m}\right\} \oplus \operatorname{span}\left\{e_{1}^{\prime}, \ldots, e_{m}^{\prime}\right\}
\end{aligned}
$$

and let P_{m} be the orthogonal projection from E to E_{m}. Then $\Gamma_{0}=\left\{P_{m}: m=\right.$ $1,2, \ldots\}$ is an approximation scheme with respect to A. Moreover,

$$
\left(A-B_{0}\right) P_{m}=P_{m}\left(A-B_{0}\right) \quad \text { for all } m \geq 0
$$

The following result was proved in [14].
Theorem 3.1 ([14]). For any continuous 1-periodic and symmetric matrix function $B(t)$ with the Maslov-type index $\left(i_{\infty}, n_{\infty}\right)$, there exists a $m^{*}>0$ such that for $m \geq m^{*}$ we have

$$
\begin{align*}
\operatorname{dim} M_{d}^{+}\left(P_{m}(A-B) P_{m}\right) & =m+i_{0}-i_{\infty}+n_{0}-n_{\infty} \\
\operatorname{dim} M_{d}^{-}\left(P_{m}(A-B) P_{m}\right) & =m-i_{0}+i_{\infty} \tag{3.2}\\
\operatorname{dim} M_{d}^{0}\left(P_{m}(A-B) P_{m}\right) & =n_{\infty}
\end{align*}
$$

where $d=\left\|(A-B)^{\#}\right\|^{-1} / 4$, and B is the operator, defined by (3.1), corresponding to $B(t)$.

For any $z \in E$, we define

$$
\begin{gathered}
g_{0}(z)=\int_{0}^{1} G_{0}(t, z) d t, \quad g_{\infty}(z)=\int_{0}^{1} G_{\infty}(t, z) d t \\
f(z)=\frac{1}{2}\left\langle\left(A-B_{\infty}\right) z, z\right\rangle-g_{\infty}(z)=\frac{1}{2}\left\langle\left(A-B_{0}\right) z, z\right\rangle-g_{0}(z)
\end{gathered}
$$

Then (H1) implies that $f(z) \in C^{2}(E, R)$. Looking for 1-periodic solutions of (1.1) is equivalent to looking for the critical points of f (see [23]).

For $\mathrm{m} \geq 1$, let f_{m} be the restriction of f to the subspace E_{m}. Then

$$
\begin{equation*}
f_{m}^{\prime}(z)=\left(A-B_{0}\right) z-P_{m} g_{0}^{\prime}(z) \quad \text { for all } z \in E_{m} \tag{3.3}
\end{equation*}
$$

Lemma 3.2. Assume (H 1$)$, (1.3) and $\left(\mathrm{H} 2^{+}\right)\left(\right.$or $\left.\left(\mathrm{H} 2^{-}\right)\right)$. Then there exist $m_{1}>0$ and $r_{0}>0$ independent of m such that for $m \geq m_{1}, 0$ is the only critical point of f_{m} inside $Q=\left\{z \in E_{m}:\|z\| \leq r_{0}\right\}$.

Proof. Suppose the conclusion is not true. Then for any $k \geq 1$, there exists $z_{k} \in E_{m_{k}}$ such that

$$
\begin{equation*}
f_{m_{k}}^{\prime}\left(z_{k}\right)=0, \quad z_{k} \neq 0, \quad \text { and } \quad z_{k} \rightarrow 0 \quad \text { as } k \rightarrow \infty \tag{3.4}
\end{equation*}
$$

Without lossing generality, suppose $\left\|z_{k}\right\| \leq 1$ for $k \geq 1$. By the special structure of $\Gamma_{0}=\left\{P_{m}: m=1,2, \ldots\right\}$,

$$
E_{m}=\operatorname{ker}\left(A-B_{0}\right) \oplus\left(\operatorname{Im}\left(A-B_{0}\right) \cap E_{m}\right)
$$

Write $z_{k}=x_{k}+y_{k} \in \operatorname{ker}\left(A-B_{0}\right) \oplus\left(\operatorname{Im}\left(A-B_{0}\right) \cap E_{m_{k}}\right)$. Then $x_{k} \rightarrow 0, y_{k} \rightarrow 0$ as $k \rightarrow \infty$, and by (3.3)

$$
\begin{equation*}
\left(A-B_{0}\right) y_{k}=P_{m} g_{0}^{\prime}\left(z_{k}\right) \tag{3.5}
\end{equation*}
$$

By (1.3) and (1.4), we have $a_{1}>0$ such that

$$
\left|G_{0}^{\prime}(t, z)\right| \leq a_{1}\|z\|^{\beta_{0}} \quad \text { for all }(t, z) \in[0,1] \times \mathbb{R}^{2 N}
$$

This implies that there exists $a_{2}>0$ such that

$$
\begin{equation*}
\left\|g_{0}^{\prime}(z)\right\| \leq a_{2}\|z\|^{\beta_{0}} \quad \text { for all } z \in E \tag{3.6}
\end{equation*}
$$

By (3.5) and (3.6), we have $a_{3}>0$ such that

$$
\left\|y_{k}\right\| \leq a_{3}\left(\left\|x_{k}\right\|+\left\|y_{k}\right\|\right)^{\beta_{0}}
$$

This implies that for k large enough

$$
\begin{equation*}
\left\|y_{k}\right\| \leq\left\|x_{k}\right\|, \quad\left\|y_{k}\right\| \leq a_{3} 2^{\beta_{0}}\left\|x_{k}\right\|^{\beta_{0}} \tag{3.7}
\end{equation*}
$$

By (3.5)-(3.7),

$$
\begin{equation*}
\left|\left\langle g_{0}^{\prime}\left(z_{k}\right), z_{k}\right\rangle\right|=\left|\left\langle g_{0}^{\prime}\left(z_{k}\right), y_{k}\right\rangle\right| \leq a_{2}\left\|z_{k}\right\|^{\beta_{0}}\left\|y_{k}\right\| \leq a_{2} a_{3} 2^{2 \beta_{0}}\left\|x_{k}\right\|^{2 \beta_{0}} \tag{3.8}
\end{equation*}
$$

On the other hand, for $L_{0}>0$ given in $\left(H 2^{ \pm}\right)$, denote

$$
\Omega=\left\{t \in[0,1]:\left|z_{k}(t)\right| \leq L_{0}\right\}, \quad \Omega^{\perp}=[0,1] \backslash \Omega
$$

Then for α_{0} given in $\left(\mathrm{H} 2^{ \pm}\right)$,

$$
a_{4}\left\|z_{k}\right\|^{2 \alpha_{0}} \geq \int_{0}^{1}\left|z_{k}\right|^{2 \alpha_{0}} d t \geq \int_{\Omega^{\perp}}\left|z_{k}(t)\right|^{2 \alpha_{0}} d t \geq L_{0}^{2 \alpha_{0}} \operatorname{meas}\left(\Omega^{\perp}\right)
$$

This implies

$$
\begin{equation*}
\operatorname{meas}\left(\Omega^{\perp}\right) \leq a_{5}\left\|z_{k}\right\|^{2 \alpha_{0}} \tag{3.9}
\end{equation*}
$$

where $a_{5}>0$. By $\left(\mathrm{H}^{ \pm}\right)$, we have

$$
\begin{align*}
\left|\left\langle g_{0}^{\prime}\left(z_{k}\right), z_{k}\right\rangle\right|= & \left|\int_{0}^{1} \pm\left(G_{0}^{\prime}\left(t, z_{k}\right), z_{k}\right) d t\right| \tag{3.10}\\
\geq & \left|\int_{\Omega^{\prime}} \pm\left(G_{0}^{\prime}\left(t, z_{k}\right), z_{k}\right) d t\right|-\left|\int_{\Omega^{\perp}}\right| G_{0}^{\prime}\left(t, z_{k}\right)| | z_{k}|d t| \\
\geq & \int_{\Omega^{\prime}} c_{1}\left|z_{k}(t)\right|^{\alpha_{0}} d t-\int_{\Omega^{\perp}}\left|G_{0}^{\prime}\left(t, z_{k}\right)\right|\left|y_{k}\right| d t \\
& -\int_{\Omega^{\perp}}\left|G_{0}^{\prime}\left(t, z_{k}\right)\right|\left|x_{k}\right| d t .
\end{align*}
$$

Using the same argument as (3.6) and (3.8), we have

$$
\begin{align*}
\int_{\Omega^{\perp}}\left|G_{0}^{\prime}\left(t, z_{k}\right)\right|\left|y_{k}\right| d t & \leq \int_{0}^{1} a_{1}\left|z_{k}\right|^{\beta_{0}}\left|y_{k}\right| d t \tag{3.11}\\
& \leq a_{1}\left(\int_{0}^{1}\left|z_{k}\right|^{2 \beta_{0}} d t\right)^{1 / 2}\left(\int_{0}^{1}\left|y_{k}\right|^{2} d t\right)^{1 / 2} \\
& \leq a_{6}\left\|z_{k}\right\|^{\beta_{0}}\left\|y_{k}\right\| \leq a_{7}\left\|x_{k}\right\|^{2 \beta_{0}}
\end{align*}
$$

Notice that there exist $\lambda_{1}, \lambda_{2}>0$ such that for any $x \in \operatorname{ker}\left(A-B_{0}\right)$,

$$
\begin{equation*}
\lambda_{1}\|x\| \leq|x(t)| \leq \lambda_{2}\|x\| \quad \text { for all } t \in[0,1] . \tag{3.12}
\end{equation*}
$$

By (1.3) and the fact that $\alpha_{0}>2$, we have

$$
\left|G_{0}^{\prime}(t, z)\right| \leq a_{8}+a_{9}|z|^{\alpha_{0}}, \quad \text { for all }(t, z) \in[0,1] \times \mathbb{R}^{2 N}
$$

Combining this with (3.7), (3.9) and (3.12) yields
(3.13) $\int_{\Omega^{\perp}}\left|G_{0}^{\prime}\left(t, z_{k}\right)\right|\left|x_{k}\right| d t \leq \int_{\Omega^{\perp}} a_{8}\left|x_{k}\right| d t+\int_{\Omega^{\perp}} a_{9}\left|z_{k}\right|^{\alpha_{0}}\left|x_{k}\right| d t$

$$
\begin{aligned}
& \leq a_{8} \lambda_{2}\left\|x_{k}\right\| \operatorname{meas}\left(\Omega^{\perp}\right)+\int_{0}^{1} a_{9}\left|z_{k}\right|^{\alpha_{0}}\left|x_{k}\right| d t \\
& \leq a_{8} \lambda_{2} a_{5}\left\|x_{k}\right\|^{2 \alpha_{0}+1}+a_{10}\left\|x_{k}\right\|^{\alpha_{0}+1} \leq a_{11}\left\|x_{k}\right\|^{\alpha_{0}+1}
\end{aligned}
$$

By (3.7) and (3.12), we have

$$
\begin{aligned}
\int_{\Omega}\left(z_{k}, x_{k}\right) d t & =\int_{\Omega}\left|x_{k}\right|^{2} d t+\int_{\Omega}\left(y_{k}, x_{k}\right) d t \\
& \geq \lambda_{1}^{2}\left\|x_{k}\right\|^{2} \operatorname{meas}(\Omega)-\int_{0}^{1}\left|y_{k} \| x_{k}\right| d t \\
& \geq \lambda_{1}^{2}\left\|x_{k}\right\|^{2} \operatorname{meas}(\Omega)-a_{12}\left\|x_{k}\right\|^{\beta_{0}+1}
\end{aligned}
$$

Since $\beta_{0}+1>2$ and $\left\|z_{k}\right\| \rightarrow 0$ as $k \rightarrow \infty$, by (3.9) there exists $k^{*}>0$ such that for $k \geq k^{*}$

$$
\operatorname{meas}\left(\Omega^{\perp}\right) \leq \frac{1}{2}, \quad\left\|x_{k}\right\|^{\beta_{0}-1} \leq \frac{\lambda_{1}^{2}}{4 a_{12}}
$$

This implies that

$$
\begin{equation*}
\int_{\Omega}\left(z_{k}, x_{k}\right) d t \geq \frac{\lambda_{1}^{2}}{4}\left\|x_{k}\right\|^{2} \tag{3.14}
\end{equation*}
$$

Since $\alpha_{0}>1$, we have

$$
\begin{aligned}
\int_{\Omega}\left(z_{k}, x_{k}\right) d t & \leq\left(\int_{\Omega}\left|z_{k}\right|^{\alpha_{0}} d t\right)^{1 / \alpha_{0}}\left(\int_{\Omega}\left|x_{k}\right|^{\alpha_{0} /\left(\alpha_{0}-1\right)} d t\right)^{\left(\alpha_{0}-1\right) / \alpha_{0}} \\
& \leq a_{13}\left(\int_{\Omega}\left|z_{k}\right|^{\alpha_{0}} d t\right)^{1 / \alpha_{0}}\left\|x_{k}\right\|
\end{aligned}
$$

Combing this with (3.14), we have

$$
\begin{equation*}
\int_{\Omega}\left|z_{k}\right|^{\alpha_{0}} d t \geq a_{14}\left\|x_{k}\right\|^{\alpha_{0}} \tag{3.15}
\end{equation*}
$$

By (3.8), (3.10), (3.11), (3.13) and (3.15), we have

$$
\begin{equation*}
c_{1} a_{14}\left\|x_{k}\right\|^{\alpha_{0}} \leq a_{2} a_{3} 2^{2 \beta^{0}}\left\|x_{k}\right\|^{2 \beta_{0}}+a_{7}\left\|x_{k}\right\|^{2 \beta_{0}}+a_{11}\left\|x_{k}\right\|^{\alpha_{0}+1} \tag{3.16}
\end{equation*}
$$

Since all the constants $c_{1}, a_{1}, \ldots, a_{14}$ are independent of $k, \alpha_{0}<2 \beta_{0}$ and $x_{k} \rightarrow$ 0 as $k \rightarrow \infty$, we get a contradiction from (3.16). Therefore the conclusion of Lemma 3.2 is true.

For $m \geq 1$, let η_{m} be the gradient flow generated by

$$
\begin{equation*}
\frac{d z}{d t}=-\left(A-B_{0}\right) z+P_{m} g_{0}^{\prime}(z) \quad \text { on } E_{m} \tag{3.17}
\end{equation*}
$$

Lemma 3.3. Assume (H1), (1.3) and ($\mathrm{H} 2^{ \pm}$). Then there exists $m_{2}>0$ such that for $m \geq m_{2}$, there exists an isolating block D_{m} of η_{m} satisfying the following properties
(a) 0 is the only critical point of f_{m} inside D_{m},
(b) $I\left(\eta, D_{m}\right)=t^{m}$ if $\left(\mathrm{H} 2^{-}\right)$holds,
(c) $I\left(\eta, D_{m}\right)=t^{m+n_{0}}$ if $\left(\mathrm{H}^{+}\right)$holds.

Proof. By Lemma 3.2, for $m \geq m_{1}, f_{m}$ has only one critical point 0 inside Q, where $Q=\left\{z \in E_{m}:\|z\| \leq r_{0}\right\}$. Set

$$
\begin{aligned}
V_{m}^{ \pm} & =\left\{y^{ \pm} \in P_{m} M^{ \pm}\left(A-B_{0}\right):\left\|y^{ \pm}\right\| \leq r_{ \pm}\right\} \\
W & =\left\{x \in M^{0}\left(A-B_{0}\right):\|x\| \leq r_{w}\right\}
\end{aligned}
$$

We want to show that there are $r_{+}, r_{-}, r_{w}>0$, which do not depend on m, such that $D_{m}=V_{m}^{+} \times V_{m}^{-} \times W \subset Q$ is an isolating block of the gradient flow η_{m} generated by (3.17). Denote

$$
\begin{gather*}
\rho_{ \pm}=\inf _{\left\|y^{ \pm}\right\|=1}\left|\left\langle y^{ \pm},\left(A-B_{0}\right) y^{ \pm}\right\rangle\right|, \quad y^{ \pm} \in M^{ \pm}\left(A-B_{0}\right), \tag{3.18}\\
\rho=\min \left(\rho_{+}, \rho_{-}\right)>0 .
\end{gather*}
$$

For $z=z^{+}+z^{-}+z^{0} \in \partial V_{m}^{+} \times V_{m}^{-} \times W$, by (3.6) and (3.17),

$$
\begin{align*}
\left.\left\langle\frac{d z}{d t}, z^{+}\right\rangle\right|_{t=0} & =-\left\langle\left(A-B_{0}\right) z^{+}, z^{+}\right\rangle+\left\langle g_{0}^{\prime}(z), z^{+}\right\rangle \tag{3.19}\\
& \leq-\rho\left\|z^{+}\right\|^{2}+a_{2}\|z\|^{\beta_{0}}\left\|z^{+}\right\| \\
& =-\rho\left\|z^{+}\right\|\left(\left\|z^{+}\right\|-\left(\frac{a_{2}}{\rho}\right)\|z\|^{\beta_{0}}\right) \\
& \leq-\rho r_{+}\left(r_{+}-\left(\frac{a_{2}}{\rho}\right)\left(r_{+}+r_{-}+r_{w}\right)^{\beta_{0}}\right) \\
& \leq-\rho r_{+}\left(r_{+}-\left(\frac{a_{2}}{\rho}\right) 3^{\beta_{0}} r_{w}^{\beta_{0}}\right) \leq-\rho r_{+}\left(\frac{1}{2} r_{+}\right)<0
\end{align*}
$$

provided

$$
\begin{equation*}
r_{+}=r_{-} \leq r_{w}, \quad r_{+}=2\left(a_{2} / \rho\right) 3^{\beta_{0}} r_{w}^{\beta_{0}} . \tag{3.20}
\end{equation*}
$$

Similarly, for $z=z^{+}+z^{-}+z^{0} \in V_{m}^{+} \times \partial V_{m}^{-} \times W$

$$
\begin{align*}
\left.\left\langle\frac{d z}{d t}, z^{-}\right\rangle\right|_{t=0} & =-\left\langle\left(A-B_{0}\right) z^{-}, z^{-}\right\rangle+\left\langle g_{0}^{\prime}(z), z^{-}\right\rangle \tag{3.21}\\
& \geq \rho\left\|z^{-}\right\|^{2}-a_{2}\|z\|^{\beta_{0}}\left\|z^{-}\right\| \geq \rho r_{-}\left(r_{-} / 2\right)>0
\end{align*}
$$

provided (3.20) holds.
For $z=z^{+}+z^{-}+z^{0} \in V_{m}^{+} \times V_{m}^{-} \times \partial W$, denote $\Omega=\left\{t \in[0,1]:|z(t)| \leq L_{0}\right\}$, $\Omega^{\perp}=[0,1] \backslash \Omega$.

Similar to the proof of (3.9), we have

$$
\begin{equation*}
\operatorname{meas}\left(\Omega^{\perp}\right) \leq a_{5}\|z\|^{2 \alpha_{0}} \tag{3.22}
\end{equation*}
$$

Case 1. $\left(\mathrm{H} 2^{+}\right)$holds. By (3.20) and the same arguments as those in the proof (3.10), (3.11), (3.13) and (3.15), we have

$$
\begin{align*}
\left.\left\langle\frac{d z}{d t}, z^{0}\right\rangle\right|_{t=0}= & \int_{0}^{1}\left(G_{0}^{\prime}(t, z), z^{0}\right) d t \tag{3.23}\\
= & \int_{\Omega}\left(G_{0}^{\prime}(t, z), z\right)-\int_{\Omega}\left(G_{0}^{\prime}(t, z), z^{+}+z^{-}\right) d t \\
& +\int_{\Omega^{\perp}}\left(G_{0}^{\prime}(t, z), z^{0}\right) d t \\
\geq & \int_{\Omega} c_{1}|z|^{\alpha_{0}} d t-\int_{0}^{1}\left|G_{0}^{\prime}(t, z) \| z^{+}+z^{-}\right| d t
\end{align*}
$$

$$
\begin{aligned}
& -\int_{\Omega^{\perp}}\left|G_{0}^{\prime}(t, z) \| z^{0}\right| d t \\
\geq & b_{1}\left\|z^{0}\right\|^{\alpha_{0}}-b_{2}\left\|z^{0}\right\|^{2 \beta_{0}}-b_{3}\left\|z^{0}\right\|^{\alpha_{0}+1} \\
= & r_{w}^{\alpha_{0}}\left(b_{1}-b_{2} r_{w}^{2 \beta_{0}-\alpha_{0}}-b_{3} r_{w}\right) \geq \frac{1}{2} b_{1} r_{w}^{\alpha_{0}}>0
\end{aligned}
$$

provided

$$
\begin{equation*}
b_{1} \geq 2\left(b_{2} r_{w}^{2 \beta_{0}-\alpha_{0}}+b_{3} r_{w}\right) \tag{3.24}
\end{equation*}
$$

Notice that all constants $a_{2}, b_{1}, b_{2}, b_{3}>0$ in (3.20) and (3.24) are independent of m. Since $\beta_{0}>1$ and $\alpha_{0}<2 \beta_{0}$, we can choose $r_{+}, r_{-}, r_{w}>0$ such that (3.20) and (3.24) holds, and $D_{m} \subset \operatorname{int}(Q)$. By (3.19), (3.21) and (3.23), D_{m} is an isolating block with $D_{m}^{-}=V_{m}^{+} \times \partial V_{m}^{-} \times W \cup V_{m}^{+} \times V_{m}^{-} \times \partial W$. Therefore

$$
\begin{equation*}
I\left(\eta_{m}, D_{m}\right)=t^{\operatorname{dim}\left(P_{m} M^{-}\left(A-B_{0}\right) \oplus M^{0}\left(A-B_{0}\right)\right)}=t^{m+n_{0}} \tag{3.25}
\end{equation*}
$$

Case 2. (H2 ${ }^{-}$) holds. Using the same arguments as (3.23), we have

$$
\begin{aligned}
\left.\left\langle\frac{d z}{d t}, z^{0}\right\rangle\right|_{t=0}= & \int_{0}^{1}\left(G_{0}^{\prime}(t, z), z^{0}\right) d t \\
\leq & -\int_{\Omega} c_{1}|z|^{\alpha_{0}} d t+\int_{0}^{1}\left|G_{0}^{\prime}(t, z) \| z^{+}+z^{-}\right| d t \\
& +\int_{\Omega^{\perp}}\left|G_{0}^{\prime}(t, z) \| z^{0}\right| d t \\
\leq & -r_{w}^{\alpha_{0}}\left(b_{1}-b_{2} r_{w}^{2 \beta_{0}-\alpha_{0}}-b_{3} r_{w}\right) \leq-\frac{1}{2} b_{1} r_{w}^{\alpha_{0}}<0
\end{aligned}
$$

provided (3.24) holds. Therefore we can choose $r_{+}, r_{-}, r_{w}>0$ such that $D_{m} \subset Q$ is an islating block with $D_{m}^{-}=V_{m}^{+} \times \partial V_{m}^{-} \times W$. Then we have

$$
\begin{equation*}
I\left(\eta_{m}, D_{m}\right)=t^{\operatorname{dim}\left(P_{m} M^{-}\left(A-B_{0}\right)\right)}=t^{m} \tag{3.26}
\end{equation*}
$$

Lemma 3.4. Assume $(\mathrm{H} 1)$ and $\left(\mathrm{H}^{ \pm}\right)$. Then there exists $m_{3}>0$ such that, for $m \geq m_{3}$, there exists an isolating block $D_{\infty m}$ of η_{m} satisfying the following properties:
(a) $D_{\infty m}$ is uniformly bounded by a constant independent of m,
(b) $I\left(\eta_{m}, D_{\infty m}\right)=t^{m-i_{0}+i_{\infty}}$ if ($\left.\mathrm{H} 3^{-}\right) h o l d s$,
(c) $I\left(\eta_{m}, D_{\infty m}\right)=t^{m-i_{0}+i_{\infty}+n_{\infty}}$ if $\left(\mathrm{H}^{+}\right)$holds.

Proof. By Theorem 3.1 and Theorem 2.3, there exists $m^{*}>0$ such that for $m \geq m^{*}$ and $d=\left\|\left(A-B_{\infty}\right)^{\#}\right\|^{-1} / 4$, the relation (3.2) holds and $E_{m}=M_{d}^{+}\left(P_{m}\left(A-B_{\infty}\right) P_{m}\right) \oplus M_{d}^{-}\left(P_{m}\left(A-B_{\infty}\right) P_{m}\right) \oplus M_{2 \varepsilon_{m}}^{0}\left(P_{m}\left(A-B_{\infty}\right) P_{m}\right)$,
where ε_{m} is given by (2.3) for $B=B_{\infty}$, and $\varepsilon_{m} \rightarrow 0$ as $m \rightarrow \infty$. Denote

$$
\begin{aligned}
U_{m}^{ \pm} & =\left\{y^{ \pm} \in M_{d}^{ \pm}\left(P_{m}\left(A-B_{\infty}\right) P_{m}\right):\left\|y^{ \pm}\right\| \leq R_{ \pm}\right\} \\
W_{\infty} & =\left\{x \in M_{2 \varepsilon_{m}}^{0}\left(P_{m}\left(A-B_{\infty}\right) P_{m}\right):\|x\| \leq R_{w}\right\}
\end{aligned}
$$

We want to show that there are $R_{+}, R_{-}, R_{w}>0$, which do not depend on m, such that $D_{\infty m}=U_{m}^{+} \times U_{m}^{-} \times W_{\infty}$ is an isolating block of the gradient η_{m} generated by (3.17), which is the same as

$$
\begin{equation*}
\frac{d z}{d t}=-P_{m}\left(A-B_{\infty}\right) P_{m} z+P_{m} g_{\infty}^{\prime}(z) \quad \text { on } E_{m} \tag{3.27}
\end{equation*}
$$

By $\left(\mathrm{H}^{ \pm}\right)$, there exist $M>0$ such that

$$
\begin{equation*}
\left|G_{\infty}^{\prime}(t, z)\right| \leq M \quad \text { for all }(t, z) \in[0,1] \times \mathbb{R}^{2 N} \tag{3.28}
\end{equation*}
$$

This implies

$$
\begin{equation*}
\left\|g_{\infty}^{\prime}(z)\right\| \leq M \quad \text { for all } z \in E \tag{3.29}
\end{equation*}
$$

For $\lambda_{0} \geq 2$, let

$$
\begin{equation*}
R_{+}=R_{-}=\frac{\lambda_{0} M}{d}>0 \tag{3.30}
\end{equation*}
$$

For $z=z^{+}+z^{-}+z^{0} \in \partial U_{m}^{+} \times U_{m}^{-} \times W_{\infty}$, by (3.27), (3.29) and (3.30),

$$
\begin{align*}
\left.\left\langle\frac{d z}{d t}, z^{+}\right\rangle\right|_{t=0} & =-\left\langle P_{m}\left(A-B_{\infty}\right) P_{m} z^{+}, z^{+}\right\rangle+\left\langle g_{\infty}^{\prime}(z), z^{+}\right\rangle \tag{3.31}\\
& \leq-d\left\|z^{+}\right\|^{2}+M\left\|z^{+}\right\|=-d R_{+}^{2}+M R_{+} \\
& \leq \frac{-\lambda_{0}^{2} M^{2}+\lambda_{0} M^{2}}{d}<0
\end{align*}
$$

Similarly, for $z=z^{+}+z^{-}+z^{0} \in U_{m}^{+} \times \partial U_{m}^{-} \times W_{\infty}$,

$$
\begin{align*}
\left.\left\langle\frac{d z}{d t}, z^{-}\right\rangle\right|_{t=0} & =-\left\langle P_{m}\left(A-B_{\infty}\right) P_{m} z^{-}, z^{-}\right\rangle+\left\langle g_{\infty}^{\prime}(z), z^{-}\right\rangle \tag{3.32}\\
& \geq d R_{-}^{2}-M R_{-} \geq \frac{\lambda_{0}^{2} M^{2}-\lambda_{0} M^{2}}{d}>0 .
\end{align*}
$$

Notice that there exist $\lambda_{3}>0, \lambda_{4}>0$ such that for any $x \in \operatorname{ker}\left(A-B_{\infty}\right)$

$$
\begin{equation*}
\lambda_{3}\|x\| \leq|x(t)| \leq \lambda_{4}\|x\| \quad \text { for all } t \in[0,1] \tag{3.33}
\end{equation*}
$$

For any $z^{0} \in M_{2 \varepsilon_{m}}^{0}\left(P_{m}\left(A-B_{\infty}\right) P_{m}\right)$, according to Step 2 in the proof of Theorem 2.3, we can write $z^{0}=y+P_{m} x \in E_{m}=Y_{m} \oplus P_{m}\left(\operatorname{ker}\left(A-B_{\infty}\right)\right)$. By (2.6) and (2.7), we have

$$
\begin{aligned}
\left\|P_{m}\left(A-B_{\infty}\right) P_{m} z^{0}\right\| & \leq 2 \varepsilon_{m}\left\|z^{0}\right\|, \\
\left\|P_{m}\left(A-B_{\infty}\right) P_{m} z^{0}\right\| & \geq\left\|P_{m}\left(A-B_{\infty}\right) P_{m} y\right\|-\left\|P_{m}\left(A-B_{\infty}\right) P_{m} x\right\| \\
& \geq 2 d\|y\|-\frac{4}{3} \varepsilon_{m}\left\|P_{m} x\right\| \geq 2 d\|y\|-\frac{4}{3} \varepsilon_{m}\left\|z^{0}\right\| .
\end{aligned}
$$

This implies that

$$
\begin{align*}
& \|y\| \leq\left(\frac{5 \varepsilon_{m}}{3 d}\right)\left\|z^{0}\right\| \tag{3.34}\\
& \|x\| \geq\left\|P_{m} x\right\| \geq\left\|z^{0}\right\|-\|y\|=\left(1-\frac{5 \varepsilon_{m}}{3 d}\right)\left\|z^{0}\right\| \\
& \left\|z^{0}\right\| \geq\left\|P_{m} x\right\| \geq\|x\|-\left\|\left(I-P_{m}\right) P_{B_{\infty}} x\right\| \geq\left(1-\varepsilon_{m}\right)\|x\| \tag{3.35}
\end{align*}
$$

Since $\varepsilon_{m} \rightarrow 0$ as $m \rightarrow \infty$, there exists $m_{1}^{*} \geq m^{*}$ such that for $m \geq m_{1}^{*}$,

$$
\begin{equation*}
1-\varepsilon_{m} \geq \frac{1}{2}, \quad 1-\frac{5 \varepsilon_{m}}{3 d} \geq \frac{1}{2} \tag{3.36}
\end{equation*}
$$

For $m \geq m_{1}^{*}$ and $z^{0} \in \partial W_{\infty}$, set

$$
\begin{gather*}
\Delta_{1}=\left\{t:\left|z^{0}(t)\right| \leq \frac{\lambda_{3}}{4}\left\|z^{0}\right\|\right\}, \quad \Delta_{2}=\left\{t:\left|z^{0}(t)\right| \geq 4 \lambda_{4}\left\|z^{0}\right\|\right\} \\
\Delta=[0,1] \backslash\left(\Delta_{1} \cup \Delta_{2}\right) \tag{3.37}
\end{gather*}
$$

By (3.33)-(3.36), we have

$$
\begin{aligned}
\int_{\Delta_{1}}\left|z^{0}\right| d t & \leq \frac{\lambda_{3}}{4}\left\|z^{0}\right\| \operatorname{meas}\left(\Delta_{1}\right) \\
\int_{\Delta_{1}}\left|z^{0}\right| d t & =\int_{\Delta_{1}}\left|y+P_{m} x\right| d t=\int_{\Delta_{1}}\left|x+y-\left(I-P_{m}\right) x\right| d t \\
& \geq \int_{\Delta_{1}}|x(t)| d t-\|y\|-\left\|\left(I-P_{m}\right) P_{B_{\infty}} x\right\| \\
& \geq \lambda_{3}\|x\| \operatorname{meas}\left(\Delta_{1}\right)-\frac{5 \varepsilon_{m}}{3 d}\left\|z^{0}\right\|-2 \varepsilon_{m}\left\|z^{0}\right\| \\
& \geq \frac{\lambda_{3}}{2}\left\|z^{0}\right\| \operatorname{meas}\left(\Delta_{1}\right)-\left(\frac{5}{3 d}+2\right) \varepsilon_{m}\left\|z^{0}\right\| .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\operatorname{meas}\left(\Delta_{1}\right) \leq \frac{4}{\lambda_{3}}\left(\frac{5}{3 d}+2\right) \varepsilon_{m}=b_{4} \varepsilon_{m} \tag{3.38}
\end{equation*}
$$

By (3.33)-(3.36), we also have

$$
\begin{aligned}
\int_{\Delta_{2}}\left|z^{0}\right| d t & \geq 4 \lambda_{4}\left\|z^{0}\right\| \operatorname{meas}\left(\Delta_{2}\right) \\
\int_{\Delta_{2}}\left|z^{0}\right| d t & \leq \int_{\Delta_{2}}\left|x+y-\left(I-P_{m}\right) x\right| d t \\
& \leq \int_{\Delta_{2}}|x(t)| d t+\|y\|+\left\|\left(I-P_{m}\right) x\right\| \\
& \leq \lambda_{4}\|x\| \operatorname{meas}\left(\Delta_{2}\right)+\|y\|+\left\|\left(I-P_{m}\right) P_{B_{\infty}}\right\|\|x\| \\
& \leq 2 \lambda_{4}\left\|z^{0}\right\| \operatorname{meas}\left(\Delta_{2}\right)+\left(\frac{5 \varepsilon_{m}}{3 d}+2 \varepsilon_{m}\right)\left\|z^{0}\right\| .
\end{aligned}
$$

This implies

$$
\begin{equation*}
\operatorname{meas}\left(\Delta_{2}\right) \leq \frac{1}{2 \lambda_{4}}\left(\frac{5}{3 d}+2\right) \varepsilon_{m}=b_{5} \varepsilon_{m} \tag{3.39}
\end{equation*}
$$

For $z^{+}+z^{-} \in U_{m}^{+} \times U_{m}^{-}, \beta>1$ and $k>0$, let

$$
\begin{equation*}
\Omega_{k}=\left\{t \in[0,1]:\left|z^{+}+z^{-}\right| \leq k\right\}, \quad \Omega_{k}^{\perp}=[0,1] \backslash \Omega_{k} . \tag{3.40}
\end{equation*}
$$

Then we have

$$
\begin{aligned}
& \int_{0}^{1}\left|z^{+}+z^{-}\right|^{\beta} d t \geq \int_{\Omega_{k}^{\perp}}\left|z^{+}+z^{-}\right|^{\beta} d t \geq k^{\beta} \operatorname{meas}\left(\Omega_{k}^{\perp}\right), \\
& \int_{0}^{1}\left|z^{+}+z^{-}\right|^{\beta} d t \leq c_{\beta}\left\|z^{+}+z^{-}\right\|^{\beta} \leq c_{\beta}\left(R_{+}+R_{-}\right)^{\beta},
\end{aligned}
$$

where c_{β} is the embedding constant for $E \subset L^{\beta}\left(S^{1}, \mathbb{R}^{2 N}\right)$. This implies

$$
\begin{equation*}
\operatorname{meas}\left(\Omega_{k}^{\perp}\right) \leq \frac{c_{\beta}^{\beta}\left|R_{+}+R_{-}\right|^{\beta}}{k^{\beta}} \tag{3.41}
\end{equation*}
$$

Case 1. $\left(\mathrm{H}^{+}\right)$holds, i.e. for $|z| \geq L_{\infty}$,

$$
\left(G_{\infty}^{\prime}(t, z), z\right) \geq \frac{c_{3}}{|z|^{\delta}}, \quad\left|G_{\infty}^{\prime}(t, z)\right||z| \leq c_{4}\left|\left(G_{\infty}^{\prime}(t, z), z\right)\right|
$$

Choose

$$
\begin{equation*}
R_{w}=\frac{4\left(4 c_{4}+1\right)}{\lambda_{3}} k \tag{3.42}
\end{equation*}
$$

with $k>0$ being determined later.
For $z=z^{+}+z^{-}+z^{0} \in U_{m}^{+} \times U_{m}^{-} \times \partial W_{\infty}$, Let Δ and Ω_{k} be given by (3.37) and (3.40). For any $t \in \Delta \cap \Omega_{k}$ and $k \geq L_{\infty} /\left(2 c_{4}\right)$, we have

$$
\begin{align*}
|z(t)| & \geq\left|z^{0}(t)\right|-\left|z^{+}(t)+z^{-}(t)\right| \geq \frac{\lambda_{3}}{4}\left\|z^{0}\right\|-k \tag{3.43}\\
& =\frac{\lambda_{3}}{4} R_{w}-k=4 c_{4} k>2 c_{4} k \geq L_{\infty}, \\
|z(t)| & \leq\left|z^{0}(t)\right|+\left|z^{+}+z^{-}\right| \leq 4 \lambda_{4}\left\|z^{0}\right\|+k \tag{3.44}\\
& =\left(\frac{16 \lambda_{4}\left(4 c_{4}+1\right)}{\lambda_{3}}+1\right) k=b_{6} k .
\end{align*}
$$

By (3.37)-(3.41), we can choose $k_{0} \geq L_{\infty} /\left(2 c_{4}\right)$ and $m_{2}^{*} \geq m_{1}^{*}$ such that for $\mathrm{k} \geq k_{0}$ and $m \geq m_{2}^{*}$,

$$
\begin{equation*}
\operatorname{meas}\left(\Omega_{k} \cap \Delta\right) \geq 1 / 2 \tag{3.45}
\end{equation*}
$$

Now by $\left(\mathrm{H} 3^{+}\right),(3.27),(3.28)$ and (3.37)-(3.45), we have

$$
\begin{align*}
\left.\left\langle\frac{d z}{d t}, z^{0}\right\rangle\right|_{t=0}= & \int_{0}^{1}\left(G_{\infty}^{\prime}(t, z), z^{0}\right) d t-\left\langle P_{m}\left(A-B_{\infty}\right) P_{m} z^{0}, z^{0}\right\rangle \tag{3.46}\\
\geq & \int_{\Delta}\left(G_{\infty}^{\prime}(t, z), z^{0}\right) d t-\int_{\Delta_{1} \cup \Delta_{2}} M\left|z^{0}\right| d t-2 \varepsilon_{m}\left\|z^{0}\right\|^{2} \\
\geq & \int_{\Delta \cap \Omega_{k}}\left(G_{\infty}^{\prime}(t, z), z^{0}\right) d t-\int_{\Delta \cap \Omega_{k}^{\perp}} M\left|z^{0}\right| d t \\
& -M\left\|z^{0}\right\|\left(\operatorname{meas}\left(\Delta_{1} \cup \Delta_{2}\right)\right)^{1 / 2}-2 \varepsilon_{m}\left\|z^{0}\right\|^{2} \\
\geq & \int_{\Delta \cap \Omega_{k}}\left(\left(G_{\infty}^{\prime}(t, z), z\right)-k\left|G_{\infty}^{\prime}(t, z)\right|\right) d t \\
& -M 4 \lambda_{4}\left\|z^{0}\right\| \operatorname{meas}\left(\Omega_{k}^{\perp}\right) \\
& -M\left(b_{4}+b_{5}\right)^{1 / 2} \varepsilon_{m}^{1 / 2}\left\|z^{0}\right\|-2 \varepsilon_{m}\left\|z^{0}\right\|^{2} \\
\geq & \int_{\Delta \cap \Omega_{k}} \frac{c_{3}}{|z|^{\delta}}\left(1-\frac{k c_{4}}{|z|}\right) d t-b_{7} R_{w} \operatorname{meas}\left(\Omega_{k}^{\perp}\right) \\
& -b_{8} R_{w} \varepsilon_{m}^{1 / 2}-2 \varepsilon_{m} R_{w}^{2} \\
\geq & \frac{c_{3}}{\left(b_{6} k\right)^{\delta}} \cdot \frac{1}{2} \operatorname{meas}\left(\Delta \cap \Omega_{k}\right)-b_{7} R_{w} \operatorname{meas}\left(\Omega_{k}^{\perp}\right) \\
& -b_{8} R_{w} \varepsilon_{m}^{1 / 2}-2 \varepsilon_{m} R_{w}^{2} \\
\geq & \frac{b_{9}}{k^{\delta}}-\frac{b_{10}}{k^{\beta-1}}-b_{8} R_{w} \varepsilon_{m}^{1 / 2}-2 \varepsilon_{m} R_{w}^{2} \\
\geq & \frac{b_{9}}{2 k^{\delta}}-b_{8} R_{w} \varepsilon_{m}^{1 / 2}-2 \varepsilon_{m} R_{w}^{2}
\end{align*}
$$

provided

$$
\begin{equation*}
\beta=\delta+2 \quad \text { and } \quad k \geq 2 b_{10} / b_{9}+k_{0} \tag{3.47}
\end{equation*}
$$

In the above arguments, all the constants M, k_{0}, b_{i} are independent of m. Therefore R_{+}, R_{-}and R_{w} are independent of m. Since $\varepsilon_{m} \rightarrow 0$ as $m \rightarrow \infty$, there exists $m_{3} \geq m_{2}^{*}$ such that for $m \geq m_{3}$

$$
\left.\left\langle\frac{d z}{d t}, z^{0}\right\rangle\right|_{t=0} \geq \frac{b_{9}}{2 k^{\delta}}-b_{8} R_{w} \varepsilon_{m}^{1 / 2}-2 \varepsilon_{m} R_{w}^{2} \geq \frac{b_{9}}{4 k^{\delta}}>0
$$

Combining this with (3.31) and (3.32) yields that $D_{\infty m}=U_{m}^{+} \times U_{m}^{-} \times W_{\infty}$ is an isolating block with $D_{\infty m}^{-}=U_{m}^{+} \times \partial U_{m}^{-} \times W_{\infty} \cup U_{m}^{+} \times U_{m}^{-} \times \partial W_{\infty} . D_{\infty m}$ is uniformly bounded by $R_{+}+R_{-}+R_{w}$, which is independent of m. Moreover, by Theorem 3.1, we have

$$
I\left(\eta_{m}, D_{\infty m}\right)=t^{\operatorname{dim}\left(M_{d}^{-}\left(P_{m}\left(A-B_{\infty}\right) P_{m}\right) \oplus M_{2 \varepsilon_{m}}^{0}\left(P_{m}\left(A-B_{\infty}\right) P_{m}\right)\right)}=t^{m-i_{0}+i_{\infty}+n_{\infty}} .
$$

Case 2. (H3 ${ }^{-}$) holds. By using similar arguments as in the proof of Case 1, we can choose R_{w} as in (3.42) and show that for $z=z^{+}+z^{-}+z^{0} \in U_{m}^{+} \times U_{m}^{-} \times \partial W_{\infty}$,

$$
\begin{aligned}
\left.\left\langle\frac{d z}{d t}, z^{0}\right\rangle\right|_{t=0}= & \int_{0}^{1}\left(G_{\infty}^{\prime}(t, z), z^{0}\right) d t-\left\langle P_{m}\left(A-B_{\infty}\right) P_{m} z^{0}, z^{0}\right\rangle \\
\leq & \int_{\Delta \cap \Omega_{k}}\left(\left(G_{\infty}^{\prime}(t, z), z\right)+k\left|G_{\infty}^{\prime}(t, z)\right|\right) d t \\
& +b_{7} R_{w} \operatorname{meas}\left(\Omega_{k}^{\perp}\right)+b_{8} R_{w} \varepsilon_{m}^{1 / 2}+2 \varepsilon_{m} R_{w}^{2} \\
\leq & -b_{9} /\left(2 k^{\delta}\right)+b_{8} R_{w} \varepsilon_{m}^{1 / 2}+2 \varepsilon_{m} R_{w}^{2} \leq-b_{9} /\left(4 k^{\delta}\right)<0
\end{aligned}
$$

provided $m \geq m_{3}$. Therefore $D_{\infty m}$ is an isolating block with $D_{\infty m}^{-}=U_{m}^{+} \times$ $\partial U_{m}^{-} \times W_{\infty}$, and

$$
I\left(\eta_{m}, D_{\infty m}\right)=t^{\operatorname{dim}\left(M_{d}^{-}\left(P_{m}(A-B) P_{m}\right)\right.}=t^{m-i_{0}+i_{\infty}} .
$$

$\left\{D_{\infty m}\right\}$ are uniformly bounded by $R_{+}+R_{-}+R_{w}$, which is independent of m. \square
Remark 3.5. (a) If we increase the constants λ_{0} in (3.30) and k in (3.47), we will get bigger R_{+}, R_{-}and R_{w}. This allows us to choose the size of $D_{\infty m}$ as large as we want.
(b) Since $A-B_{\infty}$ does not commute with P_{m}, we have to control $P_{m}(A-$ $\left.B_{\infty}\right) P_{m}$ over the possible resonance part $M_{2 \varepsilon_{m}}^{0}\left(P_{m}\left(A-B_{\infty}\right) P_{m}\right)$. All the special arguments in the proof of Lemma 3.4 are used to make sure that R_{+}, R_{-}and R_{w} are independent of m.

Proof of Theorem 1.1. Part 1. Let $m^{*}>0$ be large enough such that for $m \geq m^{*}$, the conclusions in Lemmas 3.2-3.4 hold. Let η_{m} be the gradient flow of f_{m} generated by (3.17). Then we have isolating blocks D_{m} and $D_{\infty m}$. By Remark 3.5(a), we can adjust the size of $D_{\infty m}$ such that $D_{m} \subset \operatorname{int}\left(D_{\infty m}\right)$.
(a) $\left(\mathrm{H} 2^{+}\right)$and $\left(\mathrm{H} 3^{+}\right)$hold and $i_{0}+n_{0} \neq i_{\infty}+n_{\infty}$.

In this case, Lemmas 3.3 and 3.4 implies that

$$
I\left(\eta_{m}, D_{m}\right)=t^{m+n_{0}} \neq I\left(\eta_{m}, D_{\infty m}\right)=t^{m-i_{0}+i_{\infty}+n_{\infty}} .
$$

By Theorem 2.1(a), there is a critical point z_{m} of f_{m} in $D_{\infty m} \backslash D_{m}$. By Lemma 3.2 and the fact $z_{m} \in D_{\infty m}$, we have $r_{0} \leq\left\|z_{m}\right\| \leq R_{+}+R_{-}+R_{w}$, i.e. $\left\{z_{m}\right\}$ are bounded. By standard arguments and passing to a subsequence if necessary, z_{m} converges to a critical point z^{*} of f. Moreover,

$$
r_{0} \leq\left\|z^{*}\right\| \leq R_{+}+R_{-}+R_{w}
$$

This completes the proof of (a). Cases (b)-(d) follow the same arguments as (a).
Part 2. We only prove (e). Cases (f)-(h) follow the same arguments as (e). Notice that the conditions of (e) implies the conditions of (a). According to the proof of Lemma 3.3, we can have $D_{m} \subset \operatorname{int}(Q)$, where $Q=\left\{z \in E_{m}:\|z\| \leq r_{0}\right\}$. By Part 1 , for $m \geq m^{*}$, there is a cirtical point z^{*} of f with $\left\|z^{*}\right\| \geq r_{0}$.

Let $B^{*}(t)=H^{\prime \prime}\left(t, z^{*}(t)\right)$ and B^{*} be the operator, defined by (3.1), corresponding to $B^{*}(t)$. Let $\left(i^{*}, n^{*}\right)$ be the Maslov-type index of $B^{*}(t)$. It is easy to show that

$$
\left\|f^{\prime \prime}(z)-\left(A-B^{*}\right)\right\| \rightarrow 0 \quad \text { as }\left\|z-z^{*}\right\| \rightarrow 0
$$

Let $d^{*}=\left\|\left(A-B^{*}\right)^{\#}\right\|^{-1} / 4$. Then there exists $r>0$ such that

$$
\begin{align*}
\left\|f^{\prime \prime}(z)-\left(A-B^{*}\right)\right\| & <\frac{1}{2} d^{*} \tag{3.48}\\
\text { for all } & z \in Q_{r}\left(z^{*}\right)=\left\{z \in E:\left\|z-z^{*}\right\|^{2} \leq 4 r\right\}
\end{align*}
$$

This implies that

$$
\begin{equation*}
\operatorname{dim} M^{ \pm}\left(f_{m}^{\prime \prime}(z)\right) \geq \operatorname{dim} M_{d^{*}}^{ \pm}\left(P_{m}\left(A-B^{*}\right) P_{m}\right) \tag{3.49}
\end{equation*}
$$

for all $z \in Q_{r}\left(z^{*}\right) \cap E_{m}$. For $d^{*}=\left\|\left(A-B^{*}\right)^{\#}\right\|^{-1} / 4$, there exists $m_{1}^{*} \geq m^{*}$ such that for $m \geq m_{1}^{*}$, the conclusions of Theorems 3.1 and 2.3 hold. Since $\left\|z^{*}\right\| \geq r_{0}$, we can choose $r>0$ small enough such that

$$
\begin{equation*}
Q_{r}\left(z^{*}\right) \cap D_{m}=\phi \quad \text { for } m \geq m_{1}^{*} \tag{3.50}
\end{equation*}
$$

By Remark 3.5(a), we can adjust the size of $D_{\infty m}$ such that

$$
Q_{r}\left(z^{*}\right) \cap E_{m} \subset \operatorname{int}\left(D_{\infty m}\right) \quad \text { for } m \geq m_{2}^{*} \geq m_{1}^{*}
$$

If there exists another critical point of f in $Q_{r}\left(z^{*}\right)$, we already have two nontrivial solutions of (1.1) and the proof is complete. Suppose z^{*} is the only critical point of f in $Q_{r}\left(z^{*}\right)$. For $m \geq m_{2}^{*}$, Set

$$
\begin{aligned}
C_{m}(r) & =\left\{z \in E_{m}: r<\left\|z-P_{m} z^{*}\right\|^{2} \leq 2 r\right\} \\
V_{m}(r) & =\left\{z \in E_{m}:\left\|z-P_{m} z^{*}\right\|^{2} \leq r\right\}
\end{aligned}
$$

Then there exist $m_{3}^{*} \geq m_{2}^{*}$ such that for $m \geq m_{3}^{*}$, we have

$$
\begin{gather*}
C_{m}(r) \subseteq Q_{r}\left(z^{*}\right) \cap E_{m}, \quad V_{m}(r) \subseteq Q_{r}\left(z^{*}\right) \cap E_{m} \tag{3.51}\\
\left\|f_{m}^{\prime}(z)\right\| \geq \rho \quad \text { for all } z \in C_{m}(r) \tag{3.52}
\end{gather*}
$$

where $\rho>0$ is a constant independent of m.
For otherwise, there exists $z_{m_{k}} \in C_{m_{k}}(r)$ such that $f_{m_{k}}^{\prime}\left(z_{m_{k}}\right) \rightarrow 0$ as $k \rightarrow \infty$. Since $\left\{z_{m_{k}}\right\}$ are bounded, by standard arguments and passing to a subsequence if necessary, $z_{m_{k}}$ converges to a critical point $z^{* *}$ of $f, z^{* *} \in Q_{r}\left(z^{*}\right)$ and $\| z^{* *}-$ $z^{*} \|^{2} \geq r$. This is a contradiction to the assumption that z^{*} is the only critical point of f in $Q_{r}\left(z^{*}\right)$. Thus (3.52) holds.

Let $a \in E_{m}$ with $\|a\|<\rho / 34$. Define

$$
g_{m}(z)=f_{m}(z)+\left\langle a, z-P_{m} z^{*}\right\rangle h\left(\left\|z-P_{m} z^{*}\right\|^{2}\right) \quad \text { on } E_{m},
$$

where $h:[0, \infty) \rightarrow[0,1]$ is a smooth function satisfies

$$
\begin{gathered}
\left|h^{\prime}(s)\right| \leq 4 / r \quad \text { for all } s \in[0, \infty) \\
h(s)=0 \quad \text { for } s \geq 2 r, \quad h(s)=1 \quad \text { for } s \leq 3 r / 2
\end{gathered}
$$

Then we have

$$
\begin{gather*}
g_{m}^{\prime}(z)=f_{m}^{\prime}(z)+a, \quad g_{m}^{\prime \prime}(z)=f_{m}^{\prime \prime}(z) \quad \text { for all } z \in V_{m}(r) \tag{3.53}\\
\left\|g_{m}^{\prime}(z)\right\| \geq\left\|f_{m}^{\prime}\right\|-\|a\|-2\left\|z-P_{m} z^{*}\right\|^{2}\|a\| 4 / r \geq \rho / 2>0 \tag{3.54}\\
\text { for all } z \in C_{m}(r) . \\
g_{m}(z)=f_{m}(z) \quad \text { for all }\left\|z-P_{m} z^{*}\right\|^{2} \geq 2 r . \tag{3.55}
\end{gather*}
$$

By Sard's Lemma, we can choose the vector a in such a way that $g_{m}(z)$ has only finite number of nondegenerate critical points in $V_{m}(r)$, say $\left\{x_{1}, \ldots, x_{n}\right\}$. By (3.49), (3.51), (3.53) and Theorem 3.1, we have
(3.56) $\operatorname{dim} M^{-}\left(g_{m}^{\prime \prime}\left(x_{j}\right)\right)=\operatorname{dim} M^{-}\left(f_{m}^{\prime \prime}\left(x_{j}\right)\right) \in\left[m-i_{0}+i^{*}, m-i_{0}+i^{*}+n^{*}\right]$, for $j=1, \ldots, n$. Now (3.50), (3.51) and (3.55) imply that $D_{\infty m}$ and D_{m} are also isolating blocks of the gradient flow π_{m} for g_{m} generated by

$$
\frac{d z}{d t}=-g_{m}^{\prime}(z) \quad \text { on } E_{m}
$$

If $\left\{0, x_{1}, \ldots, x_{n}\right\}$ are all critical points of g_{m} in $D_{\infty m}$, by Theorem 2.1(b) we have

$$
\begin{equation*}
\sum_{j=1}^{n} t^{\operatorname{dim} M^{-}\left(g_{m}^{\prime \prime}\left(x_{j}\right)\right)}+I\left(\pi_{m}, D_{m}\right)=I\left(\pi_{m}, D_{\infty m}\right)+(1+t) Q(t) \tag{3.57}
\end{equation*}
$$

Notice that

$$
\begin{aligned}
I\left(\pi_{m}, D_{m}\right) & =I\left(\eta_{m}, D_{m}\right)=t^{m+n_{0}} \\
I\left(\pi_{m}, D_{\infty m}\right) & =I\left(\eta_{m}, D_{\infty m}\right)=t^{m-i_{0}+i_{\infty}+n_{\infty}}
\end{aligned}
$$

By (3.56) and (3.57), we must have

$$
\begin{aligned}
m-i_{0}+i_{\infty}+n_{\infty} & \in\left[m-i_{0}+i^{*}, m-i_{0}+i^{*}+n^{*}\right], \\
m+n_{0}+1 & \in\left[m-i_{0}+i^{*}, m-i_{0}+i^{*}+n^{*}\right], \text { or } \\
m+n_{0}-1 & \in\left[m-i_{0}+i^{*}, m-i_{0}+i^{*}+n^{*}\right] .
\end{aligned}
$$

This imply that $\left|i_{0}+n_{0}-i_{\infty}-n_{\infty}\right| \leq n^{*}+1 \leq 2 N+1$. This contradicts to the conditions of (e). Therefore g_{m} must have at least one critical point y_{m} inside $D_{\infty m}$ other than $\left\{0, x_{1}, \ldots, x_{n}\right\}$. By (3.54) and (3.55), y_{m} is also a critical point of f_{m}, and

$$
r_{0} \leq\left\|y_{m}\right\| \leq R_{+}+R_{-}+R_{w}, \quad\left\|y_{m}-P_{m} z^{*}\right\|^{2} \geq 2 r
$$

By standard arguments and passing to a subsequence if necessary, y_{m} converges to a critical point y^{*} of f. Moreover,

$$
\left\|y^{*}-z^{*}\right\|^{2} \geq 2 r, \quad\left\|y^{*}\right\| \geq r_{0}
$$

i.e. y^{*} is another nontrivial 1-periodic solution of (1.1).

Proof of Theorem 1.3. By Theorems 3.1 and 2.3 , there exists $m^{*}>0$ such that for $m \geq m^{*}$ and $d=\left\|\left(A-B_{\infty}\right)^{\#}\right\|^{-1} / 4$, the relation (3.2) holds and $E_{m}=M_{d}^{+}\left(P_{m}\left(A-B_{\infty}\right) P_{m}\right) \oplus M_{d}^{-}\left(P_{m}\left(A-B_{\infty}\right) P_{m}\right) \oplus M_{2 \varepsilon_{m}}^{0}\left(P_{m}\left(A-B_{\infty}\right) P_{m}\right)$, where ε_{m} is given by (2.3) for $B=B_{\infty}$, and $\varepsilon_{m} \rightarrow 0$ as $m \rightarrow \infty$. Denote

$$
\begin{aligned}
U_{m}^{ \pm} & =\left\{y^{ \pm} \in M_{d}^{ \pm}\left(P_{m}\left(A-B_{\infty}\right) P_{m}\right):\left\|y^{ \pm}\right\| \leq R_{ \pm}\right\} \\
W_{\infty} & =\left\{x \in M_{2 \varepsilon_{m}}^{0}\left(P_{m}\left(A-B_{\infty}\right) P_{m}\right):\|x\| \leq R_{w}\right\}
\end{aligned}
$$

According to the proof of Theorem 1.1, all we need to do is to show that there are $R_{+}, R_{-}, R_{w}>0$, which do not depend on m, such that $D_{\infty m}=U_{m}^{+} \times U_{m}^{-} \times W_{\infty}$ is an isolating block of the gradient η_{m} generated by

$$
\frac{d z}{d t}=-P_{m}\left(A-B_{\infty}\right) P_{m} z+P_{m} g_{\infty}^{\prime}(z) \quad \text { on } E_{m} .
$$

In the following, $\left\{a_{j}\right\}$ are suitable positive constants independent of m. By $\left(\mathrm{H} 4^{ \pm}\right)$, we have

$$
\begin{equation*}
\left\|g_{\infty}^{\prime}\right\| \leq a_{1}\|z\|^{\beta_{\infty}} \quad \text { for }\|z\| \geq L_{\infty} \tag{3.58}
\end{equation*}
$$

For $z=z^{+}+z^{-}+z^{0} \in \partial U_{m}^{+} \times U_{m}^{-} \times W_{\infty}$,

$$
\begin{aligned}
\left.\left\langle\frac{d z}{d t}, z^{+}\right\rangle\right|_{t=0} & =-\left\langle P_{m}\left(A-B_{\infty}\right) P_{m} z^{+}, z^{+}\right\rangle+\left\langle g_{m}^{\prime}(z), z^{+}\right\rangle \\
& \leq-d\left\|z^{+}\right\|^{2}+a_{1}\|z\|^{\beta_{\infty}}\left\|z^{+}\right\| \leq-d R_{+}^{2}+3^{\beta_{\infty}} a_{1} R_{w}^{\beta_{\infty}} R_{+} \\
& =-d R_{+}\left(R_{+}-a_{2} R_{w}^{\beta_{\infty}}\right) \leq-d R_{+}^{2} / 2<0,
\end{aligned}
$$

provided

$$
\begin{equation*}
L_{\infty} \leq R_{+}=R_{-} \leq R_{w}, \quad R_{+}=2 a_{2} R_{w}^{\beta_{\infty}} . \tag{3.59}
\end{equation*}
$$

Similarly, for $z=z^{+}+z^{-}+z^{0} \in U_{m}^{+} \times \partial U_{m}^{-} \times W_{\infty}$,

$$
\left.\left\langle\frac{d z}{d t}, z^{-}\right\rangle\right|_{t=0} \geq d\left\|z^{-}\right\|^{2}-a_{1}\|z\|^{\beta_{\infty}}\left\|z^{-}\right\| \geq d R_{-}^{2} / 2>0
$$

provided (3.59) holds.
Case 1. ($\mathrm{H} 4^{+}$) holds. Then we have

$$
\begin{equation*}
\left\langle G_{\infty}^{\prime}(t, z), z\right\rangle \geq a_{3}|z|^{\alpha_{\infty}}-a_{4} \quad \text { for all }(t, z) \in[0,1] \times \mathbb{R}^{2 N} \tag{3.60}
\end{equation*}
$$

For $z=z^{+}+z^{-}+z^{0} \in U_{m}^{+} \times U_{m}^{-} \times \partial W_{\infty},(3.33)-(3.39)$ still hold. Recall that

$$
\Delta=\left\{t \in[0,1]: \frac{\lambda_{3}}{4}\left\|z^{0}\right\| \leq\left|z^{0}(t)\right| \leq 4 \lambda_{4}\left\|z^{0}\right\|\right\}, \quad \Delta^{\perp}=[0,1] \backslash \Delta
$$

By (3.37)-(3.39), there exists $m_{1}^{*} \geq m^{*}$ such that for $m \geq m_{1}^{*}$,

$$
\operatorname{meas}\left(\Delta^{\perp}\right) \leq\left(b_{4}+b_{5}\right) \varepsilon_{m}, \quad \operatorname{meas}(\Delta) \geq 1 / 2
$$

Notice that (3.59) implies $\left\|z^{+}+z^{-}\right\| \leq a_{5}\left\|z^{0}\right\|^{\beta_{\infty}}$. We have

$$
\begin{aligned}
\int_{\Delta}\left(z, z^{0}\right) d t & \geq \int_{\Delta}\left|z^{0}\right|^{2} d t-\left\|z^{+}+z^{-}\right\|\left\|z^{0}\right\| \\
& \geq\left(\lambda_{3} / 4\right)\left\|z^{0}\right\|^{2} \operatorname{meas}(\Delta)-a_{6}\left\|z^{0}\right\|^{\beta_{\infty}+1} \\
& \geq\left(\lambda_{3} / 8\right)\left\|z^{0}\right\|^{2}-a_{6}\left\|z^{0}\right\|^{\beta_{\infty}+1} \geq\left(\lambda_{3} / 16\right)\left\|z^{0}\right\|^{2}
\end{aligned}
$$

provided

$$
\begin{equation*}
R_{w} \geq\left(16 a_{6} / \lambda_{3}\right) R_{w}^{\beta_{\infty}} \tag{3.61}
\end{equation*}
$$

On the other hand, if $\alpha_{\infty}>1$,

$$
\int_{\Delta}\left(z, z^{0}\right) d t \leq a_{7}\left(\int_{\Delta}|z|^{\alpha_{\infty}} d t\right)^{1 / \alpha_{\infty}}\left\|z^{0}\right\|
$$

If $\alpha_{\infty}=1$, we have

$$
\int_{\Delta}\left(z, z^{0}\right) d t \leq\left(\int_{\Delta}|z| d t\right) 4 \lambda_{4}\left\|z^{0}\right\| .
$$

Therefore for $\alpha_{\infty} \geq 1$,

$$
\begin{equation*}
\int_{\Delta}|z|^{\alpha_{\infty}} d t \geq a_{8}\left\|z^{0}\right\|^{\alpha_{\infty}} \tag{3.62}
\end{equation*}
$$

Now, by (3.58)-(3.62), we have

$$
\begin{align*}
\left.\left\langle\frac{d z}{d t}, z^{0}\right\rangle\right|_{t=0}= & \int_{0}^{1}\left(G_{\infty}^{\prime}(t, z), z^{0}\right) d t-\left\langle P_{m}\left(A-B_{\infty}\right) P_{m} z^{0}, z^{0}\right\rangle \tag{3.63}\\
\geq & \int_{0}^{1} a_{3}|z|^{\alpha_{\infty}} d t-a_{4}-a_{1}\|z\|^{\beta \infty}\left\|z^{+}+z^{-}\right\|-2 \varepsilon_{m}\left\|z^{0}\right\|^{2} \\
\geq & \int_{\Delta} a_{3}|z|^{\alpha_{\infty}} d t+\int_{\Delta^{\perp}} a_{3}|z|^{\alpha_{\infty}} d t-a_{4}-a_{9} R_{w}^{2 \beta_{\infty}}-2 \varepsilon_{m} R_{w}^{2} \\
\geq & a_{3} a_{8}\left\|z^{0}\right\|^{\alpha_{\infty}}-a_{10}\|z\|^{\alpha_{\infty}}\left(\operatorname{meas} \Delta^{\perp}\right)^{1 / 2} \\
& \quad-a_{4}-a_{9} R_{w}^{2 \beta_{\infty}}-2 \varepsilon_{m} R_{w}^{2} \\
\geq & a_{3} a_{8} R_{w}^{\alpha_{\infty}}-a_{9} R_{w}^{2 \beta_{\infty}}-a_{4}-a_{11} R_{w}^{\alpha_{\infty}} \varepsilon_{m}^{1 / 2}-2 \varepsilon_{m} R_{w}^{2} \\
\geq & \left(a_{3} a_{8} / 2\right) R_{w}^{\alpha_{\infty}}-a_{11} R_{w}^{\alpha_{\infty}} \varepsilon_{m}^{1 / 2}-2 \varepsilon_{m} R_{w}^{2}
\end{align*}
$$

provided

$$
\begin{equation*}
a_{3} a_{8} R_{w}^{\alpha_{\infty}} \geq 2\left(a_{9} R_{w}^{2 \beta_{\infty}}+a_{4}\right) . \tag{3.64}
\end{equation*}
$$

Since $\beta_{\infty}<1$ and $\alpha_{\infty}>2 \beta_{\infty}$, there exist R_{+}, R_{-}and R_{w} such that (3.59), (3.61) and (3.64) hold. Moreover, R_{+}, R_{-}and R_{w} are independent of m. Since $\varepsilon_{m} \rightarrow 0$ as $m \rightarrow \infty$, by (3.63), there exists $m_{2}^{*} \geq m_{1}^{*}$ such that for $m \geq m_{2}^{*}$,

$$
\left.\left\langle\frac{d z}{d t}, z^{0}\right\rangle\right|_{t=0} \geq\left(\frac{a_{3} a_{8}}{4}\right) R_{w}^{\alpha_{\infty}}>0
$$

This implies that $D_{\infty m}=U_{m}^{+} \times U_{m}^{-} \times W_{\infty}$ is an isolating block with

$$
D_{\infty m}^{-}=U_{m}^{+} \times \partial U_{m}^{-} \times W_{\infty} \cup U_{m}^{+} \times U_{m}^{-} \times \partial W_{\infty}
$$

Moreover, by Theorem 3.1, we have

$$
I\left(\eta_{m}, D_{\infty m}\right)=t^{\operatorname{dim}\left(M_{d}^{-}\left(P_{m}\left(A-B_{\infty}\right) P_{m}\right) \oplus M_{2 \varepsilon_{m}}^{0}\left(P_{m}\left(A-B_{\infty}\right) P_{m}\right)\right)}=t^{m-i_{0}+i_{\infty}+n_{\infty}} .
$$

Case 2. ($\mathrm{H} 4^{-}$) holds. Similar to Case 1 , we can choose R_{+}, R_{-}and R_{w} independent of m such that $D_{\infty m}=U_{m}^{+} \times U_{m}^{-} \times W_{\infty}$ is an isolating block with

$$
\begin{aligned}
D_{\infty m}^{-} & =U_{m}^{+} \times \partial U_{m}^{-} \times W_{\infty} \\
I\left(\eta_{m}, D_{\infty m}\right) & =t^{\operatorname{dim}\left(M_{d}^{-}\left(P_{m}(A-B) P_{m}\right)\right.}=t^{m-i_{0}+i_{\infty}}
\end{aligned}
$$

We omit the details of this part. The proof is complete.
Example 3.6. Let $H(t, z) \in C^{2}\left([0,1] \times \mathbb{R}^{2 N}, \mathbb{R}\right)$ be 1-periodic in t such that

$$
\begin{array}{ll}
H(t, z)=-1+\pi(z, z)+|z|^{4} & \text { for }|z| \leq 1 \\
H(t, z)=\pi-2 \arctan \left(|z|^{2}\right)-\pi(z, z) & \text { for }|z| \geq 100
\end{array}
$$

Then $B_{0}(t)=2 \pi I_{2 N}, B_{\infty}(t)=-2 \pi I_{2 N}$ and

$$
G_{\infty}(t, z)=\pi-2 \arctan \left(|z|^{2}\right), \quad G_{0}(t, z)=-1+|z|^{4}
$$

By direct computation, we have the Maslov-type indices

$$
\left(i_{0}, n_{0}\right)=(N, 2 N), \quad\left(i_{\infty}, n_{\infty}\right)=(-N, 2 N)
$$

(a) It is easy to see that the Palais-Smale condition fails at level $c=0$.
(b) One can easily verify that the strong resonance condition holds, i.e.

$$
G_{\infty}(t, z) \rightarrow 0, \quad G_{\infty}^{\prime}(t, z) \rightarrow 0 \quad \text { as }|z| \rightarrow \infty
$$

Notice that $\int_{0}^{1} H(t, 0) d t<0$ and

$$
i_{\infty}+n_{\infty}=N \in[N, 3 N]=\left[i_{0}, i_{0}+n_{0}\right] .
$$

If we apply the strong resonance results [8], [14] here, we can not get any conclusion.
(c) By direct computation, $G_{0}(t, z)$ satisfies $\left(\mathrm{H} 2^{+}\right)$and $G_{\infty}(t, z)$ satisfies $\left(\mathrm{H}^{-}\right)$.

$$
i_{0}+n_{0}-i_{\infty}=4 N>2 N+1
$$

Theorem 1.1(f) implies that the system (1.1) possesses at least two nontrivial 1 -periodic solutions. It seems that this example can not be solved by previous results in the references.

Acknowledgments. The author expresses his sincere thanks to the referee for useful suggestions.

References

[1] A. Abbondandolo, Morse theory for asymptotically Hamiltonian systems, Nonlinear Anal. 39 (2000), 997-1049.
[2] , A new cohomology for the Morse theory of strongly indefinite functionals on Hilbert spaces, Topol. Methods Nonlinear Anal. 9 (1997), 325-382.
[3] H. Amann and E. Zehnder, Periodic solutions of an asymptotically linear Hamiltonian systems, Manuscripta Math. 32 (1980), 149-189.
[4] , Nontrivial solutions for a class of non-resonance problems and applications to nonlinear differential equations, Ann. Scuola Sup. Pisa Cl. Sci. (4) (1980), 539-603.
[5] K. C. Chang, Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure Appl. Math. 34 (1981), 693-712.
[6] \qquad , On the homology method in the critical point theory, Pitman Res. Notes Math. Ser. 269 (1992), 59-77.
[7] , Infinite dimensional Morse theory and multiple solution problems, Progress in Nonlinear Differential Equations and their Applications, vol. 6, 1993.
[8] K. C. Chang, J. Q. Liu and M. J. Liu, Nontrivial periodic solutions for strong resonance Hamiltonian systems, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), 103-117.
[9] C. C. Conley, Isolated invariant sets and the Morse index, CBMS Regional Conf. Ser. in Math. 38 (1978).
[10] C. Conley and E. Zehnder, Morse type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math. 37 (1984), 207-253.
[11] D. Dong and Y. Long, The iteration formula of the Maslov-type index theory with applications to nonlinear Hamiltonian systems, Trans. Amer. Math. Soc. 349 (1997), 2619-2661.
[12] G. Fei, Maslov-type index and periodic solution of asymptotically linear Hamiltonian systems which are resonant at infinity, J. Differential Equations 121 (1995), 121-133.
[13] , Nontrivial periodic solutions of asymptotically linear Hamiltonian systems, Electron. J. Differential Equations 69 (2001), 1-17.
[14] G. Fei and Q. Qiu, Periodic solutions of asymptotically linear Hamiltonian systems, Chinese Ann. Math. Ser. B 18 (1997), 359-372.
[15] Y. Guo, Nontrivial periodic solutions for asymptotically linear Hamiltonian systems with resonance, J. Differential Equations 175 (2001), 71-87.
[16] M. Izydorek, Bourgin-Yang type theorem and its application to Z_{2}-equivariant Hamiltonian systems, Trans. Amer. Math. Soc. 351 (1999), 2807-2831.
[17] , A cohomological Conley index in Hilbert spaces and applications to strongly indefinite problems, J. Differential Equations 170 (2001), 22-50.
[18] S. Li and J. Q. Liu, Morse theory and asymptotically linear Hamiltonian systems, J. Differential Equations 78 (1989), 53-73.
[19] Y. Long, Maslov-type index, degenerate critical points and asymptotically linear Hamiltonian systems, Sci. China Ser. A 33 (1990), 1409-1419.
\qquad , The Index Theory of Hamiltonian Systems with Applications, Science Press, Beijing, 1993.
[21] Y. Long and E. Zehnder, Morse theory for forced oscillations of asymptotically linear Hamiltonian systems, Stochatic Processes, Physics and Geometry (S. Albeverio and others, eds.), Proc. of Conf. in Asconal/Locarno, Switzerland, World Scientific, 1990, pp. 528-563.
[22] J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, Appl. Math. Sci. 74 (1989).
[23] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math. 65 (1986).
[24] D. Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985), 1-41.
[25] J. Su, Nontrivial periodic solutions for the asymptotically linear Hamiltonian systems with resonance at infinity, J. Differential Equations 145 (1998), 252-273.
[26] A. Szulkin, Cohomology and Morse theory for strongly indefinite functionals, Math. Z. 209 (1992), 375-418.
[27] A. Szulkin and W. Zou, Infinite dimensional cohomology groups and periodic solutions of asymptotically linear Hamiltonian systems, J. Differential Equations 174 (2001), 369391.

Guihua Fei
Department of Mathematics and Statistics
University of Minnesota
Duluth, MN 55812, USA
E-mail address: gfei@d.umn.edu

