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PERIODIC SOLUTIONS OF LAGRANGE EQUATIONS

Andrzej Nowakowski — Andrzej Rogowski

Dedicated to Andrzej Granas

Abstract. Nontrivial periodic solutions of Lagrange Equations are inves-
tigated. Sublinear and superlinear nonlinearity are included. Convexity

assumptions are significiently relaxed. The method used is the duality de-

veloped by the authors.

1. Introduction

We investigate the nonlinear problem:

(1.1)
d

dt
Lx′(t, x′(t)) + Vx(t, x(t)) = 0, a.e. in R

x(t+ T ) = x(t),

where

(H) T > 0 is arbitrary, L, V :R × Rn → R are Gateaux differentiable in
the second variable, T -periodic and measurable in t functions and L is
convex in the second variable.

We are looking for solutions of (1.1) being a pair (x, p) of periodic absolutely
continuous functions x, p: [0, T ]→ Rn, x(0) = x(T ), p(0) = p(T ) such that

d

dt
p(t) + Vx(t, x(t)) = 0,

p(t) = Lx′(t, x′(t)).
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Of course, if L(t, x′) = |x′|2/2 or t → L∗p(t, p(t)) (L∗ denotes Fenchel conjugate
of L(t, · )) is an absolutely continuous function, then our solution of (1.1) belongs
to C1,+([0, T ],Rn) of continuously differentiable functions x whose derivatives x′

are absolutely continuous. It is clear that (1.1) is the Euler-Lagrange equation
to the functional

(1.2) J(x) =
∫ T
0
(−V (t, x(t)) + L(t, x′(t))) dt

considered on the space Ap of absolutely continuous T -periodic functions x:
R→ Rn. The dual functional to it is

JD(p) = −
∫ T
0
L∗(t, p(t)) dt+

∫ T
0
V ∗(t,−p′(t)) dt

considered also on the space Ap, where L∗ is a Fenchel conjugate to L and where
V ∗ is a Fenchel conjugate to V .

Periodic problem (1.1) was studied in eighties by many authors as well in
sublinear case as in superlinear one (see e.g. [7]), sublinear cases also in [1], [3],
[7], [8], some cases of (1.1) for superlinear Vx in [5], [6], [2], [9]. It is interesting
that the method developed in [5] is based on the dual variational method for the
problem, according to the idea discovered by Clarke. However, here we develop
our duality method from [9]. We relax the convexity assumption on V and
significantly improve the construction of the set X.

Our aim is to find a nonlinear subspace X of Ap defined by the type of
nonlinearity of V (and in fact also L). In this paper we develop absolutely new
construction of the set X in comparison to the paper [9]. First we define X to be
a given, closed with respect to the norm “maximum”, and convex subset of the
set {v ∈ A0 : v′ ∈ A}, where A is the space of absolutely continuous functions
with derivatives in L2, A0 is the subspace of A of all functions v: [0, T ] → Rn

satisfying v(0) = 0.

Let B be a convex set in Rn such that for each v ∈ X, v(t) ∈ B, t ∈ [0, T ].
Let us set the basic hypothesis we need:

(H1) There exist 0 < α1 ≤ α2 and d1, d2 ∈ R such that for x′ ∈ L2

(1.3) d1 +
α1
2
‖x′‖2L2 ≤

∫ T
0
L(t, x′(t)) dt ≤ α2

2
‖x′‖2L2 + d2,

where L(t, · ) is strictly convex, there exist 0 < β1, q1 > 1, k ∈ R such
that for each v ∈ X and for all x ∈ Rn

k +
β1
q
|x|q1 ≤

∫ T
0
V (t, v(t) + x) dt.
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Vx(t, · ) is continuous, t ∈ [0, T ], and there exist k1, k2 ∈ L2 such that

(1.4)
(t→ sup{V (t, x) : x ∈ B}) ≤ k1(t), t ∈ [0, T ],
(t→ sup{Vxi(t, x) : x ∈ B}) ≤ k2(t), t ∈ [0, T ], i = 1, . . . , n.

Having the basic hypothesis we are able to define a nonlinear subspace X as
follows. We reduce the space X to the set X ⊂ X with the property:

• For each v ∈ X and cv ∈ Rn, where cv is a minimizer for the functional
Rn 3 c →

∫ T
0 V (t, v(t) + c) dt (such a minimizer, by (H) and (H1)

certainly exists), there exists (possible another) ṽ ∈ X such that

(1.5)
∫ T
0
{〈v(t) + cv,−p̃′(t) > −V ∗(t,−p̃′(t))} dt =

∫ T
0
V (t, v(t) + cv) dt,

where p̃(t) = Lx′(t, ṽ′(t)) − dp for a.e. t ∈ [0, T ], dp ∈ Rnand V ∗ is the
Fenchel conjugate of V in the second variable.

We assume that

(HX) The set X contains at least one element x with x(0) = x(T ) = 0.

It is clear that the set X is much smaller than X̃ and that it depends strongly
on the type of nonlinearity V and L. We easily see that X is not in general a
closed set in A and that in X the subdifferential ∂vV (t, v(t)) 6= ∅ and V (t, v(t)) =
V ∗∗(t, v(t)) for a.e. t ∈ [0, T ]. As the dual set to X we shall consider the following
set

Xd = {p ∈ AT : there exist v ∈ X such that
p(t) = Lx′(t, v′(t))− dp, t ∈ [0, T ] a.e. dp ∈ Rn},

where AT denotes the subspace of A of all functions w: [0, T ]→ Rn with w(T )=0.
Therefore, by (1.5), we derive that for v ∈ X there exists cv and p ∈ Xd such
that −p′(t) = Vx(t, v(t) + cv), t ∈ [0, T ] a.e.
Taking into account the structure of the spaceX we shall study the functional

J(x, c) =
∫ T
0
(−V (t, x(t) + c) + L(t, x′(t))) dt+ l(x(T ))

on the space X ⊕ Rn instead of (1.2) on the space Ap, where

l(a) =

{
0 if a = 0,

∞ if a 6= 0,

and the functional

JD(p, d) = −
∫ T
0
L∗(t, p(t) + d) dt+

∫ T
0
V ∗(t,−p′(t)) dt+ l(p(0)).

We shall look for a “min” of J over the set X i.e. actually

min
x∈X
max
c∈Rn
J(x, c).
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To show that element x ∈ X realizing “min” is a critical point of J we develop a
duality theory between J and dual to it JD, described in the next section. Just
because of the duality theory we are able to avoid in our proof of an existence
of critical points the deformation lemmas, the Ekeland variational principle or
PS type conditions. We would like to stress that we do not assume explicitly
convexity of V (t, · ).
The main result of our paper is the following:

Theorem 1.1 (Main Theorem). Under hypotheses (H) and (H1) there exists
a pair x+ cx, p+ dp), x ∈ X, p ∈ Xd, cx ∈ Rn, dp ∈ Rn being a solution of (1.1)
and such that

J(x, cx) = min
x∈X
max
c∈Rn
J(x, c) = min

p∈Xd
max
d∈Rn
JD(p, d) = JD(p, dp).

We see that our hypotheses on L and V concern only convexity of L(t, · )
and at most local convexity of V (t, · ) (see Example). We do not assume that
V (t, x) ≥ 0. However we require that the above set X is nonempty, which we
must check in each concrete type of equation. Some routine how to do that we
show at the end of the paper for the equation

k(t)x′′ + Vx(t, x) = 0.

2. Duality results

To obtain a duality principle we need a kind of perturbation of J . Thus
define for each x ∈ X the perturbation of J as

(2.1) Jx(a, y) =
∫ T
0
(V (t, x(t) + cx + y(t))− L(t, x′(t))) dt− l(x(T ) + a)

for y ∈ L2, a ∈ Rn. Of course, Jx(0, 0) = −J(x, cx). For x ∈ X and p ∈ Xd,
d ∈ Rn we define a type of conjugate of J by

J#x (p, d) = sup
y∈L2
sup
c

{∫ T
0
〈y(t), p′(t)〉 dt−

∫ T
0
V (t, x(t) + c+ y(t)) dt

}
+
∫ T
0
L(t, x′(t)) dt+ inf

a∈Rn
{〈a, d〉+ l(x(T ) + a)}.

By a direct calculation we obtain

J#x (p, d) = sup
c

{
− 〈x(T ), d〉 −

∫ T
0
〈x(t) + c, p′(t)〉 dt(2.2)

+
∫ T
0
L(t, x′(t)) dt+

∫ T
0
V ∗(t,−p′(t)) dt

}



Periodic Solutions of Lagrange Equations 171

= sup
c
{−〈c, p(0)〉}+

∫ T
0
〈x′(t), p(t) + d〉 dt

+
∫ T
0
L(t, x′(t)) dt+

∫ T
0
V ∗(t,−p′(t)) dt

=
∫ T
0
〈x′(t), p(t) + d〉 dt+

∫ T
0
L(t, x′(t)) dt

+
∫ T
0
V ∗(t,−p′(t)) dt+ l(p(0)).

Now we take “min” from J#x (p, d) with respect to x ∈ X and calculate it.
Because X is not a linear space we need some trick to avoid calculation of the
conjugate with respect to a nonlinear space. To this effect we use the special
structure of the set Xd. First we observe that for each p ∈ Xd there exists
xp ∈ X such that

p(t) + dp = Lx′(t, x′p(t))

and, by classical convex analysis argument,

x′p(t) = L
∗
p(t, p(t) + dp),

where L∗ is a Fenchel conjugate to L. Therefore∫ T
0
〈x′p(t), p(t) + dp〉 dt−

∫ T
0
L(t, x′p(t)) dt =

∫ T
0
L∗(t, p(t) + dp) dt.

Next let us note that, on the other hand,∫ T
0
〈x′p(t),p(t) + dp〉 dt−

∫ T
0
L(t, x′p(t)) dt

≤ sup
x∈X

{∫ T
0
〈x′(t), p(t) + dp〉 dt−

∫ T
0
L(t, x′(t)) dt

}
≤ sup
x′∈L2

{∫ T
0
〈x′(t), p(t) + dp〉 dt−

∫ T
0
L(t, x′(t)) dt

}
=
∫ T
0
L∗(t, p(t) + dp) dt

and actually all inequalities above are equalities. Therefore we can calculate for
p ∈ Xd and appropriate dp

sup
x∈X
−J#x (−p,−dp) = sup

x∈X

{∫ T
0
〈x′(t), p(t) + dp〉 dt−

∫ T
0
L(t, x′(t)) dt

}
−
∫ T
0
V ∗(t,−p′(t)) dt− l(p(0))

=
∫ T
0
L∗(t, p(t) + dp) dt−

∫ T
0
V ∗(t,−p′(t)) dt− l(p(0)).
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Let us put, for p ∈ Xd

JD(p, d) = −
∫ T
0
L∗(t, p(t) + d) dt+

∫ T
0
V ∗(t,−p′(t)) dt+ l(p(0)).

From (2.3) we infer, for p ∈ Xd, that

(2.4) sup
x∈X
−J#x (−p,−dp) = −JD(p, dp).

We can also define a type of the second conjugate of J : for y ∈ L2, a ∈ Rn,
x ∈ X, p ∈ Xd, put

J##x (y, a) = sup
p∈Xd

{∫ T
0
〈y(t),−p′(t)〉 dt+

∫ T
0
〈x(t) + cx,−p′(t)〉 dt

−
∫ T
0
L(t, x′(t)) dt−

∫ T
0
V ∗(t,−p′(t)) dt

}
+ inf
d∈Rn
{〈a, d〉+ 〈x(T ), d〉}.

We assert that J##x (0, 0) = −J(x, cx). To prove that, we use the special struc-
ture of X. First we observe that for each x ∈ X there exists p ∈ Xd such that
p′( · ) = −Vx( · , x( · ) + cx) and∫ T

0
〈−p′(t), x(t) + cx〉 dt−

∫ T
0
V ∗(t,−p′(t)) dt =

∫ T
0
V̆ (t, x(t) + cx) dt.

Next let us note that∫ T
0
〈−p′(t),x(t) + cx〉 dt−

∫ T
0
V ∗(t,−p′(t)) dt

≤ sup
p∈Xd

{∫ T
0
〈−p′(t), x(t) + cx〉 dt−

∫ T
0
V ∗(t,−p′(t)) dt

}
= sup
p′∈L2
{
∫ T
0
〈−p′(t), x(t) + cx〉 dt−

∫ T
0
V ∗(t,−p′(t)) dt

}
=
∫ T
0
V̆ (t, x(t) + cx) dt.

Hence we see that, for x ∈ X,

(2.5) J##x (0, 0) = −
∫ T
0
(−V (t, x(t)+cx)+L(t, x′(t))) dt−l(x(T )) = −J(x, cx).

We easily compute (see (2.4))

(2.6) sup
x∈X
J##x (0, 0) = sup

x∈X
sup
p∈Xd
−J#x (−p,−dp) = sup

p∈Xd
sup
x∈X
−J#x (−p,−dp)

= sup
p∈Xd
−JD(p, dp) = sup

p∈Xd
inf
d
−JD(p, d)

where the last equality is a consequence of the following lemma.
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Lemma 2.1. For any p ∈ Xd which corresponds to x ∈ X with x(0) =
x(T ) = 0 the constant dp from the specification of Xd is a minimizer of the
functional

d→
∫ T
0
L∗(t, p(t) + d) dt.

Proof. From the definition of Xd we have p(t) + dp = Lx′(t, x′(t)) a.e. in
[0, T ] for some x ∈ X. This means, that x′(t) = L∗p(t, p(t) + dp) a.e. in [0, T ].
Integrating this equality yields, since x is periodic and L∗ convex, the assertion
of the lemma. �

We shall need one more

Lemma 2.2. For any p ∈ A such that p′(t) = −Vx(t, x(t) + cx), for x ∈ X,
and cx being a minimizer of the functional c →

∫ T
0 V (t, x(t) + c) dt we have

p(0) = p(T ).

Proof. The assumption of the lemma yields that
∫ T
0 Vx(s, x(s)+ cx) ds = 0

and the proof is completed. �

Hence, from above and (2.6) we obtain the following duality principle.

Theorem 2.3. For functionals J and JD we have the duality relation

(2.7) inf
x∈X
sup
c
J(x, c) = inf

p∈Xd
sup
d
JD(p, d).

Denote by ∂Jx(y, a) the subdifferential of Jx with respect to the first variable.
In particular, if 1/q +1/q′ = 1 then

∂Jx(0, 0) =
{
q ∈ Lq

′
:
∫ T
0
V ∗(t, q(t)) dt+

∫ T
0
V (t, x(t) + cx) dt

=
∫ T
0
〈q(t), x(t) + cx〉 dt

}
.

The next result formulates a variational principle for “minmax” arguments.

Theorem 2.4. Let x ∈ X be such that

∞ > J(x, cx) = inf
x∈X
sup
c
J(x, c) > −∞

and let the set ∂Jx(0, 0) be nonempty. Then there exist −p′ ∈ ∂Jx(0, 0) with
p(t) = −

∫ T
t
p′(s) ds belonging to Xd, such that p together with dp satisfies

JD(p, dp) = inf
p∈Xd
sup
d
JD(p, d).

Furthermore

Jx(0, 0) + J
#
x (−p,−dp) = 0,(2.8)

JD(p, dp)− J#x (−p,−dp) = 0.(2.9)
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Proof. By Theorem 2.3 to prove the first assertion it suffices to show that
J(x, cx) ≥ JD(p, dp). We note, from the form of J(x) and the finiteness of
J(x, cx) that x(T ) = x(0) = 0. Let us observe that −p′ ∈ ∂Jx(0, 0) means, in
fact, that −p′(t) = Vx(t, x(t) + cx) a.e. t ∈ [0, T ]. By Lemma 2.2 each primitive
of p′ is a periodic function. Since x ∈ X hence there exists an x̃ ∈ X such that

p(t) =
∫ T
t

Vx(s, x(s) + cx) ds

=
∫ T
t

− d
ds
Lx′(s, x̃′(s)) ds = Lx′(t, x̃′(t))− Lx′(T, x̃′(T )).

Putting dp = Lx′(T, x̃′(T )) we have that p(t) = Lx′(t, x̃′(t))− dp belongs to Xd.
Hence, we have

−J(x, cx) =
∫ T
0
(V (t, x(t) + cx)− L(t, x′(t))) dt

=
∫ T
0
(−V ∗(t,−p′(t))− L(t, x′(t))) dt+

∫ T
0
〈x(t) + cx,−p′(t)〉 dt

≤
∫ T
0
(−V ∗(t,−p′(t)) + L∗(t, p(t) + dp)) dt = −JD(p, dp).

Therefore, J(x, cx) ≥ JD(p, dp), and since, by Lemma 2.1 dp is a minimizer of
the functional d→

∫ T
0 L

∗(t, p(t) + d) dt we also have

J(x, cx) = JD(p, dp) = inf
p∈Xd
sup
d
JD(p, d).

Thus the first assertion is proved.
The second assertion is a simple consequence of two facts: Jx(0, 0)=−J(x, cx)

so Jx(0, 0) + J(x, cx) = 0 and −p′ ∈ ∂Jx(0, 0) i.e. Jx(0, 0) + J#x (−p,−dp) = 0
and so equality (2.8). Then equality (2.9) we get joining the last equality and
the equality J(x, cx) = JD(p, dp).
From equations (2.8), (2.9) we are able to derive a dual to (1.1) Euler–

Lagrange equations. �

Corollary 2.5. Let x ∈ X be such that

∞ > J(x, cx) = inf
x∈X
sup
c
J(x, c) > −∞.

Then there exists p ∈ Xd suchthatthepair (x, p) satisfies the relations

−p′(t) = Vx(t, x(t) + cx),(2.10)

p(t) + dp = Lx′(t, x′(t)),(2.11)

JD(p, dp) = inf
p∈Xd
sup
d
JD(p, d) = inf

x∈X
sup
c
J(x, c) = J(x, cx).(2.12)
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Proof. Since x ∈ X therefore ∂Jx(0, 0) is nonempty and so the existence
of p′ in Theorem 2.4 is now obvious. Equations (2.8) and (2.9) imply∫ T

0
V (t, x(t) + cx) dt+

∫ T
0
V ∗(t,−p′(t)) dt−

∫ T
0
〈x(t) + cx,−p′(t)〉 dt = 0,∫ T

0
L∗(t, p(t) + dp) dt+

∫ T
0
L(t, x′(t)) dt−

∫ T
0
〈x′(t), p(t) + dp〉 dt = 0,

and then (2.10), (2.11). Relations (2.12) are a direct consequence of Theorems 2.3
and 2.4. �

As a direct consequence of the above corollary and definition of Xd we have

Corollary 2.6. By the same assumptions as in Corollary 2.5 there exists
a pair (x, p) ∈ X ×Xd satisfying, together with (cx, dp) relations (2.12), and the
pair (x+ cx, p+dp) is a solution of (1.1). Conversely, each pair (x, p) satisfying,
together with (cx, dp), relations (2.12) satisfies also equations (2.10), (2.11).

3. Variational principles and a duality gap for minimizing sequences

In this section we show that a statement similar to Theorem 2.4 is true for
a minimizing sequence of J .

Theorem 3.1. Let {(xj , cxj )}, xj ∈ X, j = 1, 2, . . . , be a minimizing se-
quence for J and let

∞ > J(xj , cxj ) > −∞ for j = 1, 2, . . .

Then there exist −p′j ∈ ∂Jxj (0, 0) with pj ∈ Xd, such that {(pj , dpj )} is a mini-
mizing sequence for JD i.e.

inf
xj∈X
J(xj , cxj ) = inf

xj∈X
sup
c∈Rn
J(xj , c) = inf

pj∈Xd
sup
d∈Rn
JD(pj , d) = inf

pj∈Xd
JD(pj , dpj ).

Furthermore

Jxj (0, 0) + J
#
xj (−pj ,−dpj ) = 0,

JD(pj , dpj )− J#xj (−pj ,−dpj ) ≤ ε,
0 ≤ J(xj , cxj )− JD(pj , dpj ) ≤ ε,

for a given ε > 0 and sufficiently large j.

Proof. We have that ∞ > infxj∈X J(xj , cxj ) = a > −∞, and therefore
we may assume xj(0) = xj(T ). Thus, for a given ε > 0 there exists j0 such
that J(xj , cxj ) − a < ε, for all j ≥ j0. Further, the proof is similar to that of
Theorem 2.4, so we only sketch it. First we observe that ∂Jxj (0, 0) is nonempty

for j ≥ j0 and −p′j ∈ ∂Jxj (0, 0) implies that
∫ T
0 p
′
j(t) dt = 0. Accordingly to the
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definition of Xd let us take as a primitive of p′j such pj that pj(T ) = 0 and in
fact pj(0) = 0. Therefore, for all d ∈ Rn, we also have

−J(xj , cxj ) =
∫ T
0
(V (t, xj(t) + cxj )− L(t, x′j(t))) dt

=
∫ T
0
(−V ∗(t,−p′j(t))− L(t, x′j(t))) dt+

∫ T
0
〈xj(t) + cxj ,−p′j(t)〉 dt

≤
∫ T
0
(−V ∗(t,−p′j(t)) + L∗(t, pj(t) + d)) dt = −JD(pj , d).

Hence, due to Theorem 2.3,

a+ ε ≥ sup
d∈Rn
JD(pj , d) = JD(pj , dpj ) ≥ a for j ≥ j0.

The second assertion is a simple consequence of two facts:

Jxj (0, 0) = −J(xj , cxj )

so
Jxj (0, 0) + J(xj , cxj ) = 0 and − p′j ∈ ∂Jxj (0, 0)

i.e. Jxj (0, 0) + J
#
xj (−pj ,−dpj )=0. �

A direct consequence of this theorem is the following corollary.

Corollary 3.2. Let {(xj , cxj )}, xj ∈ X, j = 1, 2, . . . , be a minimizing
sequence for J and let ∞ > J(xj , cxj ) > −∞, for j = 1, 2, . . . If

−p′j(t) = Vx(t, xj(t) + cxj )

then pj(t) = −
∫ T
t
p′j(s) ds belongs to X

d and {(pj , dpj )} is a minimizing sequence
for JD i.e.

inf
xj∈X
J(xj , cxj ) = inf

xj∈X
sup
c∈Rn
J(xj , c) = inf

pj∈Xd
sup
d∈Rn
JD(pj , d) = inf

pj∈Xd
JD(pj , dpj ).

Furthermore

(3.1)
JD(pj , dpj )− J#xj (−pj ,−dpj ) ≤ ε,
0 ≤ J(xj , cxj )− JD(pj , dpj ) ≤ ε,

for a given ε > 0 and sufficiently large j.

4. The existence of “maxmin”

The last problem which we have to solve is to prove the existence of x ∈ X
such that

J(x, cx) = min
x∈X
max
c∈Rn
J(x, c).

To obtain this it is enough to use hypothesis (H1), the results of the former
section and known compactness theorems.
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Theorem 4.1. Under hypothesis (H1) there exists x ∈ X such that

J(x, cx) = min
x∈X
max
c∈Rn
J(x, c).

Proof. Let us observe that by (H1) for each x ∈ X there exists cx such
that maxc∈Rn J(x, c) = J(x, cx). Next, we observe, that by the definition of X,
J(x, cx) is bounded below on X as well as that the sets Sb = {(x, cx) : x ∈ X,
cx ∈ Rn, J(x, cx) ≤ b}, b ∈ R are nonempty for sufficiently large b and bounded
with respect to the norm |cx| + ‖x′‖L2 . The last means that Sb, b ∈ R are
relatively weakly compact in A0⊕Rn. It is a well known fact that the functional
J is weakly lower semicontinuous in A0⊕Rn and thus also in X⊕Rn. Therefore
there exists a sequence {xn}, xn ∈ X, such that xn ⇀ x weakly in A0 with
x ∈ A0, together with cxn → cx ∈ Rn, and lim infn→∞ J(xn, cxn) ≥ J(x, cx).
Moreover, we know that {(xn, cxn)} is uniformly convergent to (x, cx). In order
to finish the proof we must only show that x ∈ X.
To prove that we apply the duality results of Section 3. To this effect let us

recall from Corollary 3.2 that for

(4.2) p′n(t) = −Vx(t, xn(t) + cxn)

pn(t) = −
∫ T
t
p′n(s) ds belongs toX

d and take dpn such that maxd∈Rn JD(pn, d) =
JD(pn, dpn). Then {(pn, dpn)} is a minimizing sequence for JD. We easily check
that {dpn} is a bounded sequence and therefore we may assume (up to a subse-
quence) that it is convergent. From the fact that {p′n} ⊂ Xd and (4.2) we infer
that {p′n} is a bounded sequence in Lq

′
norm and that it is pointwise conver-

gent to

(4.3) p′(t) = −Vx(t, x(t) + cx)

and so {pn} is uniformly convergent to p where p(t) = −
∫ T
t
p′(s) ds. We can

choose dp satisfying equality: maxd∈Rn JD(p, d) = JD(p, dp).
By Corollary 3.2 (see (3.1)) we also have (taking into account (4.2)) that for

εn → 0 (n→∞)

0 ≤
∫ T
0
(L∗(t, pn(t) + dpn) + L(t, x

′
n(t))) dt−

∫ T
0
〈x′n(t), pn(t) + dpn〉 dt ≤ εn

and so, taking a limit

0 =
∫ T
0
L∗(t, p(t) + dp) dt+ lim

n→∞

∫ T
0
L(t, x′n(t)) dt−

∫ T
0
〈x′(t), p(t) + dp〉 dt

and next, in view of the property of Fenchel inequality,

(4.4) 0 =
∫ T
0
L∗(t, p(t) + dp) dt+

∫ T
0
L(t, x′(t))) dt−

∫ T
0
〈x′(t), p(t) + dp〉 dt.
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Applying now Ekeland’s variational principle (see [4]) to the ε-subdifferential of∫ T
0 L(t, x

′
n(t)) dt at x

′
n( · ) we deduce that {x′n} is strongly convergent in L2 to

x′. Therefore, as xn ∈ X, x belongs to X. From (4.4) we also have

(4.5) p(t) + dp = Lx′(t, x′(t)).

Joining (4.3) and (4.5) we get

d

dt
Lx′(t, x′(t)) = −Vx(t, x(t) + cx).

The last means that x ∈ X and so the proof is completed. �

A direct consequence of Theorem 4.1 and Corollary 2.6 is the following main
theorem.

Theorem 4.2. Assume hypotheses (H), (H1) and (HX). Then there exists
a pair (x+ cx, p+ dp) being a solution of (1.1) and such that

J(x, cx) = min
x∈X
max
c∈Rn
J(x, c) = min

p∈Xd
max
d∈Rn
JD(p, d) = JD(p, dp).

5. Example

Let us denote by P the positive cone in Rn i.e. P = {x ∈ Rn : xi > 0, i =
1, . . . , n} and by P = {x ∈ Rn : xi ≥ 0, i = 1, . . . , n}. We say that x ≥ y for
x, y ∈ Rn if x− y ∈ P .
Consider the problem

(5.1)
k(t)x′′(t) + Vx(t, x(t)) = 0, a.e. in R,

x(0) = x(T ), x′(0) = x′(T ),

where V ( · , x) is a T -periodic, measurable function in R, V (t, · ) is Gateaux dif-
ferentiable function. In the notation of the paper we have L(t, x′) = k(t)|x′|2/2.
If b, c ∈ Rn by bc we always mean a vector [bici]i=1,... ,n. We set the basic
hypotheses we need:

(H1’) the function k is absolutely continuous, positive and Vx(t, · ) is con-
tinuous and nonnegative in P , (i.e. Vx(t, v) ∈ P ) for t ∈ [0, T ], and∫ T
0 (1/k(t))Vx(t, 0) dt 6= 0,

(H2’) for a given θ ∈ P , there exists v ∈ P such that

(5.2)
∫ T
0
Vx(t, βv) dt ≤ θv,

where θv = [θivi]i=1,... ,n, βv = [βivi]i=1,... ,n, and β = θ
∫ T
0 (1/k(r)) dr,

(H3’) there exist l, l1 ∈ L2([0, T ], R) such that

(t→ sup{V (t, x) : x ∈ P , x ≤ βv}) ≤ l(t), t ∈ [0, T ],
(t→ sup{Vxi(t, x) : x ∈ P , x ≤ βv}) ≤ l1(t), t ∈ [0, T ], i = 1, . . . , n,
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moreover, V satisfies in X = {x ∈ A0 : x′ ∈ A, x(t) ∈ P , x(t) ≤ βv, t ∈
[0, T ]} the growth conditions: there exist 0 < β1, q1 > 1, k1 ∈ R such
that for each w ∈ X and for all c ∈ Rn

(5.2) k1 + β1 |c|q1 ≤
∫ T
0
V (t, w(t) + c) dt.

Note that (5.2) implies that if cx is a minimizer of the functional c →∫ T
0 V (t, x(t) + c) dt for x ∈ X then

|cx| ≤
(
1
β1

(∫ T
0
l(t) dt− k1

))1/q1
= b.

(H4’) V (t, · ) is convex in the set B+D for t ∈ [0, T ], where B = {c : |c| ≤ b},
D = {x ∈ Rn : x ∈ P , x ≤ βv}.

We would like to stress that because of (H1’) and (H4’) each function

xj → Vxi(t, (x1, . . . , xj , . . . xn)), i = 1, . . . , n, j = 1, . . . , n, t ∈ [0, T ]

is increasing if (x1, . . . , xj , . . . xn) lies in B+D. Moreover, if cx is a minimizer of
the functional c→

∫ T
0 V (t, x(t)+ c) dt for x ∈ X then

∫ T
0 Vx(s, x(s)+ cx) ds = 0.

Hence and because of (H1’) cx ∈ −P .
It is easily seen that assumptions (H) and (H1) are satisfied. Therefore, what

we have to do is to construct a nonempty set X. We prove that X is our set X.
To this effect let us define in X an operator

(5.4) Ax(t) =
∫ t
0

1
k(r)

(∫ T
r

Vx(s, x(s) + cx) ds− ax
)
dr,

where ax = (a1x, . . . , a
n
x) and

aix = max
{
0,min

{∫ T
r

Vx(s, x(s) + cx) ds : r ∈ [0, T ]
}}
.

Then Ax(t) ≥ 0 (i.e. Ax(t) ∈ P ), t ∈ [0, T ] and

Ax(t) ≤
∫ t
0

1
k(r)

∫ T
r

Vx(s, x(s) + cx) ds dr ≤
∫ t
0

1
k(r)

∫ T
r

Vx(s, x(s)) ds dr

≤
∫ T
0

1
k(r)

∫ T
0
Vx(s, βv) ds dr ≤

∫ T
0

1
k(r)
drθv = βv.

Hence Ax ∈ X. We observe that if we take p̃(t) = k(t)(Ax(t))′+ax then, by
(5.3), −p̃′(t) = Vx(t, x(t)+cx). It is clear that X contains at least one element w
such that w(0) = w(T ) = 0. What we still have to check is the relation (1.5). By
(H4’) V (t, · ) is convex and by (H1’) it is continuously differentiable. However
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subdifferential is a global notion thus we need to extend convexity of V (t, · ) to
the whole space. To this effect let us define

V̆ (t, x) =

{
V (t, x) if x ∈ B +D, t ∈ [0, T ],
∞ if x /∈ B +D, t ∈ [0, T ].

As our all investigation reduce to the set B + D, therefore V̆ = V in it. We
need this notation only for the purpose of duality in Section 2. Of course (1.5)
is satisfied for V̆ in X. Therefore X is our set X and problem (5.1) has at least
one nonzero (because of (H1’)) periodic solution.
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