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TOPOLOGICAL CHARACTERISTIC
OF FULLY NONLINEAR PARABOLIC

BOUNDARY VALUE PROBLEMS

Igor V. Skrypnik — Igor B. Romanenko

Abstract. A general nonlinear initial boundary value problem

∂u

∂t
− F (x, t, u, D1u, . . . , D2mu) = f(x, t),(1)

(x, t) ∈ QT ≡ Ω× (0, T ),

Gj(x, t, u, . . . , Dmj u) = gj(x, t),(2)

(x, t) ∈ ST ≡ ∂Ω× (0, T ), j = 1, m,

u(x, 0) = h(x), x ∈ Ω(3)

is being considered, where Ω is a bounded open set in Rn with sufficiently

smooth boundary. The problem (1)–(3) is then reduced to an operator

equation Au = 0, where the operator A satisfies (S)+ condition. The local
and global solvability of the problem (1)–(3) are achieved via topological

methods developed by the first author. Further applications involving the

convergence of Galerkin approximations are also given.

1. Introduction

This paper is devoted to the study of fully nonlinear parabolic problems via
topological methods based on the degree theory for operators satisfying condi-
tion (S)+.
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Let Ω denote a bounded open set in Rn with sufficiently smooth boundary
∂Ω. We consider an initial-boundary value problem of the form

Φ[u] ≡ ∂u

∂t
− F (x, t, u,D1u, . . . ,D2mu) = f(x, t),(1.1)

(x, t) ∈ QT ≡ Ω× (0, T ),

(1.2) Ψj [u] ≡Gj(x, t, u, . . . , Dmju) = gj(x, t),

(x, t) ∈ ST = ∂Ω× (0, T ), j = 1, . . . ,m,

u(x, 0) = h(x), x ∈ Ω(1.3)

in the Sobolev space W (4m,2)
p (QT ) for p ≥ 2, p > (2m+ n)/2m, p 6= (2m+ 1)/

(2m−mj), mj ≤ 2m− 1, j = 1, . . . ,m.

We assume that F (x, t, ξ), Gj(x, τ, ζj) are sufficiently smooth functions satis-
fying the parabolicity and the Lopatinskĭı conditions, functions on the right-hand
sides of (1.1)–(1.3) satisfy the inclusions

f ∈W (2m,1)
p (QT ),

gj ∈W (4m−mj−1/p,2−mj/2m−1/2mp)
p (ST ),

h ∈W (4m−2m/p)
p (Ω),

as well as some compatibility conditions for x ∈ ∂Ω, t = 0.

In a standard way it is possible to reduce the problem (1.1)–(1.3) to the
analogous problem in the space W (4m,2),0

p (QT ) with zero initial condition. The
main result of this paper is the reduction of the problem (1.1)–(1.3) with zero
initial condition to the operator equation

(1.4) Au = 0

in the space W (4m,2),0
p (QT ) with an operator A acting from W

(4m,2),0
p (QT ) into

the dual space [W (4m,2),0
p (QT )]∗. This operator for the problem (1.1)–(1.3) with

h(x) ≡ 0 is defined by the following equality

(1.5) 〈Au,ϕ〉 =
1
p

d

ds

{
(‖Φ[u+ sϕ]− f‖(2m,1)

p,QT

)p

+
m∑

j=1

(‖Ψj [u+ sϕ]− gj‖
(4m−mj−1/p,2−mj/2m−1/(2mp))
p,ST

)p

}∣∣∣∣
s=0

and norms in the right-hand side of (1.5) are norms in spaces W (2m,1)
p (QT ),

W
(4m−mj−1/p,2−mj/(2m)−1/(2mp))
p (ST ), respectively.
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We prove that this operator is bounded, continuous and it satisfies following
condition:

(S+) for every sequence of functions uj ∈ W
(4m,2),0
p (QT ) which converges

weakly to some function u0 and is such that

lim sup
j→∞

〈Auj , uj − u0〉 ≤ 0

we have that uj converges strongly to u0.

Here 〈Auj , uj −u0〉 is the value of the functional Auj ∈ [W (4m,2),0
p (QT )]∗ on the

function uj(x)− u0(x) ∈W (4m,2),0
p (QT ).

These properties of the operator A allow as to study the solvability of the
equation (1.4) by the use of the degree theory for such operators, that was
developed in [6], [7].

This paper is organized in the following way. In Section 2 we introduce the
considered function spaces. We also formulate assumptions for data functions
in the problem (1.1)–(1.3) and formulate a priori estimates for linear parabolic
problems with coefficients from Sobolev spaces that are principal for the study
of properties of the operator A. In Section 3, we reduce the initial-boundary
value problem (1.1)–(1.3) to the operator equation (1.4) and we establish the
properties of the operator A. Some applications of the topological approach to
the proof of local and global solvability of nonlinear parabolic problems and to
the study of strong convergence of the Galerkin approximants are contained in
Section 4.

For the case of Dirichlet boundary condition the solvability of initial-bounda-
ry value problems for fully nonlinear parabolic equations was established by other
methods in the papers of Hudjaev, Kruzhkov, Castro and Lopes, Sopolov, Kry-
lov, Lunardi, Wang. The local approach for problems with nonlinear boundary
condition was developed by Amann and Acquistapace and Terreni. The list of
corresponding papers there is given the bibliography of [2].

2. Problem formulation

2.1. Functional spaces. Let n, m, {mj}m
j=1 be positive integers such that

0 ≤ mj ≤ 2m− 1 and p, T be positive real numbers. In what follows Ω denotes
a bounded open set in Rn with sufficiently smooth boundary ∂Ω. We’ll use
notations QT = Ω× (0, T ), ST = ∂Ω× (0, T ).

Let α = (α1, . . . , αn) be multi-index with non-negative integer components.
For x ∈ Rn we denote |α| = α1 + . . .+ αn, xα = xα1

1 . . . xαn
n .

For u:QT → R and positive integer k ≥ 0 we’ll use notations

Dαu =
(

∂

∂x1

)α1

. . .

(
∂

∂xn

)αn

u, Dku = {Dαu : |α| = k}.
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By M(k) we denote the collection of all different multiindices of order that
is less or equal k.

We fix further some notations and definitions of norms in anisotropic Hölder
and Sobolev spaces that are analogous to corresponding spaces in the mono-
graph [1].

For a positive integer b and a positive non-integer k the space C(bk,k)(QT ) is
defined to be the Banach space of all functions u, that have continuous derivatives
(∂/∂t)sDαu(x, t), |α|+ bs ≤ bk (x, t) ∈ QT and the finite norm

|u|(bk,k)
QT

=
∑

|α|+bs≤[bk]

∣∣∣∣( ∂

∂t

)s

Dαu(x, t)
∣∣∣∣(0)
QT

+ |u|(bk)
b,QT

,

where |u|(0)QT
= max {|u(x, t)| : (x, t) ∈ QT }, [k] is greatest integer function of k

and

|u|(bk)
b,QT

=
∑

|α|+bs=[bk]

∣∣∣∣( ∂

∂t

)s

Dαu(x, t)
∣∣∣∣(bk−[bk])

x,QT

+
∑

0<bk−|α|−bs<b

∣∣∣∣( ∂

∂t

)s

Dαu(x, t)
∣∣∣∣((bk−|α|−bs)/b)

t,QT

,

|u|(l)x,QT
= sup

{
|u(x, t)− u(y, t)|

|x− y|l
: x, y ∈ Ω, x 6= y, t ∈ (0, T )

}
,

|u|(l)t,QT
= sup

{
|u(x, t)− u(x, τ)|

|t− τ |l
: x ∈ Ω, t, τ ∈ (0, T ), t 6= τ

}
,

where l ∈ (0, 1).
For p > 1 and positive integers b, k, by W (bk,k)

p (QT ) we denote the Banach
space of all functions u that have generalized derivatives (∂/∂t)sDαu ∈ Lp(QT ),
|α|+bs ≤ bk. The norm of the space W (bk,k)

p (QT ) will be defined in the following
way:

‖u‖(bk,k)
p,QT

=
{ ∑
|α|+bs≤bk

∥∥∥∥(
∂

∂t

)s

Dαu

∥∥∥∥p

p,QT

}1/p

,

where ‖u‖p,QT
=

{ ∫
QT

|u|p dx dt
}1/p

.

In the case of a positive non-integer k such that bk is not integer, we denote by
W

(bk,k)
p (QT ) the Banach space of all functions u that have generalized derivatives

(∂/∂t)sDαu ∈ Lp(QT ), |α|+ bs ≤ bk and the finite norm

‖u‖(bk,k)
p,QT

=
{ ∑
|α|+bs≤[bk]

∥∥∥∥(
∂

∂t

)s

Dαu

∥∥∥∥p

p,QT

+ (‖u‖(bk)
b,p,QT

)p

}1/p

,
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‖u‖(bk)
b,p,QT

=
{ ∑
|α|+bs=[bk]

(∥∥∥∥(
∂

∂t

)s

Dαu

∥∥∥∥(bk−[bk])

x,p,QT

)p

+
∑

0<bk−|α|−bs<b

(∥∥∥∥(
∂

∂t

)s

Dαu

∥∥∥∥((bk−|α|−bs)/b)

t,p,QT

)p}1/p

,

‖u‖(l)
x,p,QT

=
{ ∫ T

0

dt

∫∫
Ω2

|u(x, t)− u(y, t)|p

|x− y|n+pl
dx dy

}1/p

, 0 < l < 1,

‖u‖(l)
t,p,QT

=
{ ∫

Ω

dx

∫∫
[0,T ]2

|u(x, t)− u(x, τ)|p

|t− τ |1+pl
dt dτ

}1/p

, 0 < l < 1.

Let S be the n − 1-dimentional surface in Rn and l0 ≥ 0. We will say that
S belongs to class Cl0 if there exists a finite collection of open sets {Ui}I

i=1 and
d > 0 such that

(S1) S ⊂
⋃I

i=1 Ui;
(S2) for each i there exists ξ(i) ∈ S ∩ Ui such that the set S ∩ Ui in local

Cartesian system {y} with origin at ξ(i) is given by the equation yn =
hi(y′), y′ ∈ D(d), where y′ = (y1, . . . , yn−1), D(d) = (−d, d)n−1;

(S3) hi ∈ Cl0(D(d)) for each i.

Let b be a positive integer, k > 0, p > 1, and ∂Ω ∈ Cl0 , where l0 ≥
max{bk, 1}. Let DT (d) = D(d) × (0, T ). For u:ST → R we will use the no-
tation u(i)(y′, t) = u(φi(y′, hi(y′)), t), where (y′, t) ∈ DT (d), i = 1, I and φi(y) is
the transformation from the local coordinate system {y} to the system {x}.

We define the space C(bk,k)(ST ) as the set of all functions u:ST → R such
that u(i) ∈ C(bk,k)(DT (d)), i = 1, I with the norm

|u|(bk,k)
ST

= max{|u(i)|(bk,k)
DT (d), i = 1, I}.

We define the space W (bk,k)
p (ST ) as the set of all functions u:ST → R such

that u(i) ∈W (bk,k)
p (DT (d)), i = 1, I with the norm

‖u‖(bk,k)
p,ST

=
{ I∑

i=1

(‖u(i)‖(bk,k)
p,DT (d))

p

}1/p

.

It is a simple task to check that norms corresponding to different covers of
∂Ω by sets Ui are equivalent.

For positive integer k we denote

W (bk,k),0
p (QT ) :=

{
u ∈W (bk,k)

p (QT ) :
∂su

∂ts
= 0, 0 ≤ s ≤ k − 1

}
.

2.2. Some results from degree theory. We recall some results from the
operator degree theory developed, for example, in [6], [7]. These results are
used in paper to obtain the theorems of uniqueness and solvability for problem
(1.1)–(1.3).
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Definition (Degree for continuous mapping in finite-dimentional space).
Let Ω be finite domain from Rn. Suppose that f is continuous mapping from
Ω to Rn such that f(u) 6= 0, u ∈ ∂Ω. We call the degree of f the integer-value
function deg(f,Ω, 0) such that satisfies following conditions:

(a) If f(x) = x− x0 where x0 ∈ Ω then deg(f,Ω, 0) = 1.
(b) Let Ω1,Ω2 be subsets of Ω such that Ω1 ∩ Ω2 = ∅ and f(x) 6= 0, x ∈

Ω \ (Ω1 ∪ Ω2). Then deg(f,Ω, 0) = deg(f,Ω1, 0) + deg(f,Ω2, 0).
(a) Let h: [0, 1] × Ω → Rn be continuous mapping such that h(t, x) 6= 0

when t ∈ [0, 1], x ∈ ∂Ω. We denote f0(x) = h(0, x), f1(x) = h(1, x).
Then deg(f0,Ω, 0) = deg(f1,Ω, 0).

The definition of the degree could be extended to some classes of contiguous
mappings A acting from reflexive separable Banach space X to X∗.

Definition ((S)+ condition). We say that an operator A:X → X∗ satisfies
the condition (S)+ if, for arbitrary sequence {uj} ⊂ X, which converges weakly
to some u0 ∈ X and such that

lim sup
j→∞

〈Auj , uj − u0〉 ≤ 0

we have that uj converges strongly to u0.

Let Ω ∈ X be bounded domain. The mapping A: Ω → X, Au 6= 0, u ∈ Ω
satisfying the (S)+ on condition on Ω could be approximated by the finite-
dimensional mappings

Anu =
n∑

i=1

〈Au, vi〉vi, u ∈ Ωn =
{
u ∈ Ω : u =

n∑
i=1

αivi, αi ∈ R
}
,

where {vi}i≥1 is a basis in X.
It is proved that the limit limn→∞ deg(An, (Ωn), 0) exists and does not de-

pend on the choice of the basis {vi}i≥1. We call the degree of the operator A in
the domain Ω the limit Deg(A,Ω, 0) = limn→∞ deg(An, (Ωn), 0).

The definition of the degree for mapping in unbounded space preserves all
properties of the degree in the case of finite-dimensional space.

Definiton (Homotopy). Let mappings A0, A1 satisfy (S)+ condition on Ω.
We say that A0, A1 are homotopial if there exists one-parameter family of map-
pings At: Ω → X∗, t ∈ [0, 1] such that

(a) for every sequence un ∈ ∂Ω and tn ∈ [0, 1] such that un converges
weakly to u0, Atn(un) converges weakly to 0 and limn→∞ < Atn(un),
un − u0 >= 0 it follows that un → u0 in X;

(b) At(u) 6= 0 when u ∈ ∂Ω, t ∈ [0, 1];
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(c) for every sequence tn ∈ [0, 1], un ∈ Ω such that tn → t0, un → u0 it
follows that the sequence Atn(un) converges weakly to At0(u0).

Theorem 2.1 ([10, Theorem 4.1]). Let A0, A1 be homotopical mappings
on Ω. Then Deg(A0,Ω, 0) = Deg(A1,Ω, 0).

2.3. Main problem and assumptions. We consider a boundary value
problem

Φ[u] ≡ ∂u

∂t
− F (x, t, u,D1u, . . . ,D2mu) = f(x, t), (x, t) ∈ QT ,(2.1)

Ψj [u] ≡ Gj(x, t, u, . . . ,Dmju) = gj(x, t), (x, t) ∈ ST , j = 1,m,(2.2)

u(x, 0) = h(x), x ∈ Ω.(2.3)

Solvability of the problem (2.1)–(2.3) will be considered in space W (4m,2)
p (QT ).

We assume that numbers p, n, m, mj satisfy inequalities

(2.4) p ≥ 2, p >
2m+ n

2m
, p 6= 2m+ 1

2m−mj
, mj ≤ 2m− 1, j = 1,m

and boundary ∂Ω of domain Ω satisfies the condition

(2.5) ∂Ω ∈ C4m.

We define

Fα(x, t, ξ) :=
∂

∂ξα
F (x, t, ξ), |α| ≤ 2m, ξ = {ξα ∈ R : |α| ≤ 2m},

Gjβ(x, t, ζj) :=
∂

∂ζβ
Gj(x, t, ζj), |β| ≤ mj , ζj = {ζβ ∈ R : |β| ≤ mj}, j = 1,m.

and suppose that the following conditions for the functions F , Gj are fulfilled:

(F1) the function F (x, t, ξ) have all mixed continuous derivatives by ξ up to
the order 2m+1, F (x, t, 0) ≡ 0.

(F2) there exists a continuous function ν: R+ → R+ such that for each ξ ∈
RM(2m), η ∈ Rn the inequality

(−1)m+1
∑

|α|=2m

Fα(x, t, ξ)ηα ≥ ν(|ξ|)|η|2m

holds.
(G1) for each j = 1, . . . ,m the function Gj(x, t, ζj) has all mixed continuous

derivatives with respect to variables ζ up to the order 4m − mj + 1,
Gj(x, t, 0) ≡ 0.
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For (x, t) ∈ ST , ξ ∈ RM(2m), ζj = {ξβ : |β| ≤ mj} (here j = 1, . . . ,m), we
define

L(x, t, ξ, δ + τη, q) := q − (−1)m
∑

|α|=2m

Fα(x, t, ξ)(δ + τη)α,

Bj(x, t, ζj , δ + τη) :=
∑

|β|=mj

Gjβ(x, t, ζj)(δ + τη)β , j = 1,m,

where η is the unit vector in the direction of the outward normal to ∂Ω at the
point x; δ means an arbitrary vector from the plane tangent to ∂Ω at the point
x; τ is complex variable and q is real number.

If q ≥ −ν̃|δ|2m, 0 < ν̃ < ν(|ξ|) and |q| + |δ| > 0, then L(x, t, ξ, δ + τη, q) as
a polynomial of τ has m roots τ+

s with positive real part, other roots are with
negative real part (see [1]). We denote

L+(x, t, ξ, δ, τ, q) :=
m∏

s=1

(τ − τ+
s )

and assume that the following condition (the Lopatynsky condition) is fulfilled:

(G2) for each (x, t) ∈ ST , ξ ∈ RM(2m) and δ, belonging to the tangent plane
to ∂Ω at the point x, inequalities q ≥ −ν̃|δ|2m, 0 < ν̃ < ν(|ξ|) and
|q|+ |δ| > 0 imply the linear independence of Bj by modulus of L+.

We assume that the following inclusions for the functions from the right side
of (2.1)–(2.3) are fullfilled

(2.6)

f ∈W (2m,1)
p (QT ),

gj ∈W (4m−mj−1/p,2−mj/(2m)−1/(2mp))
p (ST ), j = 1,m,

h ∈W (4m−2m/p)
p (Ω).

We also assume that the compatibility condititons for the problem (2.1)–(2.3)
are fullfilled.

To this end we will use notations

u(0)(x) := u(x, 0), u(1)(x) :=
∂u

∂t
(x, 0).

From (2.1), (2.3) we determine that

u(0)(x) := h(x),

u(1)(x) :=
∂u

∂t
(x, 0) = f(x, 0) + F (x, 0, h,D1h, . . . ,D2mh).

Formulating the compatibility conditions for (2.1)–(2.3) we shall use the fol-
lowing equalities (here j = 1, . . . ,m)

(2.7) Gj(x, 0, u(0), . . . , Dmju(0)) = gj(x, 0),
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(2.8)
∂

∂t
Gj(x, 0, u(0), . . . , Dmju(0))

+
∑

|β|≤mj

Gjβ(x, 0, u(0), . . . Dmju(0))Dβu(1)(x, 0) =
∂

∂t
gj(x, 0).

We say that the compatibility conditions for (2.1)–(2.2) are fullfilled if

(C) for each j = 1, . . . ,m the condition (2.7) is satisfied and the condition
(2.8) is fulfilled for such j that p > (2m+ 1)/(2m−mj).

2.4. Linear initial boundary value problem. In a further investigation
we will need some facts concerning solvability and a priori estimates for linear
initial boundary value problems of the type

Lu ≡ ∂u

∂t
−

∑
|α|≤2m

aα(x, t)Dαu = f(x, t), (x, t) ∈ QT ,(2.9)

Bju ≡
∑

|β|≤mj

bjβ(x, t)Dβu = gj(x, t), (x, t) ∈ ST , j = 1,m,(2.10)

u(x, 0) = h(x), x ∈ Ω.(2.11)

Assume that the following conditions for the functions aα, bjβ are fulfilled:

(a1) for |α| ≤ 2m coefficients aα ∈W (2m,1)
p (QT );

(a2) there exists ν0 > 0 such that, for arbitrary (x, t) ∈ QT , η ∈ Rn, an
inequality

(−1)m+1
∑

|α|=2m

aα(x, t)ηa ≥ ν0|η|2m

holds;
(b1) for each j = 1, . . . ,m and |β| ≤ mj , the inclusions

bjβ ∈W (4m−mj−1/p,2−mj/(2m)−1/(2mp))
p (ST )

hold;
(b2) the left-side functions in the equation and boundary conditions of (2.9)–

(2.11) satisfy the Lopatinsky condition, that is formulated analogously
to condition (G2).

Assume that the compatibility conditions analogous to condition (C) for
(2.9)–(2.11) are fullfilled.

The facts we need are included in the following theorem:

Theorem 2.2. Assume that condition (2.5) for the boundary ∂Ω of a bound-
ed domain Ω is satisfied and conditions (2.4), (2.6), (a1), (a2), (b1), (b2) and
the compatibility conditions for the problem (2.9)–(2.11) hold. Suppose that



10 I. V. Skrypnik — I. B. Romanenko

T ∈ (0, T ]. Then (2.9)–(2.11) has a unique solution u ∈ W
(4m,2)
p (QT ) which

satisfies an apriori estimate

(2.12) K(1)

{
‖f‖(2m,1)

p,QT
+

m∑
j=1

‖gj‖
(4m−mj−1/p,2−mj/(2m)−1/(2mp))
p,ST

+ ‖h‖(4m−2m/p)
p,Ω

}
≤ ‖u‖(4m,2)

p,QT

≤K(2)

{
‖f‖(2m,1)

p,QT
+

m∑
j=1

‖gj‖
(4m−mj−1/p,2−mj/(2m)−1/(2mp))
p,ST

+ ‖h‖(4m−2m/p)
p,Ω

}
.

Numbers K(1), K(2) in (2.12) depend only on Ω, T , n, p, ν0 and the norms
of functions aα(x, t) in spaces C(QT ), W (2m,1)

p (QT ), and norms of functions
bjβ(x, t) in spaces C(ST ), W (4m−mj−1/p,2−mj/(2m)−1/(2mp))

p (ST ).

The theorem is proved in [8].

3. Reduction to operator equation

3.1. Reduction to the problem with zero initial conditions. We start
with a reduction of problem (2.1)–(2.3) to an equivalent one with zero initial
conditions. For that we need next two auxiliary lemmas.

Lemma 3.1. Assume that Ω is a bounded domain in Rn with the boundary
that satisfies condition (2.5) and inequalities (2.4), for m, p, n, mj, hold. Let
a function P (x, t, v) be defined for (x, t) ∈ QT , v ∈ RM for some M ∈ N and
have all continuous derivatives (∂/∂t)sDα

xD
β
vF (x, t, v) of the order bs+ |α|+ |β|

up to bk, when bk is an integer and up to [bk] + 1, when bk is not integer. Here
α, β mean multiindices and [ · ] is greatest integer function. Then the operator

(3.1) [P̃ (v)](x, t) = P (x, t, v(x, t))

acts from space [W (bk,k),0
p (QT )]M to space W (bk,k)

p (QT ) and appears to be bounded
and continuous.

Proof. The proof is based on the direct calculation of the derivatives(
∂

∂t

)s

DαP (x, t, v(x, t))

and use of the embedding results for the considered functitonal spaces. �

Lemma 3.2. Assume that conditions of Lemma 3.1 are fullfilled. Then an
operator

(3.2) [P̃ (v)](x, t) = P (x, t, v(x, t))
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acts from the space [W (bk,k),0
p (ST )]M to W (bk,k)

p (ST ) and appears to be bounded
and continuous.

Proof. Lemma is proved analogously to Lemma 3.1 by passing to covering
{Ui}I

i=1 of ∂Ω and analising of operator in the local coordinate system of ξi. �

In a standard way (see [2]) we can construct a function v ∈ W
(4m,2)
p (QT )

that satisfies conditions

v(x, 0) = u(0)(x),
∂v

∂t
(x, 0) = u(1)(x) for x ∈ Ω.

Now we introduce a new function u1 = u− v. If u is the solution of problem
(2.1)–(2.3) then u1 is the solution of boundary value problem

∂u1

∂t
− F (1)(x, t, u1, D

1u1, . . . , D
2mu1) = f (1)(x, t), (x, t) ∈ QT ,(3.3)

G
(1)
j (x, t, u1, . . . , D

mju1) = g
(1)
j (x, t), (x, t) ∈ ST , j = 1,m,(2.4)

u1(x, 0) = 0, x ∈ Ω,(2.5)

where

F (1)(x, t, u1, D
1u1, . . . , D

2mu1) =F (x, t, u1 + v,D1(u1 + v), . . . , D2m(u1 + v))

− F (x, t, v,D1v, . . . , D2mv),

f (1)(x, t) = f(x, t)− Φ̃[v],

G
(1)
j (x, t, u1, . . . , D

mju1) =Gj(x, t, u1 + v, . . . , Dmju1 + v)− Ψ̃j [v],

g(1)
j

(x, t) = gj(x, t)− B̃j [v], j = 1,m.

Additionaly to (F1), (F2), (G1), (G2), we introduce conditions:

(F3) the function F (x, t, ξ) has all continuous derivatives by variables ξβ up
to the order 2m+ 1, F (x, t, 0) ≡ 0;

(F4) the operators

Fα( · , · , u,D1u, . . . ,D2mu):W (4m,2)
p (QT ) →W (2m,1)

p (QT )

are bounded and continuous;
(G3) for each j, the function Gj(x, t, ζj) has all mixed continuous derivatives

by ηβ up to the order 4m−mj + 1, Gj(x, t, 0) ≡ 0;
(G4) the operators

Gjβ( · , · , u,D1u, . . . ,Dmju):

W (4m−1/p,2−1/(2mp)),0
p (ST ) →W (4m−mj−1/p,2−mj/(2m)−1/(2mp))

p (ST )

are bounded and continuous.
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Lemma 3.3. Assume that conditions (2.4)–(2.7), (F1), (F2), (G1), (G2) for
the problem (2.1)–(2.3) are satisfied and u ∈W (4m,2)

p is the soluton of (2.1)–(2.3).
Then

(a) the function F (1)(x, t, ξ) satisfies conditions (F2) (with some function
ν(1) that, possibly, differs from ν), (F3), (F4), and G(1)

j (x, t, ζj) satisfy
conditions (G2), (G3), (G4);

(b) the following inclusions for u1(x, t), f (1)(x, t), g(1)
j (x, t) are fulfilled:

u1 ∈W (4m,2),0
p (QT ), f (1) ∈W (2m,1),0

p (QT ),

g
(1)
j ∈W (4m−mj−1/p,2−mj/(2m)−1/(2mp)),0

p (ST ), j = 1,m.

Proof. Part (a) follows from (F1), (F2), (G1), (G2), the definition of F (1),
G

(1)
j and Lemmas 3.1, 3.2.

Inclusion for u1 in formula (b) follows from the definition of v and Lemma 1
from [8].

Definition of f (1), embedding theorems and Lemma 3.1 imply inclusion f (1)→
W

(2m,1),0
p (QT ).

Definition of g(1)
j together with conditions (2.7) and Lemma 3.2 imply the

inclusions for g(1)
j in (b). �

Lemma 3.4. Assume that conditions of Lemma 3.3 are satisfied, and u1 ∈
W

(4m,2),0
p (QT ) is the solution of (3.3)–(3.5). Then function u(x, t) = u1(x, t) +

v(x, t) is the solution of (2.1)–(2.3).

Proof. Follows immediately from definition of F (1), G(1)
j , f (1), g(1)

j and v.�

3.2. Definition of operator. Thus, instead of the problem (2.1)–(2.3), we
can analyze the equivalent problem

Φ̃[u] ≡ ∂u

∂t
− F (x, t, u,D1u, . . . ,D2mu) = f(x, t), (x, t) ∈ QT ,(3.6)

Ψ̃j [u] ≡ Gj(x, t, u, . . . ,Dmju) = gj(x, t), (x, t) ∈ ST , j = 1,m,(3.7)

u ∈W (4m,2),0
p (QT ),(3.8)

where F satisfies conditions (F2) functions Gj satisfy conditons (G2)–(G4), and
for the functions f , gj the following inclusions are fullfilled

(3.9)
f ∈W (2m,1),0

p (QT ),

gj ∈W (4m−mj−1/p,2−mj/(2m)−1/(2mp)),0
p (ST ), j = 1,m.
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A nonlinear operator corresponding to (3.6)–(3.8) will be defined by the
following equality

(3.10) 〈Au, φ〉 :=
1
p

d

ds

[
(‖Φ̃[u+ sφ]− f‖(2m,1)

p,QT
)p

+
m∑

j=1

(‖Ψ̃j [u+ sφ]− gj‖
(4m−mj−1/p,2−mj/(2m)−1/(2mp))
p,ST

)p

]∣∣∣∣
s=0

.

In (3.10) {u, φ} ∈ W
(4m,2),0
p (QT ) and the symbol 〈Au, φ〉 means the value of

functional Au on function φ.
It follows from (3.10) that

(3.11) Au := AE(u, Φ̃[u]− f(x, t)) +
m∑

j=1

ABj (u, Ψ̃j [u]− gj(x, t)),

where

(3.12) 〈AE(u, v), φ〉 :=
∑

|α|+2ms≤2m

∫
QT

ψp

[(
∂

∂t

)s

Dαv(x, t)
]

·
(
∂

∂t

)s

Dα

[
∂φ

∂t
− L(u)φ(x, t)

]
dx dt,

ψp(s) = s|s|p−2 for s ∈ R and for j = 1, . . . ,m, µ(j) = 4m−mj − 1

(3.13) 〈ABj
(u,w), φ〉 :=

3∑
k=1

〈A(k)
Bj

(u,w), φ〉,

〈A(1)
Bj

(u,w), φ〉 :=
I∑

i=1

′∑
|β|+2ms≤µ(j)

∫
DT (d)

ψp

[(
∂

∂t

)s

Dβ
yw

(i)(y′, t)
]

·
(
∂

∂t

)s

Dβ
y [Bj(u)φ](i)(y′, t) dy′ dt,

(3.14) 〈A(2)
Bj

(u,w), φ〉 :=
I∑

i=1

′∑
|β|+2ms=µ(j)

∫ T

0

dt

∫∫
[D(d)]2

ψp

·
[(

∂

∂t

)s

Dβ
yw

(i)(y′, t)−
(
∂

∂t

)s

Dβ
zw

(i)(z′, t)
]

·
{(

∂

∂t

)s

Dβ
y [Bj(u)φ](i)(y′, t)−

(
∂

∂t

)s

Dβ
z [Bj(u)φ](i)(z′, t)

}
· dy′dz′

|y′ − z′|n+p−2
,
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(3.15) 〈A(3)
Bj

(u,w), φ〉 :=
I∑

i=1

µ(j)∑
l=2m−mj

′∑
|β|+2ms=l

∫
D(d)

dy′

·
∫ T

0

∫ T

0

ψp

[(
∂

∂t

)s

Dβ
yw

(i)(y′, t)−
(
∂

∂τ

)s

Dβ
yw

(i)(y′, τ)
]

·
{(

∂

∂t

)s

Dβ
y [Bj(u)φ](i)(y′, t)

−
(
∂

∂τ

)s

Dβ
y [Bj(u)φ](i)(y′, τ)

}
dt dτ

|t− τ |p(l)
,

where

L(u)φ :=
∑

|α|≤2m

Fα(x, t, u,D1u, . . . ,D2mu)Dαφ, (x, t) ∈ QT ,

(3.16)

Bj(u)φ =
∑

|β|≤mj

Gjβ(x, t, u, . . . , Dmju)Dβφ,

(2.17)

p(l) = 1 +
(

2− mj + l

2m
− 1

2mp

)
p, l = 2m−mj , µ(j),

and noting
∑′ we mean summation over multiindices β such that βn = 0.

The following theorem formulates the main properties the operator A, defined
by (3.10).

Theorem 3.5. Assume that conditions (2.4), (2.5), (3.9), (F2) for the prob-
lem (3.6)–(3.8) are fulfilled. Then

(a) for each u ∈ W
(4m,2),0
p (QT ), Au appears to be linear and continuous

functional on W
(4m,2),0
p (QT ).

(b) the operator A is bounded, continuous and satisfies the (S)+ condition
on W

(4m,2),0
p (QT ).

Remark 3.6. We recall the definition of the condition (S)+ for the operator
A acting from the Banach space X into the dual space X∗ (see, for example, [7]).
Analogous condition in [6] was called the condition α).

We say that an operator A:X → X∗ satisfies the condition (S)+ if, for
arbitrary sequence {uj} ⊂ X, which converges weakly to some u0 ∈ X and such
that

lim sup
j→∞

〈Auj , uj − u0〉 ≤ 0

we have that uj converges strongly to u0.
To prove theorem we need following auxiliary lemmas.
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Lemma 3.7. Assume that conditions (2.4), (2.5), (F2)–(F4), (G2)–(G4) are
satisfied. Then there exists a continuous nondecreasing function ω1: R+ → R+

such that, for each u, φ ∈W (4m,2),0
p (QT ) and j = 1, . . . ,m, the following inequal-

ities hold:

‖L(u)φ
∥∥∥∥(2m,1)

p,QT

≤ω1(‖u‖(4m,2)
p,QT

)‖φ‖(4m,2)
p,QT

,

‖Bj(u)φ‖
(4m−mj−1/p,2−mj/(2m)−1/(2mp))
p,ST

≤ω1(‖u‖(4m,2)
p,QT

)‖φ‖(4m,2)
p,QT

,

‖F ( · , · , u,D1u, . . . ,D2mu)‖(2m,1)
p,QT

≤ω1(‖u‖(4m,2)
p,QT

)‖φ‖(4m,2)
p,QT

,

‖Gj( · , · , u, . . . ,Dmju)‖(4m−mj−1/p,2−mj/(2m)−1/(2mp))
p,ST

≤ω1(‖u‖(4m,2)
p,QT

)‖φ‖(4m,2)
p,QT

,

where the operators L(u), Bj(u) are defined by equalities (3.16), (3.17).

Proof. We denote ‖u‖(4m,2)
p,QT

R. Conditions (F4), (G4) imply that the norms
of operators L(u), Bj(u) in the corresponding spaces

W (2m,1),0
p (QT ), W (4m−mj−1/p,2−mj/(2m)−1/(2mp)),0

p (ST )

are bounded by some nondecreasing function C ′(R). From the definition of L(u),
Bj(u) and the norms in spaces W (bk,k)

p (QT ), using Lemmas 2–6 from [7] we get

‖L(u)φ‖(2m,1)
p,QT

≤ C ′′(R), ‖Bj(u)φ‖
(4m−mj−1/p,2−mj/(2m)−1/(2mp))
p,ST

≤ C ′′(R),

where φ ∈ W
(4m,2),0
p (QT ) and ‖φ‖(4m,2)

p,QT
= 1. That, in fact, proves first two

inequalities.
Another two inequalities could be obtained from the first two ones and the

identities

F ( · , · , u,D1u, . . . ,D2mu) =
∫ 1

0

L(su)u ds,

Gj(x, t, u, . . . ,Dmju) =
∫ 1

0

Bj(su)u ds, j = 1,m. �

Lemma 3.8. Assume that conditions of Lemma 3.7 are satisfied. Then there
exists a continuous nondecreasing function ω2: R+ → R+ such that for each

u, φ ∈W (4m,2),0
p (QT ), v ∈W (2m,1)

p (QT ),

w ∈W (4m−mj−1/p,2−mj/(2m)−1/(2mp)),0
p (ST )

and j ∈ 1, . . . ,m, the following inequalities hold:

|〈AE(u, v), φ〉| ≤ ω2(‖u‖(4m,2)
p,QT

)[‖v‖(2m,1)
p,QT

]p−1‖φ‖(4m,2)
p,QT

,

|〈ABj (u,w),φ〉|

≤ ω2(‖u‖(4m,2)
p,QT

)[‖w‖(4m−mj−1/p,2−mj/(2m)−1/(2mp))
p,ST

]p−1‖φ‖(4m,2)
p,QT

,
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Proof. The proof follows from Lemma 3.7 and the Hölder inequality. �

Lemma 3.9. Assume that conditions (2.4) and (2.5) are satisfied and P ∈
C(QT × RM ,R) for some positive integer M . Let operator

[P̃ (v)](x, t) := P (x, t, v(x, t)): [W (2m,1),0
p (QT )]M →W (2m,1)

p (QT )

for v ∈ [W (2m,1),0
p (QT )]M be bounded and continuous. Then, for a sequence

{v(k)} ⊂ [W (2m,1),0
p (QT )]M weakly convergent in [W (2m,1),0

p (QT )]M to v(0) and
for {wk} ⊂ W

(2m,1),0
p (QT ) that weakly converges to w0 in W

(2m,1),0
p (QT ) we

obtain that sequence

ρk(x, t) := {[P̃ (v(k))](x, t)− [P̃ (v(0))](x, t)}(wk(x, t)− w0(x, t))

converges strongly to 0 in W
(2m,1)
p (QT ).

Proof. Using Lemma 3 from [8] and compactness of the embedding of the
space W

(2m,1),0
p (QT ) into C(δ,δ/(2m))(QT ) for some δ > 0, we obtain ρ′k :=

P̃ (v(k))− P̃ (v(0)) → 0 in C(QT ). By the definition, we have

(‖ρk‖2m,1
p,QT

)p =
∥∥∥∥∂ρk

∂t

∥∥∥∥p

p,QT

+
∑

|α|≤2m

‖Dαρk‖p
p,QT

,

and we need to establish the convergence of the right hand side to zero.
Both summands from the right side of the equality

∂ρk

∂t
=
∂ρ′k
∂t

(wk − w0) +
∂

∂t
(wk − w0)ρ′k

tend to 0 in Lp(QT ) as a result of boundedness of first multipliers and conver-
gence to 0 of second factors.

For |α| ≤ 2m, we can estimate

|Dαρk| ≤ C1

{
|Dαρ′k||wk − w0|

+
∑

α′+α′′=α
|α′||α′′|>0

|Dα′
ρ′k||Dα′′

(wk − w0)|+ |ρ′k||Dα(wk − w0)|
}
.

We can obtain convergence to 0 in Lp(QT ) for the first and the last summand
from the right side of equality in the way analogous to investigating derivatives
by t. The convergence to 0 in Lp(QT ) of other summands follows in view of the
Hölder inequality and Lemma 4 from [8]. �
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Lemma 3.10. Assume that conditions of the Theorem 3.5 are satisfied and
the sequence {uk} ⊂ W

(4m,2),0
p (QT ) converges weakly to u0 ∈ W

(4m,2),0
p (QT ).

Then the sequence

rk(x, t) := F (x, t, uk, D
1uk, . . . , D

2muk)

− F (x, t, uk, D
1uk, . . . , D

2m−1uk)− L(u0)(uk − u0)

converges strongly to 0 in W
(2m,1)
p (QT ).

Proof. We can rewrite our sequence

rk(x, t) =
∑

|α|≤2m

∫ 1

0

{[F̃α(u(s)
k )](x, t)− [F̃α(u0)](x, t)} dsDα(uk − u0),

where

u
(s)
k (x, t) := s uk(x, t) + (1− s)u0(x, t),

[F̃α(u)](x, t) := Fα(x, t, u(x, t), D1u(x, t), . . . , D2mu(x, t)).

Then the assertion of the lemma is a consequence of conditions (F1), (F3) and
Lemma 3.9. �

Lemma 3.11. Assume that conditions (2.4), (2.5) are satisfied and Q ∈
C(ST ×RM ,R) for some positive integer M . Let there exist a positive integer m̃
such that 0 ≤ m̃ ≤ 2m−1, and for v ∈ [W (4m−em−1/p,2−em/(2m)−1/(2mp)),0(ST )]M

the operator

[Q̃(v)](x, t) := Q(x, t, v(x, t)): [W (4m−em−1/p,2−em/(2m)−1/(2mp)),0
p (ST )]M

→W (4m−em−1/p,2−em/(2m)−1/(2mp))(ST )

is bounded and continuous and the function Ψ(x, t, ζ) has all mixed continuous
derivatives up to the order 4m− m̃ with respect to ζl. Then, for each sequence

{v(k)} ⊂ [W (4m−em−1/p,2−em/(2m)−1/(2mp)),0
p (ST )]M ,

weakly convergent in [W (4m−em−1/p,2−em/(2m)−1/(2mp)),0
p (ST )]M to v(0), and for

every sequence

{wk} ⊂W (4m−em−1/p,2−em/(2m)−1/(2mp)),0
p (ST ),

that converges weakly to w0 in W
(4m−em−1/p,2−em/(2m)−1/(2mp)),0
p (ST ), the se-

quence

σk(x, t) := {[Q̃(v(k))](x, t)− [Q̃(v(0))](x, t)}(wk(x, t)− w0(x, t))

converges strongly to 0 in W
(4m−em−1/p,2−em/(2m)−1/(2mp))
p (ST ).

Proof. From the definition of the norm in the space

W (4m−em−1/p,2−em/(2m)−1/(2mp))
p (ST )
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it follows that

‖σk‖(4m−em−1/p,2−em/(2m)−1/(2mp))
p,ST

=
I∑

i=1

‖σ(i)
k ‖(4m−em−1/p,2−em/(2m)−1/(2mp))

DT (d) ,

where

(‖σ(i)
k ‖(4m−em−1/p,2−em/(2m)−1/(2mp))

DT (d) )p

=
′∑

2ms+|α|≤4m−em−1

∥∥∥∥(
∂

∂t

)s

Dασ
(i)
k

∥∥∥∥p

p,DT (d)

+ (‖σ(i)
k ‖(4m−em−1/p)

2m,p,DT (d) )p,

for i = 1, I, and notation
∑ ′ means summation over multiindices α such that

αn = 0.
Convergence to 0 for summands from sum

∑ ′ can be proved analogously as
in Lemma 3.9. We consider one summand from norm (‖σ(i)

k ‖(4m−em−1/p)
2m,p,DT (d) )p

I
(i)
k :=

∫ T

0

dt

∫∫
D(d)2

| ∂
∂tD

α
y σ

(i)
k (y′, t)− ∂

∂tD
α
z σ

(i)
k (z′, t)|p

|y′ − z′|n+p−2
dy′ dz′,

where |α| ≤ 2m− m̃− 1, αn = 0.
We note σ′k(x, t) := [Q̃(v(k))](x, t) − [Q̃(v(0))](x, t), w′k(x, t) := wk(x, t) −

w0(x, t). Using Lemmas 2, 3 from [8] we can obtain the convergence for sequences

σ′k
(i) → 0, w′k

(i) → 0 in C(2m−em+δ,1−(em−δ)/(2m))(DT (d))

for some δ > 0. Then, for such multiindices α′, α′′ such that α′ + α′′ = α,
obviously we obtain

Dα′
σ′k

(i) → 0, Dα′′
w′k

(i) → 0 in C(1+δ,(1+δ)/(2m))(DT (d)).

Using the proved convergence together with an inequality∣∣∣∣ ∂∂tDα
y σ

′
k(y′, t)− ∂

∂t
Dα

z σ
′
k(z′, t)

∣∣∣∣
≤K

∑
α′+α′′=α

{∣∣∣∣ ∂∂tDα′

y σ
′
k(y′, t)− ∂

∂t
Dα′

z σ
′
k(z′, t)

∣∣∣∣|Dα′′

y w′k(y′, t)|

+ |Dα′

z σ
′
k(z′, t)|

∣∣∣∣ ∂∂tDα′′

y w′k(y′, t)− ∂

∂t
Dα′′

z w′k(z′, t)
∣∣∣∣

+
[
|Dα′

σ′k|
(1+δ,(1+δ)/(2m))
DT (d)

∣∣∣∣ ∂∂tDα′′

y w′k(y′, t)
∣∣∣∣

+
∣∣∣∣ ∂∂tDα′

σ′k(z′, t)
∣∣∣∣|Dα′′

w′k|
(1+δ,(1+δ)/(2m))
DT (d)

]
|y′ − z′|1+δ

}
it is easy to check that I(i)

k → 0, k → ∞. The rest of summands from norm
(‖σ(i)

k ‖(4m−em−1/p)
2m,p,DT (d) )p could be estimated in the same way. �
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Lemma 3.12. Assume that conditions of Theorem 3.5 are satisfied and the
sequence {uk} ⊂W

(4m,2),0
p (QT ) converges weakly to u0 ∈W (4m,2),0

p (QT ). Then,
for fixed j = 1, . . . ,m, the sequence

r
(j)
k (x, t) := Gj(x, t, uk, . . . , D

mjuk)−Gj(x, t, u0, . . . , D
mju0)−Bj(u0)(uk − u0)

converges strongly to 0 in W
(4m−mj−1/p,2−mj/(2m)−1/(2mp)),0
p (ST ).

Proof. We can rewrite r(j)k in the form

r
(j)
k (x, t) =

∑
|β|≤mj

∫ 1

0

{Gjβ(x, t, u(s)
k (x, t), D1u

(s)
k (x, t), . . . , Dmju

(s)
k (x, t))

−Gjβ(x, t, u0(x, t), D1u0(x, t), . . . , Dmju0(x, t))} dsDβ(uk − u0),

where u(s)
k (x, t) := suk(x, t)+(1−s)u0(x, t). Then the assertion of lemma follows

from (G1), (G3) and Lemma 3.11. �

Proof of Theorem 3.5. It is obvious that for each fixed u∈W (4m,2),0
p (QT )

functional 〈Au, φ〉, defined by (3.11)–(3.15), is linear with respect to φ. Bound-
edness for functional Au follows from Lemma 3.8.

Lemma 3.8 also gives us the boundedness for the operator A, defined by
(3.10). The continuity for A could be proved in a standard way.

Now we prove that A satisfies (S)+ condition on W (4m,2),0
p (QT ). We assume

that the sequence {uk} ⊂ W
(4m,2),0
p (QT ) converges weakly to a function u0 ∈

W
(4m,2),0
p (QT ) and lim supk→∞〈Auk, uk − u0〉 ≤ 0.

We consider the numerical sequence

Ek :=
〈
AE

(
uk,

∂uk

∂t
− F (x, t, uk, D

1uk, . . . , D
2muk)− f(x, t)

)
, uk − u0

〉
=

∑
|α|+2ms≤2m

∫
QT

ψp

[(
∂

∂t

)s

Dα

{
∂uk

∂t
− Fk(x, t)

}]

·
(
∂

∂t

)s

Dα

[
∂

∂t
(uk − u0)− L(uk)(uk − u0)

]
dx dt,

where

Fk(x, t) := F (x, t, uk, D
1uk, . . . , D

2muk) + f(x, t), k ≥ 0,

and AE is defined by (3.12). Using Lemmas 3.9, 3.10 we obtain that the se-
quences

Fk(x, t)− F0(x, t)− L(u0)(uk − u0), L(uk)(uk − u0)− L(u0)(uk − u0)
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converge strongly to 0 in W (2m,1)
p (QT ). That implies

(3.18) Ek −
∑

|α|+2ms≤2m

∫
QT

ψp

·
{(

∂

∂t

)s

Dα

[
∂uk

∂t
− F0(x, t)−L(u0)(uk − u0)

]}
·
(
∂

∂t

)s

Dα

[
∂

∂t
(uk − u0)−L(u0)(uk − u0)

]
dx dt→ 0,

as k →∞. From the weak convergence uk to u0 in W (4m,2),0
p (QT ) we obtain

(3.19)
∑

|α|+2ms≤2m

∫
QT

ψp

{(
∂

∂t

)s

Dα

[
∂

∂t
u0 − F0(x, t)

]}

·
(
∂

∂t

)s

Dα

[
∂

∂t
(uk − u0)− L(u0)(uk − u0)

]
dxdt→ 0,

as k →∞. Using (3.18), (3.19) and the elementary inequality

(3.20) [ψp(a)− ψp(b)](a− b) ≥ Cp|a− b|p, a, b ∈ R,

we can get

(3.21) Ek ≥ Cp

(∥∥∥∥ ∂∂t (uk − u0)− L(u0)(uk − u0)
∥∥∥∥(2m,1)

p,QT

)p

+ ε
(E)
k ,

where ε(E)
k → 0, k →∞. For fixed j ∈ 1, . . . ,m, we consider the sequences

B
(l)
jk := 〈A(l)

Bj
(uk, Gj(x, t, uk, . . . , D

mjuk)− gj(x, t)), uk − u0〉,

for l = 1, 2, 3, where A(l)
Bj

are defined by (3.13)–(3.15). We will prove that

(3.22)
3∑

l=1

B
(l)
jk

≥ Cp(‖Bj(u0)(uk − u0)‖
(4m−mj−1/p,2−mj/(2m)−1/(2mp)),0
p,ST

)p + ε
(j)
k ,

where ε(j)k → 0, k →∞. Let us, for example, consider

B
(2)
jk =

I∑
i=1

′∑
|β|+2ms=4m−mj−1

∫ T

0

dt

∫∫
D(d)2

ψp

·
[(

∂

∂t

)s

Dβ
yG

(i)
jk (y′, t)−

(
∂

∂t

)s

Dβ
zG

(i)
jk (z′, t)

]
·
{(

∂

∂t

)s

Dβ
y [Bj(uk)(uk − u0)](i)(y′, t)

−
(
∂

∂t

)s

Dβ
z [Bj(uk)(uk − u0)](i)(z′, t)

}
dy′ dz′

|y′ − z′|n+p−2
,
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where Gjk(x, t) := Gj(x, t, uk, . . . , D
mjuk)− gj(x, t).

From Lemmas 3.11, 3.12 we get the convergence

Bj(uk)(uk − u0)−Bj(u0)(uk − u0) → 0, k →∞,

Gjk(x, t)−Gj0(x, t)−Bj(u0)(uk − u0) → 0, k →∞

in W (4m−mj−1/p,2−mj/(2m)−1/(2mp)),0
p (ST ). Then for k →∞

(3.23) B
(2)
jk −

I∑
i=1

′∑
|β|+2ms=4m−mj−1

∫ T

0

dt

∫∫
D(d)2

·ψp

{(
∂

∂t

)s

Dβ
y (G(i)

j0 (y′, t)

+ [Bj(u0)(uk − u0)](i)(y′, t))

−
(
∂

∂t

)s

Dβ
z (G(i)

j0 (z′, t) + [Bj(u0)(uk − u0)](i)(z′, t))
}

·
{(

∂

∂t

)s

Dβ
y [Bj(u0)(uk − u0)](i)(y′, t)

−
(
∂

∂t

)s

Dβ
z [Bj(u0)(uk − u0)](i)(z′, t)

}
dy′ dz′

|y′ − z′|n+p−2
→ 0.

If follows from the weak convergence uk to u0 in W (4m,2),0
p (QT ) that

(3.24)
I∑

i=1

′∑
|β|+2ms=4m−mj−1

∫ T

0

dt

∫∫
D(d)2

ψp

·
[(

∂

∂t

)s

Dβ
yG

(i)
j0 (y′, t)−

(
∂

∂t

)s

Dβ
zG

(i)
j0 (z′, t)

]
·
{(

∂

∂t

)s

Dβ
y [Bj(u0)(uk − u0)](i)(y′, t)

−
(
∂

∂t

)s

Dβ
z [Bj(u0)(uk − u0)](i)(z′, t)

}
dy′ dz′

|y′ − z′|n+p−2
→ 0,

when k →∞. Using (3.23), (3.24) we obtain that

(3.25) B
(2)
jk ≥Cp

I∑
i=1

′∑
|β|+2ms=4m−mj−1

∫ T

0

dt

·
∫∫

D(d)2

∣∣∣∣( ∂

∂t

)s

Dβ
y [Bj(u0)(uk − u0)](i)(y′, t)

−
(
∂

∂t

)s

Dβ
z [Bj(u0)(uk − u0)](i)(z′, t)

∣∣∣∣p dy′ dz′

|y′ − z′|n+p−2
+ ε

(j,2)
k ,

where ε(j,2)k → 0, k →∞. By the same reasons we can obtain estimates similar
to (3.23) for B(1)

jk , B(3)
jk and, as a result, the inequality (3.22).
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It follows from the definitions of operator A and sequences Ek, B(l)
jk that

〈Auk, uk − u0〉 = Ek +
m∑

j=1

3∑
l=1

B
(l)
jk .

Applying estimates (3.21), (3.22) to last equality we obtain

(3.26) lim sup
k→∞

[(∥∥∥∥ ∂∂t (uk − u0)− L(u0)(uk − u0)
∥∥∥∥(2m,1)

p,QT

)p

+
m∑

j=1

(‖Bj(u0)(uk − u0)‖
(4m−mj−1/p,2−mj/(2m)−1/(2mp))
p,ST

)p

]
= 0.

From a priori estimate (2.12) for linear parabolic operators we get

(3.27) ‖uk − u0‖(4m,2)
p,QT

≤ K

(∥∥∥∥ ∂∂t (uk − u0)− L(u0)(uk − u0)
∥∥∥∥(2m,1)

p,QT

+
m∑

j=1

‖Bj(u0)(uk − u0)‖
(4m−mj−1/p,2−mj/(2m)−1/(2mp))
p,ST

)
,

where K is independent of k. Inequality (3.27) together with (3.26) proves that
uk → u0 in W (4m,2),0

p (QT ). �

3.3. Reduction to operator equation. Now we can introduce an operator
equation

(3.28) Au = 0, u ∈W (4m,2),0
p (QT ),

where the operator A is defined by (3.10). The following theorem shows connec-
tion between the equation (3.28) and the boundary value problem (3.6)–(3.8).

Theorem 3.13. Assume that problem (3.6)–(3.8) satisfies conditions (2.4),
(2.5), (3.9), (F2)–(F4), (G2)–(G4). A function u ∈ W

(4m,2),0
p (QT ) is a solution

for the problem (3.6)–(3.8) if and only if it is a solution for the equation (3.28).

Proof. It follows from the definition of AE , ABj
that

AE(u, 0) = 0, ABj
(u, 0) = 0, j = 1,m

for u ∈ W
(4m,2),0
p (QT ). Then the solution u for the problem (3.6)–(3.8) will be

a solution of the equation (3.28).
Let u ∈W (4m,2),0

p (QT ) be the solution for equation (3.28). From Lemma 3.3
we obtain that

f0(x, t) :=
∂u

∂t
−

∑
|α|=2m

aα(x, t, u,D1u, . . .D2m−1u)Dαu

− F (x, t, u,D1u, . . . ,D2mu) ∈W (2m,1),0
p (QT ),
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gj0(x, t) := Gj(x, t, u, . . . ,Dmju)− gj(x, t)

∈W (4m−mj−1/p,2−mj/(2m)−1/(2mp)),0(ST ), j = 1,m.

Lemma 3.1 guarantees the existence of a solution v ∈ W
(4m,2),0
p (QT ) for

linear problem

∂v

∂t
− L(u)v(x, t) = f0(x, t), (x, t) ∈ QT ,

Bj(u)v(x, t) = gj0(x, t), (x, t) ∈ ST , j = 1,m.

Functions u, v satisfy equality 〈Au, v〉 = 0 which, together with equations (3.10)–
(3.17) implies

0 = 〈AE(u, f0), v〉+
m∑

j=1

〈ABj
(u, gj0), v〉

= (‖f0‖(2m,1)
p,QT

)p +
m∑

j=1

(‖gj0‖
(4m−mj−1/p,2−mj/(2m)−1/(2mp))
p,ST

)p.

Then f0 ≡ 0, gj0 ≡ 0, j = 1,m, and the function u will be the solution of the
problem (3.6)–(3.8). �

3.4. Topological characteristic of parabolic problem. Using the notion
of the degree for (S)+ operators (see [6], [7]) we can introduce a topological char-
acteristic for the problem (3.6)–(3.7). Namely, for an arbitrary bounded domain
D in W

(4m,2),0
p (QT ), we define an integer number Deg(A,D, 0) (see Section 2,

Chapter 2 from [7]) provided the following condition is satisfied

(3.29) Au 6= 0, u ∈ ∂D.

Some applications of this characteristic to the study of solvability of initial
boundary value problem (3.6)–(3.8) will be given in Section 4.

4. Some applications

Having reduced problem (3.6)–(3.8) to the operator equation with the op-
erator satisfying (S)+ condition, we can investigate solvability of the operator
equation (3.28) instead of studying solvablitity of problem (3.6)–(3.8). Then we
can apply topological methods developed in [6], [7].

4.1. Uniqueness of solution.

Theorem 4.1. Let conditons (2.4), (2.5), (3.9), (F2)–(F4), (G2)–(G4) for
the problem (3.6)–(3.8) be fulfilled. Then the problem (3.6)–(3.8) can have at
most one solution.
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Proof. Let {u0, u1} ∈W (4m,2),0
p (QT ) be two solutions of the problem (3.6)–

(3.8). Then

(4.1)
∂

∂t
(u1 − u0)− F (x, t, u1, D

1u1, . . . , D
2m−1u1)

+ F (x, t, u0, D
1u0, . . . , D

2m−1u0) = 0, (x, t) ∈ QT ,

Gj(x, t, u1, . . . , D
mju1)−Gj(x, t, u0, . . . , D

mju0) = 0, (x, t) ∈ ST , j = 1,m,

u1 − u0 ∈W (4m,2),0
p (QT ).

From (4.1) we can discover that u1 − u0 is the solution for the problem

∂

∂t
(u1 − u0) +

∑
|α|≤2m

ãα(x, t)Dα(u1 − u0) = 0, (x, t) ∈ QT ,(4.2)

∑
|β|≤mj

b̃jβ(x, t)Dβ(u1 − u0) = 0, (x, t) ∈ ST , j = 1,m,(4.3)

(4.4) u1 − u0 ∈W (4m,2),0
p (QT ),

where, for |α| ≤ 2m, |β| ≤ mj ,

ãα(x, t) =
∫ 1

0

Fα(x, t, us(x, t), D1us(x, t), . . . , D2mus(x, t)) ds,

b̃jβ(x, t) :=
∫ 1

0

Gjβ(x, t, us(x, t), . . . , Dmjus(x, t)) ds, j = 1,m,

us(x, t) = su0(x, t) + (1− s)u1(x, t).

The problem (4.2)–(4.4) satisfies conditions of Theorem 2.2. Applying a pri-
ori estimate (2.12) to solution of (4.2)–(4.4) we get that u1 − u0 ≡ 0. �

Corollary 4.2. Assume that conditions (2.4)–(2.7), (F1), (F2), (G1), (G2)
for the problem (2.1)–(2.3) are fulfilled. Then the problem (2.1)–(2.3) can have
at most one solution.

4.2. Local existence of solution.

Theorem 4.3. Assume that conditions (2.4), (2.5), (3.9), (F2)–(F4), (G2)–
(G4) for the problem (3.6)–(3.8) are satisfied and K is some positive number.
Then, there exists a positive number T0, depending on K, but independent on
functions from the right side of the problem (3.6)–(3.8), such that the problem
(3.6)–(3.8) has a solution u ∈ W

(4m,2),0
p (QT ) for 0 < T < T0 provided the

following inequalities hold:

(4.5) ‖f‖(2m,1)
p,QT

≤ K, ‖gj‖
(4m−mj−1/p,2−mj/(2m)−1/(2mp))
p,ST

≤ K, j = 1,m.
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Proof. Let R be some positive number. We can choose a number T1, depen-
dent on R, such that, for u ∈ W (4m,2),0

p (QT ) with ‖u‖(4m,2)
p,QT

≤ R for T ∈ (0, T1],
the following inequalities hold

‖L(u)u‖(2m,1)
p,QT

≤ C(1)‖u‖(4m,2)
p,QT

,(4.6)

‖F ( · , · , u,D1u, . . . ,D2mu)‖(2m,1)
p,QT

≤ C(1)‖u‖(4m,2)
p,QT

,(4.7)

‖L(u)u− L(0)u‖(2m,1)
p,QT

≤ C(2)(T )‖u‖(4m,2)
p,QT

,(4.8)

(4.9) ‖F ( · , · , u,D1u, . . . ,D2mu)− L(0)u‖(2m,1)
p,QT

≤ C(2)(T )‖u‖(4m,2)
p,QT

,

where L(u)φ is defined by (3.16), numbers C(1), C(2) are independent of u, R,
and C(2)(T ) tends to 0 as T tends to 0.

Using estimates (4.6)–(4.9), we can estimate the difference

d1 :=
〈
AE

(
u,
∂u

∂t
− F (x, t, u,D1u, . . . ,D2mu)− f(x, t)

)
, u

〉
−

〈
AE

(
0,
∂u

∂t
− L(0)u

)
, u

〉
,

where T ∈ (0, T1], u ∈ W
(4m,2),0
p (QT ), the AE is defined by (3.12). Using the

last inequality we can prove the following estimates for u ∈W (4m,2),0
p (QT ) such

that ‖u‖(4m,2)
p,QT

= R and T ∈ (0, T1]:
Case 1. Non-integer p

(4.10) |d1| ≤ C1(T )Rp + +C2

( [p]−1∑
k=1

K(R+K)p−k−1Rk +Kp−[p]R[p]

)
,

Case 2. Integer p

(4.11) |d1| ≤ C3(T )Rp + C4

p−1∑
k=1

K (R+K)p−k−1 Rk.

Here C1, . . . , C4 are independent of u, R and C1(T ), C3(T ) tend to 0 as T → 0.
Analogously to (4.6)–(4.9), we obtain that it is possible to choose a positive

number T2, depending on R, such that for u ∈ W
(4m,2),0
p (QT ), ‖u‖(4m,2)

p,QT
≤ R,

T ∈ (0, T2] and j = 1, . . . ,m, the following inequalities hold

‖Bj(u)u‖
(4m−mj−1/p,2−mj/(2m)−1/(2mp))
p,ST

≤C(3)‖u‖(4m,2)
p,QT

,(4.12)

‖Gj( · , · , u, . . . ,Dmju)‖(4m−mj−1/p,2−mj/(2m)−1/(2mp))
p,ST

(4.13)

≤C(2)‖u‖(4m,2)
p,QT

,

‖Bj(u)u−Bj(0)u‖(4m−mj−1/p,2−mj/(2m)−1/(2mp))
p,ST

(4.14)

≤C(4)(T )‖u‖(4m,2)
p,QT

,
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(4.15) ‖Gj( · , · , u, . . . ,Dmju)−Bj(0)u‖(4m−mj−1/p,2−mj/(2m)−1/(2mp))
p,ST

≤ C(4)(T )‖u‖(4m,2)
p,QT

,

where Bj(u)φ is defined by (3.17), C(3), C(4) does not depend on u, R, and
C(4)(T ) tends to 0 as T tends to 0.

Using (4.12)–(4.15) we can evaluate the difference

d2j := 〈ABj
(u,Gj(x, t, u, . . . ,Dmju)− gj(x, t)), u〉 − 〈ABj

(0, Bj(0)u), u〉,

where ABj
is defined by (3.13) and prove the following inequalities for T ∈ (0, T2],

u ∈W (4m,2),0
p (QT ), ‖u‖(4m,2)

p,QT
= R, j ∈ 1, . . . ,m:

Case 1. Non-integer p

(4.16) |d2j | ≤ C5(T )Rp + C6

( [p]−1∑
k=1

K(R+K)p−k−1Rk +Kp−[p]R[p]

)
,

Case 2. Integer p

(4.17) |d2j | ≤ C7(T )Rp + C8

p−1∑
k=1

K (R+K)p−k−1 Rk.

Here C5–C8 are independent of u, R, and C5(T ), C7(T ) tend to 0 as T tends
to 0.

Choosing T3 := min {T1, T2} we get that inequalities (4.10), (4.11), (4.16),
(4.17) are satisfied for T ∈ (0, T3] u ∈ W

(4m,2),0
p (QT ), ‖u‖(4m,2)

p,QT
≤ R. Thus,

using definitions of d1, d2j , we have

(4.18) 〈Au, u〉 ≥
〈
AE

(
0,
∂u

∂t
− L(0)u

)
, u

〉
+

m∑
j=1

〈ABj (0, Bj(0)u), u〉 − C9(T )Rp − C10 ε(K,R),

where constants are independent of u, R, C9(T ) → 0, C10(T ) → 0 as T → 0 and
ε(K,R)/Rp → 0 when R→∞.

A priori estimate (2.12) gives us the inequality

(4.19)
〈
AE

(
0,
∂u

∂t
− L(0)u

)
, u

〉
+

m∑
j=1

〈ABj
(0, Bj(0)u), u〉

=
(∥∥∥∥∂u∂t − L(0)u‖(2m,1)

p,QT

)p

+
m∑

j=1

(‖Bj(0)u‖(4m−mj−1/p,2−mj/(2m)−1/(2mp))
p,ST

)p

≥ C11(‖u‖(4m,2)
p,QT

)p,

where C11 is independent of u.
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Inequalities (4.18), (4.19) allow to get estimate

〈Au, u〉 ≥ C11Rp − C9(T )Rp − C10ε(K,R)

that implies inequality

〈Au, u〉 ≥ 0

for u ∈W (4m,2),0
p (QT ), T ∈ (0, T0], ‖u‖(4m,2)

p,QT
= R0 for sufficiently small T0 ≤ T3

and sufficiently large R0.
Thus we have conditions of Theorem 4.4 from Chapter 2 of [7] satisfied. Then

Deg(A,BR0(0), 0) = 1,

where BR0(0) := {‖u ∈W (4m,2),0
p (QT )‖ : ‖u‖(4m,2)

p,QT
= R0}.

Using Corollary 4.1 from Chapter 2 of [7] we assert that the operator equation
(3.28) has a solution in BR0(0). The solvability of problem (3.6)–(3.8) follows
then from Theorem 3.13. �

Corollary 4.4. Assume that conditions (1.4)–(1.7), (F1), (F2), (G1), (G2)
for the problem (2.1)–(2.3) are fulfilled and K is some positive number. Then
there exists a positive T0 that depends on K, such that the problem (2.1)–(2.3)
has a solution u ∈W (4m,2)

p (QT ) for 0 < T < T0 if the following inequalities hold:

‖f‖(2m,1)
p,QT

≤ K, ‖gj‖
(4m−mj−1/p,2−mj/(2m)−1/(2mp))
p,ST

≤ K, j = 1,m,

‖h‖4m−2m/p
p,Ω ≤ K.

4.3. Conditional solvability of initial boundary value problems. We
include initial boundary value problem (3.6)–(3.8) into a one-parameter family
of problems

Φ̃τ [u] =
∂u

∂t
− Fτ (x, t, u,D1u, . . . ,D2mu) = τf(x, t), (x, t) ∈ QT ,(4.20)

(4.21) Ψ̃j,τ [u] = Gj,τ (x, t, u, . . . ,Dmju) = τgj(x, t), (x, t) ∈ ST , j = 1,m,

u ∈W (4m,2),0
p (QT ),(4.22)

where

Fτ (x, t, ξ) := F (τ, x, t, ξ), τ ∈ [0, 1], (x, t) ∈ QT , ξ ∈ RM(2m),

Gj,τ (x, t, ζj) := Gj(τ, x, t, ζj), τ ∈ [0, 1], (x, t) ∈ ST , ζj ∈ RM(mj), j = 1,m.

We assume that F (x, t, ξ) = F1(x, t, ξ), Gj(x, t, ζj) = Gj,1(x, t, ζj), where the
functions F (x, t, ξ), Gj(x, t, ζj) appear in the left side of equations in problem
(3.6)–(3.8).
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Theorem 4.5. Let functions Fτ (x, t, ξ) together with all their derivatives
w.r.t. ξβ up to the order 2m + 1, be continuous for τ ∈ [0, 1], (x, t) ∈ QT ,
ξ ∈ RM(2m), Fτ (x, t, 0) ≡ 0 and we assume that, for every τ ∈ [0, 1], function
Fτ (x, t, ξ) satisfies conditions (F2), (F4). Let function Gj,τ (x, t, ζj), j ∈ 1, . . . ,m
and all their derivatives up to the order 4m−mj +1 w.r.t. ζβ, be continuous for
τ ∈ [0, 1], (x, t) ∈ ST , ζj ∈ RM(mj), Gj,τ (x, t, 0) ≡ 0 and functions Gj,τ satisfy
conditions (G2), (G4), for every τ ∈ [0, 1]. Assume that conditions (2.4), (2.5)
are fullfilled and, for each τ ∈ [0, 1], inclusions (3.9) are valid. We suppose that
there exists a number R = R(f, g1, . . . , gm) independent of τ and such that the
problem (3.20)–(3.22), for each τ ∈ [0, 1], has no solutions outside the ball

(4.23) {u ∈W (4m,2),0
p (QT ) : ‖uτ‖(4m,2)

p,QT
≤ R}.

Then the problem (3.6)–(3.8) has the unique solution u ∈W (4m,2),0
p (QT ).

Proof. We can reduce parametrical family of problems (4.20)–(4.22) to
one-parametrical family of operator equations

(4.24) Aτu = 0, u ∈W (4m,2),0
p (QT ),

where Aτ is defined by equality

〈Aτu, φ〉 :=
1
p

d

ds

[
(‖Φ̃τ [u+ sφ]− τf‖(2m,1)

p,QT
)p

+
m∑

j=1

(‖Ψ̃j,τ [u+ sφ]− τgj‖
(4m−mj−1/p,2−mj/(2m)−1/(2mp))
p,ST

)p

]∣∣∣∣
s=0

.

Using results of Theorem 3.5, we can assert that for each τ ∈ [0, 1], operator
Aτ is bounded, continuous and satisfies (S)+ condition on W (4m,2),0

p (QT ). It fol-
lows from Theorem 3.13 that solvability of the problem (3.6)–(3.8) is equivalent
to solvability of operator equation A1u = 0, u ∈W (4m,2),0

p (QT ).
We define

DR := {u ∈W (4m,2),0
p (QT ) : ‖u‖(4m,2)

p,QT
< R+ 1},

where R is the number from (4.23). Then, for every τ ∈ [0, 1], the inequality

(4.25) Aτu 6= 0, u ∈ ∂DR,

holds and the operator degree Deg(Aτ , DR, 0) is well defined.
Similarly to the proof of Theorem 3.5, we can prove that the operator family

Aτ has the following properties:

(1) for each sequence {uk}∞k=1 ⊂ W
(4m,2),0
p (QT ), that converges to u0 ∈

W
(4m,2),0
p (QT ), and for every sequence {τk}∞k=1 ⊂ [0, 1] such that τk →

τ0, it follows that Aτk
uk → Aτ0u0;
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(2) for each sequence {uk}∞k=1 ⊂W
(4m,2),0
p (QT ), weakly convergent to u0 ∈

W
(4m,2),0
p (QT ), and and for every sequence {τk}∞k=1 ⊂ [0, 1] {τk}∞k=1 ⊂

[0, 1], such that τk → τ0, condition

lim
k→∞

〈Aτk
uk, uk − u0〉 = 0

implies the strong convergence uk to u0.

Using properties (1), (2) and inequality (4.25) we prove homotopy of map-
pings A0 and A1 on DR. From the Theorem 4.1 from [7] it follows that

Deg(A0, DR, 0) = Deg(A1, DR, 0).

In full analogy to the proof theorem 4.3 we obtain that inequality

〈A0u, u〉 > 0,

is valid for u ∈ W
(4m,2),0
p (QT ), ‖u‖(4m,2)

p,QT
= r0 when r0 > 0 is sufficiently small.

In fact, it implies that

(4.26) Deg(A0, Br0(0), 0) = 1,

where Br0(0) := {u ∈W (4m,2),0
p (QT ) : ‖u‖(4m,2)

p,QT
≤ r0}.

It is easy to check that the function u ≡ 0 will be solution of operator
equation A0u = 0. From the Theorem 4.1, (4.26) and Theorem 5.1 (Chapter 2
of [7]) we have

Deg(A0, DR, 0) = 1.

Using Corollary 4.1 ([7, Chapter 2]) we obtain solvability for (3.6)–(3.8). �

4.4. Theorem of domain preservation.

Theorem 4.6. Assume that initial boundary value problem (3.6)–(3.8) sat-
isfies conditions of Theorem 3.5 and D is the open set in W

(4m,2),0
p (QT ). Then

the set

R(D) :=
{(

∂u

∂t
− F ( · , · , u,D1u, . . . ,D2mu), G1( · , · , u, . . . ,Dm1u), . . . ,

Gm( · , · , u, . . . ,Dmmu)
)

: u ∈ D
}

will be open in space

W (2m,2{mj}),0
p (QT , ST )

:= W (2m,1),0
p (QT )×

( m∏
j=1

W (4m−mj−1/p,2−mj/(2m)−1/(2mp)),0(ST )
)
.

Proof. The proof of theorem is fully analogous to the proof of Theorem 6.1
from [2]. �
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Corollary 4.7. Assume that initial boundary value problem (3.6)–(3.8) sat-
isfies conditions of Theorem 3.5. Then the set

R(0) := {(f, g1, . . . , gm) ∈W (2m,{mj}),0
p (QT , ST ) :

problem (3.6)–(3.8) has a solution u ∈W (4m,2),0
p (QT )}

is open in W
(2m,{mj}),0
p (QT , ST ).

Corollary 4.8. Assume that initial boundary value problem (3.6)–(3.8)
satisfies conditions of Theorem 2.5 and U : R(0) → W

(4m,2),0
p (QT ) is operator

which maps a vector of functions (f, g1, . . . , gm) ∈ R(0) (where R(0) is defined in
Corollary 4.7) onto the solution of problem (2.6)–(2.8). Then, the operator U is
continuous on R(0).

4.5. Convergence of the Galerkin approximants. Let {vk}∞k=1 be the
complete system of functions in W

(4m,2),0
p (QT ). Assume that initial bound-

ary value problem (3.6)–(3.8) satisfies conditions of Theorem 3.5. By a K-
approximate solution of boundary value problem (3.6)–(3.8) we mean the func-
tion uK such that

uK =
K∑

k=1

c
(K)
k vk(x, t)

and
〈AuK, vk〉 = 0, k = 1,K,

where c(K)
k are real numbers and the operator A is defined by (3.10).

We say that the problem (3.6)–(3.8) has a bounded sequence of K-approximate
solutions if there exists a number K0 such that for K ≥ K0 the problem (3.6)–(3.8)
has an K - approximate solution and the sequence {u}∞K=K0

is bounded.

Theorem 4.9. Assume that conditions (2.4), (2.5), (3.9), (F2)–(F4), (G2)–
(G4) for the problem (3.6)–(3.8) are fulfilled. The problem (3.6)–(3.8) has a solu-
tion u0 ∈W (4m,2),0

p (QT ) if and only if it has bounded sequence of K-approximate
solutions {uK}∞K=K0

. The sequence uK strongly converges to u0 in W (4m,2),0
p (QT ).

Proof. The proof of the theorem is identical to the proof of the Theorem 7.1
from [2]. �
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