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Abstract. We are concerned with multiplicity results for solutions of some

reversed variational inequalities, in which the inequality is opposite with
respect to the classical inequalities introduced by Lions and Stampacchia.

The inequalities we study arise from a family (Pω) of elliptic problems of

the fourth order when ω tends to ∞. We use two basic tools: the ∇-
theorems and a theorem about the multiplicity of “asymptotically critical”

points. In the last section some open problems are listed.

1. Introducing the problem

Some sequences of elliptic problems lead in a natural way to study some
variational inequalities whose sign is opposite to the one of the usual inequalities
of Lions–Stampacchia’s type (see [8]). For this reason we call them “reversed”
variational inequalities and, at least for the moment, we have found several
difficulties in finding their deep sense. In short, we have many questions and few
answers.

In order to present a possible genesis of the reversed variational inequalities,
let us consider, for example, the bounce problem: if an open subset Ω of RN

represents the “billiard” and V is the potential energy of a conservative force
field in RN , we can think to obtain the bounce trajectories γ: [0, 1] → Ω between
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two points A and B of Ω, as limits of the sequences (γn)n of solutions of the
problems

(1.1) γ̈n +∇V (γn) +∇Un(γn) = 0, γn(0) = A, γn(1) = B,

where (Un)n is a sequence of functions on RN such that Un = 0 in Ω and Un ↑ ∞
outside Ω. If the functions Un satisfy suitable conditions, denoted by ν(x) the
inward unit normal to Ω in a point x of ∂Ω, one finds that the limit trajectories
between A and B satisfy the following reversed variational inequality:

(1.2)


∫ 1

0

γ̇ · δ̇ dt−
∫ 1

0

∇V (γ) · δ dt ≤ 0

for all δ: [0, 1] → RN such that δ(0) = δ(1) = 0

and δ(t) · ν(γ(t)) ≥ 0 for all t ∈ {t ∈ [0, 1] | γ(t) ∈ ∂Ω}.

Moreover, the condition of conservation of the energy

(1.3)
1
2
|γ̇|2 + V (γ) = constant

holds if, for example, fn(γn) → f(γ), where fn are the functionals defined on
the set ΓAB = {γ ∈ H1([0, 1]; RN ) | γ(0) = A, γ(1) = B} by

(1.4) fn(γ) =
1
2

∫ 1

0

|γ̇(t)|2 dt−
∫ 1

0

V (γ(t)) dt−
∫ 1

0

Un(γ(t)) dt

and

f(u) =


1
2

∫ 1

0

|γ̇(t)|2 dt−
∫ 1

0

V (γ(t)) dt if γ([0, 1]) ⊂ Ω,

−∞ otherwise.
Note that (1.2) does not imply (1.3). For example, if V ≡ 0, there exist

continuous families of polygonal curves which solve (1.2) and do not verify (1.3).
Maybe it is also for this reason that there are no general results (to our

knowledge) for the bounce problem between two given points, except for the
case in which Ω is convex (see [4]).

Anyway, in the case in which Ω is not convex, one must keep in mind the
counter-example by Penrose, which shows that there might be couples of points
in Ω which cannot be joined by bounce trajectories (see [11]).

A problem in several variables which is analogous to the previous one is
the following one. Let Ω be an open and bounded subset of RN , φ: Ω → R a
given negative measurable function and g: Ω×R → R a Carathéodory’s function.
Consider the family of problems

(1.5)

{
∆u + g(x, u) = ω((u− φ)−)p in Ω (p > 0),

u ∈ H1
0 (Ω),

where ω is a real parameter. For every ω 6= 0, (1.5) is a deeply asymmetric
problem with respect to the values u � 0 or u � 0.
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If ω → −∞ we get an usual variational inequality. If, instead, ω → +∞, the
solutions of (1.5) tend to solutions of the following reversed variational inequality:

(1.6)

 u ∈ Kφ,∫
Ω

Du ·D(v − u) dx−
∫

Ω

g(x, u)(v − u) dx ≤ 0 for all v ∈ Kφ,

where Kφ = {u ∈ H1
0 (Ω) | u ≥ φ}. Note that it is also possible to obtain a

relation analogous to (1.3). We must immediately remark that also inequality
(1.6) can have a continuous family of solutions which don’t seem meaningfully
related to problems (1.5). However, problem (1.6) is, to our knowledge, still
open.

In this paper we study the problem

(P)


u ∈ Kφ,∫

Ω

∆u∆(v − u) dx− c

∫
Ω

Du ·D(v − u) dx

−α

∫
Ω

u(v − u) dx ≤ 0 for all v ∈ Kφ,

where Ω is a bounded smooth domain of RN , α, c ∈ R, φ: Ω → R is a given
negative measurable function and Kφ = {u ∈ H1

0 (Ω) ∩H2(Ω) | u ≥ φ}.
This problem can be considered as the limit case of the problems of the fourth

order

(Pω)

{
∆2u + c∆u− αu + ω((u− φ)−)p = 0 in Ω(p > 0),

u = ∆u = 0 on ∂Ω

as ω tends to ∞.
In the case of problems (Pω), we can say that the part of “plate” which is

below φ is subjected to an always intenser force which pulls it down. For this
reason the equilibrium positions are always higher. In some sense, in the case of
problem (P), the “plate” u is hooked to the rigid wall φ.

Remark 1.1. Note that (contrary to what happens for (1.2)), if for example
N = 1, c = α = 0, then (P) has a unique nontrivial solution, as it is easy to
show.

In [15] it was proved that problems (Pω) admit at least a nontrivial solution
and, for some values of c and α, at least 3 nontrivial solutions. It is important
to note that 2 of this points, say u1ω and u2ω, can possibly be at the same level
of the functionals fω:H1

0 (Ω) ∩H2(Ω) → R (see Section 3), whose critical points
are the solutions of (Pω). The existence of such 2 points is obtained by using
one of the “∇-theorems” introduced in [12].

The possible coincidence of the values fω(u1ω) and fω(u2ω) makes it hard to
forecast if the limits u1 and u2 of u1ω and u2ω respectively as ω → ∞ are still
distinct (if N ≤ 3 it is proved that such limits do exist). Therefore in [15] it is
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shown that, if N ≤ 3, then (P) has at least 2 nontrivial solutions, for some c

and α’s.

In this paper we prove that for the same c and α’s, problem (P) has at least
3 nontrivial solutions if N ≤ 3; two of these solutions can be at the same level for
the functional f whose “upper” critical points solve (P) (see Section 4). One of
these two solutions and the third one are actually limits of solutions of problems
(Pω) (see [15]), while the other solution is only limit of functions uω such that
∇fω(uω) → 0 and fω(uω) → f(u) if ω →∞.

We also remark that such solutions of problem (P) satisfy only the inequality
(P) and not the corresponding equation.

In order to obtain the results above, we essentially used two tools.

(I) In this approach an essential role was played by the theorem about the
multiplicity of the asymptotically critical points for a sequence (hn)n of func-
tionals which tend, in some sense, to a functional h (see Section 2. In Appendix
we also give a nonsmooth version of this theorem).

We had already introduced this theorem in [10], inspired by some techniques
adopted by [9] and [7] and then by [1] and [2] to study the multiplicity of the
critical points of one functional with Galerkin type methods. In Section 2 we give
a version of this theorem which is suitable for problem (P). Roughly speaking,
this theorem gives an estimate for defect of the number of critical points of the
functional h, by the topological properties of the functionals hn.

The problem that the critical points of hn may converge, for example, to a
unique critical point of h (in the case the corresponding critical values of hn con-
verge to the same critical value of h), is by–passed, provided the forecast number
of critical points of h is obtained by limits of points un such that ∇hn(un) → 0
and not necessarily ∇hn(un) = 0 for all n.

(II) The other important tool for this paper is the ∇-Theorem 2.7, by which
we resume one of the ∇-theorems introduced in [12], giving a version which
is suitable for the problem of the asymptotically critical points we have just
recalled.

In the classical version, the basic idea of this ∇-theorems is to use some
properties of the gradient of a functional h and some properties of its sublevels,
in order to reduce the study of critical points of h to that of a functional G which
is topologically richer than h. G is obtained, roughly speaking, by introducing a
constraint for h which enriches the topological properties of the sublevels. The
properties of the gradient of h let the critical points of G give rise to critical
points of h.

The technique used here to introduce this sort of constraint for h (“blow up”)
without making too restrictive hypotheses, is quickly recalled in Section 5.
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2. “Asymptotically critical” points and multiplicity

This Section has two aims. First of all we need to recall the theory of “asymp-
totically critical” points exposed in [10], adapting it to the requirements of this
work. The second aim is to give an “asymptotic” version of one of the ∇-
Theorems of [12] that we will use in the following.

We also need to recall the notion of subdifferential and superdifferential. For
the following definition see, for example, [3], [5], [6], [10].

Definition 2.1. Let H be a Hilbert space and E a subset of H. Let us
consider a function h:E → R ∪ {−∞} (resp. h:E → R ∪ {+∞}). If u ∈ E,
h(u) ∈ R and η ∈ H, we say that η is a superdifferential (resp. a subdifferential)
of h in u if

lim sup
v→u
v∈E

h(v)− h(u)− 〈η, v − u〉
‖v − u‖

≤ 0(
resp. lim inf

v→u
v∈E

h(v)− h(u)− 〈η, v − u〉
‖v − u‖

≥ 0
)

.

We will also say that η ∈ ∂+h(u) (resp. η ∈ ∂−h(u)).
We will say that u is an upper critical point (resp. lower critical point) for h

if 0 ∈ ∂+h(u) (resp. 0 ∈ ∂−h(u)), that is

lim sup
v→u
v∈E

h(v)− h(u)
‖v − u‖

≤ 0
(

resp. lim inf
v→u
v∈E

h(v)− h(u)
‖v − u‖

≥ 0
)

.

Now let M be the closure of an open regular subset of H and let g:M → R
be a functional of class C1. If u ∈ ∂M we will denote by ν(u) the outward unit
normal to M in u.

Definition 2.2. We set

gradMg(u) =

{
grad g(u) if u ∈

◦
M,

grad g(u) + 〈grad g(u), ν(u)〉−ν(u) if u ∈ ∂M.

In other words, if u ∈ ∂M , gradMg(u) is the part of grad g(u) which “points
out of M”.

Let us now consider a sequence of functionals (hn)n on M , for example of
class C1, and let h:M → R ∪ {−∞} be a given functional.

Definition 2.3. If u ∈ M and h(u) ∈ R, we say that u is an asymptotically
critical point for the couple ((hn)n, h) if there exist a strictly increasing sequence
(nk)k in N and (uk)k in M such that

gradMhnk
(uk) → 0, uk → u and hnk

(uk) → h(u).
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We will also say that h(u) is an asymptotically critical value for ((hn)n, h).

We explicitly remark that here we do not need to require that u is a “critical”
point for h, that is 0 ∈ ∂+h(u), although this fact is verified in the case we are
interested in (see Proposition 4.1).

The following property is very important: it expresses a sort of Palais–Smale
condition for the couple ((hn)n, h) and, at the same time, it relates the function-
als hn to the functional h (in a very weak sense).

Definition 2.4 (∇-compactness). Let c be a real number. We say that the
couple ((hn)n, h) is ∇-compact at level c, or that the condition ∇(hn, h; c) holds,
if for every strictly increasing sequence (nk)k in N and for every (uk)k in M such
that

gradMhnk
(uk) → 0 and hnk

(uk) → c,

there exists a strictly increasing sequence (kj)j in N and there exists u in M

such that ukj
→ u and h(u) = c.

If a and b are real numbers with a ≤ b and ∇(hn, h; c) holds for all c in [a, b],
we say that ∇(hn, h; a, b) holds.

In this paper we will use the following version of Theorem 1.3 of [10], which
can be proved in an analogous way, since the problem

U : [0, ε] → M,

U ′ = −gradMg(U),

U(0) = U0 ∈ M,

has a unique solution for a suitable ε > 0 and the solution depends continuously
from U0 in the usual sense (see, for example [6]).

Theorem 2.5. Let a and b be real numbers with a ≤ b and let ∇(hn, h; a, b)
holds. Then the number of asymptotically critical points for ((hn)n, h) with
asymptotically critical value in [a, b] is greater than or equal to

lim sup
n→∞

catM (hb
n, ha

n).

Here catM (hb
n, ha

n) denotes the relative category in M of the set hb
n = {u ∈

M | hn(u) ≤ b} with respect to the set ha
n = {u ∈ M | hn(u) ≤ a}. For the

notion of relative category, for the properties and remarks related to Theorem 2.5
see [10]. A more general version of this Theorem is given in Appendix A.

We will use Theorem 2.5 in order to prove the following Theorem 2.7, which is
fundamental for the results of Section 4. In the proof we will use some technical
Lemmas which we postpone in Section 5.

We premise the following definition.
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Definition 2.6. Let X be a closed subspace of H and c ∈ R.

(a) We will say that ∇(hn, h;X; c) holds if for every strictly increasing se-
quence (nk)k in N and for every (uk)k in M such that

d(uk, X) → 0, hnk
(uk) → c, PX+uk

gradMhnk
(uk) → 0,

there exist a subsequence (ukj )j and u in X such that ukj → u and
h(u) = c (here PX+z denotes the orthogonal projection on X+Span (z)).

(b) We will say that ∇0(hn, h;X; c) holds if in (a) we can state that 0 ∈
∂+h|X(u).

Let us now assume that there exist three closed subspaces of H, X1, X2 and
X3 such that H = X1 ⊕X2 ⊕X3.

Theorem 2.7. Suppose that

(a) there exist a, b, % and R in R such that 0 < % < R,

suphn(T ) < a < inf hn(S) for all n ∈ N,

suphn(∆) ≤ b for all n ∈ N,

where

T = {u ∈ X1 ⊕X2 | ‖u‖ = R} ∪ {u ∈ X1 | ‖u‖ ≤ R},
S = {u ∈ X2 ⊕X3 | ‖u‖ = %},
∆ = {u ∈ X1 ⊕X2 | ‖u‖ ≤ R},

(b) ∇(hn, h; c) and ∇0(hn, h;X1 ⊕X3; c) hold for all c in [a, b],
(c) h|X1⊕X3 hasn’t upper critical points with value in [a, b],
(d) dim(X1 ⊕X2) < ∞, dim X2 ≥ 1.

Then ((hn)n, h) has at least 2 asymptotically critical points with asymptotically
critical value in [a, b].

Proof. Step 1. Let Φ:H \ (X1 ⊕X3) → H be defined as follows:

Φ(z) = z +
P (z)− z

‖P (z)− z‖
,

where P is the orthogonal projection on X1 ⊕X3 and set C = {z ∈ H | ‖P (z)−
z‖ ≥ 1}. We also set Gn = hn ◦ Φ|C and G = h ◦ Φ|C , defined on the manifold
with boundary C.

We will first prove the theorem for ((Gn)n, G) and then we will deduce it for
((hn)n, h). We will use the fact that the sublevels of Gn are topologically richer
than the ones of hn.
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Step 2. Set T̃ = {z ∈ C | Φ(z) ∈ T}, S̃ = {z ∈ C | Φ(z) ∈ S} and
∆̃ = {z ∈ C | Φ(z) ∈ ∆}. It is clear that

supGn(T̃ ) < a < inf Gn(S̃) for all n ∈ N,

supGn(∆̃) ≤ b for all n ∈ N.

Then, by Theorem 2.2 of [13], catC(Gb
n, Ga

n) ≥ 2 (T̃ is a strong deformation
retract of Ga

n in C and then catC(Gb
n, T̃ ) ≤ catC(Gb

n, Ga
n)).

Step 3. By (b) and by Theorem 5.2, ∇(Gn, G; a, b) holds. Then, by Theo-
rem 2.5, ((Gn)n, G) has at least 2 distinct asymptotically critical points z1 and
z2 such that G(zi) ∈ [a, b], i = 1, 2.

We note that zi ∈
◦
C. Otherwise, by Proposition 5.3, Φ(zi) would be an upper

critical point for h|X1⊕X3 with h(zi) in [a, b], but these fact contradicts (c). Then
it is easy to see that Φ(zi) are asymptotically critical points for ((hn)n, h). �

3. The approximating functionals

Let Ω be an open, bounded, connected and smooth subset of RN , N ≥ 1,
and let φ: Ω → R be a measurable function with φ ≤ 0.

Set H = H1
0 (Ω) ∩H2(Ω) and consider fω: Ω → R defined as

fω(u) =
1
2

∫
Ω

|∆u|2 dx− c

2

∫
Ω

|Du|2 dx− α

2

∫
Ω

u2 dx− ω

k

∫
Ω

((u− φ)−)k dx,

where ω, c, α and k are real numbers such that ω ≥ ω0 > 0, k > 2 and, if N ≥ 5,
k < 2N/(N − 4).

We recall that the critical points of fω solve (Pω) (see Section 1).
In this section we will show some lemmas which describe the topological

properties of the family of functionals fω. By these lemmas in Section 4 we will
prove the main results of this paper using the technical results of Section 5 and
those of [10].

Notations 3.1. We introduce some notations which will be used throughout
this paper.

(a) If u ∈ H we set

Q(u) =
1
2

∫
Ω

|∆u|2 dx− c

2

∫
Ω

|Du|2 dx− α

2

∫
Ω

u2 dx.

(b) We respectively denote by (Λk)k∈N∗ (Λ1 ≤ Λ2 ≤ . . . ) and by (Ek)k∈N∗

the eigenvalues and the corresponding eigenfunctions of the problem

(3.1)

{
∆2u + c∆u = Λu in Ω,

u = ∆u = 0 on ∂Ω,
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and with (λn)n∈N∗ (λ1 < λ2 ≤ . . . ) the eigenvalues of the problem

(3.2)

{
∆u + λu = 0 in Ω,

u = 0 on ∂Ω.

The eigenfunction e1 corresponding to λ1 can be chosen strictly positive
in Ω.

(c) We denote by Hl the subspace spanned by the eigenfunctions corre-
sponding to the eigenvalues Λ1, . . . , Λl and by H⊥

l its orthogonal space
in H.

(d) If e ∈ H⊥
s and s ∈ N∗, we set

ΣR(Hs, e) = {v ∈ Hs | ‖v‖ ≤ R}
∪ {v − σe | v ∈ Hs, σ ≥ 0, ‖v − σe‖ = R},

∆R(Hs, e) = {v − σe | v ∈ Hs, σ ≥ 0, ‖z‖ ≤ R},
Tl,s(R) = {u ∈ Hl | ‖u‖ ≤ R}

∪ {v + z | v ∈ Hl, z ∈ Span(El, . . . , Es), ‖v + z‖ = R},
∆l,s(R) = {v + z | v ∈ Hl, z ∈ Span(El, . . . , Es), ‖v + z‖ ≤ R},

S+
s (%) = {v ∈ H⊥

s | ‖v‖ = %}.

Remark 3.2. (i) It is clear that {Λk | k ∈ N∗} = {λ2
n − cλn | n ∈ N∗}.

(ii) The eigenfunction corresponding to λ2
1− cλ1 is e1, the first eigenfunction

of problem (3.2).

Now we recall some inequalities and some properties of fω which can be
found in [15].

Remark 3.3.
∫
Ω
((u− φ)−)k dx = O(‖u‖k), as it is clear.

In the following two lemmas we will assume that there exists l in N∗ such
that Λl ≤ α < Λl+1 < λ2

1 − cλ1.

Lemmma 3.5. Suppose that for given l and s in N∗ Λl < Λl+1 ≤ . . . ≤ Λs <

Λs+1 ≤ λ2
1 − cλ1 and Λl ≤ α < Λl+1. Then

(a) there exist %′ and R′ with 0 < %′ < R′ and such that

(3.3) sup fω(Tl,s(R′)) < inf fω(S+
l (%′)).

R′ doesn’t depend on ω and can be taken as big as desired. Moreover,

sup
ω

sup fω(∆l,s(R)) < ∞.

(b) If, moreover, supφ < 0 and N ≤ 3, then %′ and inf fω(S+
l (%′)) do not

depend on ω.
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In the proof of this lemma, Remark 3.3 and the following facts play a role:

(3.4) lim
u∈Hs

‖u‖→∞

fω(u) = −∞,

since, if u ∈ Hs, then u− 6= 0.

(3.5) Under the assumptions of case (b), there exists % > 0

such that, if ‖u‖ ≤ %, then fω(u) = Q(u).

Lemma 3.5. Suppose that for a given s in N∗ Λs < Λs+1 ≤ λ2
1 − cλ1. Let e

be in H⊥
s be such that, set X = {v + te | v ∈ Hs, t ≥ 0}, one has

u ∈ X, u 6= 0 ⇒ u− 6= 0

(for example e = −e1). Then

(a) there exists τ > 0 such that, if Λs − τ < α < Λs+1, then there exist %′′

and R′′ with 0 < %′′ < R′′ such that

(3.6) sup fω(ΣR′′(Hs, e)) < inf fω(S+
s (%′′)).

R′′ doesn’t depend on ω and can be taken as big as desired.
(b) If, moreover, supφ < 0 and N ≤ 3, then τ , %′′ and inf fω(S+

s (%′′)) do
not depend on ω.

In the proof of this lemma a fundamental role is played by the following fact:

(3.7) lim
α→Λs

sup fω(Hs) = 0 uniformly w.r.t. ω.

In the following two lemmas we will assume that there exists l in N∗ such
that λ2

1 − cλ1 ≤ Λl ≤ α < Λl+1 and α 6= λ2
1 − cλ1.

We need the following definition.

Definition 3.6. Suppose that λ2
1 − cλ1 ≤ Λs for a given s in N∗. We set

Λ∗s = inf{α ∈ R | Q(u) ≤ 0 for all u in Hs such that u ≥ 0},

that is

Λ∗s = sup
{ ∫

Ω

|∆u|2 dx− c

∫
Ω

|Du|2 dx

∣∣∣∣ u ∈ Hs, u ≥ 0,

∫
Ω

u2 dx = 1
}

.

It is clear that Λ∗s ≤ Λs and Λ∗s < Λs if λ2
1 − cλ1 < Λs.

Lemma 3.7. Suppose l and s in N∗ are such that λ2
1 − cλ1 ≤ Λl < Λl+1 ≤

. . . ≤ Λs < Λs+1 and Λ∗s < α < Λl+1. Then the thesis of Lemma 3.4 holds.
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Lemma 3.8. Let s in N∗ be such that λ2
1 − cλ1 < Λs < Λs+1. Let e in H⊥

s

be such that, set X = {v + te | v ∈ Hs, t ≥ 0}, if u ∈ X \Hs, then u− 6= 0. Then
the thesis of Lemma 3.5 holds.

We note that if N ≥ 4, it will be enough to take e in H such that infΩ e =
−∞, since functions in Hs are bounded. On the other hand, if N = 2 or N = 3,
one can take, for example, a function e in H such that sup∂Ω ∂e/∂ν = +∞,
where ν is the unit normal outward to ∂Ω.

4. Multiplicity of solutions

In this section we want to exhibit and prove the main results we got con-
cerning the number of solutions of problem (P) introduced in Section 1. We will
use the notations of Section 3.

Let us consider the functional f :H → R ∪ {−∞} defined as

f(u) =

{ 1
2

∫
Ω

|∆u|2 dx− c

2

∫
Ω

|Du|2 dx− α

2

∫
Ω

u2 dx if u ≥ φ,

−∞ otherwise,

and set Kφ = {u ∈ H | u ≥ φ}.
It is clear that, if u ∈ Kφ, 0 ∈ ∂+f(u) (see Definition 2.1) if and only if u

solves problem (P).
The following proposition states that the asymptotically critical points for

(fω, f) (see Section 2), are solutions of (P). Nevertheless we don’t know if the
vice versa is true. Indeed, in general, we would need the following property, at
least in a neighbourhood U of the point u such that 0 ∈ ∂+f(u): if uω ∈ U and
inf fω(uω) > −∞, then (uω) admits a converging subsequence (see [5]).

In this section we will study the multiplicity of the asymptotically critical
points for (fω, f).

Proposition 4.1. Let (ωn)n be a strictly increasing sequence in R such
that ωn → ∞ and let u be in Kφ. If u is an asymptotically critical point for
((fωn)n, f), then 0 ∈ ∂+f(u).

Proof. Let (nk)k in N be a strictly increasing sequence and let (uk)k in H

be such that uk → u, ∇fωnk
(uk) → 0. Then, for all v in H,∫

Ω

∆uk∆(v − uk) dx− c

∫
Ω

Duk ·D(v − uk) dx− α

∫
Ω

uk(v − uk) dx

+ ωnk

∫
Ω

((uk − φ)−)k−1(v − uk) dx → 0.

If v ∈ Kφ, then∫
Ω

((uk−φ)−)k−1(v−uk) dx =
∫

Ω

((uk−φ)−)k−1(v−φ) dx+
∫

Ω

((uk−φ)−)k dx,
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so that∫
Ω

∆u∆(v − u) dx− c

∫
Ω

Du ·D(v − u) dx− α

∫
Ω

u(v − u) dx ≤ 0

for every v in Kφ. �

For the results of this section we need some other properties concerning fω

and f .

Proposition 4.2. Suppose N ≤ 3, supφ < 0, α 6= λ2
1 − cλ1. If (ωn)n is a

strictly increasing sequence in R which diverges to ∞, then for all c in R and for
all (un)n in H such that fωn

(un) → c, ∇fωn
(un) → 0, there exist a subsequence

(unk
)k and u in H such that unk

converges to u, u ≥ φ, f(u) = c and 0 ∈ ∂+f(u).
In particular, ∇(fωn

, f ; c) holds for every c in R (see Definition 2.4).

Proof. Step 1. Let us show that (un)n is bounded. Suppose by contradic-
tion that, up to a subsequence, ‖un‖ → ∞ as n →∞. Up to a subsequence, we
can suppose that there exists u in H such that un/‖un‖ ⇀ u weakly in H. Since

f ′ωn
(un)(un)
‖un‖

=
2fωn(un)
‖un‖

+
(

2
k
− 1

)ωn

∫
Ω

((un − φ)−)k dx

‖un‖
+

ωn

∫
Ω

((un − φ)−)k−1φ dx

‖un‖
,

and since f ′ωn
(un)(un)/‖un‖ → 0, we get

ωn

∫
Ω

((un − φ)−)k dx

‖un‖
→ 0 and

ωn

∫
Ω

((un − φ)−)k−1φdx

‖un‖
→ 0,

for k > 2 and φ ≤ 0. Therefore

(4.1)
ωn

∫
Ω

((un − φ)−)k−1 dx

‖un‖
→ 0,

since supφ < 0. Moreover,

f ′ωn
(un)(un)
‖un‖2

=1−
c

∫
Ω

|Dun|2 dx

‖un‖2
−

α

∫
Ω

u2
n dx

‖un‖2
(∗)

+
ωn

∫
Ω

((un − φ)−)k−1un dx

‖un‖2
,
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fωn
(un)

ωn‖un‖k
=

Q(un)
ωn‖un‖k

−

∫
Ω

((un − φ)−)k dx

‖un‖k
(∗∗)

f ′ωn
(un)(e1)
‖un‖

=(λ2
1 − cλ1 − α)

∫
Ω

une1 dx

‖un‖
(∗∗∗)

+
ωn

∫
Ω

((un − φ)−)k−1e1 dx

‖un‖

tend to 0. By (∗) we get

1 = c

∫
Ω

|Du|2 dx + α

∫
Ω

u2 dx,

since∫
Ω

((un − φ)−)k−1un dx = −
∫

Ω

((un − φ)−)k dx +
∫

Ω

((un − φ)−)k−1φdx.

By (∗∗) we get
∫
Ω
(u−)k dx = 0, that is u ≥ 0. Therefore u ≥ 0 and u 6≡ 0.

But by (∗∗∗) and (4.1) we get

(λ2
1 − cλ1 − α)

∫
Ω

ue1 dx = 0,

which is impossible, since α 6= λ2
1 − cλ1.

Step 2. Now we can suppose that un converges weakly and pointwise to a

function u of H. Then u ≥ φ, since ωn

∫
Ω

((un−φ)−)k dx is bounded. Moreover,

(4.2) ωn

∫
Ω

((un − φ)−)k−1 dx is bounded.

In fact

f ′ωn
(un)(un) = 2fωn

(un) +
(

2
k
− 1

)
ωn

∫
Ω

((un − φ)−)k dx

+ ωn

∫
Ω

((un − φ)−)k−1φdx → 0,

which implies that ωn

∫
Ω
((un − φ)−)k−1φdx is bounded; the thesis follows by

the fact that supφ < 0.
Step 3. If v ∈ H, f ′ωn

(un)(v − un) → 0, that is

(4.3)
∫

Ω

∆un∆(v − un) dx− c

∫
Ω

Dun ·D(v − un) dx

− α

∫
Ω

un(v − un) dx + ωn

∫
Ω

((un − φ)−)k−1(v − un) dx → 0.
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But N ≤ 3, so un → u uniformly and then

ωn

∫
Ω

((uω − φ)−)k−1(u− un) dx → 0.

Putting v = u in (4.3), we get
∫
Ω

∆un∆(u − un) dx → 0, and then un → u

strongly in H.
Step 4. By (4.2) and by the fact that (un − φ)− → 0 in L∞(Ω), we get

ωn

∫
Ω

((un − φ)−)k dx → 0.

Then fωn
(un) → Q(u) = f(u). By Proposition 4.1 we finally get that 0 ∈

∂+f(u). �

The following proposition expresses the second property we need to prove the
theorems of multiplicity. If X is a closed subspace of H and u ∈ H, we denote
by PX+(u) the orthogonal projection on the space X + {tu | t ∈ R}.

Proposition 4.3. Suppose N ≤ 3, α 6= λ2
1 − cλ1, supφ < 0. Let X be a

closed subspace of H with finite codimension such that e1 ∈ X and let (ωn)n be
a strictly increasing sequence in R with ωn → ∞. Then for all (un)n in H and
for all c in R such that fωn

(un) → c, d(un, X) → 0, PX+(un)(∇fωn
(un)) → 0,

there exists a subsequence (unk
)k which converges to a point u of X such that

u ≥ φ, f(u) = c and 0 ∈ ∂+f(u). In other words, ∇0(fω, f ;X; c) holds for every
c in R (see Definition 2.6).

The proof is equal to the proof of the previous proposition.
Finally we need the following result. We write fα in place of f to emphasize

the dependence of f on α.

Proposition 4.4. Suppose N ≤ 3, supφ < 0 and for some l and s in N∗

Λl < Λs+1 and set Xs
l = Hl ⊕H⊥

s . Then, for every δ > 0,

inf{fα(u) | u ∈ Kφ ∩Xs
l , fα(u) > 0,

0 ∈ ∂+fα|Xs
l
(u), Λl + δ ≤ α ≤ Λs+1 − δ} > 0.

Proof. Step 1. There exists % > 0 such that, if u ∈ Kφ ∩ Xs
l , ‖u‖ < %,

u 6= 0 and Λl < α < Λs+1, then u is not an upper critical point for fα on Xs
l .

In fact if % is small enough, then B(0, %) ⊂ Kφ (since H ↪→ C0
0 (Ω) and

supφ < 0). On the other hand the unique upper critical point for Q on Xs
l is 0,

since Λl < α < Λs+1.
Step 2. Fix δ > 0. Suppose by contradiction that there exist αn in [Λl +

δ,Λs+1 − δ] and (un)n in Kφ ∩Xs
l is such that fαn(un) > 0, fαn(un) → 0 and

0 ∈ ∂+(fαn
)|Xs

l
.
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We can suppose that αn → α in [Λl + δ,Λs − δ]. First of all we prove that
(un)n is bounded. Suppose by contradiction that ‖un‖ → ∞ and un/‖un‖ ⇀ u

in Kφ ∩Xs
l . By the following inequality

(4.4) f ′αn
(un)(v)− 2fαn

(un) =
∫

Ω

∆un∆(v − un) dx

− c

∫
Ω

Dun ·D(v − un) dx− αn

∫
Ω

un(v − un) dx ≤ 0,

for all v in Kφ ∩ Xs
l , we get that f ′α(u)(v) ≤ 0 for all v in Kφ ∩ Xs

l . But
B(0, %) ⊂ Kφ, so f ′α(u)(v) = 0 for all v in Xs

l . Then u ≡ 0, since u ∈ Xs
l and

Λl + δ ≤ α ≤ Λs+1 − δ.
On the other hand fαn(un)/‖un‖2 tends to 0, but also to

1
2
− c

2

∫
Ω

|Du|2 dx− α

2

∫
Ω

u2 dx.

In this way u 6≡ 0 and a contradiction arises.
Step 3. We can now suppose that un ⇀ u in H and u ∈ Kφ ∩Xs

l . By (4.4)
we get again f ′α(u)(v) ≤ 0 for all v in Kφ ∩Xs

l , since fαn(un) → 0. Then u ≡ 0.
Since fαn

(un) → 0, that is

1
2
‖un‖2 −

c

2

∫
Ω

|Dun|2 dx− α

2

∫
Ω

u2
n dx → 0,

we get that ‖un‖ → 0. By Step 1 we get un = 0, which contradicts the hypothesis
fαn(un) > 0. �

We can now state and prove the main theorems of this paper.

Theorem 4.5. Suppose N ≤ 3 and supφ < 0. Suppose that for a certain
s in N∗ one has Λs < Λs+1 ≤ λ2

1 − cλ1. Then there exists τ > 0 such that,
if Λs − τ < α < Λs, problem (P) has at least 3 nontrivial solutions, since the
couple ((fω)ω, f) has at least 3 nontrivial asymptotically critical points (see (4.1))
at levels different from 0.

Proof. Step 1. Let Λl be the eigenvalue of (3.1) such that Λl < Λl+1 =
. . . = Λs and set X1 = Hl, X2 = H⊥

l ∩Hs and X3 = H⊥
s .

If Λl < α < Λs, by Lemma 3.4, by Propositions 4.2 and 4.3, then (a) and (b)
of Theorem 2.7 hold, for example with b = sup fω0(Hs) and a = inf Q(S+

l (%′)).
By (3.7) and by Proposition 4.4 also (c) of Theorem 2.7 holds.

Then there exist 2 asymptotically critical points u1 and u2 for the couple
((fω)ω, f) such that 0 < a ≤ f(ui) ≤ b.

Step 2. By Lemma 3.5 and Theorem 2.5 it easily follows that there exists an
upper critical point u3 for f such that f(u3) > b, provided τ is small enough. �

With an analogous proof, by Lemmas 3.7 and 3.8, one gets the following
theorem.
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Theorem 4.6. Suppose N = 2 or N = 3 and supφ < 0. Suppose that for a
certain s in N∗ one has λ2

1 − cλ1 < Λs < Λs+1. Then the thesis of Theorem 4.5
holds.

We note that the existence of the point u3 was already proved in [15], showing
that, by Lemma 3.5, every fω has a critical point vω such that infω≥ω0 fω(vω) > b,
((PS) holds for every fω) and thus a subsequence of (vω) converges to u3. More-
over, in [15] it was proved, in an analogous way, that there exists a solution u1

which is limit of solutions of problems (Pω) with f(u1) ≤ b.
We can therefore conclude with the following remark.

Remark 4.7. In the previous theorems we can state that there exist 3 non-
trivial solutions u1, u2, u3 of (P) such that u1 and u3 are limits of solutions of
problems (Pω), while u2 is, to our knowledge, only an asymptotically critical
point for ((fω)ω, f).

Moreover, the functions ui satisfy only the inequality (P) and not the corre-
sponding equation, due to the fact that α is not an eigenvalue of the quadratic
form

1
2

∫
Ω

|∆u|2 dx− c

2

∫
Ω

|Du|2 dx.

5. Blow up

Here we want to examine and prove some technical results which we used in
Section 2.

Let H be a Hilbert space. Let us consider a functional F :H → R∪{−∞} and
a closed subspace X of H. We will denote by D(F ) the set {u ∈ H | F (u) ∈ R}.

Following the idea of [13], we now want X to be a “barrier” for F . For this
purpose we introduce a functional G in the following way.

If P :H → X is the orthogonal projection of H onto X and Q = I − P , we
set

C = {z ∈ H | ‖Q(z)‖ ≥ 1} .

Let us consider the map Φ:H \X → H defined as

Φ(z) = z − Q(z)
‖Q(z)‖

for all z ∈ H \X.

It is clear that Φ induces a diffeomorphism between
◦
C and H \X.

Finally we set G = F ◦ Φ|C : C → R ∪ {−∞}.
Remark 5.1.

(a) dΦ(z) = PX+z +
(

1− 1
‖Q(z)‖

)
PXz

for all z ∈ H \X,

where PX+z is the orthogonal projection on X + Span (z) and PXz
=

I − PX+z.
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(b) If z ∈ C, Φ(z) ∈
◦
D (F ) and F is differentiable in Φ(z), then

• if z ∈
◦
C, then G is differentiable in z and

gradG(z) = dΦ(z)(grad F (Φ(z))),

• if z ∈ ∂C, then ∂+G(z) = {dΦ(z)(gradF (Φ(z))) + λ Q(z) | λ ≥ 0}.
(c) • if z ∈ C, then ∂+G(z) ⊃ dΦ(z)(∂+F (Φ(z))),

• if z ∈
◦
C, then ∂+G(z) = dΦ(z)(∂+F (Φ(z))).

(d) If z ∈ ∂C, the following implications hold:

0 ∈ ∂+G(z) ⇒ 0 ∈ ∂+G|∂C(z) ⇔ 0 ∈ ∂+F|X(Φ(z)).

Proof. For (a)–(c) see [13]. Concerning (d), we observe that the equivalence
holds since, if w ∈ X, then z +w ∈ ∂C and therefore Φ(z +w) = Φ(z)+w. Thus

F (Φ(z) + w)− F (Φ(z))
‖w‖

=
G(z + w)−G(z)

‖w‖
.

The rest is obvious. �

Now let us consider a sequence of regular functionals (hn)n defined on H

and a functional h:H → R ∪ {−∞}. We want to give a condition on (hn)n and
h which ensures that, setting Gn = hn ◦ Φ|C and G = h ◦ Φ|C , the condition
∇(Gn, G; c) holds (c in R).

Teorem 5.2. Let X be a closed subspace of finite codimension and c be a real
number. If ∇(hn, h; c) and ∇(hn, h;X; c) hold, then ∇(Gn, G; c) holds.

Proof. Step 1. Let (zn)n be a sequence in C such that Gn(zn) → c and
gradCGn(zn) → 0.

Step 2. Suppose that infn ‖Q(zn)‖ > 1; then zn ∈
◦
C and by (b) of Remark 5.1,

gradCGn(zn) = dΦ(zn)(gradhn(Φ(zn))). By (a) of Remark 5.1

PX+zn
(gradhn(Φ(zn))) → 0 and also PXzn

(grad hn(Φ(zn))) → 0.

Then grad hn(Φ(zn)) → 0 and hn(Φ(zn)) → c. By ∇(hn, h; c) there exist a
strictly increasing sequence (nk)k ∈ N and u ∈ H such that Φ(znk

) → u and

h(u) = c. Moreover, u 6∈ X. Then znk
→ z = Φ−1(u) in

◦
C and h(u) = c.

Step 3. Now let us assume that ‖Q(zn)‖ > 1 for all n and limn ‖Q(zn)‖ = 1.

Then zn ∈
◦
C and PX+zn

gradhn(Φ(zn)) → 0, by (a) and (b) of Remark 5.1. More-

over, PX+zn
= PX+Φ(zn), since zn ∈

◦
C, and then PX+Φ(zn)gradhn(Φ(zn)) → 0.

By ∇(hn, h;X; c) there exist a strictly increasing sequence (nk)k ∈ N and
u ∈ X such that Φ(znk

) → u and h(u) = c. Since X has finite codimension, we
can assume that znk

→ z, z ∈ ∂C. Then Φ(z) = u and G(z) = c.
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Step 4. In the case zn ∈ ∂C for all n, in particular, by (a) and (b) of
Remark 5.1, we get that Pgradhn(Φ(zn)) → 0 (PPX+zn = P ) and Φ(zn) ∈ X.

By ∇(hn, h;X; c) there exist a strictly increasing sequence (nk)k in N and u

in X such that Φ(znk
) → u and h(u) = c. Since X has finite codimension, we

can assume that znk
→ z, z ∈ ∂C and Φ(z) = u. Then G(z) = c.

By Steps 1–4 the thesis follows, as it is clear. �

We will also need the following statement.

Proposition 5.3. Suppose that ((hn)n, h) satisfies the following condition:

• if (nk)k is a strictly increasing sequence in N, if unk
→ u, u ∈ X,

PX+unk
gradhnk

(unk
) → 0 and hnk

(unk
) → c in R, then 0 ∈ ∂+h|X(u)

(for example if ∇0(hn, h;X; c) holds).

(PX+unk
is the orthogonal projection on X+Span (unk

).) Then, if a point z on ∂C
is asymptotically critical for ((Gn)n, G), then Φ(z) ∈ X and 0 ∈ ∂+h|X(Φ(z)).

Proof. The proof can be easily obtained by (a) and (b) of Remark 5.1. �

6. Some open problems

(6.1) Are solutions of (P) regular?
(6.2) What can be said about the set {x ∈ Ω | u(x) = φ(x)}, if u is a solution

of (P)?
(6.3) In the hypotheses of Theorems 4.5 and 4.6, are there 3 nontrivial so-

lutions such that anyone is limit of solutions of problems (Pω)? Or
do solutions of (P) which are limit of solutions of (Pω) have particular
properties (such as, for example, in the case of problem (1.2))?

(6.4) Is it possible for problem (P) to have continuous families of solutions,
as the second order problem (1.6), in some cases, has?

(6.5) Is it possible for problem (P) to have several nontrivial solutions for the
values of α not considered in Theorems 4.5 and Theorem 4.6?

(6.6) What happens if N ≥ 4? What happens in Theorem 4.6 if N = 1?

Appendix A. Nonsmooth version of the multiplicity theorem

Here we want to give a more general version of Theorem 2.5 which covers
the method (of Galerkin type) introduced in [7] (for a unique functional), which
inspired us in formulating, for example, Theorem 2.5, as we already said.

Let H be a Hilbert space. Given g:H → R∪ {±∞}, we set D(g) = {u ∈ H |
g(u) ∈ R}.

Now let us consider a sequence (gn)n of functions such that gn:H → R ∪
{+∞}.
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Definition A.1. We say that u∈D(g) is asymptotically critical for ((gn)n, g)
at level g(u) if there exists a strictly increasing sequence (nk)k ∈ N, there exists
uk ∈ D(gnk

) and there exists ηk ∈ ∂−gnk
(uk) such that uk → u, gnk

(uk) → g(u)
and ηk → 0.

Definition A.2. Let c be a real number. We say that ∇(gn, g; c) holds if

• for all (nk)k strictly increasing in N, for all (uk)k in H, for all (ηk)k

in H, if uk ∈ D(gnk
), ηk ∈ ∂−gnk

(uk), ηk → 0, gnk
(uk) → c,

there exist a subsequence (ukj
)j and u in H such that ukj

→ u and g(u) = c.

We now want to introduce a class of functions which has the two following
properties:

(a) for every function in this class there exists a regular flow of curves of
steepest descent,

(b) the class contains the functions of the form `0 + `1 + IM , where `0 is
a convex function, `1 is a C1,1-function, M is a closed submanifold of
class C1,1 and IM :H → {0,+∞} is the indicatrix function of M , that
is IM (u) = 0 if u ∈ M and IM (u) = +∞ if u 6∈ M .

(See [3], [6], [14]).
Now let us consider a function `:H → R ∪ {+∞}.

Definition A.3. Let ϕ:D(`)2×R3 → R+ be a continuous function. We say
that ` is ϕ-convex if

`(v) ≥ `(u) + 〈η, v − u〉 − ϕ(u, v, `(u), `(v), ‖η‖)‖v − u‖2

for all u, v in D(`) and for all η in ∂−`(u).
Note that nothing is required (at least explicitly) if ∂−`(u) = ∅.
We say that such an ` is ϕ-convex of order r (r ≥ 1) if

ϕ(u, v, `(u), `(v), ‖η‖) = ϕ0(u, v, `(u), `(v))(1 + ‖η‖r),

where ϕ0:D(`)2 × R2 → R is a continuous function.

According to the results about ϕ-convex functions obtained in the papers
above, one can easily prove the following version of Theorem 2.5.

Theorem A.4. Let a ad b be real numbers with a ≤ b. Assume that

• every function gn is ϕn-convex of order 2 for some ϕn,
• ∇(gn, g; c) holds for all c ∈ [a, b].

Then ((gn)n, g) has at least lim supn→∞ catH(gb
n, ga

n) asymptotically critical points
with levels in [a, b].

Also Theorem 2.6 of [10] can be evidently extended to this class of functions.
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