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SYMMETRY RESULTS FOR PERTURBED PROBLEMS
AND RELATED QUESTIONS

Massimo Grosi — Filomena Pacella — S. L. Yadava

Abstract. In this paper we prove a symmetry result for positive solutions
of the Dirichlet problem

(0.1)

(
−∆u = f(u) in D,

u = 0 on ∂D,

when f satisfies suitable assumptions and D is a small symmetric perturba-

tion of a domain Ω for which the Gidas–Ni–Nirenberg symmetry theorem

applies. We consider both the case when f has subcritical growth and
f(s) = s(N+2)/(N−2) + λs, N ≥ 3, λ suitable positive constant.

1. Introduction

Let us consider the following problem

(1.1)


−∆u = f(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where f : R → R is a C1-function and Ω is a bounded smooth domain in RN ,
N ≥ 2, which contains the origin and is symmetric with respect to the hyperplane
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T0 = {x = (x1, . . . , xN ) ∈ RN , x1 = 0} and convex in the x1-direction. Under
this hypothesis it is well known that classical C2(Ω) ∩ C1(Ω) solutions are even
in x1 and strictly increasing in the x1-variable in the cap Ω− = {x ∈ Ω, x1 < 0}.
This is the famous symmetry result of Gidas, Ni and Nirenberg (see [7]) which
is based on the method of moving planes which goes back to Alexandrov and
Serrin in [11].

Now we would like to consider the same problem in some domains Ωn which
are suitable approximations of Ω but are not any more convex in the x1-direction.
The typical example is obtained by making one or more holes in Ω, i.e. Ωn =
Ω\

⋃k
i=1Bi where Bi are small balls in Ω whose radius tends to zero, as n→∞.

The question we address in this paper is whether the symmetry of the solu-
tions of the same problem as in (1.1), but with Ω replaced by Ωn, is preserved.
Let us note immediately that the moving planes method cannot be applied in Ωn

if the convexity in the x1-direction is destroyed but can only give information on
the monotonicity of the solutions in x1, in some subsets of Ωn.

Nevertheless in an interesting paper ([3]) Dancer proved, among other results,
that for some subcritical nonlinearities, as for example f(s) = sp, p > 1 if N = 2,
1 < p < (N +2)/(N − 2) if N ≥ 3, if the solution u is unique and nondegenerate
in Ω then also the approximating problems in Ωn have only one solution which is
necessarily symmetric, if Ωn is symmetric. So in this case the symmetry comes
from the uniqueness of the solution. Thus the question is whether the symmetry
is preserved even if the solution is not unique.

Here we answer positively this question in two different cases: first we con-
sider nonlinear terms f(s) with subcritical growth and then we take f(s) =
s(N+2)/(N−2) + λs, with λ ∈ (0, λ1) if N ≥ 4, λ1 being the first eigenvalue of
the Laplace operator with zero Dirichlet boundary condition, or λ ∈ (λ∗, λ1) if
N = 3, for a certain number λ∗ > 0.

In the subcritical case we prove that all solutions of the approximating prob-
lems are symmetric if Ωn is sufficiently close to Ω. In particular they are radial
if Ωn is an annulus with a small hole. In the critical case we prove the same
result for least energy solutions which exist by the well-known Brezis–Nirenberg
result ([2]). We also prove that the least energy solution is unique and nonde-
generate if the domains Ωn are approximations of Ω which is a ball. This last
result is not contained in the uniqueness theorem of Dancer.

Let us note that in the recent paper [10] it is shown, among other results,
that if f is strictly convex, A is an annulus and u is a solution of (1.1) in A of
index one, then u is axially symmetric. Thus, in the case when Ωn is an annulus
and f is convex our result extend that of [10] because it states that if the hole
is sufficiently small the solution of index one are not only axially symmetric but
actually radially symmetric.
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To prove our result the main idea is to exploit the sign of the first eigenvalue
of the linearized operator L = −∆ − f ′(u)I at a solution u in the cap Ω− =
{x ∈ RN , x1 < 0} or Ω+ = {x ∈ RN , x1 > 0}. In fact, if f(0) ≥ 0 it was shown
in a lecture by L. Nirenberg (see [6]) that this eigenvalue is indeed positive; in
particular zero is not an eigenvalue of L in Ω− or Ω+. From this and some results
on the convergence of the solutions, we deduce the symmetry of the solutions un

in Ωn, with respect to the x1-variable when Ωn is symmetric with respect to the
hyperplane T0 = {x1 = 0}.

We also get the radial symmetry of the solutions when the domains Ωn are
annuli with a small hole.

The outline of the paper is the following. In Section 2 we prove some pre-
liminary theorems on the convergence of the eigenvalues of linear operators and
we also show the uniform L∞-estimates in the subcritical case, already proved
by Dancer (see [5]). In Section 3 we study the subcritical case while in Section 4
we deal with the critical case.

Finally let us remark that the perturbed domains we consider are obtained
by the initial domain Ω by removing from it a finite number of symmetric sub-
domains, i.e. making finitely many holes whose size tends to zero. It could be
possible analyze other kind of perturbations but, for simplicity, we will not con-
sider them.

Acknowledgements. This research started while the third author was vis-
iting the Department of Mathematics of the University of Roma “La Sapienza”.
He would like to thank the department for the financial support and the warm
hospitality.

2. Preliminary results

Let Ω be a bounded domain in RN , N ≥ 2 with smooth C2-boundary andDi,
i = 1, . . . , k smooth open subsets of Ω, star shaped with respect to an interior
point yi and such that Di ∩Dj = ∅, for i 6= j. Then we define the homothetic
domains Di

n = [εi
n(Di − yi)] + yi with respect to yi, with the sequences εi

n

converging to zero as n→∞. Our approximating domains will be

(2.1) Ωn = Ω \
k⋃

i=1

Di
n.

In Ωn we consider the linear operators Ln = −∆ − an(x)I where ∆ is the
Laplace operator, I is the identity and an ∈ L∞(Ωn). Analogously we consider
in Ω the linear operator L = −∆− a(x)I with a ∈ L∞(Ω).

For these operators we would like to prove some results about the convergence
of the first and second eigenvalue.
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Proposition 2.1. Assume that an converges to the function a in LN/2(Ω),
N ≥ 3. Then the first eigenvalues λ1(Ln,Ωn) in Ωn with zero Dirichlet boundary
conditions, converge to the first eigenvalue λ1(L,Ω) analogously defined.

Proof. Let us set λ1,n = λ1(Ln,Ωn), λ1 = λ1(L,Ω) and show that the
sequence {λ1,n} is bounded. By the variational characterization we have that

(2.2) λ1,n ≤
∫

Ωn

|∇φ|2 dx−
∫

Ωn

anφ
2 dx

for a function φ ∈ C∞0 (B),
∫

B
φ2 dx = 1, where B is a ball contained in any Ωn.

Hence by (2.2)

(2.3) λ1,n ≤
∫

B

|∇φ2| dx+
∫

B

(a− an)φ2 dx−
∫

B

aφ2 dx

≤
∫

B

|∇φ2| dx+
( ∫

B

|a− an|N/2 dx

)2/N( ∫
B

φ2∗ dx

)2/2∗

+
∫

B

|a|φ2 dx ≤ C

for a suitable constant C, having denoted by 2∗ the critical Sobolev exponent,
2∗ = 2N/(N − 2). So {λ1,n} is bounded from above.

Let φn > 0 be a first eigenfunction of Ln in Ωn with
∫
Ωn
|∇φ2

n| dx = 1. Then,
extending φn by zero to the whole domain Ω we get

(2.4) λ1,n =

∫
Ω
|∇φ2

n| dx−
∫
Ω
anφ

2
n dx∫

Ω
φ2

n dx

The sequence φn converges weakly in H1
0 (Ω) and strongly in L2(Ω) to a function

φ ∈ H1
0 (Ω) which cannot be zero otherwise from (2.4) and the convergence of an

to a in LN/2(Ω) we would get that λ1,n → ∞ against what we proved. Then,
from (2.4) we deduce

(2.5) λ1,n ≥
1 + (

∫
Ω
|an|N/2 dx)2/N (

∫
Ω
φ2∗

n dx)2/2∗∫
Ω
φ2

n dx
≥ C

for a suitable constant C. Hence λ1,n is bounded from below and thus converges,
up to a subsequence, to a number λ.

Moreover, from the weak convergence of φn to φ in H1
0 (Ω) we get that φ is

nonnegative and solves the problem

(2.6)

{
−∆φ− aφ = λφ in Ω,

φ = 0 on ∂Ω,

Since we already proved that φ 6≡ 0, by the strong maximum principle we get
that φ > 0 and hence is a first eigenfunction of L in Ω, i.e. λ = λ1. �
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In the sequel we shall need to estimate the sign of the second eigenvalue of
Ln in Ωn. Therefore, with the same notations as in Proposition 2.1 we prove

Proposition 2.2. If an converges to a in LN/2(Ω), N ≥ 3 and λ2 =
λ2(L,Ω) > 0 then also λ2,n = λ2(Ln,Ωn) is positive for n sufficiently large.

Proof. Arguing by contradiction let us assume that for a subsequence that
we still denote in the same way, λ2,n ≤ 0. Then, since λ1,n < λ2,n and the
sequence {λ1,n} is bounded by Proposition 2.1, the same holds for {λ2,n} and
hence it converges, up to another subsequence, to a number λ̃ ≤ 0. Then,
considering a sequence of second eigenfunctions φ2,n in Ωn with

∫
Ω
|∇φ2

2,n| dx = 1
and extending them to zero to the whole domain Ω, we have that φ2,n ⇀ φ̃ weakly
in H1

0 (Ω). As in the previous proposition, using the variational characterization
of λ2,n we get that φ̃ 6≡ 0 and is a solution of

(2.7)

{
−∆φ̃− aφ̃ = λ̃φ̃ in Ω,

φ̃ = 0 on ∂Ω.

So φ̃ is an eigenfunction of L corresponding to the eigenvalue λ̃ ≤ 0. Since, by
hypothesis, λ2 > 0, the only possibility is that λ̃ = λ1(L,Ω) and hence φ̃ is a
first eigenfunction of L in Ω. If φ1,n is a sequence of first eigenfunctions of Ln

in Ωn we have the orthogonality condition

(2.8)
∫

Ω

φ1,nφ2,n dx = 0.

Since, by the previous proposition, we have that also φ1,n ⇀ φ̃ weakly in H1
0 (Ω),

from (2.8), passing to the limit we get

(2.9)
∫

Ω

φ̃2 dx = 0

which is impossible. Hence λ2,n > 0 for n sufficiently large. �

Now we consider the following semilinear elliptic problem in Ωn

(2.10)


−∆u = f(u) in Ωn,

u > 0 on Ωn,

u = 0 on ∂Ωn,

where f : R → R is of class C1.
We would like to get some uniform L∞-estimates for the solutions of (2.10)

when f is subcritical. This was already shown by Dancer in [5] using the Gidas–
Spruck approach (see [8]). For the reader’s convenience we sketch the proof
here.
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Proposition 2.3. Let u ∈ C2(Ωn) be a classical solution of (2.10) with f

satisfying

(2.11) lim
s→∞

f(s)
sp

= a > 0,

where 1 < p < (N + 2)/(N − 2) if N ≥ 3, p > 1 if N = 2. Then there exists a
number C > 0, independent of u and n such that

(2.12) ||u||L∞(Ωn) ≤ C

Proof. Arguing by contradiction we assume that for a sequence {un} of
solutions of (2.10) we have

(2.13) ||un||L∞(Ωn) = un(xn) →∞

for some sequence of points xn ∈ Ωn. Let us set

vn(x) =
1

||un||∞
un

(
x

||un||(p−1)/2
∞

+ xn

)
.

These functions satisfy

(2.14)


−∆u =

1
||un||p∞

f(||un||∞vn) in Ω̃n,

vn(0) = 1 on Ω̃n,

0 < vn ≤ 1 on ∂Ω̃n,

where Ω̃n = (Ωn − xn)||un||(p−1)/2
∞ . From (2.11) we get

(2.15)
f(||un||∞vn)
||un||p∞

=
vp

nf(||un||∞vn)
(||un||∞vn)p

≤ C

for some positive constant C.
Now let us fix any compact set K ⊂ Ω̃n, such that

(2.16) d(K, ∂Ω̃n) ≥ α > 0

where d(K, ∂Ω̃n) is the distance of K from ∂Ω̃n. Since the right hand side in the
equation (2.14) is uniformly bounded, by the standard regularity theory we have
that vn converges to a function v in C1(K). Therefore, by (2.11) and (2.14) we
get

(2.17)

{
−∆v = avp in D,

0 < v ≤ 1 in D,
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where D is the “limit” domain whose shape depends on the comparison between
the rate of divergence of ||un||(p−1)/2

∞ and of convergence to zero of the param-
eters εi

n (which define the size of the holes). As shown in [5] there are four
possibilities

(2.18)

(i) D = RN ,

(ii) D = RN
+ = {x = (x1, . . . , xN ) ∈ RN , x1 > 0},

(iii) D = RN \ {0},
(iv) D = RN \ αDi for some i ∈ {1, 2, . . . , k}

and α = lim
n→∞

εi
n||un||(p−1)/2

∞ .

The first two cases (i) and (ii) are excluded as in [8] because of the nonexis-
tence of nontrivial solutions of (2.17) in RN or RN

+ .
The case (iii) is excluded because if D = RN \ {0} only singular solutions at

zero can exist while v is bounded (see [9] and [5]). Hence, the only possibility is
that v ≡ 0 a.e. in RN , but, this can be excluded arguing exactly as in [5] (see
Theorem 2 and proof of (ii) of Theorem 1 therein).

Finally, by Theorem 1 of [5], also case (iv) is excluded, since the subdo-
mains Di are star shaped. Hence (2.12) holds. �

Remark 2.4. The hypothesis that the subdomains Di are star shaped is
only used in the proof of (iv) of the previous proposition. We would like to point
out that it is not needed when p ≤ N/(N − 2) (see Theorem 1 of [5]).

Now we assume that Ω contains the origin and is symmetric with respect
to the hyperplane T0 = {x = (x1, . . . , xN ) ∈ RN , x1 = 0} and convex in the
x1-direction. We also define the caps Ω− = {x ∈ Ω, x1 < 0} and Ω+ = {x ∈
Ω, x1 > 0}. We end this section by recalling the following result.

Proposition 2.5. Let u be a positive solution of the semilinear problem

(2.19)

{
−∆u = f(u) in Ω,

u = 0 on ∂Ω,

where f : R → R is a C1-function with f(0) ≥ 0. Then the first eigenvalue of
the linearized operator Lu = −∆ − f ′(u)I in Ω− (or Ω+) with zero Dirichlet
boundary conditions is positive.

Proof. The statement was proved in a lecture by L. Nirenberg (see also [6,
Theorem 2.1]). We recall here the simple proof.

By the symmetry result of [7] any positive solution of (2.19) is symmetric
and ∂u/∂x1 > 0 in Ω−. Deriving (2.19) we have that the function ∂u/∂x1 solves
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the linearized equation, i.e.

(2.20) −∆
(
∂u

∂x1

)
− f ′(u)

∂u

∂x1
= 0 in Ω−

and, by the condition f(0) ≥ 0, the Hopf’s Lemma applied to the solution u

implies that ∂u/∂x1 6≡ 0 on ∂Ω−. Since ∂u/∂x1 > 0 in Ω− this yelds the
validity of the maximum principle in Ω− which, in turns, is equivalent to claim
that the first eigenvalue of Lu is positive in Ω−. Since u is symmetric the same
holds in Ω+. �

3. The subcritical case

As at the beginning of the previous section we assume that Ω is a smooth
bounded domain containing the origin, symmetric with respect to the hyper-
plane T0 and convex in the x1-direction. We also take the smooth star shaped
subdomains Di, i = 1, . . . , k in such a way that the domains Ωn = Ω \

⋃k
i=1D

i
n,

εi
n → 0 (see Section 2 for the precise definition) are also symmetric with respect

to T0, but, of course, they are not any more convex in the x1-direction. Let
f : R → R be a C1-function such that

(3.1) lim
s→∞

f(s)
sp

= a > 0,

where 1 < p < (N + 2)/(N − 2) if N ≥ 3, p > 1 if N = 2 and

(3.2) f(0) ≥ 0, f ′(0) 6= λ1

where λ1 is the first eigenvalue of the Laplace operator, with zero Dirichlet
boundary conditions in Ω.

With this nonlinearity we consider the following semilinear problem

(3.3)


−∆u = f(u) in D,

u > 0 on D,

u = 0 on ∂D,

where D is either Ωn or Ω.

Remark 3.1. If f is convex at zero and f(0) = 0 it is easy to see that a nec-
essary condition to have positive solutions of (3.3) in Ω is to require f ′(0) < λ1

and the same is true in Ωn. Since the first eigenvalue λ1,n of the Laplace oper-
ator in H1

0 (Ωn) converges to λ1 if we have f ′(0) < λ1 then also f ′(0) < λ1,n for
sufficiently large n. Hence the requirement f ′(0) 6= λ1 in (3.2) is often not a real
hypothesis.

Now we show the convergence of the solutions of (3.3) in Ωn to the solution
of (3.3) in Ω. This was already proved by Dancer ([3]); since some steps of the
proof will be also used later we give all details here.
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Theorem 3.2. Let un be a solution of (3.3) in Ωn. Then the sequence {un}
converges weakly in H1

0 (Ω) to a solution u0 of (3.3) in Ω.

Proof. Let us extend the functions un to the whole domain Ω giving the
value zero outside of Ωn. By Proposition 2.3 we know that the functions {un}
are uniformly bounded in the L∞-norm and by (3.3) they are bounded in H1

0 (Ω),
so that, up to a subsequence that we still denote by un, we have that un ⇀ u0

weakly in H1
0 (Ω). Let us show that u0 is a weak solution of (3.3) in Ω. To

do this, it is enough to use as test functions those belonging to the set V =
{ψ ∈ H1

0 (Ω) such that ψ ∈ H1
0 (Ωn), for some n ∈ N}. In fact the set V is dense

in H1
0 (Ω), because the subdomains Di

n reduce to a finite number of points, as
n→∞. So, fixed ψ ∈ V we have that there exists n ∈ N such that ψ ∈ H1

0 (Ωn)
and hence ψ ∈ H1

0 (Ωn), for any n ≥ n. Then, by (3.3), we have

(3.4)
∫

Ω

∇un∇ψ dx =
∫

Ω

f(un)ψ dx for all n ≥ n.

Since un ⇀ u0 in H1
0 (Ω) we have that

∫
Ω
∇un∇ψ dx →

∫
Ω
∇u0∇ψ dx and

also f(un) → f(u0) a.e. in Ω. Thus, since the sequence {un} is uniformly
bounded, using the dominated convergence theorem, we get

∫
Ω
f(un)ψ dx →∫

Ω
f(u0)ψ dx. By this and (3.4) we deduce that u0 is a weak solution of (3.3)

in Ω and hence, by standard regularity theorems, u0 is also a classical C2(Ω)
solution.

Obviously u0 ≥ 0 so that, by the hypothesis f(0) ≥ 0 we can apply the
strong maximum principle claiming that either u0 > 0, as we wanted prove,
or u ≡ 0. In the last case f(0) must be zero. So, considering the functions
vn = un/||∇un||L2(Ω), we have that vn > 0 and

(3.5) −∆vn =
( ∫ 1

0

f ′(tun) dt
)
vn in Ωn.

Moreover, up to a subsequence, vn ⇀ v0 in H1
0 (Ω) while vn → v0 strongly

in L2(Ω). The limit function v0 cannot be zero because we have

(3.6) 1 =
∫

Ω

|∇v2
n| dx =

∫
Ωn

( ∫ 1

0

f ′(tun) dt
)
v2

n dx ≤ C1

∫
Ωn

v2
n dx

where C1 = ||f ′(s)||L∞([0,C]), C being the constant which appears in (2.12).
Passing to the limit in (3.5), arguing as for (3.4), we get that v0 is a solution of

(3.7)

{
−∆v0 = f ′(0)v0 in Ω,

v0 = 0 on ∂Ω.

Since v0 ≥ 0 and v0 6≡ 0, by the strong maximum principle we have v0 > 0 which
implies that f ′(0) = λ1, against the hypothesis. So u0 is a positive solution of
(3.3) in Ω. �
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Now we show the symmetry of the solutions of (3.3) when the domains Di
n

are sufficiently small.

Theorem 3.3. For any nonlinearity f satisfying (3.1) and (3.2) there exists
n0 ∈ N such that for any n ≥ n0 all solutions of problem (3.3) in Ωn are even in
the x1-variable.

Proof. Arguing by contradiction let us assume that there exists a sequence
{un} of solutions of (3.3) in Ωn such that un are not even in x1. This im-
plies that, denoting by Ω−n the set {x ∈ Ωn, such that x1 < 0} the functions
wn(x) = un(x1, . . . , xN )−un(−x1, x2, . . . , xN ) are not identically zero in Ω−n and
actually, since they are continuous, they are not zero in a set of positive measure.
Therefore, extending wn by zero to the whole set Ω− = {x ∈ Ω, x1 < 0} we
can define in Ω− the functions vn = wn/||∇wn||L2(Ω−) which belong to H1

0 (Ω−)
since they are zero on ∂Ω−.

It is easy to see that vn satisfy

(3.8) −∆vn =
( ∫ 1

0

f ′(tun(x) + (1− t)un(−x1, x2, . . . , xN )) dt
)
vn in Ω−

and converge weakly in H1
0 (Ω−) to a function v0, while vn → v0 in L2(Ω−).

Exactly as in Theorem 3.2 we prove that v0 6≡ 0 and v0 is a solution of

(3.9)


−∆v0 = f ′(u0)v0 in Ω,

v0 = 0 on ∂Ω,

v0 6≡ 0 in Ω,

where u0 is the limit of the solutions un that, by Theorem 3.2, is a positive solu-
tion of (3.3) in Ω. Then, by Proposition 2.5, we know that the first eigenvalue of
the linearized operator −∆−f ′(u0)I in Ω−, with zero Dirichlet boundary condi-
tions, is positive. This contradicts (3.9) which implies that zero is an eigenvalue
of −∆− f ′(u0)I in Ω−. Thus the assertion holds �

We also get the radial symmetry of the solutions when Ωn are annuli and n
is sufficiently large.

Corollary 3.4. Let Ωn be annuli. Then for any nonlinearity f satisfy-
ing (3.1) and (3.2) there exists n ∈ N such that for any n ≥ n all solutions of
problem (3.3) in Ωn are radial.

Proof. Since Ωn is symmetric with respect to any hyperplane Tν passing
through the origin and orthogonal to a direction ν ∈ SN−1, (SN−1 being the unit
sphere in RN ), to each Tν the previous theorem applies and gives an integer nν

such that, for any n ≥ ν, all solutions of (3.3) in Ωn are symmetric with respect
to the hyperplane Tν . To prove the statement we need to show that there exists
a positive integer n such that nν ≤ n, for any ν ∈ SN−1.



Symmetry Results for Perturbed Problems and Related Questions 221

Arguing by contradiction we construct a sequence of directions νk such that
nνk

→∞ and, up to a subsequence νk → ν0 ∈ SN−1. This means that we have
a sequence of solutions {uk} in Ωk, k →∞ which are not symmetric with respect
to the hyperplane Tνk

= {x ∈ RN : x · νk = 0}. This implies that the functions

(3.10) wk = uk(x)− uk(xνk
), x ∈ Ω−k = {x ∈ Ωk : x · νk < 0}

where xνk
is the reflected point of x with respect to Tνk

, are not zero in a set of
positive measure.

Hence considering the limit symmetry hyperplane Tν0 = {x ∈ RN : x·ν0 = 0}
and extending wk by zero to the domain Ω we can define the functions

vk =
wk

||∇wk||L2(Ω)

which satisfy the equation

−∆vk =
( ∫ 1

0

f ′(tuk(x) + (1− t)uk(xνk
)) dt

)
vk in Ω−k .

Exactly, as in Theorems 3.2 and 3.3, we prove that vk converges weakly in H1
0 (Ω)

to a function v0 6≡ 0 such that

(3.11)

{
−∆v0 = f ′(u0)v0 in Ω−0 ,

v0 = 0 on ∂Ω−0 ,

where u0 is the limit of the solutions uk, which is symmetric with respect to Tν0 .
Therefore, by Proposition 2.5, we reach the same contradiction as in Theo-
rem 3.3. �

4. The critical case

Keeping the previous notation we consider a bounded smooth domain Ω
containing the origin, symmetric with respect to the hyperplane T0 and convex
in the x1-direction and denote by Ωn the approximating domains as defined in
Sections 2 and 3.

We study the following “critical” semilinear problem

(4.1)


−∆u = u(N+2)/(N−2) + λu in D,

u > 0 in D,

u = 0 on ∂D,

where D is either Ω or Ωn, N ≥ 4 and λ ∈ (0, λ1) where λ1 is the first eigenvalue
of the Laplace operator in Ω with Dirichlet boundary conditions. Note that,
by the continuity of this eigenvalue with respect to the domain, we have that
λ ∈ (0, λ1,n) for n sufficiently large, having denoted by λ1,n the first eigenvalue
of −∆ in Ωn with the same boundary conditions.
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Thus by a famous result of Brezis and Nirenberg, we have that, for every
λ ∈ (0, λ1), there exists a solution of (4.1), both in Ω or Ωn which, up to
a multiplier, minimizes the functional

(4.2) Qλ(u) =
∫

D

|∇u|2 − λ

∫
D

u2

among the functions u ∈ H1
0 (D) with

∫
D
u2∗ = 1 where 2∗ = 2N/(N − 2) =

(N + 2)/(N − 2) + 1 and D is either Ω or Ωn.
If N = 3, the same existence result holds in a suitable neighbourhood of λ1,

say (λ∗, λ1), (see [2]). As a consequence for N = 3, it will understood that we
will take λ ∈ (λ∗, λ1). In particular, if Ω is a ball λ∗ = λ1/4.

Let us denote by Sλ and Sλ
n the infimum of (4.2) in H1

0 (Ω) and H1
0 (Ωn)

respectively.
We start by proving the following result.

Proposition 4.1. Sλ
n → Sλ as n→∞.

Proof. Since Ωn ⊂ Ω we have that Sλ ≤ Sλ
n for any n ≥ 1. So if we prove

that

(4.3) lim
n→∞

Sλ
n ≤ Sλ

the claim follows. Let us consider the function ηr:B(0, 2r) → R defined as

(4.4) ηr(x) =


2n−2

1− 2n−2

(
rn−2

|x|n−2
− 1

)
if r < |x| < 2r,

0 if |x| ≤ r.

Recalling the definition of Di
n let us consider the smallest number ri

n such that
Di

n ⊂ B(yi, r
i
n) and set

(4.5) ζn(x) =

{
ηri

n
(x− yi) if |x− yi| < 2ri

n,

1 elsewhere.

Finally we consider the function vn ∈ H1
0 (Ωn),

vn =
ζnv0

||ζnv0||Lp+1(Ω)
,

where v0 is the function which minimizes Qλ(u) in Ω. Let us compute Qλ(vn).
By Lebesgue dominated convergence theorem we get

(4.6)
∫

Ω

v2
n dx =

∫
Ω
ζ2
nv

2
0 dx

||ζnv0||2Lp+1(Ω)

→
∫
Ω
v2
0 dx

(
∫
Ω
vp+1
0 )2/(p+1)

.
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Concerning the integral
∫
Ω
|∇vn|2 dx we have the following estimate

(4.7)
∫

Ω

|∇(ζnv0)|2 dx =
∫

Ω

|∇v0|2ζ2
n dx

+
∫

Ω

|∇ζ2
n|2v2

0 dx+ 2
∫

Ω

∇v0 · ∇ζnv0ζn dx

=
∫

Ω

|∇v0|2 dx+O

( k∑
i=0

ri(N−2)

n

)
.

The estimates (4.6) and (4.7) imply that

(4.8) lim
n→∞

Qλ(vn) = Qλ(v0) = Sλ

which proves (4.3). �

Let vn be a sequence of minima of (4.2) in H1
0 (Ωn) corresponding to a fixed

value of λ belonging to (0, λ1) if N ≥ 4 or to (λ∗, λ1) if N = 3. We extend vn

by zero to the whole domain Ω and we have

Proposition 4.2. The sequence vn converges strongly in H1
0 (Ω) to a func-

tion v0 which is a minimizer of (4.2) in H1
0 (Ω).

Proof. By definition we have that

(4.9)
∫

Ω

v2∗

n dx = 1 and
∫

Ω

|∇vn|2 dx− λ

∫
Ω

v2
n = Sλ

n .

Since by the previous proposition Sλ
n → Sλ we have that {vn} is a minimizing

sequence for the functional Qλ defined in (4.2), in the space H1
0 (Ω). By the result

of Brezis and Nirenberg ([2]) we know that for the value of λ considered, Sλ is
smaller than S which is the best Sobolev constant for the imbedding of H1

0 (Ω)
into L2∗(Ω). Again by a result of [2] we have that this implies that vn converges
strongly in H1

0 (Ω) to a function v0 which is a minimizer of (4.2) in H1
0 (Ω). �

The minimizer v0 (respectively vn) of (4.2) are obviously solutions of the
problem

(4.10)


−∆v = µv(N+2)/(N−2) + λv in D,

v > 0 in D,

v = 0 on ∂D,

where D is either Ω or Ωn and µ is a suitable Lagrange multiplier, namely
µ = Sλ or µ = Sλ

n . Then it is easy to see that the function u = µ1/(p−1)v,
p = (N+2)/(N−2) is a solution of (4.1). These solutions, obtained through the
minimization procedure, will be called least-energy solutions of (4.1). To prove
the symmetry of these solutions we can either argue as in the subcritical case
or, since the nonlinearity f(s) = s(N+2)/(N−2) +λs is strictly convex, exploit the
following proposition which is proved in [10].
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Proposition 4.3. Let us denote by λ1(Ln,Ω−n ) and λ1(Ln,Ω+
n ) the first

eigenvalues of the linearized operators Ln = −∆− f ′(un)I in the domains Ω−n =
{x ∈ Ωn, x1 < 0}, Ω+

n = {x ∈ Ωn, x1 > 0}. If they are both nonnegative then
un is even in x1.

Proof. See Proposition 1.1 in [10]. �

Theorem 4.4. For every λ ∈ (0, λ1) if N ≥ 4, (λ∗, λ1) if N = 3, there
exists n0 ∈ N such that for every n ≥ n0 all least-energy solutions of (4.1) in Ωn

are even in the x1-variable.

Proof. Arguing by contradiction let us assume that there is a sequence
{un} of least-energy solutions of (4.1) in Ωn which are not even in x1.

By Proposition 4.2 {un} converges strongly in H1
0 (Ω) to a least energy so-

lution u0 of (4.1) in Ω and hence an(x) = (pup−1
n + λ)x, p = (N + 2)/(N − 2)

converges in the space LN/2(Ω) to the function a(x) = (pup−1
0 +λ)x. By Propo-

sition 2.1 applied to the linearized operators Ln = −∆− an(x)I and L = −∆−
a(x)I we have that the eigenvalues λ1(Ln,Ω−n ) → λ1(L,Ω−) and λ1(Ln,Ω+

n ) →
λ1(L,Ω+). By Proposition 2.5 we know that λ1(L,Ω−) and λ1(L,Ω+) are both
positive so that also λ1(Ln,Ω−n ) and λ1(Ln,Ω+

n ) are positive for n sufficiently
large. This, in turns, implies, by Proposition 4.3, that the functions un are even
in x1 against what we assumed.

Alternatively, arguing as in the proof of Theorem 3.3 we could consider the
functions

wn(x) = un(x1, x2, . . . , xN )− un(−x1, x2, . . . , xN ) in Ω−n

and then set vn = wn/||∇wn||L2(Ω−). The functions vn satisfy (3.8) in Ω−n with
f ′(s) = s4/(N−2)− λ and converge weakly in H1

0 (Ω−) to a function v0. To prove
that v0 6≡ 0, in Theorem 3.3 we used the uniform L∞-estimates which are not
known when the nonlinearity has a critical growth. In our case we observe that,
by Proposition 4.2, un → u0 in H1

0 (Ω) and hence in L2N/(N−2)(Ω). Therefore

(4.11) u4/(N−2)
n → u

4/(N−2)
0 in LN/2(Ω)

and this implies that v0 is a solution of (3.11) and v0 6≡ 0. In fact

(4.12) 1 =
∫

Ω

|∇v2
n| dx

=
∫

Ωn

( ∫ 1

0

(tun(x) + (1− t)un(−x1, x2, . . . , xN ))4/(N−2) dt

)
v2

n dx.

If v0 ≡ 0 then vn ⇀ 0 weakly in H1
0 (Ω) and using (4.11) we have that

(4.13)
∫

Ωn

( ∫ 1

0

(tun(x) + (1− t)un(−x1, x2, . . . , xN ))4/(N−2) dt

)
v2

n dx→ 0
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and it gives a contradiction with (4.12). So v0 6≡ 0.
After this we can repeat exactly the same proof as in Theorem 3.3 and then

the same contradiction arises. �

Corollary 4.5. Let Ωn be annuli. Then for every λ in the intervals con-
sidered there exists n ∈ N such that for any n ≥ n all solutions of problem (4.1)
in Ωn are radial.

Proof. It is similar to that of Corollary 3.4, using (4.11) instead of the
uniform L∞-estimates. �

If Ω is a ball we know that problem (4.1) has only one solution which is also
non degenerate (see [1] or [12]). We end by showing that the same is true for
the approximating domains Ωn.

Theorem 4.6. Let Ω be a ball. Then, for every λ in the intervals considered
there exists n ∈ N such that, for any n ≥ n, problem (4.1) in Ωn has only one
least-energy solution which is also nondegenerate.

Proof. By contradiction let us assume that there exist two sequences of
least-energy solutions of (4.11) in Ωn, say {u1,n}, {u2,n}, with {u1,n} 6≡ {u2,n}.
As usual we extend them by zero in Ω and define the functions

(4.14) vn =
u1,n − u2,n

||∇(u1,n − u2,n)||L2(Ω)

which satisfy

(4.15)

 −∆vn = p

( ∫ 1

0

(tu1,n + (1− t)u2,n)p−1 dt

)
vn + λvn in Ωn,

vn = 0 on ∂Ωn,

where p = (N + 2)/(N − 2). Since
∫
Ω
|∇vn|2 dx = 1 we get that vn ⇀ v0 in

H1
0 (Ω). By Proposition 4.2 both {u1,n} and {u2,n} converge strongly in H1

0 (Ω)
to the unique least-energy solution u0 of (4.1) in the ball Ω. Using this and
arguing as in the second part of the Proof of Theorem 4.4 we deduce that v0 6≡ 0.
Then, passing to the limit in (4.15), we get that v0 is a solution of the linearized
equation at u0 in Ω, i.e.

(4.16)

{
−∆v0 − pup−1

0 v0 − λv0 = 0 in Ω,

v0 = 0 on ∂Ω.

Since u0 is a nondegenerate solution of (4.1) (see [1], [12]) we reach a con-
tradiction which shows that {u1,n} ≡ {u2,n} for n sufficiently large.

Finally, since u0 is a least-energy solution of (4.1) in the ball Ω we also
have that it has index one, i.e. the second eigenvalue of the linearized operator
at u0 is positive in Ω. Therefore, using the strong convergence of the least-energy
solutions un of (4.1) in Ωn and Proposition 2.2, we get that the second eigenvalue
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of the linearized operators at un in Ωn are also positive. This implies that the
solutions un are nondegenerate. �

From the proof of Theorem 4.6 it is obvious that the same result holds if Ω is
not a ball but any domain where (4.1) has only one non degenerate least-energy
solution.
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