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APPLICATION OF TOPOLOGICAL TECHNOLOGY
TO CONSTRUCTION OF A PERTURBATION SYSTEM

FOR A STRONGLY NONLINEAR EQUATION

Ji-Huan He

Abstract. The homotopy perturbation method proposed by the present

author is further improved in this paper, which is proved to be effective
and convenient to solving nonlinear equations.

Introduction

There exist many difficulties encountered in the application of the traditional
perturbation techniques to solving strongly nonlinear equations. Of these, one
of the most frustrating is the fact that even a simple practical system may
not posses the so-called “small parameter”, which is the theoretical base of the
perturbation methods. The determination of a small parameter in an equation
seems to be a special art requiring special techniques. An appropriate choice of
a small parameter leads to an ideal result, however, an unsuitable choice of a
small parameter results in badly effects, sometimes seriously. Furthermore, even
if there exists a suitable small parameter, the approximate solutions solved by
the perturbation methods are valid, in most cases, only for the small values of
the parameter.

To overcome the shortcomings of the perturbation techniques, we will apply
homotopy in topological technique to construct a perturbation system. The basic
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idea of homotopy method is to continuously deform a simple problem easy to
solve into the difficult problem under study.

1. Application homotopy technique
to construct a perturbation system

The homotopy method, or the continuous mapping technique, has been gen-
erally used to widen the domain of convergence of a given method or as a pro-
cedure to obtain sufficiently close starting points (see [3]–[5]). The continuous
mapping technique embeds a parameter that typically ranges from zero to one.
When the embedding parameter is zero, the equation is one of the linear system.
When it is one, the equation is the same as the original.

To illustrate its basic idea, we consider following nonlinear algebraic equation

(1.1) f(x) = 0, x ∈ R.

We construct a homotopy map R× [0, 1]→ R which satisfies

(1.2a) H(ξ, p) = pf(ξ) + (1− p)[f(ξ)− f(x0)] = 0, x ∈ R, p ∈ [0, 1]

or, equivalently,

(1.2b) H(ξ, p) = f(ξ)− f(x0) + pf(x0) = 0, x ∈ R, p ∈ [0, 1],

where p is an imbedding parameter, x0 is an initial approximation of (1.1).
It is obvious that

H(ξ, 0) = f(ξ)− f(x0) = 0 and H(ξ, 1) = f(ξ) = 0.

The embedding parameter p monotonically increases from zero to unit as
the trivial problem f(ξ) − f(x0) = 0 is continuously deformed to the problem
f(ξ) = 0. So, if we can construct an iteration formula for the equation (1.2),
the series of approximations comes along the solution path, by incrementing
the imbedding parameter from zero to one; this continuously maps the initial
solution into the solution of the original equation (1.1). The changing process
of p from zero to one is just that of H(ξ, p) from f(ξ)−f(x0) to f(ξ). In topology,
this is called deformation, and f(ξ)− f(x0), f(ξ) are homotopic.

Due to the fact that 0 ≤ p ≤ 1, so the embedding parameter can be considered
as a “small parameter”, and the equation (1.2) is called perturbation equation
with an embedding parameter.

Applying the perturbation technique, we can assume that the solution of the
equation (1.2) can be expressed as

(1.5) ξ = ξ0 + pξ1 + p2ξ2 + p3ξ3 + . . .
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If p increments from zero to one, then the solution (1.5) converges to the
solution of the original equation (1.1). This means that the solution of the
equation (1.1) can be written in the form

(1.6) x = lim
p→1

ξ = ξ0 + ξ1 + ξ2 + ξ3 + . . .

To obtain the approximate solution of the equation (1.2), we, at first, expand
f(ξ) into Taylor series

(1.7) f(ξ) = f(ξ0)+ f ′(ξ0)(pξ1 + p2ξ2 + . . . )+
1
2!

f ′′(ξ0)(pξ1 + p2ξ2 + . . . )2 + . . .

Substituting (1.7) into (1.2), collecting coefficients of equal powers of p and
equating coefficients of like powers of p to zero, we obtain

p0 : f(ξ0)− f(x0) = 0,

p1 : f ′(ξ0)ξ1 + f(x0) = 0,

p2 : f ′(ξ0)ξ2 +
1
2!

f ′′(ξ0)ξ2
1 = 0,

p3 : f ′(ξ0)ξ3 + f ′′(ξ0)ξ1ξ2 +
1
3!

f ′′′(ξ0)ξ3
1 = 0.

From the above equations, ξ0 ∼ ξ3 can be solved easily

ξ1 =− f(x0)
f ′(ξ0)

,

ξ2 =− 1
2!

f ′′(ξ0)
f ′(ξ0)

ξ2
1 = − 1

2!
f ′′(ξ0)
f ′(ξ0)

{
f(x0)
f ′(ξ0)

}2

,

ξ3 =− 1
2!

f ′′(ξ0)
f ′(ξ0)

2ξ1ξ2 −
1
3!

f ′′′(ξ0)
f ′(ξ0)

ξ3
1

=
{

f ′′′(ξ0)
3!f ′(ξ0)

− 1
2

[
f ′′(ξ0)
f ′(ξ0)

]2}{
f(x0)
f ′(ξ0)

}3

.

We, therefore, obtain its first-order approximation of the equation (1.1),
x = ξ0 + ξ1, its second-order approximation x = ξ0 + ξ1 + ξ2 and its third
approximation x = ξ0 + ξ1 + ξ2 + ξ3. We can write down their iteration formulae
respectively as follows

xn+1 = ξn −
f(ξn)
f ′(ξn)

,

xn+1 = ξn −
f(ξn)
f ′(ξn)

− f ′′(ξn)
2f ′(ξn)

{
f(ξn)
f ′(ξn)

}2

,

xn+1 = ξn −
f(ξn)
f ′(ξn)

− f ′′(ξn)
2f ′(ξn)

{
f(ξn)
f ′(ξn)

}2

+
{

f ′′′(ξn)
3!f ′(ξn)

− 1
2

[
f ′′(ξn)
f ′(ξn)

]2}{
f(ξn)
f ′(ξn)

}3

.
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The above results are same with those obtained in [7], and [8] when h = −1.
From f(ξ0)− f(x0) = 0, we can obtain one of its solutions, ξ0 = x0, under such
condition, the first iteration formula can be re-written down as follows

xn+1 = xn −
f(xn)
f ′(xn)

,

which is the well-known Newton iteration formula.
The iteration formulae obtained by the homotopy technique can find all the

solutions of an algebraic equation, while the Newton iteration method can only
find the solution near the initial solution. For example, we consider a polynomial
of third degree

f(x) = x3 − 12x2 + 21x− 10 = 0.

We begin with x0 = 0, from f(ξ0)− f(x0) = 0 we have

ξ
(1)
0 = 0, ξ

(2)
0 = 2.13 and ξ

(3)
0 = 9.87.

By few iterations, we obtain x
(1)
1 = 1, x

(2)
1 = 1, and x

(3)
1 = 10.

2. Solving strongly nonlinear equation by homotopy technology

We consider a general form of a nonlinear system

(2.1) L(u) + N(u) = 0,

where L(u) = 0 is an equation that can be readily solved, in most cases, it is an
linear equation.

By the homotopy technique ([9]), we construct a homotopy map, which sat-
isfies

(2.2a) H(ν, p) = (1− p)[L(ν)− L(u0)] + p[L(ν) + N(ν)] = 0,

or equivalently

(2.2b) H(ν, p) = L(ν)− L(u0) + pL(u0) + pN(ν) = 0,

where p ∈ [0, 1] is an embedding parameter, u0 is an initial approximation of the
original equation (2.1).

Applying the perturbation technique ([10]), we assume that the solution of
the equation (2.2) can be written in the form

(2.3) ν = ν0 + pν1 + p2ν2 + . . .

Therefore the approximate solution of the nonlinear system (2.1), can be readily
obtained when p→ 1

u = lim
p→1

ν = ν0 + ν1 + ν2 + . . .
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Observe that the new perturbation technique needs not possess a “small
parameter” in an equation, so it has eliminated limitations of the traditional
perturbation methods. On the other hand the proposed technique can take full
advantage of the traditional perturbation techniques.

Example 1 ([1]). Consider the motion of a ball-bearing oscillating in a glass
tube that is bent into a curve such that the restoring force depends upon the
cube of the displacement u (Figure 1).

�u

Figure 1. A ball-bearing oscillating in a smooth tube bent to produce

a restoring force proportional to cube of the displacement

The governing equation, ignoring frictional losses, is

(2.4) u′′ + εu3 = 0,

and the auxiliary conditions are that the ball-bearing is released from rest at
a displacement u0 when t = 0. Expressed mathematically, this is u(0) = A,
u′(0) = 0.

In our study, the parameter ε needs not to be small, i.e. it follows 0 < ε <∞.
For this special example, the traditional perturbation methods can not be applied
even in case 0 < ε � 1, for the unperturbed equation u′′ = 0 can not lead to
a period solution.

Now we constrict a homotopy map

(2.5) ν′′ + ω2ν + p(εν3 − ω2ν) = 0, ν(0) = A, ν′(0) = 0.

Supposing that the solution of (2.5) can be expressed in the form of (2.3),
by simple manipulation, we obtain the following linear equations

ν′′0 + ω2ν0 = 0, ν0(0)= A, ν′0(0) = 0,(2.6)

ν′′1 + ω2ν1 + εν3
0 − ω2ν0 = 0, ν1(0) = 0, ν′1(0) = 0.(2.7)
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Solving (2.6), we have ν0 = A cos ωt. Substituting u0 into (2.7) results in

(2.9) ν′′1 + ω2ν1 +
1
4
εA3 cos 3ωt +

(
3
4
εA3 −Aω2

)
cos ωt = 0.

Eliminating secular term needs

ω =
√

3
2

ε1/2A.

Solving (2.9) subject to initial conditions ν1(0) = 0, ν′1(0) = 0, we have

ν1 =
1

32ω2
εA3(cos 3ωt− cos ωt).

So we obtain first-order approximate solution of original equation by setting
p = 1

u = lim
p→1

(ν0 + pν1) = A cos ωt +
1

32ω2
εA3(cos 3ωt− cos ωt).

We can obtained the same result if we apply various perturbation techniques
proposed in [6]. Its period can be written as

T =
2π

ω
=

4π√
3
ε−1/2A−1 = 7.25ε−1/2A−1.

Its exact period can be readily obtained, which reads [1], [2]

T = 7.4164ε−1/2A−1.

The maximal relative error is less than 2.2% for all ε > 0!

3. Conclusion

In this paper, we proposed a new approach to finding the periodic solution
of a kind of nonlinear oscillations, the obtained results reveal that the proposed
method is valid for all ε > 0. Our approach is much more effective and convenient
than Liao’s homotopy analysis method in [9], where the general Taylor series is
used.
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