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DIFFERENTIAL INCLUSIONS
WITH CONSTRAINTS IN BANACH SPACES

Aleksander Ćwiszewski

Abstract. The paper provides topological characterization for solution

sets of differential inclusions with (not necessarily smooth) functional con-
straints in Banach spaces. The corresponding compactness and tangency

conditions for the right hand-side are expressed in terms of the measure

of noncompactness and the Clarke generalized gradient, respectively. The
consequences of the obtained result generalize the known theorems about

the structure of viable solution set for differential inclusions.

1. Introduction

In this paper we shall be concerned with the topological characterization
of the solution set to the following differential inclusion subject to functional
constraints

(P)f


u′(t) ∈ F (t, u(t)) a.e. on I,
f(u(t)) ≤ 0,
u(0) = x0,

where F : I × U ( E (I := [0, 1]) is an upper semicontinuous closed convex
valued map satisfying some compactness condition and U is an open subset of a
Banach space E. We shall prove an Aronszajn type result saying that the set of
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all solutions is a Rδ set in C(I, E). Throughout the paper, by a solution of (P)f
we mean an absolutely continuous function u: I → E such that for every t ∈ I

u(t) = x0 +
∫ t
0
v(s) ds

where v: I → E is a Bochner measurable selection of F ( · , u( · )).
Clearly, if u: I → E is a solution of (P)f then it is a viable trajectory in the

set K := {x ∈ U | f(x) ≤ 0}, that is a solution to the problem

(P)K


u′(t) ∈ F (t, u(t)) a.e. on I,
u(t) ∈ K,
u(0) = x0 ∈ K.

If one expects (P)K to have any solutions (in K) the directions of F should be
adjusted to the “shape” ofK. More precisely, the Haddad theorem says (see [14])
that a viable trajectory starts from each point of x ∈ K provided the following
tangency condition holds

(1) F (t, x) ∩ TBK(x) 6= ∅ for all (t, x) ∈ I ×K

where TBK(x) denotes the Bouligand tangent cone (to K) at point x ∈ K (in the
autonomous case even the converse is true). Nevertheless, the tangency (1) is
still not sufficient for the problem (P)K (or (P)f ) to have the mentioned structure
of the solution set.

Example 1.1. Let f :R2 → R be given by

f(x, y) := |x2 + y2 − 2x||x2 + y2 + 2x|.

Define F :R2 → R2 by

F (x, y) :=


(y, 1− x) if x2 + y2 − 2x ≤ 0,
(−y, 1 + x) if x2 + y2 + 2x ≤ 0,(
2xy
x2 + y2

,
y2 − x2

x2 + y2

)
otherwise.

The problem (P)f with u0 = (0, 0) in this case has exactly two solutions u1(t) =
(1− cos t, sin t) and u2(t) = (−1 + cos t, sin t).

Example 1.21. Define

K := {(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ 2,
√
x2 + y2 ≥ z},

R := {(x, y, 1) | x2 + y2 = 1},
Q := {(x, y, 1) | x2 + y2 ≤ 1}.

1The example was suggested by Wojcieh Kryszewski.



Differential Inclusions with Constraints 121

Let F :K ( R3 be given by

F (x, y, z) :=

{
Q if (x, y, z) ∈ K \R,
conv [Q ∪ {(−y, x, 0)}] if (x, y, z) ∈ R.

One may check that the tangency condition (1) is satisfied. The set of solutions
for (P)K starting from (0, 0, 0) is hemeomorphic to the circle S1, hence it is
not Rδ.

Thus, the first example shows that even the connectedness of the solution set
depends on K. And the second one indicates that even for regular sets (in the
sense of Definition 4.4, cf. [9]) the condition (1) is not sufficient for the solution
set to be acyclic. For that reason the set K has to be regular and the tangency
assumptions have to be expressed in terms of Clarke’s tangent cones.

The problem of the structure of solution sets for (P)K has been addressed
by many authors: by Bothe ([7]), Hu and Papageorgiou ([15], [16]) for closed
convex subsets of Banach spaces, Plaskacz ([17], [18]) for proximate retracts in
finite dimensional spaces, Górniewicz, Nistri and Obukhovski ([13]) for proximate
retracts in Hilbert spaces and by Bader and Kryszewski ([4]) for a wide class of
regular subsets of a finite dimensional space.

Section 2 contains basic definitions and preliminary results. In Section 3
we shall study the solution set structure for seemingly less general (than (P)K)
problem (P)f and in Section 4 the obtained result is applied to (P)K , which
gives a generalization of theorems by the mentioned authors in the case the right
hand-side is upper semicontinuous.

2. Preliminaries

By E we denote a (possibly infinite dimensional) Banach space; ‖·‖ stands for
its norm. Given x ∈ E and ε > 0, B(x, ε) := {y ∈ E | ‖x− y‖ < ε}, D(x, ε) :=
{y ∈ E | ‖x − y‖ ≤ ε} and, in particular, B := B(0, 1) and D := D(0, 1). The
closure, the interior, the boundary and the convex envelope of A ⊂ E are denoted
by clA, intA, bdA and convA, respectively, and B(A, ε) := {g ∈ E | exists x ∈
A such that ‖x− y‖ < ε}.
By E∗ we denote the topological dual of E and put D∗ := D(0, 1) in E∗.

〈 · , · 〉 denotes the duality pairing: 〈p, x〉 := p(x), for p ∈ E∗ and x ∈ E.
Let ϕ:X ( E be a set-valued map defined on a metric space X. We say that

ϕ is ε-δ upper semicontinuous if, for any x ∈ X and ε > 0, there exists δ > 0 such
that ϕ(x′) ⊂ B(ϕ(x), ε) if d(x, x′) < δ. Obviously, if ϕ is upper semicontinous
then it is ε-δ upper semicontinuous. The converse statement holds, if ϕ has
compact values.
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Let f :U → R be a locally Lipschitz function defined on an open subset of
a Banach space E. For each a ∈ R, the sublevel set is defined as

fa := {x ∈ U | f(x) ≤ a}.

The Clarke directional derivative of f at a point x ∈ U in the direction u ∈ E is
given by

f◦(x;u) := lim sup
y→x, h→0+

f(y + hu)− f(y)
h

.

The generalized gradient is a set

∂f(x) := {p ∈ E∗ | 〈p, u〉 ≤ f◦(x;u) for all u ∈ E}.

One may show that

f◦(x;u) = sup
p∈∂f(x)

〈p, u〉 for any u ∈ E,(2)

inf
p∈∂f(x)

〈p, u〉 = − inf
u∈D
f◦(x;u).(3)

By the polar cone to the gradient ∂f(x) (x ∈ U) we mean

∂f(x)◦ := {u ∈ E | f◦(x;u) ≤ 0}

and by the normal cone

(4) ∂f(x)◦◦ := {p ∈ E∗ | sup
u ∈∂f(x)◦

〈p, u〉 ≤ 0},

which is the weak-∗ closure of
⋃
λ>0 λ∂f(x). If 0 6∈ ∂f(x), then ∂f(x)◦◦ =⋃

λ>0 λ∂f(x). If K ⊂ E is closed, x ∈ K, then the Clarke tangent cone TK(x) is
given by

TK(x) :=
{
u ∈ E

∣∣∣∣ lim
y→x, y∈K,h→0+

dK(y + hu)
h

= 0
}

or, equivalently, TK(x) = ∂dK(x)◦ where dK(x) = d(x,K) := infy∈K ‖y − x‖
(see e.g. [2], [3] or [8] for details).

Lemma 2.1. If W :X ( E defined on a metric space X is a set-valued
map with convex values of nonempty interior such that for any u ∈ E the set
{y ∈ X | u ∈ intW (y)} is open, then W is lower semicontinuous.

Proof. Take any x ∈ X, u ∈ W (x) and ε > 0. Since W (x) is convex,
one can choose v ∈ B such that u + εv ∈ intW (x). By assumption, the set
{y ∈ X | u+ εv ∈ intW (y)} is an open neighbourhood of x. So we obtain that
for any ε > 0 there is δ > 0 such that, for each y ∈ B(x, δ), B(u, ε)∩W (y) 6= ∅.�

Further we shall need a version of Lemma 5.1 in [5]2.

2The proof is exactly the same as that in [5].



Differential Inclusions with Constraints 123

Lemma 2.2. Let Y be a subset of a metric space X and F :Y ( E an ε-δ
upper semicontinuous map with closed convex values and W :X ( E a lower
semicontinuous map with convex values such that

F (x) ∩W (x) 6= ∅ for x ∈ Y.

Then for any ε > 0 there exists a locally Lipschitz h:U → E defined on an open
neigborhood U of Y such that

h(x) ∈ F (B(x, ε) ∩ Y ) + εB for x ∈ Y,
h(x) ∈W (x) + εB for x ∈ U.

Lemma 2.3. Let X be a metric space and W :X ( E a convex valued map
such that

intW (x) 6= ∅ for all x ∈ X,(5)

{y ∈ X | u ∈ intW (y)} is open for any u ∈ E.(6)

Given ε > 0 and continuous h:X → E with

(7) h(x) ∈W (x) + (ε/2)B for x ∈ X,

there exists a locally Lipschitz g:X → E such that

(i) ‖g(x)− h(x)‖ < ε for x ∈ X,
(ii) g(x) ∈ intW (x) for x ∈ X.

Proof. Let x ∈ X. In view of (7) there is ux ∈ B with h(x) + (ε/2)ux ∈
W (x). By assumption (5) and the convexity of W (x), there exists ux ∈ B such
that

vx := h(x) + (ε/2)ux + (ε/2)ux ∈ intW (x)
and, by (6) and the continuity of h, the set

Vx := {y ∈ U | vx ∈ intW (y), ‖vx − h(y)‖ < ε}

is open. Let {λs}s∈S be a locally Lipschitz partition of unity inscribed into the
open covering {Vx}x∈X of X (see [6]). Put

g(x) :=
∑
s∈S
λs(x)vxs

where xs are chosen so that the support of λs is contained in Vxs (for s ∈ S).
One can easily verify that g has the required properties. �

The following result based on the existence and uniqueness theorem for differ-
ential equations will be crucial for showing the existence of viable trajectories.3

3Usually, the existence of viable trajectories is shown by proximal aiming construction.
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Proposition 2.4. Suppose that a map g: I × U → E is locally Lipschitz in
the second variable and continuous in time and that f :U → R is locally Lipschitz
with f0 = {x ∈ U | f(x) ≤ 0} closed (in E). If

f◦(x; g(t, x)) < 0 for all t ∈ I and x ∈ f−1(0),

then the Cauchy problem

(8)

{
u′(t) = g(t, u(t)) on I,

u(0) = x0 ∈ f0

admits a unique solution contained in f0.

Proof. The local existence theorem implies that there is a nonempty max-
imal interval I0 ⊂ I on which the unique solution u: I0 → U of (8) exists. We
shall prove that u(I0) ⊂ f0. It follows then that I0 = I. Indeed, if I0 6= I, then
u could be extended beyond I0 as f0 is closed, a contradiction.
Suppose to the contrary that there exists t ∈ I0 with f(u(t)) > 0 and put

t := inf{t ∈ I0 | f(u(t)) > 0}.

By the continuity f(u(t)) = 0. Clearly

lim sup
h→0+

f(u(t+ h))− f(u(t))
h

≤ f◦(u(t);u′(t)) = f◦(u(t); g(t, u(t))) < 0.

Hence, there is δ > 0 such that for h ∈ (0, δ), f(u(t + h)) − f(u(t)) < 0, and
consequently f(u(t+ h)) < 0, which contradicts the definition of t. �

3. Differential inclusions with functional constraints

Suppose f is a locally Lipschitz function f :U → R such that

(H1) 0 6∈ ∂f(x) for x ∈ U \ f0,
(H2) fa := {x ∈ U | f(x) ≤ a} is closed for some a > 0.

Consider the problem

(P)f


u′(t) ∈ F (t, u(t)) a.e. on I,
f(u(t)) ≤ 0,
u(0) = u0,

where F : I × U ( E is an ε-δ upper semicontinuous map with closed convex
values. By a tangency module at (t, x) ∈ I × (U \ f0) we mean

ω(t, x) = ωF,f (t, x) := inf
u∈F (t,x)

d(u, ∂f(x)◦).

We shall assume further that

(H3) supI×(fε\f0) ω → 0 as ε→ 0+,
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(H4) there exist k0, k1 ∈ L1(I;R) and p:U → R with supfε p→ 0 as ε→ 0+

such that for any bounded Γ ⊂ U

lim
τ→0+

α(F (I(t, τ)× Γ) ≤ k0(t)α(Γ) + k1(t) sup
Γ
p

where I(t, τ) := [t − τ, t + τ ] ∩ I and α is the Kuratowski measure of
noncompactness,4

(H5) there exists c ∈ L1(I;R) such that for a.e. t ∈ I and each x ∈ U

sup
u∈F (t,x)

‖u‖ ≤ c(t)(1 + ‖x‖).

Remark 3.1. (a) If f satisfies (H1) and (H2) then for x ∈ U \ f0

(9) d(u, ∂f(x)◦) = max
{
0, sup
p∈∂f(x)

〈p, u〉
‖p‖

}
.

Indeed, by use of the Sion lemma ([19]) one has

d(u, ∂f(x)◦) = inf
v∈∂f(x)◦

‖u− v‖ = inf
v∈∂f(x)◦

sup
p∈D∗
〈p, u− v〉

= − sup
v∈∂f(x)◦

inf
p∈D∗
〈p, u− v〉 = − inf

p∈D∗
sup

v∈∂f(x)◦
〈p, u− v〉

= sup
p∈D∗
(〈p, u〉 − sup

v∈∂f(x)◦
〈p, v〉) = sup

p∈D∗∩∂f(x)◦◦
〈p, u〉.

The latter equality follows from the fact that ∂f(x)◦ is a cone, which implies
that either supv∈∂f(x)◦〈p, v〉 =∞ or supv∈∂f(x)◦〈p, v〉 = 0 and then p ∈ ∂f(x)◦◦

(see (4)). By (H1), if p ∈ D∗ ∩ ∂f(x)◦◦, then p = λq/‖q‖ for some q ∈ ∂f(x)
and λ ∈ [0, 1], which gives (9).
Hence, in view of (2),

ωF,f (t, x) = inf
u∈F (t,x)

max
{
0, sup
p∈∂f(x)

〈p, u〉
‖p‖

}
≤ 1
d(0, ∂f(x))

inf
u∈F (t,x)

max{0, f◦(x;u)}.

If additionally there is a constant mf > 0 such that

d(0, ∂f(x)) ≥ mf on U \ f0,

then, for x ∈ U \ f0 and t ∈ I,

ωF,f (t, x) ≤
1
mf

inf
u∈F (t,x)

max{0, f◦(x;u)},

which simplifies considerably the verification of (H3). For instance, if F (t, x) ∩
∂f(x)◦ 6= ∅, then ωF,f (t, x) = 0.

4See e.g. [11].
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(b) The condition (H4) is slightly weaker than

(10) lim
τ→0+

α (F (I(t, τ)× Γ)) ≤ k(t)α(Γ),

but it appears useful in the next section where a mapping satisfying (H4) but
not (10) is involved.
(c) Notice that under the above assumptions for x ∈ U \f0 the values F (t, x)

are not necessarily compact, which is of importance in the next section. However,
if x ∈ f0, then the compactness of F (t, x) is implied directly by (H4).

Under these assumptions we are able to prove the main result.

Theorem 3.2. If a locally Lipschitz f :U → R and an ε-δ upper semicon-
tinuous closed convex valued map F : I × U ( E satisfy (H1)–(H5), then the
solution set for (P)f is Rδ.

Proof. Take any ε > 0 and define Fε: I × fε ( E by

Fε(t, x) :=

{
F (t, x) if f(x) < 0,

cl [F (t, x) + ωεD] if f(x) ≥ 0,

where ωε = ε+ supI×(fε\f0) ω, and Wε:U ( E by

Wε(x) :=

{
E if f(x) < ε/2,

∂f(x)◦ if f(x) ≥ ε/2.

The mappings Fε and Wε have the following properties:

(i) Fε is an ε-δ upper semicontinuous map with closed convex values,
(ii) {y ∈ U | u ∈ intWε(y)} is open for any u ∈ E,
(iii) Wε is lower semicontinuous,
(iv) for any t ∈ I and x ∈ fε, Fε(t, x) ∩Wε(x) 6= ∅.
(i) is a direct consequence of the ε-δ upper semicontinuity of F and (H3).

To prove (ii) take any u ∈ E and notice that, if 0 6∈ ∂f(x) then int [∂f(x)◦] =
{v ∈ E | f◦(x; v) < 0}. Hence the set {y ∈ U | u ∈ intWε(y)} = {y ∈ U |
f(y) < ε/2} ∪ {y ∈ U | f◦(y;u) < 0, f(y) ≥ ε/2}. The latter set in the sum
is not open, but if x belongs to it, then f◦(y;u) < 0 for y in a neighbourhood
of x, so the sum must be open. (iii) follows from (ii) and Lemma 2.1. To
see (iv) take any x ∈ fε with f(x) ≥ ε/2. There is u ∈ F (t, x) such that
d(u, ∂f(x)◦) < ε + infu∈F (t,x) d(u, ∂f(x)◦) ≤ ωε. So there is ũ ∈ ∂f(x)◦ such
that ‖ũ− u‖ < ωε. Clearly, ũ = u+ (ũ− u) ∈ F (t, x) + ωεD ⊂ Fε(t, x).
Thus, we can apply Lemma 2.2 to Fε andWε and obtain a continuous hε: I×

Uε → E, where Uε is open and fε ⊂ Uε ⊂ U , such that

hε(t, x) ∈ Fε (I(t, ε)× (B(x, ε) ∩ fε)) + εB for (t, x) ∈ I × fε,
hε(t, x) ∈Wε(x) + (ε/2)B for (t, x) ∈ I × Uε.



Differential Inclusions with Constraints 127

Applying Lemma 2.3 to hε: I ×Uε → E (putting X := I ×Uε) one gets a locally
Lipschitz gε: I × Uε → E such that

gε(t, x) ∈ Fε (I(t, ε)× (B(x, ε) ∩ fε)) + 2εB,
gε(t, x) ∈ intWε(x).

Now consider the initial value problem

(P)g

{
u′(t) = gε(t, u(t)),

u(0) = x0.

In view of Proposition 2.4, (P)g has the unique solution u (in fε) being also a
solution to the following problem

(P)ε


u′(t) ∈ F̂ε(t, u(t)),
f(u(t)) ≤ ε,
u(0) = x0,

where

(11) F̂ε(t, x) := cl conv [F (I(t, ε)× (D(x, ε) ∩ fε)) + (2ε+ ωε)D].

Denote the set of solutions of (P)ε by Sε. For any ε > 0, S ⊂ Sε. We shall show
that each squence (un) with un ∈ Sεn , where εn := 1/n, has a subsequence con-
vergent to some u ∈ S. Then S is nonempty and compact, and S =

⋂
n≥1 clSεn .

By the compactness of S

α(Sεn) ≤ sup
v∈Sεn

d(v, S),

which gives α(Sεn) → 0 as n → ∞. Moreover, if we show that clSε are con-
tractible then the proof will be completed in view of the following characteriza-
tion of Rδ sets:

Let S be a nonempty subset of a metric space. The following statements are
equivalent

(i) S is compact and of Rδ type,
(ii) S =

⋂
n≥1 Sn where Sn+1 ⊂ Sn (for n ≥ 1), Sn are closed contractible

and α(Sn)→ 0.

Let ϕ: I → R be given by ϕ(t) := α({un(t)}∞n=1) where un ∈ Sεn , n ≥ 1.
In view of the growth condition (H5) and the Gronwall inequality, the sequence
(un) is bounded and ϕ is well-defined. Clearly, ϕ(0) = 0 and ϕ is Lipschitz as
(un) is uniformly Lipschitz (by (H5)), so it is a.e. differentiable. It is shown in
[11, pp. 115–116] that, for a.e. t ∈ I,

ϕ′(t) ≤ 2α({u′n(t)}∞n=1).
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Further, for any k ≥ l ≥ 1, one gets

ϕ′(t) ≤ 2α
( ∞⋃
n=k

F̂εn(t, un(t))
)

≤ 2α
( ∞⋃
n=k

F (I(t, εn)×D(un(t), εn))
)
+ 4εl + 2ωεl

≤ 2α(F (I(t, εk)×D({un(t)}∞n=l, εl))) + 4εl + 2ωεl .

In view of (H4), for any l ≥ 1, there is kl ≥ l such that

α(F (I(t, εkl)×D({un(t)}∞n=l, εl)))
≤ k0(t)α(D({un(t)}∞n=l, εl)) + k1(t) sup p(D({un(t)}∞n=1, εl)) + εl.

Hence
ϕ′(t) ≤ 2k0(t)(ϕ(t) + εl) + 2k1(t) sup

fεl
p+ 6εl + 2ωεl .

Passing with l → ∞, in view of (H3) and (H4), one gets ϕ′(t) ≤ 2k0(t)ϕ(t)
and, by the Gronwall inequality, ϕ is constant and ϕ(0) = 0 on I. Hence, by
the generalized Ascoli–Arzela theorem (un) contains a subsequence convergent
to some u ∈ C(I, E).
Now one has to verify that u ∈ S. To this end we show that (u′n) is weakly

compact. In fact we adapt the idea from the proof of Theorem 9.1 in [11]. Put
M := cl convF (I × u(I)). Clearly, M is compact. Let r:E →M be a retraction
such that for each x ∈M

‖r(x)− x‖ ≤ 2dM (x),

(see [6]). We use the following weak compactness criterion (see [12]):

If M is a weakly compact convex subset of a Banach space E, then the set
{u ∈ L1(I, E) |u(t) ∈M for a.e. t ∈ I} is weakly compact in L1(I, E).5

Applying it we infer that (r ◦ u′n) converges weakly in L1(I, E) to some
v ∈ L1(I, E) (over a subsequence). By (11), for a.e. t ∈ I,

u′n(t) ∈ cl conv [F (I(t, εn)×D(u(t), εn + ‖un − u‖)) + (2εn + ωεn)D].

Take any η > 0. Let N0 ≥ 1 be such that 2εn + ωεn < η/2 for all n ≥ N0. Fix
t ∈ I and use the ε-δ upper semicontinuity of F to get nt ≥ n0 and δt > 0 so
that, for s ∈ I(t, δt) and n ≥ nt,

F (I(s, εn)×D(u(s), εn + ‖un − u‖)) ⊂ F (t, u(t)) + (η/2)B.

Consequently for n ≥ max{nt, N0} and a.e. s ∈ I(t, δt)

u′n(s) ∈ cl [F (t, u(t)) + ηB].

5Recall that the measurability and integrability in the Bochner sense is considered.
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Hence, by the compactness of I, there is N ≥ N0, such that for n ≥ N and a.e.
t ∈ I

u′n(t) ∈M + ηB.
And this along with ‖r(u′n(t)) − u′n(t)‖ ≤ 2dM (u′n(t)) (a.e. on I) gives u′n ⇀ v
(weakly in L1(I, E)). Finally, by use of the so-called convergence theorem ([1,
Theorem 1, p. 60]) we infer v(t) ∈ F (t, u(t)) a.e. on I and since v = u′ (a.e.
on I), it is clear that u ∈ S.
It remains to prove the contractibility of clSε for any ε > 0. Let y ∈ fε,

s ∈ I and u( · ; s, y): [s, 1]→ E be the unique solution of{
u′ = gε(t, u),

u(s) = y,

(existing in view of Proposition 2.4). Define h: I × C(I, fε) → C(I, f ε) by the
formula

[h(s, u)](t) :=

{
u(t) if t ∈ [0, s),
u(t; s, u(s)) if t ∈ [s, 1].

Notice that if u ∈ Sε then h(s, u) ∈ Sε too. So h(s, clSε) ⊆ clSε provided h
is continuous. To prove the continuity choose (sn) ⊂ I and (un) ⊂ clSε with
sn → s and un → u. Then for large n, either

‖[h(s, u)](t)− [h(sn, un)](t)‖ ≤ ‖u(t)− un(t)‖

or
‖[h(s, u)](t)− [h(sn, un)](t)‖ ≤ ‖u(t; s, u(s))− u(t; sn, un(sn))‖.

It follows from the local lipschitzianity of gε that there are L > 0 and θ > 0 such
that, for x, x′ ∈ B(u(I), θ) and all t ∈ I, ‖gε(t, x) − gε(t, x′)‖ ≤ L‖x − x′‖. If
sn < s, then for large n

‖u(t; s, u(s))− u(t; sn, un(sn))‖ ≤‖u(s)− un(sn)‖+ C(s− sn)

+ L
∫ t
s

‖u(τ ; s, u(s))− u(τ ; sn, un(sn))‖ dτ,

for some constant C > 0. Now the Gronwall inequality implies h(sn, un) →
h(s, u) in C(I, E). The similar argument goes for s ≤ sn. Hence, h is continuous
and clSε is contractible to u( · ; 0, x0). In view of the earlier remarks the proof
is completed. �

4. The structure of viable solution sets

In this section we shall deal with the viability problem

(P)K


u′(t) ∈ F (t, u(t)) a.e. on I,
u(t) ∈ K,
u(0) = x0,
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where F : I ×K ( E and K ⊂ E is a closed set.

Inclusions on proximate retracts. Recall that a closed K ⊂ E is said
to be a proximate retract (see [17]) provided there exists a continuous function
r:U → K defined on an open neighbourhood U := B(K, θ) of K satisfying

(12) dK(x) = ‖x− r(x)‖ for x ∈ U.

Suppose K ⊂ E is a proximate retract and F : I×K ( E an upper semicontinu-
ous map with compact convex values being a set contraction with linear growth,
that is

(13) lim
τ→0+

α(F (I(t, τ)× Γ)) ≤ k(t)α(Γ) for any bounded Γ ⊂ K,

and there is c ∈ L1(I;R) such that

(14) max
u∈F (t,x)

‖u‖ ≤ c(t)(1 + ‖x‖) for each (t, x) ∈ I ×K.

Moreover, F is assumed to satisfy the tangency condition

(15) F (t, x) ∩ TK(x) 6= ∅ for (t, x) ∈ I × bdK.

Lemma 4.1. For any x ∈ U , TK(r(x)) ⊂ ∂dK(x)◦.

Proof. Suppose u ∈ TK(r(x)), that is lim
y
K→r(x), h→0+

dK(y + hu)/h = 0.

By (12), dK(y+hu)− dK(y) = dK(y+hu)−‖r(y)− y‖ ≤ dK(r(y)+hu), which
yields d◦K(x;u) ≤ 0. �

Let F : I ×U ( E be given by F (t, x) = F (t, r(x)). By Lemma 4.1 and (15)

(16) F (t, x) ∩ ∂dK(x)◦ 6= ∅ for (t, x) ∈ I × bdK.

Lemma 4.2. For any ε > 0 and bounded Γ ⊂ U

lim
τ→0+

α(F (I(t, τ)× Γ)) ≤ k(t)α(Γ) + 2k(t) sup
Γ
dK .

Proof. By the assumption

(17) lim
τ→0+

F (I(t, τ)× Γ) ≤ k(t)α(r(Γ)).

It is clear that since, for each x, y ∈ U , ‖r(x)− r(y)‖ ≤ dK(x)+dK(y)+‖x−y‖,
one has α(r(Γ)) ≤ α(Γ) + 2 supΓ dK , which along with (17) gives the desired
inequality. �

Finally, we obtain an extension of the results from [17], [13] and [15] (for
upper semicontinuous fields).
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Theorem 4.3. If K is a proximate retract and an upper semicontinuous
map F : I × K ( E with compact convex values satisfies (13)–(15), then the
solution set of (P)K is of Rδ type.

Proof. Indeed, by (16) and Lemma 4.2 one is allowed to apply Theorem 3.2
to F and dK |U . �

Inclusions on regular sets. We start with the definition of regular set.

Definition 4.4 (cf. [9]). We say that a closed set K ⊂ E of the form
K = {x ∈ clU | f(x) ≤ 0}, with locally Lipschitz f : clU → R and open U ⊂ E,
is said to be regular if

(i) 0 6∈ ∂f(x) for x ∈ U \K,
(ii) for any η > 0 there exists δ > 0 such that fδ ⊂ B(K, η).

Suppose that K represented by f is regular and that F : I × K ( E is an
upper semicontinuous compact convex valued map satisfying (13) and (14). We
require that for any ε > 0 there exists δ > 0 such that

(18) ∀(t, x) ∈ I ×K ∀y ∈ B(x, δ) \K [F (t, x) + εB] ∩ ∂f(y)◦ 6= ∅.

Remark 4.5. If F and f satisfy (18) then, in particular, the pointwise
tangency holds, that is

lim
y→x, y 6∈K

inf
u∈F (t,x)

d(u, ∂f(y)◦) = 0,

which, by compactness, is equivalent to the following tangency condition (intro-
duced in [4])

(19) F (t, x) ∩ lim inf
y→x, y 6∈K

∂f(y)◦ 6= ∅.

Hence (18) is a “uniform” version of (19).

Theorem 4.6. If K ⊂ E is regular, represented by f , and F : I ×K ( E

satisfies conditions (13)–(15), then the solution set for the problem (P)K is Rδ
in C(I, E).

Proof. By (18), for any n ≥ 1 there is δn > 0 such that for all t ∈ I, x ∈ K
and y ∈ B(x, δn) \K

(20) [F (t, x) + (1/n)B] ∩ ∂f(y)◦ 6= ∅.

One may assume that δn → 0+ and δn+1 < δn, for n ≥ 1. Let {(Uω, aω}ω∈Ω be
a Dugundji system for U and K (see [6]), i.e.

(i) {Uω}ω∈Ω is a locally finite covering of U \K,
(ii) if x ∈ Uω, then ‖x− aω‖ ≤ 2dK(x).
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There is a locally finite partition of unity {λω}ω∈Ω subordinated to {Uω}ω∈Ω.
Further put Vn := {x ∈ U | δn+1 < 2dK(x) < δn−1} for n ≥ 2 and U0 :=
{x ∈ U | 2dK(x) < δ1}. Clearly, {Vn}∞n=2 is a covering of U0 \K and there is a
partition of unity {ηn}∞n=2 subordinate to {Vn}∞n=2. Define F : I × U0 ( E by

F (t, x) :=


F (t, x) if x ∈ K,

cl conv
[ ∞∑
n=1

∑
ω∈Ω
ηn+1(x)λω(x)Fω,n(t)

]
if x ∈ U0 \K,

where Fω,n(t) := F (t, aω) + (1/n)D. F has the following properties:

(i) The map F is ε-δ upper semicontinuous.
(ii) For any bounded Γ ⊂ U0

lim
τ→0+

α(F (I(t, τ)× Γ) ≤ 2k(t)α(Γ) + 2(k(t) + 1) sup
Γ
p

with p:U0 → [0,∞) given by

p(x) :=

{
0 if x ∈ K,
max{δn, 1/n} if δn+1 ≤ 2dK(x) < δn.

(iii) F (t, x) ∩ ∂f(x)◦ 6= ∅ for each (t, x) ∈ I × (U0 \K).

The ε-δ upper semicontinuity of F on I × (U0 \K) is clear. Suppose that F is
not ε-δ upper semicontinuous at some (t, x) ∈ I ×K. Then there are sequences
(xm) ⊂ U0 \K converging to x and tm → t and ε > 0 such that

(21) F (tm, xm) 6⊂ F (t, x) + εB.

Let nm ≥ 2 be such that δnm+1 ≤ 2dK(xm) < δnm . Then

F (tm, xm) = cl conv
[ ∑
ω∈Ωxm

(ηnm+1(xm)λω(xm)Fω,nm(tm)

+ ηnm(xm)λω(xm)Fω,nm−1(tm))
]
,

where Ωxm := {ω ∈ Ω | λω(xm) 6= 0}. For each ω ∈ Ωxm , ‖x − aω‖ ≤ ‖aω −
xm‖+ ‖xm − x‖ ≤ 2dK(xm) + ‖xm − x‖, therefore for large m and all ω ∈ Ωxm ,
Fω,nm ∪ Fω,nm−1 ⊂ F (t, x) + εB and consequently we get the converse of (21)

F (tm, xm) ⊂ cl conv
[ ⋃
ω∈Ωxm

(Fω,nm ∪ Fω,nm−1)
]
⊂ F (t, x) + εB,

a contradiction.
Now proceed with (ii). Let Γ ⊂ U be bounded and put

n(Γ) := min{n ≥ 2 | Γ ∩ Vn 6= ∅}
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(without loss of generality one may suppose that Γ ∩ (U \ K) 6= ∅). Then, by
(13), the definition of F and the property of Dugundji systems,

lim
τ→0+

α(F (I(t, τ)× Γ))

≤ k(t)α(Γ ∩K) + lim
τ→0+

α(conv [F (I(t, τ)×D(Γ, δn(Γ)) ∩K) + n(Γ)−1D])

≤ 2k(t)α(Γ) + k(t)δn(Γ) + 2n(Γ)−1 ≤ 2k(t)α(Γ) + 2(k(t) + 1) sup
Γ
p.

To see (iii) take (t, x) ∈ I × (U0 \K). If δ2 ≤ 2dK(x) < δ1, then F (t, x) =∑
ω∈Ωx λω(x)Fω,1(t). Since ‖aω − x‖ ≤ 2dK(x) < δ1, for all ω ∈ Ωx, by (20),
we infer Fω,1(t) ∩ ∂f(x) 6= ∅. If δn ≤ 2dK(x) < δn−1, n > 2 and ω ∈ Ωx,
then ‖aω − x‖ ≤ 2dK(x) < δn−1. Hence, by (20), Fω,n−1(t) ∩ ∂f(x)◦ 6= ∅ and
Fω,n−2(t) ∩ ∂f(x)◦ 6= ∅, which gives the claim.
By condition (ii) of Definition 4.4, the function p has the property

lim
ε→0+

sup
fε
p = 0.

Finally, apply Theorem 3.2 for F |U0 and f |U0 to complete the proof. �
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