ON THE EXISTENCE OF TWO SOLUTIONS FOR A GENERAL CLASS OF JUMPING PROBLEMS

Alessandro Groli - Marco Squassina

Abstract

Via nonsmooth critical point theory we prove the existence of at least two solutions in $W_{0}^{1, p}(\Omega)$ for a jumping problem involving the Euler equation of multiple integrals of calculus of variations under natural growth conditions. Some new difficulties arise in comparison with the study of the semilinear and also the quasilinear case.

1. Introduction and main result

Let us consider the semilinear elliptic problem

$$
\begin{cases}-\sum_{i, j=1}^{n} D_{j}\left(a_{i j}(x) D_{i} u\right)=g(x, u)+\omega & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{n}$ is a bounded domain, $n \geq 3, a_{i j} \in L^{\infty}(\Omega), \omega \in H^{-1}(\Omega)$ and $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function which satisfies

$$
\lim _{s \rightarrow-\infty} \frac{g(x, s)}{s}=\alpha, \quad \lim _{s \rightarrow \infty} \frac{g(x, s)}{s}=\beta \quad \text { for some } \alpha, \beta \in \mathbb{R} .
$$

Let $\left(\mu_{h}\right)$ be the sequence of eigenvalues, repeated according to multiplicity, of the linear operator $\left\{u \mapsto-\sum_{i, j=1}^{n} D_{j}\left(a_{i j}(x) D_{i} u\right)\right\}$ with homogeneous Dirichlet

[^0]boundary conditions. Since 1972, starting from the celebrated paper of Ambrosetti and Prodi [1], the number of solutions of this jumping problem has been widely investigated, depending on the position of α and β with respect to the eigenvalues μ_{h} (see e.g. [19], [20], [22] and references therein).

On the other hand, since 1994, several efforts have been devoted to study the existence of weak solutions of the quasilinear problem

$$
\begin{cases}-\sum_{i, j=1}^{n} D_{j}\left(a_{i j}(x, u) D_{i} u\right)+\frac{1}{2} \sum_{i, j=1}^{n} D_{s} a_{i j}(x, u) D_{i} u D_{j} u=g(x, u)+\omega & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

by techniques of nonsmooth critical point theory (see [6], [9] and the subsequent papers [5], [10]; see also [2], [3] for a different approach).

In particular, a jumping problem for the previous equation has been successfully investigated in [7], [8]. More recently, existence results for the Euler equations of multiple integrals of calculus of variations

$$
\begin{cases}-\operatorname{div}\left(\nabla_{\xi} L(x, u, \nabla u)\right)+D_{s} L(x, u, \nabla u)=g(x, u)+\omega & \text { in } \Omega, \tag{1.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

have also been obtained in [21], [23] via techniques developed in [9], under suitable assumptions on $L, D_{s} L$ and $\nabla_{\xi} L$. In this paper we want to show that the results of [7] extend to the more general elliptic problem (1.1). It has to be noted that, in order to achieve this, some nontrivial new arguments have to be involved, in particular when dealing with the Palais-Smale condition and also, surprisingly, with the min-max estimates. We will tackle the problem from a variational point of view, that is looking for critical points of continuous functionals $f: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ of type

$$
\begin{equation*}
f(u)=\int_{\Omega} L(x, u, \nabla u)-\int_{\Omega} G(x, u)-\langle\omega, u\rangle \tag{1.2}
\end{equation*}
$$

We point out that, in general, these functionals are not even locally Lipschitzian, so that classical critical point theory fails. Then we will employ the abstract framework of nonsmooth analysis developed in [9], [11], [13], [15], [16].

In our main result (Theorem 1.1), for a particular choice of ω, we will prove the existence of at least two solutions in $W_{0}^{1, p}(\Omega)$ of (1.1) by means of a classical min-max theorem in its nonsmooth version (Theorem 2.8).

More precisely, we assume that $\Omega \subset \mathbb{R}^{n}$ is a bounded domain, $n \geq 3,1<p<$ $n, \omega \in W^{-1, p^{\prime}}(\Omega)$ and $L: \Omega \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is measurable in x for all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{n}$ and of class C^{1} in (s, ξ) a.e. in Ω. Moreover, the function

$$
\{\xi \mapsto L(x, s, \xi)\}
$$

is strictly convex and p-homogeneous. Furthermore, we assume the following conditions.
$\left(\mathrm{A}_{1}\right)$ there exist $\nu>0$ and $b_{1}>0$ such that

$$
\begin{equation*}
\nu|\xi|^{p} \leq L(x, s, \xi) \leq b_{1}|\xi|^{p} \tag{1.3}
\end{equation*}
$$

for a.e. $x \in \Omega$ and for all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{n}$,
$\left(\mathrm{A}_{2}\right)$ there exist $b_{2}, b_{3}>0$ such that

$$
\begin{align*}
\left|D_{s} L(x, s, \xi)\right| & \leq b_{2}|\xi|^{p} \tag{1.4}\\
\left|\nabla_{\xi} L(x, s, \xi)\right| & \leq b_{3}|\xi|^{p-1} \tag{1.5}
\end{align*}
$$

for a.e. $x \in \Omega$ and for all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{n}$,
$\left(\mathrm{A}_{3}\right)$ there exist $R>0$ and a bounded Lipschitzian map $\vartheta: \mathbb{R} \rightarrow[0, \infty[$ with

$$
\begin{gather*}
|s| \geq R \Rightarrow s D_{s} L(x, s, \xi) \geq 0 \tag{1.6}\\
s D_{s} L(x, s, \xi) \leq s \vartheta^{\prime}(s) \nabla_{\xi} L(x, s, \xi) \cdot \xi \tag{1.7}
\end{gather*}
$$

for a.e. $x \in \Omega$ and for all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{n}$. Without loss of generality, we may assume that $\vartheta(s) \rightarrow \bar{\vartheta} \in \mathbb{R}$ as $s \rightarrow \pm \infty$,
$\left(\mathrm{A}_{4}\right) g(x, s)$ is a Carathéodory function and $G(x, s)=\int_{0}^{s} g(x, \tau) d \tau$. Moreover, there exist $\alpha, \beta \in \mathbb{R}, a \in L^{n p /(n(p-1)+p)}(\Omega)$ and $b \in L^{n / p}(\Omega)$ such that

$$
\begin{equation*}
|g(x, s)| \leq a(x)+b(x)|s|^{p-1} \tag{1.8}
\end{equation*}
$$

for a.e. $x \in \Omega$, all $s \in \mathbb{R}$ and

$$
\lim _{s \rightarrow-\infty} \frac{g(x, s)}{|s|^{p-2} s}=\alpha, \quad \lim _{s \rightarrow \infty} \frac{g(x, s)}{s^{p-1}}=\beta
$$

for a.e. $x \in \Omega$.
Let us now suppose that there exists $\ell \in L^{\infty}(\Omega)$ such that for a.e. $x \in \Omega$

$$
\begin{gather*}
\lim _{s \rightarrow \infty} L(x, s, \xi)=\lim _{s \rightarrow-\infty} L(x, s, \xi)=\ell(x)|\xi|^{p} \tag{1.10}\\
s_{h} \rightarrow \infty, \xi_{h} \rightarrow \xi \Rightarrow \text { the sequence } \nabla_{\xi} L\left(x, s_{h}, \xi_{h}\right) \text { converges. } \tag{1.11}
\end{gather*}
$$

Notice that both limits in (1.10) exist by virtue of (1.6). Moreover, in view of (1.3) we have $\operatorname{essinf}_{x \in \Omega} \ell(x) \geq \nu>0$. From now on we will set $L_{\infty}(x, \xi):=$ $\ell(x)|\xi|^{p}$ (observe that the limit in (1.11) necessarily has to be $\nabla_{\xi} L_{\infty}(x, \xi)$).

It is easily seen that, for instance, the Lagrangian $L(x, s, \xi)=\left(1+\arctan s^{2}\right)$ $\cdot|\xi|^{p} / p$ satisfies all the previous assumptions. Let us now set

$$
\lambda_{1}:=\min \left\{p \int_{\Omega} L_{\infty}(x, \nabla u): u \in W_{0}^{1, p}(\Omega), \int_{\Omega}|u|^{p}=1\right\}
$$

be the first eigenvalue of

$$
\left\{u \mapsto-\operatorname{div}\left(\nabla_{\xi} L_{\infty}(x, \nabla u)\right)\right\}
$$

with Dirichlet boundary data.
Observe that by [2, Lemma 1.4] the first eigenfunction ϕ_{1} belongs to $L^{\infty}(\Omega)$ and by [24, Theorem 1.1] is strictly positive. We consider problem (1.1) with

$$
\omega=t \phi_{1}^{p-1}+\omega_{0}, \quad \text { where } \omega_{0} \in W^{-1, p^{\prime}}(\Omega) \text { and } t \in \mathbb{R}
$$

Under the previous assumptions, the following is the main result.
Theorem 1.1. Assume that $\beta<\lambda_{1}<\alpha$. Then there exist $\bar{t}, \underline{t} \in \mathbb{R}$ such that the problem

$$
\left\{\begin{array}{cl}
-\operatorname{div}\left(\nabla_{\xi} L(x, u, \nabla u)\right)+D_{s} L(x, u, \nabla u) & \tag{1.13}\\
=g(x, u)+t \phi_{1}^{p-1}+\omega_{0} & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

admits at least two solutions in $W_{0}^{1, p}(\Omega)$ for $t>\bar{t}$ and no solution for $t<\underline{t}$.
This result extends the main achievement of [7] dealing with the case $p=2$ and

$$
L(x, s, \xi)=\frac{1}{2} \sum_{i, j=1}^{n} a_{i j}(x, s) \xi_{i} \xi_{j}-G(x, s)
$$

where the coefficients $a_{i j}(x, s): \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ are measurable in x, of class C^{1} in s with $a_{i j}, D_{s} a_{i j} \in L^{\infty}(\Omega \times \mathbb{R})$ and satisfy

$$
\begin{gathered}
\sum_{i, j=1}^{n} a_{i j}(x, s) \xi_{i} \xi_{j} \geq \nu|\xi|^{2}, \quad \sum_{i, j=1}^{n} s D_{s} a_{i j}(x, s) \xi_{i} \xi_{j} \geq 0 \\
\sum_{i, j=1}^{n} s D_{s} a_{i j}(x, s) \xi_{i} \xi_{j} \leq s \vartheta^{\prime}(s) \sum_{i, j=1}^{n} a_{i j}(x, s) \xi_{i} \xi_{j}
\end{gathered}
$$

for a.e. $x \in \Omega$ and all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{n}$, where $\vartheta: \mathbb{R} \rightarrow[0, \infty[$ is a bounded Lipschitzian map.

In this particular case, existence of at least three solutions has been recently proved in [8] assuming $\beta<\mu_{1}$ and $\alpha>\mu_{2}$, where μ_{1} and μ_{2} are the first and second eigenvalue of the operator

$$
\left\{u \mapsto-\sum_{i, j=1}^{n} D_{j}\left(A_{i j} D_{i} u\right)\right\}, \quad A_{i j}(x):=\lim _{s \rightarrow \pm \infty} a_{i j}(x, s)
$$

On the other hand, in our general setting, it is not clear how to define higher eigenvalues $\lambda_{2}, \lambda_{3}, \ldots$ with suitable properties. It must be noted that in [4] a possible characterization of the second eigenvalue is given for the p-Laplacian operator.

The plan of the paper is as follows: in Section 2 we recall some notions of nonsmooth critical point theory and a suitable Mountain Pass Theorem (Theorem 2.8); in Section 3 we state the variational formulation of the problem and prove that a suitable compactness condition is satisfied by the functional related to our problem; in Section 4 we show that also the required geometrical properties are satisfied; in Section 5 we end up the proof of the main result (Theorem 1.1).

2. Recalls of nonsmooth critical point theory

In this section we quote from [9], [11] some tools of nonsmooth critical point theory which we use in the paper.

Let us first recall the definition of weak slope for a continuous function.
Definition 2.1. Let X be a complete metric space, $F: X \rightarrow \mathbb{R}$ be a continuous function and $u \in X$. We denote by $|d F|(u)$ the supremum of the real numbers $\sigma \geq 0$ such that there exist $\delta>0$ and a continuous map

$$
\mathcal{H}: B(u, \delta) \times[0, \delta] \rightarrow X
$$

such that, for every v in $B(u, \delta)$, and for every t in $[0, \delta]$ it results

$$
d(\mathcal{H}(v, t), v) \leq t, \quad F(\mathcal{H}(v, t)) \leq F(v)-\sigma t
$$

The extended real number $|d F|(u)$ is called the weak slope of F at u.
The previous notion allows us to give the following definitions.
Definition 2.2. We say that $u \in X$ is a critical point of F if $|d F|(u)=0$. We say that $c \in \mathbb{R}$ is a critical value of F if there exists a critical point $u \in X$ of F with $F(u)=c$.

Definition 2.3. Let $c \in \mathbb{R}$. We say that F satisfies the Palais-Smale condition at level $c\left((\mathrm{PS})_{c}\right.$ in short), if every sequence $\left(u_{h}\right)$ in X such that $|d F|\left(u_{h}\right) \rightarrow 0$ and $F\left(u_{h}\right) \rightarrow c$ admits a subsequence converging in X.

Let us now turn to the concrete setting. Let $f: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ be the functional defined in (1.2), which is continuous in view of (1.3). Notice that conditions (1.4) and (1.5) imply that for every $u \in W_{0}^{1, p}(\Omega)$ we have

$$
\nabla_{\xi} L(x, u, \nabla u) \in L_{\mathrm{loc}}^{1}\left(\Omega, \mathbb{R}^{n}\right), \quad D_{s} L(x, u, \nabla u) \in L_{\mathrm{loc}}^{1}(\Omega)
$$

Therefore for each $u \in W_{0}^{1, p}(\Omega)$ we have

$$
-\operatorname{div}\left(\nabla_{\xi} L(x, u, \nabla u)\right)+D_{s} L(x, u, \nabla u) \in \mathcal{D}^{\prime}(\Omega)
$$

Definition 2.4. We say that u is a weak solution to (1.1) if $u \in W_{0}^{1, p}(\Omega)$ and

$$
-\operatorname{div}\left(\nabla_{\xi} L(x, u, \nabla u)\right)+\nabla_{s} L(x, u, \nabla u)=g(x, u)+\omega
$$

in $\mathcal{D}^{\prime}(\Omega)$.
Let us introduce the following variant of the $(\mathrm{PS})_{c}$ condition.
Definition 2.5. Let $c \in \mathbb{R}$. A sequence $\left(u_{h}\right) \subset W_{0}^{1, p}(\Omega)$ is said to be a concrete Palais-Smale sequence at level $c\left((\mathrm{CPS})_{c}\right.$-sequence, in short) for f, if $f\left(u_{h}\right) \rightarrow c$,

$$
-\operatorname{div}\left(\nabla_{\xi} L\left(x, u_{h}, \nabla u_{h}\right)\right)+D_{s} L\left(x, u_{h}, \nabla u_{h}\right) \in W^{-1, p^{\prime}}(\Omega)
$$

eventually as $h \rightarrow \infty$ and

$$
-\operatorname{div}\left(\nabla_{\xi} L\left(x, u_{h}, \nabla u_{h}\right)\right)+D_{s} L\left(x, u_{h}, \nabla u_{h}\right)-g\left(x, u_{h}\right)-\omega \rightarrow 0
$$

strongly in $W^{-1, p^{\prime}}(\Omega)$.
We say that f satisfies the concrete Palais-Smale condition at level $c\left((\mathrm{CPS})_{c}\right.$ in short), if every $(\mathrm{CPS})_{c}$-sequence for f admits a strongly convergent subsequence.

Proposition 2.6. For every $u \in W_{0}^{1, p}(\Omega)$ such that $|d f|(u)<\infty$ we have

$$
\left\|-\operatorname{div}\left(\nabla_{\xi} L(x, u, \nabla u)\right)+D_{s} L(x, u, \nabla u)-g(x, u)-\omega\right\|_{-1, p^{\prime}} \leq|d f|(u)
$$

Proof. See [9, Theorem 2.1.3].
The previous result implies the following remark.
Remark 2.7. The following facts hold:
(a) each critical point u of f is a weak solution to (1.1),
(b) if $c \in \mathbb{R}$ and f satisfies (CPS) c_{c} then f satisfies (PS) ${ }_{c}$.

The next is the main tool in proving the existence of two solutions.
Theorem 2.8. Let $u_{0}, v_{0}, v_{1} \in W_{0}^{1, p}(\Omega)$ and $r>0$ be such that

$$
\left\|v_{0}-u_{0}\right\|_{1, p}<r, \quad\left\|v_{1}-u_{0}\right\|_{1, p}>r, \quad \inf f\left(\overline{B_{r}\left(u_{0}\right)}\right)>-\infty
$$

and

$$
\inf \left\{f(u): u \in W_{0}^{1, p}(\Omega),\left\|u-u_{0}\right\|_{1, p}=r\right\}>\max \left\{f\left(v_{0}\right), f\left(v_{1}\right)\right\}
$$

Let
$\Gamma=\left\{\gamma:[0,1] \rightarrow W_{0}^{1, p}(\Omega): \gamma\right.$ is continuous, $\gamma(0)=v_{0}$ and $\left.\gamma(1)=v_{1}\right\}$,
and assume that $\Gamma \neq \emptyset$ and that f satisfies the Palais-Smale condition at the two levels

$$
c_{1}=\inf _{B_{r}\left(u_{0}\right)} f, \quad c_{2}=\inf _{\gamma \in \Gamma} \max _{[0,1]}(f \circ \gamma) .
$$

Then it results $-\infty<c_{1}<c_{2}<\infty$ and there exist two solutions $u_{1}, u_{2} \in$ $W_{0}^{1, p}(\Omega)$ of (1.1) with $f\left(u_{1}\right)=c_{1}$ and $f\left(u_{2}\right)=c_{2}$.

Proof. See [13, Theorem 3.12].

3. Variational formulation and Palais-Smale condition

Let us now consider

$$
g_{0}(x, s):=g(x, s)-\beta|s|^{p-2} s^{+}+\alpha|s|^{p-2} s^{-}, \quad G_{0}(x, s):=\int_{0}^{s} g_{0}(x, \tau) d \tau
$$

Of course, g_{0} is a Carathéodory function satisfying for a.e. $x \in \Omega$ and for all $s \in \mathbb{R}$

$$
\lim _{|s| \rightarrow \infty} \frac{g_{0}(x, s)}{|s|^{p-2} s}=0, \quad\left|g_{0}(x, s)\right| \leq a(x)+\widetilde{b}(x)|s|^{p-1}
$$

with $\widetilde{b} \in L^{n / p}(\Omega)$. Since we are interested in solutions $u \in W_{0}^{1, p}(\Omega)$ of the equation

$$
-\operatorname{div}\left(\nabla_{\xi} L(x, u, \nabla u)\right)+D_{s} L(x, u, \nabla u)=g(x, u)+t \phi_{1}^{p-1}+\omega_{0}
$$

let us define the associated functional $f_{t}: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$, by setting

$$
\begin{align*}
f_{t}(u):= & \int_{\Omega} L(x, u, \nabla u)-\frac{\beta}{p} \int_{\Omega}\left(u^{+}\right)^{p}-\frac{\alpha}{p} \int_{\Omega}\left(u^{-}\right)^{p} \tag{3.1}\\
& -\int_{\Omega} G_{0}(x, u)-|t|^{p-2} t \int_{\Omega} \phi_{1}^{p-1} u-\left\langle\omega_{0}, u\right\rangle .
\end{align*}
$$

In order to prove our main result, the idea is to apply Theorem 2.8 to the functional f_{t} defined above. To this aim, we will prove in the following that f_{t} satisfies the concrete Palais-Smale condition (see Theorem 3.4) as well as the Mountain-Pass geometric assumptions (see Propositions 4.5 and 4.6).

Let now M be the positive constant such that

$$
\begin{equation*}
\left|D_{s} L(x, s, \xi)\right| \leq M \nabla_{\xi} L(x, s, \xi) \cdot \xi \tag{3.2}
\end{equation*}
$$

for a.e. $x \in \Omega$ and every $s \in \mathbb{R}, \xi \in \mathbb{R}^{n}$ (such a constant exists by (1.3) and (1.4)).
In the following result we prove one of the main tools of the paper.
Lemma 3.1. Let $\left(u_{h}\right) \subset W_{0}^{1, p}(\Omega)$ and $\left.\left(\varrho_{h}\right) \subset\right] 0, \infty\left[\right.$ with $\varrho_{h} \rightarrow \infty$ such that

$$
v_{h}=\frac{u_{h}}{\varrho_{h}} \rightharpoonup v \quad \text { in } W_{0}^{1, p}(\Omega) .
$$

Let $\gamma_{h} \rightharpoonup \gamma$ in $L^{n / p}(\Omega)$ with $\left|\gamma_{h}\right| \leq c$ for some $c \in L^{n / p}(\Omega)$. Moreover, let

$$
\mu_{h} \rightarrow \mu \quad \text { in } L^{n p^{\prime} /\left(n+p^{\prime}\right)}(\Omega), \quad \delta_{h} \rightarrow \delta \quad \text { in } W^{-1, p^{\prime}}(\Omega)
$$

be such that

$$
\begin{align*}
\int_{\Omega} \nabla_{\xi} L\left(x, u_{h}, \nabla u_{h}\right) \cdot \nabla \varphi+ & \int_{\Omega} D_{s} L\left(x, u_{h}, \nabla u_{h}\right) \varphi \tag{3.3}\\
& =\int_{\Omega} \gamma_{h}\left|u_{h}\right|^{p-2} u_{h} \varphi+\varrho_{h}^{p-1} \int_{\Omega} \mu_{h} \varphi+\left\langle\delta_{h}, \varphi\right\rangle
\end{align*}
$$

for every $\varphi \in C_{c}^{\infty}(\Omega)$. Then, the following facts hold
(a) $\left(v_{h}\right)$ is strongly convergent to v in $W_{0}^{1, p}(\Omega)$,
(b) $\left(\gamma_{h}\left|v_{h}\right|^{p-2} v_{h}\right)$ is strongly convergent to $\gamma|v|^{p-2} v$ in $W^{-1, p^{\prime}}(\Omega)$,
(c) there exist $\eta^{+}, \eta^{-} \in L^{\infty}(\Omega)$ such that

$$
\begin{gathered}
\eta^{+}(x)= \begin{cases}\exp \{-\bar{\vartheta}\} \quad \text { if } v(x)>0, \\
\exp \{M R\} \quad \text { if } v(x)<0,\end{cases} \\
\exp \{-\bar{\vartheta}\} \leq \eta^{+}(x) \leq \exp \{M R\} \quad \text { if } v(x)=0,
\end{gathered}
$$

and

$$
\begin{gathered}
\eta^{-}(x)= \begin{cases}\exp \{-\bar{\vartheta}\} \quad \text { if } v(x)<0, \\
\exp \{M R\} \quad \text { if } v(x)>0,\end{cases} \\
\exp \{-\bar{\vartheta}\} \leq \eta^{-}(x) \leq \exp \{M R\} \quad \text { if } v(x)=0
\end{gathered}
$$

Moreover,

$$
\begin{align*}
\int_{\Omega} \eta^{+} \nabla_{\xi} L_{\infty}(x, \nabla v) \cdot \nabla \varphi & \geq \int_{\Omega} \gamma \eta^{+}|v|^{p-2} v \varphi+\int_{\Omega} \mu \eta^{+} \varphi \tag{3.4}\\
\int_{\Omega} \eta^{-} \nabla_{\xi} L_{\infty}(x, \nabla v) \cdot \nabla \varphi & \leq \int_{\Omega} \gamma \eta^{-}|v|^{p-2} v \varphi+\int_{\Omega} \mu \eta^{-} \varphi \tag{3.5}
\end{align*}
$$

for every $\varphi \in W_{0}^{1, p}(\Omega)$ with $\varphi \geq 0$.
Proof. Arguing as in [7, Lemma 3.1] assertion (b) immediately follows. Let us now prove assertion (a). Up to a subsequence, $v_{h}(x) \rightarrow v(x)$ for a.e. $x \in \Omega$. Consider now the map $\zeta: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
\zeta(s)= \begin{cases}M s & \text { if } 0<s<R \\ M R & \text { if } s \geq R \\ -M s & \text { if }-R<s<0 \\ M R & \text { if } s \leq-R\end{cases}
$$

By [23, Proposition 3.1] we may choose $\varphi=v_{h} \exp \left\{\zeta\left(u_{h}\right)\right\}$ in (3.3), yielding

$$
\begin{aligned}
& \int_{\Omega} \nabla_{\xi} L\left(x, u_{h}, \nabla u_{h}\right) \cdot \nabla v_{h} \exp \left\{\zeta\left(u_{h}\right)\right\} \\
& \quad+\int_{\Omega}\left[D_{s} L\left(x, u_{h}, \nabla u_{h}\right)+\zeta^{\prime}\left(u_{h}\right) \nabla_{\xi} L\left(x, u_{h}, \nabla u_{h}\right) \cdot \nabla u_{h}\right] v_{h} \exp \left\{\zeta\left(u_{h}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
= & \int_{\Omega} \gamma_{h}\left|u_{h}\right|^{p-2} u_{h} v_{h} \exp \left\{\zeta\left(u_{h}\right)\right\} \\
& +\varrho_{h}^{p-1} \int_{\Omega} \mu_{h} v_{h} \exp \left\{\zeta\left(u_{h}\right)\right\}+\left\langle\delta_{h}, v_{h} \exp \left\{\zeta\left(u_{h}\right)\right\}\right\rangle
\end{aligned}
$$

Therefore, taking into account conditions (1.6) and (3.2), we have

$$
\begin{aligned}
\varrho_{h}^{p-1} \int_{\Omega} \nabla_{\xi} L\left(x, u_{h}, \nabla v_{h}\right) \cdot & \nabla v_{h} \exp \left\{\zeta\left(u_{h}\right)\right\} \leq \varrho_{h}^{p-1} \int_{\Omega} \gamma_{h}\left|v_{h}\right|^{p} \exp \left\{\zeta\left(u_{h}\right)\right\} \\
& +\varrho_{h}^{p-1} \int_{\Omega} \mu_{h} v_{h} \exp \left\{\zeta\left(u_{h}\right)\right\}+\left\langle\delta_{h}, v_{h} \exp \left\{\zeta\left(u_{h}\right)\right\}\right\rangle
\end{aligned}
$$

After division by ϱ_{h}^{p-1}, using the hypotheses on γ_{h}, μ_{h} and δ_{h}, we obtain

$$
\begin{align*}
\limsup _{h} \int_{\Omega} \nabla_{\xi} L\left(x, u_{h}, \nabla v_{h}\right) \cdot \nabla v_{h} \exp & \left\{\zeta\left(u_{h}\right)\right\} \tag{3.6}\\
& \leq \exp \{M R\}\left(\int_{\Omega} \gamma|v|^{p}+\int_{\Omega} \mu v\right)
\end{align*}
$$

Now, let us consider the function $\vartheta_{1}: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\vartheta_{1}(s)= \begin{cases}\vartheta(s) & \text { if } s \geq 0 \\ M s & \text { if }-R \leq s \leq 0 \\ -M R & \text { if } s \leq-R\end{cases}
$$

where the function ϑ satisfies condition (1.7).
Putting in (3.3) the test functions $\left(v^{+} \wedge k\right) \exp \left\{-\vartheta_{1}\left(u_{h}\right)\right\}$ with $k \in \mathbb{N}$, we obtain

$$
\begin{align*}
\int_{\Omega} & \nabla_{\xi} L\left(x, u_{h}, \nabla v_{h}\right) \cdot \nabla\left(v^{+} \wedge k\right) \exp \left\{-\vartheta_{1}\left(u_{h}\right)\right\} \tag{3.7}\\
& \quad+\varrho_{h}^{1-p} \int_{\Omega}\left[D_{s} L\left(x, u_{h}, \nabla u_{h}\right)-\vartheta_{1}^{\prime}\left(u_{h}\right) \nabla_{\xi} L\left(x, u_{h}, \nabla u_{h}\right) \cdot \nabla u_{h}\right] \\
& \cdot\left(v^{+} \wedge k\right) \exp \left\{-\vartheta_{1}\left(u_{h}\right)\right\} \\
= & \int_{\Omega} \gamma_{h}\left|v_{h}\right|^{p-2} v_{h}\left(v^{+} \wedge k\right) \exp \left\{-\vartheta_{1}\left(u_{h}\right)\right\} \\
& +\int_{\Omega} \mu_{h}\left(v^{+} \wedge k\right) \exp \left\{-\vartheta_{1}\left(u_{h}\right)\right\}+\varrho_{h}^{1-p}\left\langle\delta_{h},\left(v^{+} \wedge k\right) \exp \left\{-\vartheta_{1}\left(u_{h}\right)\right\}\right\rangle .
\end{align*}
$$

By (1.6), (1.7) and (3.2) it results for every $h \in \mathbb{N}$

$$
\left[D_{s} L\left(x, u_{h}, \nabla u_{h}\right)-\vartheta_{1}^{\prime}\left(u_{h}\right) \nabla_{\xi} L\left(x, u_{h}, \nabla u_{h}\right) \cdot \nabla u_{h}\right]\left(v^{+} \wedge k\right) \exp \left\{-\vartheta_{1}\left(u_{h}\right)\right\} \leq 0
$$

Taking into account (1.5) and (1.11), one may apply [12, Theorem 5] and deduce that

$$
\nabla v_{h}(x) \rightarrow \nabla v(x) \quad \text { for a.e. } x \in \Omega \backslash\{v=0\}
$$

Being $u_{h}(x) \rightarrow \infty$ a.e. in $\Omega \backslash\{v=0\}$, again recalling (1.11), we have

$$
\nabla_{\xi} L\left(x, u_{h}(x), \nabla v_{h}(x)\right) \rightarrow \nabla_{\xi} L_{\infty}(x, \nabla v(x)) \quad \text { for a.e. } x \in \Omega \backslash\{v=0\}
$$

Combining this pointwise convergence with (1.5), we obtain

$$
\nabla_{\xi} L\left(x, u_{h}, \nabla v_{h}\right) \rightharpoonup \nabla_{\xi} L_{\infty}(x, \nabla v) \quad \text { in } L^{p^{\prime}}(\Omega)
$$

Therefore, for every $k \in \mathbb{N}$ we have

$$
\begin{aligned}
& \lim _{h} \int_{\Omega} \nabla_{\xi} L\left(x, u_{h}, \nabla v_{h}\right) \cdot \nabla\left(v^{+} \wedge k\right) \exp \left\{-\vartheta_{1}\left(u_{h}\right)\right\} \\
& =\int_{\Omega} \nabla_{\xi} L_{\infty}(x, \nabla v) \cdot \nabla\left(v^{+} \wedge k\right) \exp \{-\bar{\vartheta}\} \\
& \lim _{h}\left(v^{+} \wedge k\right) \exp \left\{-\vartheta_{1}\left(u_{h}\right)\right\}=\left(v^{+} \wedge k\right) \exp \{-\bar{\vartheta}\}
\end{aligned}
$$

weakly in $W_{0}^{1, p}(\Omega)$,

$$
\lim _{h} \int_{\Omega} \gamma_{h}\left|v_{h}\right|^{p-2} v_{h}\left(v^{+} \wedge k\right) \exp \left\{-\vartheta_{1}\left(u_{h}\right)\right\}=\int_{\Omega} \gamma|v|^{p-2} v\left(v^{+} \wedge k\right) \exp \{-\bar{\vartheta}\}
$$

(by virtue of (b)) and

$$
\lim _{h} \frac{1}{\varrho_{h}^{p-1}}\left(v^{+} \wedge k\right) \exp \left\{-\vartheta_{1}\left(u_{h}\right)\right\}=0
$$

weakly in $W_{0}^{1, p}(\Omega)$. Therefore, letting $h \rightarrow \infty$ in (3.7), for every $k \in \mathbb{N}$ we get

$$
\begin{aligned}
\int_{\Omega} \nabla_{\xi} L_{\infty}(x, \nabla v) \cdot & \nabla\left(v^{+} \wedge k\right) \exp \{-\bar{\vartheta}\} \\
& \geq \int_{\Omega} \gamma|v|^{p-2} v\left(v^{+} \wedge k\right) \exp \{-\bar{\vartheta}\}+\int_{\Omega} \mu\left(v^{+} \wedge k\right) \exp \{-\bar{\vartheta}\}
\end{aligned}
$$

Finally, if we let $k \rightarrow \infty$, after division by $\exp \{-\bar{\vartheta}\}$, we have

$$
\begin{equation*}
\int_{\Omega} \nabla_{\xi} L_{\infty}\left(x, \nabla v^{+}\right) \cdot \nabla v^{+} \geq \int_{\Omega} \gamma|v|^{p-2}\left(v^{+}\right)^{2}+\int_{\Omega} \mu v^{+} \tag{3.8}
\end{equation*}
$$

Analogously, if we define a function $\vartheta_{2}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\vartheta_{2}(s)= \begin{cases}\vartheta(s) & \text { if } s \leq 0 \\ -M s & \text { if } 0 \leq s \leq R \\ -M R & \text { if } s \geq R\end{cases}
$$

and consider in (3.3) the test functions $\left(v^{-} \wedge k\right) \exp \left\{-\vartheta_{2}\left(u_{h}\right)\right\}$ with $k \in \mathbb{N}$, we obtain

$$
\begin{equation*}
\int_{\Omega} \nabla_{\xi} L_{\infty}(x, \nabla v) \cdot \nabla v^{-} \leq-\int_{\Omega} \gamma|v|^{p-2}\left(v^{-}\right)^{2}+\int_{\Omega} \mu v^{-} . \tag{3.9}
\end{equation*}
$$

Thus, combining the inequalities (3.8) and (3.9), we get

$$
\begin{equation*}
\int_{\Omega} \nabla_{\xi} L_{\infty}(x, \nabla v) \cdot \nabla v \geq \int_{\Omega} \gamma|v|^{p}+\int_{\Omega} \mu v \tag{3.10}
\end{equation*}
$$

Putting together (3.6) and (3.10), we conclude that
$\underset{h}{\lim \sup } \int_{\Omega} \nabla_{\xi} L\left(x, u_{h}, \nabla v_{h}\right) \cdot \nabla v_{h} \exp \left\{\zeta\left(u_{h}\right)\right\} \leq \exp \{M R\} \int_{\Omega} \nabla_{\xi} L_{\infty}(x, \nabla v) \cdot \nabla v$.
In particular, by Fatou's Lemma, it results

$$
\begin{aligned}
\exp \{M R\} \int_{\Omega} \nabla_{\xi} L_{\infty}(x, \nabla v) \cdot \nabla v & \leq \liminf _{h} \int_{\Omega} \nabla_{\xi} L\left(x, u_{h}, \nabla v_{h}\right) \cdot \nabla v_{h} \exp \left\{\zeta\left(u_{h}\right)\right\} \\
& \leq \exp \{M R\} \int_{\Omega} \nabla_{\xi} L_{\infty}(x, \nabla v) \cdot \nabla v
\end{aligned}
$$

namely, as $h \rightarrow \infty$, we get

$$
\int_{\Omega} \nabla_{\xi} L\left(x, u_{h}, \nabla v_{h}\right) \cdot \nabla v_{h} \exp \left\{\zeta\left(u_{h}\right)\right\} \rightarrow \exp \{M R\} \int_{\Omega} \nabla_{\xi} L_{\infty}(x, \nabla v) \cdot \nabla v
$$

Therefore, since $\nu\left|\nabla v_{h}\right|^{p} \leq \nabla_{\xi} L\left(x, u_{h}, \nabla v_{h}\right) \cdot \nabla v_{h} \exp \left\{\zeta\left(u_{h}\right)\right\}$, thanks to Lebesgue's Theorem, we obtain that

$$
\lim _{h} \int_{\Omega}\left|\nabla v_{h}\right|^{p}=\int_{\Omega}|\nabla v|^{p},
$$

which concludes the proof of (a).
Let us now prove assertion (c). Up to a subsequence, $\exp \left\{-\vartheta_{1}\left(u_{h}\right)\right\}$ weakly* converges in $L^{\infty}(\Omega)$ to some η^{+}. Of course, we have

$$
\begin{gathered}
\eta^{+}(x)= \begin{cases}\exp \{-\bar{\vartheta}\} & \text { if } v(x)>0, \\
\exp \{M R\} & \text { if } v(x)<0,\end{cases} \\
\exp \{-\bar{\vartheta}\} \leq \eta^{+}(x) \leq \exp \{M R\} \quad \text { if } v(x)=0 .
\end{gathered}
$$

Then, let us consider in (3.3) as test functions:

$$
\varphi \exp \left\{-\vartheta_{1}\left(u_{h}\right)\right\}, \quad \varphi \in C_{c}^{\infty}(\Omega), \quad \varphi \geq 0
$$

Whence, like in the previous arguments, we obtain

$$
\int_{\Omega} \eta^{+} \nabla_{\xi} L_{\infty}(x, \nabla v) \cdot \nabla \varphi \geq \int_{\Omega} \gamma \eta^{+}|v|^{p-2} v \varphi+\int_{\Omega} \mu \eta^{+} \varphi
$$

for any positive $\varphi \in W_{0}^{1, p}(\Omega)$. Similarly, by means of the test functions

$$
\varphi \exp \left\{-\vartheta_{2}\left(u_{h}\right)\right\}, \quad \varphi \in C_{c}^{\infty}(\Omega), \quad \varphi \geq 0
$$

we get for any positive $\varphi \in W_{0}^{1, p}(\Omega)$

$$
\int_{\Omega} \eta^{-} \nabla_{\xi} L_{\infty}(x, \nabla v) \cdot \nabla \varphi \leq \int_{\Omega} \gamma \eta^{-}|v|^{p-2} v \varphi+\int_{\Omega} \mu \eta^{-} \varphi
$$

where η^{-}is the weak* limit of some subsequence of $\exp \left\{-\vartheta_{2}\left(u_{h}\right)\right\}$.
Arguing as in [7, Lemma 3.3], one obtains the following result.

Lemma 3.2. Let $\left(u_{h}\right)$ a sequence in $W_{0}^{1, p}(\Omega)$ and $\left.\varrho_{h} \subset\right] 0, \infty\left[\right.$ with $\varrho_{h} \rightarrow \infty$. Assume that the sequence $\left(u_{h} / \varrho_{h}\right)$ is bounded in $W_{0}^{1, p}(\Omega)$. Then

$$
\frac{g_{0}\left(x, u_{h}\right)}{\varrho_{h}^{p-1}} \rightarrow 0 \quad \text { in } L^{n p^{\prime} /\left(n+p^{\prime}\right)}(\Omega), \quad \frac{G_{0}\left(x, u_{h}\right)}{\varrho_{h}^{p}} \rightarrow 0 \quad \text { in } L^{1}(\Omega)
$$

as $h \rightarrow \infty$.
Lemma 3.3. Let f_{t} be the functional defined in (3.1). Then for every $c, t \in \mathbb{R}$ the following facts are equivalent:
(a) f_{t} satisfies the $(\mathrm{CPS})_{c}$ condition,
(b) every $(\mathrm{CPS})_{c}$-sequence for f_{t} is bounded in $W_{0}^{1, p}(\Omega)$.

Proof. The proof that $(\mathrm{a}) \Rightarrow(\mathrm{b})$ is trivial. Let us prove $(\mathrm{b}) \Rightarrow(\mathrm{a})$. Let $\left(u_{h}\right)$ be a $(\mathrm{CPS})_{c}$-sequence for f_{t}. Since $\left(u_{h}\right)$ is bounded in $W_{0}^{1, p}(\Omega)$, and the map

$$
\left\{u \mapsto g(x, u)+t \phi_{1}^{p-1}+\omega_{0}\right\},
$$

is completely continuous by (1.8), up to a subsequence $\left(g\left(x, u_{h}\right)+t \phi_{1}^{p-1}+\omega_{0}\right)$ is strongly convergent in $L^{n p^{\prime} /\left(n+p^{\prime}\right)}(\Omega)$, hence in $W^{-1, p^{\prime}}(\Omega)$. By [23, Theorem 3.2] it follows that $\left(u_{h}\right)$ is strongly convergent in $W_{0}^{1, p}(\Omega)$.

We now come to one of the main tool of this paper.
Theorem 3.4. Let f_{t} be the functional defined in (3.1). Then for every $c, t \in \mathbb{R} f_{t}$ satisfies the $(\mathrm{CPS})_{c}$ condition.

Proof. If $\left(u_{h}\right)$ is a $(\mathrm{CPS})_{c}$-sequence for f_{t}, we have $f_{t}\left(u_{h}\right) \rightarrow c$ and, for all $v \in C_{c}^{\infty}(\Omega)$ we have

$$
\begin{aligned}
& \int_{\Omega} \nabla_{\xi} L\left(x, u_{h}, \nabla u_{h}\right) \cdot \nabla v+\int_{\Omega} D_{s} L\left(x, u_{h}, \nabla u_{h}\right) v-\beta \int_{\Omega}\left(u_{h}^{+}\right)^{p-1} v \\
& \quad+\alpha \int_{\Omega}\left(u_{h}^{-}\right)^{p-1} v-\int_{\Omega} g_{0}\left(x, u_{h}\right) v-|t|^{p-2} t \int_{\Omega} \phi_{1} v=\left\langle\omega_{0}+\sigma_{h}, v\right\rangle
\end{aligned}
$$

where $\sigma_{h} \rightarrow 0$ in $W^{-1, p^{\prime}}(\Omega)$ as $h \rightarrow \infty$. Taking into account Lemma 3.3 it suffices to show that $\left(u_{h}\right)$ is bounded in $W_{0}^{1, p}(\Omega)$. Assume by contradiction that, up to a subsequence, $\left\|u_{h}\right\|_{1, p} \rightarrow \infty$ as $h \rightarrow \infty$ and set

$$
v_{h}=\frac{u_{h}}{\varrho_{h}}, \quad \varrho_{h}=\left\|u_{h}\right\|_{1, p}
$$

By Lemma 3.2, we can apply Lemma 3.1 choosing

$$
\begin{gathered}
\gamma_{h}(x)= \begin{cases}\beta & \text { if } u_{h}(x) \geq 0, \\
\alpha & \text { if } u_{h}(x)<0,\end{cases} \\
\mu_{h}=\frac{g_{0}\left(x, u_{h}\right)}{\left\|u_{h}\right\|_{1, p}^{p-1}}, \quad \delta_{h}=|t|^{p-2} t \phi_{1}+\omega_{0}+\sigma_{h} .
\end{gathered}
$$

Then, up to a subsequence, $\left(v_{h}\right)$ strongly converges to some v in $W_{0}^{1, p}(\Omega)$. Moreover, putting $\varphi=v^{+}$in (3.5) of Lemma 3.1, we get

$$
\int_{\Omega} \eta^{-} \nabla_{\xi} L_{\infty}\left(x, \nabla v^{+}\right) \cdot \nabla v^{+} \leq \int_{\Omega} \beta \eta^{-}\left(v^{+}\right)^{p}
$$

hence, taking into account (1.12), we have

$$
\lambda_{1} \int_{\Omega}\left(v^{+}\right)^{p} \leq \int_{\Omega} \nabla_{\xi} L_{\infty}\left(x, \nabla v^{+}\right) \cdot \nabla v^{+} \leq \beta \int_{\Omega}\left(v^{+}\right)^{p}
$$

Since $\beta<\lambda_{1}$, then $v^{+}=0$. Using again (3.4) of Lemma 3.1, for every $\varphi \geq 0$ we get

$$
\int_{\Omega} \eta^{+} \nabla_{\xi} L_{\infty}(x, \nabla v) \cdot \nabla \varphi \geq \alpha \int_{\Omega} \eta^{+}|v|^{p-2} v \varphi
$$

namely, since $v \leq 0$, we have

$$
\int_{\Omega} \nabla_{\xi} L_{\infty}(x, \nabla v) \cdot \nabla \varphi \geq \alpha \int_{\Omega}|v|^{p-2} v \varphi
$$

In a similar way, by (3.5) of Lemma 3.1 we get

$$
\int_{\Omega} \nabla_{\xi} L_{\infty}(x, \nabla v) \cdot \nabla \varphi \leq \alpha \int_{\Omega}|v|^{p-2} v \varphi .
$$

Therefore we get

$$
\int_{\Omega} \nabla_{\xi} L_{\infty}(x, \nabla v) \cdot \nabla \varphi=\alpha \int_{\Omega}|v|^{p-2} v \varphi
$$

which, in view of $\left[18\right.$, Remark 1, p. 161] is not possible if α differs from λ_{1}.

4. Min-max estimates

In this section we will prove that our functional satisfies the geometrical assumptions required by the abstract multiplicity result (Theorem 2.8). Let us first introduce the "asymptotic functional" $f_{\infty}: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ by setting

$$
f_{\infty}(u):=\int_{\Omega} L_{\infty}(x, \nabla u)-\frac{\beta}{p} \int_{\Omega}\left(u^{+}\right)^{p}-\frac{\alpha}{p} \int_{\Omega}\left(u^{-}\right)^{p}-\int_{\Omega} \phi_{1}^{p-1} u
$$

Then consider the functional $\widetilde{f}_{t}: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ given by $\widetilde{f}_{t}(u)=f_{t}(t u) / t^{p}$, namely

$$
\begin{aligned}
\tilde{f}_{t}(u):= & \int_{\Omega} L(x, t u, \nabla u)-\frac{\beta}{p} \int_{\Omega}\left(u^{+}\right)^{p}-\frac{\alpha}{p} \int_{\Omega}\left(u^{-}\right)^{p} \\
& -\int_{\Omega} \frac{G_{0}(x, t u)}{t^{p}}-\int_{\Omega} \phi_{1}^{p-1} u-\frac{\left\langle\omega_{0}, u\right\rangle}{t^{p-1}}
\end{aligned}
$$

Theorem 4.1. The following facts hold.
(a) Assume that $\left.\left(t_{h}\right) \subset\right] 0, \infty\left[\right.$ with $t_{h} \rightarrow \infty$ and $u_{h} \rightarrow u$ in $W_{0}^{1, p}(\Omega)$. Then

$$
\lim _{h} \widetilde{f}_{t_{h}}\left(u_{h}\right)=f_{\infty}(u)
$$

(b) Assume that $\left.\left(t_{h}\right) \subset\right] 0, \infty\left[\right.$ with $t_{h} \rightarrow \infty$ and $u_{h} \rightharpoonup u$ in $W_{0}^{1, p}(\Omega)$. Then

$$
f_{\infty}(u) \leq \liminf _{h} \widetilde{f}_{t_{h}}\left(u_{h}\right)
$$

(c) Assume that $\left.\left(t_{h}\right) \subset\right] 0, \infty\left[\right.$ with $t_{h} \rightarrow \infty, u_{h} \rightharpoonup u$ in $W_{0}^{1, p}(\Omega)$ and

$$
\limsup _{h} \widetilde{f}_{t_{h}}\left(u_{h}\right) \leq f_{\infty}(u)
$$

Then $\left(u_{h}\right)$ strongly converges to u in $W_{0}^{1, p}(\Omega)$.
Proof. (a) is easy to prove.
(b) Since $u_{h} \rightarrow u$ in $L^{q}(\Omega)$ for every $q<2 n /(n-2)$, it is sufficient to prove that

$$
\int_{\Omega} L_{\infty}(x, \nabla u) \leq \liminf _{h} \int_{\Omega} L\left(x, t_{h} u_{h}, \nabla u_{h}\right)
$$

Let us define the Carathéodory function $\widetilde{L}: \Omega \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ by setting

$$
\widetilde{L}(x, s, \xi)= \begin{cases}L(x, \tan (s), \xi) & \text { if }|s|<\pi / 2 \\ L_{\infty}(x, \xi) & \text { if }|s| \geq \pi / 2\end{cases}
$$

Note that $\widetilde{L} \geq 0$ and $\widetilde{L}(x, s, \cdot)$ is convex. Up to a subsequence we have

$$
t_{h} u_{h} \rightarrow z \quad \text { for a.e. } x \in \Omega \backslash\{u=0\}, \quad \nabla u_{h} \rightharpoonup \nabla u \quad \text { in } L^{p}(\Omega \backslash\{u=0\}),
$$

and

$$
\arctan \left(t_{h} u_{h}\right) \rightarrow \arctan (z) \quad \text { in } L^{p}(\Omega \backslash\{u=0\})
$$

Therefore, by [14, Theorem 1] we deduce that

$$
\int_{\Omega \backslash\{u=0\}} \widetilde{L}(x, \arctan (z), \nabla u) \leq \liminf _{h} \int_{\Omega \backslash\{u=0\}} \widetilde{L}\left(x, \arctan \left(t_{h} u_{h}\right), \nabla u_{h}\right),
$$

that implies

$$
\begin{aligned}
\int_{\Omega} L_{\infty}(x, \nabla u) & =\int_{\Omega \backslash\{u=0\}} L_{\infty}(x, \nabla u) \\
& \leq \liminf _{h} \int_{\Omega \backslash\{u=0\}} L\left(x, t_{h} u_{h}, \nabla u_{h}\right)=\liminf _{h} \int_{\Omega} L\left(x, t_{h} u_{h}, \nabla u_{h}\right)
\end{aligned}
$$

Let us now prove (c). As above, we obtain

$$
\underset{h}{\liminf } \int_{\Omega} L\left(x, t_{h} u_{h}, \frac{1}{2} \nabla u_{h}+\frac{1}{2} \nabla u\right) \geq \int_{\Omega} L_{\infty}(x, \nabla u)
$$

Since we have

$$
\lim _{h} \int_{\Omega} L\left(x, t_{h} u_{h}, \nabla u\right)=\int_{\Omega} L_{\infty}(x, \nabla u)
$$

and

$$
\begin{equation*}
\underset{h}{\limsup } \int_{\Omega} L\left(x, t_{h} u_{h}, \nabla u_{h}\right) \leq \int_{\Omega} L_{\infty}(x, \nabla u) \tag{4.1}
\end{equation*}
$$

we get

$$
\underset{h}{\lim \sup } \int_{\Omega}\left(L\left(x, t_{h} u_{h}, \nabla u_{h}\right)-L\left(x, t_{h} u_{h}, \nabla u\right)\right) \leq 0 .
$$

On the other hand, the strict convexity implies that for every $h \in \mathbb{N}$

$$
\frac{1}{2} L\left(x, t_{h} u_{h}, \nabla u_{h}\right)+\frac{1}{2} L\left(x, t_{h} u_{h}, \nabla u\right)-L\left(x, t_{h} u_{h}, \frac{1}{2} \nabla u_{h}+\frac{1}{2} \nabla u\right)>0 .
$$

Therefore, the previous limits yield

$$
\int_{\Omega}\left\{\frac{1}{2} L\left(x, t_{h} u_{h}, \nabla u_{h}\right)+\frac{1}{2} L\left(x, t_{h} u_{h}, \nabla u\right)-L\left(x, t_{h} u_{h}, \frac{1}{2} \nabla u_{h}+\frac{1}{2} \nabla u\right)\right\} \rightarrow 0
$$

In particular, up to a subsequence, we have

$$
\frac{1}{2} L\left(x, t_{h} u_{h}, \nabla u_{h}\right)+\frac{1}{2} L\left(x, t_{h} u_{h}, \nabla u\right)-L\left(x, t_{h} u_{h}, \frac{1}{2} \nabla u_{h}+\frac{1}{2} \nabla u\right) \rightarrow 0
$$

a.e. in Ω. It easily verified that this can be true only if

$$
\nabla u_{h}(x) \rightarrow \nabla u(x) \quad \text { for a.e. } x \in \Omega .
$$

Then we have

$$
L\left(x, t_{h} u_{h}(x), \nabla u_{h}(x)\right) \rightarrow L_{\infty}(x, \nabla u(x)) \quad \text { for a.e. } x \in \Omega .
$$

Taking into account (4.1), we deduce

$$
\int_{\Omega} L\left(x, t_{h} u_{h}, \nabla u_{h}\right) \rightarrow \int_{\Omega} L_{\infty}(x, \nabla u)
$$

that by $\nu\left|\nabla u_{h}\right|^{p} \leq L\left(x, t_{h} u_{h}, \nabla u_{h}\right)$ yields

$$
\lim _{h} \int_{\Omega}\left|\nabla u_{h}\right|^{p}=\int_{\Omega}|\nabla u|^{p}
$$

namely the convergence of u_{h} to u in $W_{0}^{1, p}(\Omega)$.
Remark 4.2. Assume that $\beta<\lambda_{1}<\alpha$. Then the following facts hold:
(a) $f_{\infty}^{\prime}\left(\overline{\phi_{1}}\right)\left(\phi_{1}\right)=0$,
(b) $\lim _{s \rightarrow-\infty} f_{\infty}\left(s \phi_{1}\right)=-\infty$, where we have set $\overline{\phi_{1}}=\phi_{1} /\left(\lambda_{1}-\beta\right)^{1 /(p-1)}$.

Proof. (a) is easy to prove.
(b) A direct computation yields that for $s<0$

$$
f_{\infty}\left(s \phi_{1}\right)=\frac{\lambda_{1}-\alpha}{p}|s|^{p}-s .
$$

Since $\alpha>\lambda_{1}$, assertion (b) follows.

Lemma 4.3. For every $M>0$ there exists $\varrho>0$ such that for every $w \in$ $W_{0}^{1, p}(\Omega)$ with $\left\|w-\phi_{1}\right\|_{1, p} \leq \varrho$ we have

$$
\int_{\Omega} L_{\infty}\left(x,-\nabla w^{-}\right) \geq M \int_{\Omega}\left(w^{-}\right)^{p}
$$

Proof. Argue as in [7, Lemma 4.1].
Lemma 4.4. There exists $r>0$ such that
(a) if $\left\|w-\overline{\phi_{1}}\right\|_{1, p} \leq r$ then $f_{\infty}(w) \geq f_{\infty}\left(\overline{\phi_{1}}\right)$ for all $w \in W_{0}^{1, p}(\Omega)$,
(b) if $\left\|w-\overline{\phi_{1}}\right\|_{1, p}=r$ then $f_{\infty}(w)>f_{\infty}\left(\overline{\phi_{1}}\right)$ for all $w \in W_{0}^{1, p}(\Omega)$.

Proof. Let us fix a $u \in W_{0}^{1, p}(\Omega)$ and define $\left.\eta_{u}:\right] 0, \infty[\rightarrow \mathbb{R}$ by setting $\eta_{u}(t)=f_{\infty}(t u)$. It is easy to verify that η_{u} assumes the minimum value

$$
\mathcal{M}(u)=-\frac{\left(1-\frac{1}{p}\right)\left(\frac{1}{p}\right)^{1 /(p-1)}\left[\int_{\Omega} \phi_{1}^{p-1} u\right]^{p /(p-1)}}{\left[\int_{\Omega} L_{\infty}(x, \nabla u)-\frac{\beta}{p} \int_{\Omega}\left(u^{+}\right)^{p}-\frac{\alpha}{p} \int_{\Omega}\left(u^{-}\right)^{p}\right]^{1 /(p-1)}} .
$$

Moreover, a direct computation yields for every $u \neq \overline{\phi_{1}}$

$$
\begin{equation*}
f_{\infty}\left(\overline{\phi_{1}}\right)<\mathcal{M}(u) \tag{4.2}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
p \int_{\Omega} L_{\infty}(x, \nabla u)>\beta \int_{\Omega}\left(u^{+}\right)^{p}+\alpha \int_{\Omega}\left(u^{-}\right)^{p}+\left(\lambda_{1}-\beta\right)\left[\int_{\Omega} \phi_{1}^{p-1} u\right]^{p} \tag{4.3}
\end{equation*}
$$

If we now set $W=\left\{u \in W_{0}^{1, p}(\Omega): \int_{\Omega} \phi_{1}^{p-1} u=0\right\}$, we obtain

$$
\begin{equation*}
W_{0}^{1, p}(\Omega)=\operatorname{span}\left(\phi_{1}\right) \oplus W \tag{4.4}
\end{equation*}
$$

Let us now prove that (4.3) is really fulfilled in a neighbourhood of $\overline{\phi_{1}}$. Since (4.3) is homogeneous of degree p, we may substitute $\overline{\phi_{1}}$ with ϕ_{1}. Let us first consider the case $p \geq 2$ and $\beta>0$. In view of (4.4), by strict convexity, there exists $\varepsilon_{p}>0$ such that for any $w \in W$

$$
\begin{align*}
& \beta \int_{\Omega}\left(\left(\phi_{1}+w\right)^{+}\right)^{p}+\left(\lambda_{1}-\beta\right) \int_{\Omega} \phi_{1}^{p} \tag{4.5}\\
& \quad \leq \beta \int_{\Omega}\left(\left(\phi_{1}+w\right)^{+}\right)^{p}+\left(\lambda_{1}-\beta\right) \int_{\Omega}\left|\phi_{1}+w\right|^{p}-\left(\lambda_{1}-\beta\right) \varepsilon_{p} \int_{\Omega}|w|^{p} \\
& \quad \leq \frac{\beta}{\lambda_{1}} p \int_{\Omega} L_{\infty}\left(x, \nabla\left(\phi_{1}+w\right)^{+}\right) \\
& \quad \quad+\frac{\lambda_{1}-\beta}{\lambda_{1}} p \int_{\Omega} L_{\infty}\left(x, \nabla\left(\phi_{1}+w\right)\right)-\left(\lambda_{1}-\beta\right) \varepsilon_{p} \int_{\Omega}|w|^{p}
\end{align*}
$$

On the other hand, by Lemma 4.3, for a sufficiently large M we get

$$
\begin{align*}
\alpha \int_{\Omega}\left(\left(\phi_{1}+w\right)^{-}\right)^{p} & \leq \frac{1}{M} \int_{\Omega} L_{\infty}\left(x,-\nabla\left(\phi_{1}+w\right)^{-}\right) \tag{4.6}\\
& \leq \frac{\beta}{\lambda_{1}} p \int_{\Omega} L_{\infty}\left(x,-\nabla\left(\phi_{1}+w\right)^{-}\right),
\end{align*}
$$

for $\|w\|_{1, p}$ small enough. Combining (4.5) and (4.6) we obtain

$$
\begin{align*}
& \beta \int_{\Omega}\left(\left(\phi_{1}+w\right)^{+}\right)^{p}+\alpha \int_{\Omega}\left(\left(\phi_{1}+w\right)^{-}\right)^{p}+\left(\lambda_{1}-\beta\right) \int_{\Omega} \phi_{1}^{p} \tag{4.7}\\
& \quad \leq p \int_{\Omega} L_{\infty}\left(x, \nabla\left(\phi_{1}+w\right)\right)-\left(\lambda_{1}-\beta\right) \varepsilon_{p} \int_{\Omega}|w|^{p}
\end{align*}
$$

Therefore (4.3) holds in a neighbourhood of $\overline{\phi_{1}}$. In view of Lemma 4.4 of [18, Lemma 4.2], the case $1<p<2$ may be treated in a similar fashion. Let us now note that

$$
\int_{\Omega}\left|\phi_{1}+w\right|^{p} \geq \int_{\Omega} \phi_{1}^{p} \quad \text { for all } w \in W
$$

In the case $\beta \leq 0$ we have

$$
\begin{aligned}
& \beta \int_{\Omega}\left(\left(\phi_{1}+w\right)^{+}\right)^{p}+\alpha \int_{\Omega}\left(\left(\phi_{1}+w\right)^{-}\right)^{p}+\left(\lambda_{1}-\beta\right) \int_{\Omega} \phi_{1}^{p} \\
& \quad \leq \frac{\lambda_{1}}{2} \int_{\Omega}\left|\phi_{1}+w\right|^{p}+(\alpha-\beta) \int_{\Omega}\left(\left(\phi_{1}+w\right)^{-}\right)^{p}+\left(\lambda_{1}-\frac{\lambda_{1}}{2}\right) \int_{\Omega} \phi_{1}^{p}
\end{aligned}
$$

so that we reduce to (4.7).
Proposition 4.5. Let $r>0$ be as in Lemma 4.4. Then there exist $\bar{t} \in \mathbb{R}^{+}$ and $\sigma>0$ such that for every $t \geq \bar{t}$ and $w \in W_{0}^{1, p}(\Omega)$

$$
\left\|w-\overline{\phi_{1}}\right\|_{1, p}=r \Rightarrow \widetilde{f}_{t}(w) \geq f_{\infty}\left(\overline{\phi_{1}}\right)+\sigma
$$

Proof. By contradiction, let $\left(t_{h}\right) \subset \mathbb{R}$ and $\left(w_{h}\right) \subset W_{0}^{1, p}(\Omega)$ such that $t_{h} \geq h$ and

$$
\begin{equation*}
\left\|w_{h}-\overline{\phi_{1}}\right\|_{1, p}=r, \quad \tilde{f}_{t_{h}}\left(w_{h}\right)<f_{\infty}\left(\overline{\phi_{1}}\right)+\frac{1}{h} \tag{4.8}
\end{equation*}
$$

Up to a subsequence we have $w_{h} \rightharpoonup w$ with $\left\|w-\bar{\phi}_{1}\right\|_{1, p} \leq r$. Then, by (4.8) and (a) of the previous lemma we get

$$
\begin{equation*}
\underset{h}{\limsup } \tilde{f}_{t_{h}}\left(w_{h}\right) \leq f_{\infty}\left(\overline{\phi_{1}}\right) \leq f_{\infty}(w) \tag{4.9}
\end{equation*}
$$

In view of Theorem 4.1(c), w_{h} strongly converges to w and then $\left\|w-\bar{\phi}_{1}\right\|_{1, p}=r$. Combining (4.9) with (b) of Lemma 4.4, we get a contradiction.

Proposition 4.6. Let σ and \bar{t} be as in the previous proposition. Then there exists $\tilde{t} \geq \bar{t}$ such that for every $t \geq \tilde{t}$ there exist $v_{t}, w_{t} \in W_{0}^{1, p}(\Omega)$ with

$$
\begin{array}{ll}
\left\|v_{t}-\overline{\phi_{1}}\right\|_{1, p}<r, \quad \widetilde{f}_{t}\left(v_{t}\right) \leq \frac{\sigma}{2}+f_{\infty}\left(\overline{\phi_{1}}\right) \\
\left\|w_{t}-\overline{\phi_{1}}\right\|_{1, p}>r, \quad \widetilde{f}_{t}\left(w_{t}\right) \leq \frac{\sigma}{2}+f_{\infty}\left(\bar{\phi}_{1}\right) \tag{4.10}
\end{array}
$$

Moreover, we have $\sup _{s \in[0,1]} f_{t}\left(s v_{t}+(1-s) w_{t}\right)<\infty$.
Proof. We argue by contradiction. Set $\tilde{t}=\bar{t}+h$ and suppose that there exists $\left(t_{h}\right) \subset \mathbb{R}$ with $t_{h} \geq \tilde{t}$ such that for every $v_{t_{h}}$ and $w_{t_{h}}$ in $W_{0}^{1, p}(\Omega)$

$$
\begin{aligned}
\left\|v_{t_{h}}-\overline{\phi_{1}}\right\|_{1, p}<r, \quad \widetilde{f}_{t_{h}}\left(v_{t_{h}}\right)>\frac{\sigma}{2}+f_{\infty}\left(\overline{\phi_{1}}\right) \\
\left\|w_{t_{h}}-\overline{\phi_{1}}\right\|_{1, p}>r, \quad \widetilde{f}_{t_{h}}\left(w_{t_{h}}\right)>\frac{\sigma}{2}+f_{\infty}\left(\overline{\phi_{1}}\right) .
\end{aligned}
$$

Take now $\left(z_{h}\right)$ going strongly to $\overline{\phi_{1}}$ in $W_{0}^{1, p}(\Omega)$. By (a) of Theorem 4.1 we have $\tilde{f}_{t_{h}}\left(z_{h}\right) \rightarrow f_{\infty}\left(\overline{\phi_{1}}\right)$. On the other hand eventually $\left\|z_{h}-\overline{\phi_{1}}\right\|_{1, p}<r$ and $\widetilde{f}_{t_{h}}\left(z_{h}\right) \leq \sigma / 2+f_{\infty}\left(\overline{\phi_{1}}\right)$, that contradicts our assumptions. Recalling (b) of Remark 4.2, by arguing as in the previous step, it is easy to prove (4.10). The last statement is straightforward.

5. Proof of the main result

We now come to the proof of the main result of the paper.
Proof of Theorem 1.1. From Theorem 3.4 we know that f_{t} satisfies the $(\mathrm{CPS})_{c}$ condition for any $c, t \in \mathbb{R}$. By Propositions 4.5 and 4.6 we may apply Theorem 2.8 with $u_{0}=\overline{\phi_{1}}$ and obtain existence of at least two solutions $u \in$ $W_{0}^{1, p}(\Omega)$ of problem (1.13) for $t>\bar{t}$ for a suitable \bar{t}.

Let us now prove that there exists \underline{t} such that (1.13) has no solutions for $t<\underline{t}$. If the assertion was false, then we could find a sequence $\left(t_{h}\right) \subset \mathbb{R}$ with $t_{h} \rightarrow-\infty$ and a sequence $\left(u_{h}\right)$ in $W_{0}^{1, p}(\Omega)$ such that for every $v \in C_{c}^{\infty}(\Omega)$

$$
\begin{aligned}
& \int_{\Omega} \nabla_{\xi} L\left(x, u_{h}, \nabla u_{h}\right) \cdot \nabla v+\int_{\Omega} D_{s} L\left(x, u_{h}, \nabla u_{h}\right) v \\
= & \beta \int_{\Omega}\left(u_{h}^{+}\right)^{p-1} v-\alpha \int_{\Omega}\left(u_{h}^{-}\right)^{p-1} v+\int_{\Omega} g_{0}\left(x, u_{h}\right) v+\left|t_{h}\right|^{p-2} t_{h} \int_{\Omega} \phi_{1}^{p-1} v+\left\langle\omega_{0}, v\right\rangle .
\end{aligned}
$$

Let us first consider the case when, up to a subsequence, $t_{h} /\left\|u_{h}\right\|_{1, p} \rightarrow 0$ and set $v_{h}=u_{h} /\left\|u_{h}\right\|_{1, p}$. Applying Lemma 3.1 with $\varrho_{h}=\left\|u_{h}\right\|_{1, p}, \delta_{h}=\omega_{0}$ and

$$
\gamma_{h}(x)=\left\{\begin{array}{ll}
\beta & \text { if } u_{h}(x) \geq 0, \\
\alpha & \text { if } u_{h}(x)<0,
\end{array} \quad \mu_{h}=\frac{g_{0}\left(x, u_{h}\right)}{\left\|u_{h}\right\|_{1, p}^{p-1}}+\frac{\left|t_{h}\right|^{p-2} t_{h}}{\left\|u_{h}\right\|_{1, p}^{p-1}} \phi_{1}^{p-1}\right.
$$

up to a subsequence, $\left(v_{h}\right)$ converges strongly to some v in $W_{0}^{1, p}(\Omega)$. Then using the same argument as in the proof of Theorem 3.4 we get a contradiction.

Assume now that there exists $M>0$ such that $\left\|u_{h}\right\|_{1, p} \leq-M t_{h}$. Then setting $w_{h}=-u_{h} t_{h}^{-1}, w_{h}$ weakly converges to some $w \in W_{0}^{1, p}(\Omega)$. By applying Lemma 3.1 with $\varrho_{h}=-t_{h}, \delta_{h}=\omega_{0}$ and

$$
\gamma_{h}(x)=\left\{\begin{array}{ll}
\beta & \text { if } u_{h}(x) \geq 0, \\
\alpha & \text { if } u_{h}(x)<0,
\end{array} \quad \mu_{h}=-\frac{g_{0}\left(x, u_{h}\right)}{\left|t_{h}\right|^{p-2} t_{h}}-\phi_{1}^{p-1},\right.
$$

w_{h} strongly converges to w in $W_{0}^{1, p}(\Omega)$. The choice of the test function $\varphi=w^{+}$ gives, as in the first case, $w^{+}=0$. Arguing again as in the end of the proof of Theorem 3.4 we obtain a contradiction.

Remark 5.1. Under suitable assumptions on g and ω_{0}, by [2, Lemma 1.4] the solutions $u \in W_{0}^{1, p}(\Omega)$ of (1.13) belong to $L^{\infty}(\Omega)$. Then, further regularity results can be found in [17].

Acknowledgments. The authors wish to thank Marco Degiovanni for providing helpful discussions.

References

[1] A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl. 93 (1972), 231-247.
[2] D. Arcoya and L. Boccardo, Critical points for multiple integrals of the calculus of variations, Arch. Rational Mech. Anal. 134 (1996), 249-274.
[3] , Some remarks on critical point theory for nondifferentiable functionals, NoDEA Nonlinear Differential Equations Appl. 6 (1999), 79-100.
[4] M. Arias, J. Campos, M. Cuesta and J. P. Gossez, On some asymmetric elliptic problems with indefinite weights, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 215-218.
[5] G. Arioli and F. Gazzola, Weak solutions of quasilinear elliptic PDE's at resonance, Ann. Fac. Sci. Toulouse Math. 6 (1997), 573-589.
[6] A. Canino, Multiplicity of solutions for quasilinear elliptic equations, Topol. Methods Nonlinear Anal. 6 (1995), 357-370.
[7] , On a jumping problem for quasilinear elliptic equations, Math. Z. 226 (1997), 193-210.
[8] , On the existence of three solutions for jumping problems involving quasilinear operators, Topol. Methods Nonlinear Anal. 18 (2001), 1-16.
[9] A. Canino and M. Degiovanni, Non-smooth critical point theory and quasilinear elliptic equations, Topological Methods in Differential Equations and Inclusions (A. Granas, M. Frigon and G. Sabidussi, eds.), Montreal, 1994, pp. 1-50; NATO ASI Series, Kluwer A.P., 1995.
[10] J. N. Corvellec and M. Degiovanni, Nontrivial solutions of quasilinear equations via non-smooth Morse theory, J. Differential Equations 136 (1997), 268-293.
[11] J. N. Corvellec, M. Degiovanni and M. Marzocchi, Deformation properties for continuous functionals and critical point theory, Topol. Methods Nonlinear Anal. 1 (1993), 151-171.
[12] G. Dal Maso and F. Murat, Almost everywhere convergence of gradients of solutions to nonlinear elliptic systems, Nonlinear Anal. 31 (1998), 405-412.
[13] M. Degiovanni and M. Marzocchi, A critical point theory for non-smooth functionals, Ann. Mat. Pura Appl. 167 (1994), 73-100.
[14] A. Ioffe, On lower semicontinuity of integral functionals I, Siam J. Control Optim. 15 (1977), 521-538.
[15] A. Ioffe and E. Schwartzman, Metric critical point theory I, Morse regularity and homotopic stability of a minimum, J. Math. Pures Appl. 75 (1996), 125-153.
[16] G. Katriel, Mountain pass theorems and global homeomorphism theorems, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 189-209.
[17] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Nauka Press, Academic Press, New York, 1968.
[18] P. Lindqvist, On the equation $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+\lambda|u|^{p-2} u=0$, Proc. Amer. Math. Soc. 109 (1990), 157-162.
[19] A. Marino, A. Micheletti and A. Pistoia, Some variationals results on semilinear elliptic problems with asymptotically nonsymmetric behaviour, Nonlinear Analysis, A tribute in honour of Giovanni Prodi, Scuola Normale Superiore, Pisa, 1991, pp. 243256.
[20] A. Marino and C. Saccon, Some variational theorems of mixed type and elliptic problems with jumping nonlinearities, Ann. Sci. Norm. Sup. Pisa (4) 25 (1997), 631665.
[21] B. Pellacci, Critical points for non differentiable functionals, Boll. Un. Mat. Ital. B 11 (1997), 733-749.
[22] S. Solimini, Some remarks on the number of solutions of some nonlinear elliptic problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 143-156.
[23] M. Squassina, Weak solutions to general Euler's equations via non-smooth critical point theory, Ann. Fac. Sci. Toulouse Math. 9 (2000), 113-131.
[24] N. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721-747.

Alessandro Groli

Dipartimento di Matematica
Università degli Studi di Brescia
Via Valotti 9
I-25133 Brescia, ITALY
E-mail address: Alessandro.Groli@ing.unibs.it

Marco Squassina
Dipartimento di Matematica e Fisica
Università Cattolica del Sacro Cuore
Via Musei 41
I-25121 Brescia, ITALY
E-mail address: M.Squassina@dmf.unicatt.it

[^0]: 2000 Mathematics Subject Classification. 35J40; 58E05.
 Key words and phrases. Jumping problems, quasilinear problems, critical point theory.
 The second author was partially supported by Ministero dell'Università e della Ricerca Scientifica e Tecnologica (40% - 1999) and by Gruppo Nazionale per l'Analisi Funzionale e le sue Applicazioni.

