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Abstract. In this paper we survey some recent results on parabolic equa-
tions on curved squeezed domains. More specifically, consider the family of

semilinear Neumann boundary value problems

(Eε)
ut = ∆u + f(u), t > 0, x ∈ Ωε,

∂νεu = 0, t > 0, x ∈ ∂Ωε

where, for ε > 0 small, the set Ωε is a thin domain in R`, possibly with holes,

which collapses, as ε→ 0+, onto a (curved) k-dimensional submanifold M
of R`. If f is dissipative, then equation (Eε) has a global attractor Aε. We

identify a “limit” equation for the family (Eε), establish an upper semicon-

tinuity result for the family Aε and prove an inertial manifold theorem in
case M is a k-sphere.

1. Squeezing transformations

In this paper we report on some recent results on the qualitative dynamics
of parabolic equations on curved thin domains. More detailed statements and
proofs of these results will appear elsewhere (cf. [17], [20] and [21]).

Consider an evolution equation on a spatial domain Ω ⊂ R`, and assume that
Ω is “small” in some direction. A natural question arises whether it is possible to
approximate this equation by an equation defined on a lower dimensional spatial
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domain. In their paper [8, Reaction-diffusion equations on thin domains] J. Hale
and G. Raugel treat in detail the case of the reaction-diffusion equation

(1.1)
ut = ∆u + f(u), t > 0, x ∈ Ωε,

∂νεu = 0, t > 0, x ∈ ∂Ωε,

when the domain Ωε has the form

Ωε = {(x, y) | x ∈ ω and 0 < y < εg(x)},

where g is a smooth positive function defined on a set ω ⊂ R`−1 and f is a
dissipative nonlinearity. They prove that, as ε → 0, the limit equation is the
(`− 1)-dimensional boundary value problem

ut = (1/g) div(g∇u) + f(u), t > 0, x ∈ ω,

∂νu = 0, t > 0, x ∈ ∂ω.

They compare the semiflows of these equations and establish an important upper-
semicontinuity result for the corresponding family of attractors. If ` = 2, they
also prove existence of inertial manifolds. A much more general class of thin
domains, including domains with holes, was considered by the present authors
in [18]. Let N,M ≥ 1 and let Ω be an arbitrary smooth bounded domain
in R` := RN × RM . Write (x, y) for a generic point of RN × RM . Given
ε > 0, we squeeze Ω by the factor ε in the y-direction to obtain the squeezed
domain Ωε. More precisely, let Tε: RN × RM → RN × RM , (x, y) 7→ (x, εy) and
let Ωε := Tε(Ω). It was proved in [18] that in this case the family of equations
(1.1) singularly converges as ε → 0 to an abstract parabolic equation on a closed
subspace of H1(Ω). The equation reads

(1.2) u̇ = −A0u + f̂(u),

where f̂ is the Nemitskĭı operator induced by f and A0 is a positive self-adjoint
operator. The phase space consists of all H1-functions whose distributional de-
rivative in the y-direction vanishes. All the results of Hale and Raugel are still
valid in this rather more general situation. Under additional assumptions it is
possible to charachterize the limit equation (1.2) as a concrete reaction diffu-
sion system of N -dimensional equations, coupled by compatibility and balance
boundary conditions (see [18]).

The above mentioned papers deal with the flat squeezing of a domain onto a
lower dimensional subspace of R`. In the present paper we consider the effect of
curved squeezing upon the behavior of the solutions of reaction-diffusion equa-
tions. The main difference consists in the global nature of the curved squeezing,
as opposed to the essentially local nature of the flat squeezing considered in [8]
and [18].
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Let us briefly describe the geometry of the problem considered here. Let `,
k and r be positive integers with r ≥ 2, ` ≥ 2 and k < `. Let M ⊂ R` be
an arbitrary imbedded k-dimensional submanifold of R` of class Cr. Note that,
in the general case considered here, the manifold is global, i.e. M need not be
included in a single coordinate chart.

By the Tubular Neighborhood Theorem (cf. e.g. [1]) there exists an open set
U in R` and a map φ:U → M of class Cr−1 such that whenever x ∈ U and
p ∈ M then φ(x) = p if and only if the vector x − p is orthogonal to TpM;
moreover, εx + (1− ε)φ(x) ∈ U for all x ∈ U and all ε ∈ [0, 1].

For ε ∈ [0, 1] let us define the curved squeezing transformation

Φε:U → R`,

Φε(x) := εx + (1− ε)φ(x) = φ(x) + ε(x− φ(x)).

Now let Ω be an arbitrary nonempty bounded domain in R` with Lipschitz
boundary and such that Ω ⊂ U . For ε ∈ ]0, 1], define the curved squeezed
domain Ωε := Φε(Ω).

Let ε ∈ ]0, 1] be arbitrary and consider the Neumann boundary value problem

(1.3)
ut = ∆u + f(u), t > 0, x ∈ Ωε,

∂νu = 0, t > 0, x ∈ ∂Ωε

on Ωε. Here, ν is the exterior normal vector field on ∂Ωε. Suppose that f ∈
C1(R → R) is dissipative in the sense that

(1.4) lim sup
|s|→∞

f(s)/s ≤ −δ0 for some δ0 > 0.

Furthermore, let f satisfy the growth estimate

(1.5) |f ′(s)| ≤ C(1 + |s|β) for s ∈ R,

where C and β ∈ [0,∞[ are arbitrary real constants. If ` > 2, assume, in
addition, that β ≤ (2∗/2)− 1, where 2∗ = 2`/(`− 2).

This equation can be described in abstract terms as the equation

(1.6) u̇ + Ãεu = f̂(u)

on H1(Ωε). Here, the operator Ãε is induced by the pair (ãε, b̃ε) of bilinear
forms, where

ãε(u, v) =
∫

Ωε

∇u · ∇v dx, u, v ∈ H1(Ωε)

and
b̃ε(u, v) =

∫
Ωε

uv dx, u, v ∈ L2(Ωε),

in the sense that

Ãεu = w if and only if ãε(u, v) = b̃ε(u, v) for all v ∈ H1(Ωε).
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Furthermore, f̂(u) := f ◦ u is the Nemitskĭı operator defined by f . We can
now use the change of variables u(x) 7→ u(x̃), where x̃ = Φε(x), to transform
equation (1.6) to the equivalent problem

(1.7) u̇ + Aεu = f̂(u)

on the fixed phase space H1(Ω). Equation (1.7) defines a semiflow πε on H1(Ω),
which possesses a global attractor Aε. Here, the operator Aε is defined by the
formula

Aε(u ◦ Φε) = (Ãεu) ◦ Φε.

We need a more precise characterization of Aε. For x ∈ U denote by Q(x): R` →
R` the orthogonal projection of R` ∼= TpR` onto TpM, where p := φ(x). Let
P (x) = I − Q(x). Note that P (x) is the orthogonal projection of R` ∼= TpR`

onto the orthogonal complement of TpM in TpR` ∼= R`. For ε ∈ ]0, 1] define

Sε(x) := DΦ−1
ε (Φε(x))− (1/ε)P (x)

and
Jε := ε−(`−k)/2|detDΦε(x)|.

Then, as it is proved in [17],

ãε(u, v) = ε(`−k)/2aε(u ◦ Φε, v ◦ Φε), u, v ∈ H1(Ωε)

and
b̃ε(u, v) = ε(`−k)/2bε(u ◦ Φε, v ◦ Φε), u, v ∈ L2(Ωε),

where aε:H1(Ω)×H1(Ω) → R is given by

aε(u, v) :=
∫

Ω

Jε(x)〈Sε(x)T∇u(x), Sε(x)T∇v(x)〉dx

+
1
ε2

∫
Ω

Jε(x)〈P (x)∇u(x), P (x)∇v(x)〉dx

and
bε:L2(Ω)× L2(Ω) → R, bε(u, v) :=

∫
Ω

Jε(x)u(x)v(x)dx.

It follows that

Aεu = w if and only if aε(u, v) = bε(u, v) for all v ∈ H1(Ω).

It is proved in [17] that, as ε → 0, the linear map Sε(x) converges (uniformly
on compact subsets of U) to a linear map S0(x) satisfying the property

(S0(x)|Tφ(x)M)−1 = DΦ(x)|Tφ(x)M.

Moreover, the function Jε converges (uniformly on compact subsets of U) to the
function

J0(x) := |det(DΦ(x)|Tφ(x)M)|.
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Notice that, for u ∈ H1(Ω),

(1.8) lim
ε→0

aε(u, u) =
∫

Ω

J0(x)〈S0(x)T∇u(x), S0(x)T∇v(x)〉dx

if P (x)∇u(x) = 0 a.e., and limε→0 aε(u, u) = ∞ otherwise. Let us define the
space

(1.9) H1
s (Ω) := {u ∈ H1(Ω) | P (x)∇u(x) = 0 a.e.}.

Note that H1
s (Ω) is a closed infinite dimensional linear subspace of the Hilbert

space H1(Ω). On H1
s (Ω), define the “limit” bilinear form

a0:H1
s (Ω)×H1

s (Ω) → R, a0(u, v) :=
∫

Ω

J0(x)〈S0(x)T∇u(x), S0(x)T∇v(x)〉dx.

Let L2
s(Ω) be the closure of H1

s (Ω) in L2(Ω), and define

b0:L2
s(Ω)× L2

s(Ω) → R, b0(u, v) :=
∫

Ω

J0(x)u(x)v(x) dx.

We will denote by A0 the self-adjoint positive operator generated by the pair
(a0, b0), i.e.

A0u = w if and only if a0(u, v) = b0(u, v) for all v ∈ H1
s (Ω).

For ε ∈ [0, 1] and u ∈ L2(Ω) set

|u|ε := bε(u, u)1/2.

The norms | · |ε are all equivalent to the L2 norm on Ω, with equivalence constants
independent of ε. For ε ∈ ]0, 1] and for u ∈ H1(Ω) set

‖u‖ε := (aε(u, u) + bε(u, u))1/2.

There exists a constant γ, independent of ε, such that γ‖u‖H1 ≤ ‖u‖ε for all
u ∈ H1(Ω). Finally, for ε = 0 and u ∈ H1

s (Ω), set

‖u‖0 := (a0(u, u) + b0(u, u))1/2.

The norm ‖ · ‖0 is equivalent to the H1-norm restricted to H1
s (Ω).

As it is shown in the paper [17], the family of operators (Aε)ε∈]0,1] converges
in a strong spectral sense to the operator A0 in L2

s(Ω). One can now consider
the abstract parabolic equation

(1.10) u̇ + A0u = f̂(u).

on the space H1
s (Ω), where H1

s (Ω) is defined in (1.9). Equation (1.10) defines a
semiflow π0 on H1

s (Ω), which possesses a global attractor A0. It is proved in [17]
that, as ε → 0+, the linear semigroups e−tAε converge in a singular sense to the
semigroup e−tA0 and the semiflows πε singularly converge to π0. Furthermore, an
upper semicontinuity result is established for the family (Aε)ε∈[0,1] of attractors.
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In the next section we will explain the main features of this limiting procedure
and give a description of the limit problem.

2. The limit problem

We start by recalling that (λ, w) is an eigenvalue-eigenvector pair of (aε, bε),
ε ∈ [0, 1], if and only if aε(w, u) = λbε(w, u) for all u ∈ H1(Ω) (u ∈ H1

s (Ω)
if ε = 0). This is equivalent to saying that (λ, w) is an eigenvalue-eigenvector
pair of the operator Aε in (L2, bε), i.e. bε(Aεw, u) = λbε(w, u) for all u ∈ L2(Ω)
(u ∈ L2

s(Ω) if ε = 0).
We now have the following strong spectral convergence result:

Theorem 2.1. For ε ∈ ]0, 1] let λε,1 ≤ λε,2 ≤ λε,3 ≤ . . . be the repeated
sequence of eigenvalues of the pair (aε, bε) and wε,1, wε,2, wε,3, . . . be a corre-
sponding complete (L2, bε)-orthonormal sequence of eigenvectors. Moreover, let
λ0,1 ≤ λ0,2 ≤ λ0,3 ≤ . . . be the repeated sequence of eigenvalues of (a0, b0). Then
the following properties hold:

(1) For every j ∈ N, λ0,j = limε→0+ λε,j.
(2) Let (εn)n∈N be an arbitrary sequence of positive numbers converging

to 0. Then there is a subsequence of (εn)n∈N, again denoted by (εn)n∈N,
and there exists a complete (L2

s, b0)-orthonormal system (w0,j)j∈N of
eigenvectors of (a0, b0) corresponding to (λ0,j)j∈N such that, for every
j ∈ N,

‖wεn,j − w0,j‖εn
→ 0 as n →∞.

Now we consider the abstract parabolic equation (1.10) on the space H1
s (Ω).

Equation (1.10) defines a semiflow π0 on H1
s (Ω), which possesses a global attrac-

tor A0. The linear singular convergence result alluded to in Section 1 reads as
follows:

Theorem 2.2. Let (εn)n∈N be an arbitrary sequence of positive numbers
converging to zero. Moreover, assume that u ∈ L2

s(Ω) and (un)n∈N is a sequence
in L2(Ω) such that |un − u|L2 → 0 as n → ∞. Then for all β and γ ∈ ]0,∞[
with β < γ

sup
t∈[β,γ]

‖e−tAεn un − e−tA0u‖εn
→ 0 as n →∞.

Now we can state the following nonlinear singular convergence result:

Theorem 2.3. Let (εn)n∈N be an arbitrary sequence of positive numbers
converging to zero. Write πn := πεn and π := π0. Assume that u ∈ H1

s (Ω) and
let (un)n∈N be a sequence in H1(Ω) such that |un − u|L2 → 0 as n → ∞. Let
b ∈ ]0,∞[ and suppose that unπns and uπs are defined for all s ∈ [0, b], all n ∈ N
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and
sup
n∈N

sup
s∈[0,b]

‖unπns‖εn
≤ M, sup

n∈N
sup

s∈[0,b]

‖uπs‖εn
≤ M

for some constant M ∈ [0,∞[. Finally let t0 ∈ ]0, b] and (tn)n∈N is a sequence
in ]0, b] converging to t0. Under these assumptions∥∥unπntn − uπt0

∥∥
εn
→ 0 as n →∞.

The upper-semicontinuity result for the family (Aε)ε∈[0,1] of attractors reads
as follows:

Theorem 2.4. Assume that f : R → R is a C1-function satisfying the growth
condition (1.5). For ε ∈ [0, 1] let Aε be the union of all full bounded orbits of
πε. Then, for all ε ∈ [0, 1], πε is a global semiflow and the set Aε is nonempty,
compact, connected in H1(Ω). Furthermore, the set Aε attracts every set B

which is bounded in H1(Ω) for ε ∈ ]0, 1] and in H1
s (Ω) for ε = 0. In other

words, for every such B

lim
t→∞

sup
u∈B

inf
v∈Aε

‖uπεt− v‖ε = 0.

The family (Aε)ε∈[0,ε0] is upper-semicontinuous at ε = 0 with respect to the
family ‖ · ‖ε of norms, i.e.

lim
ε→0+

sup
u∈Aε

inf
v∈A0

‖u− v‖ε = 0.

The proofs of Theorems 2.2, 2.3 and 2.4 can be found in [17] (cf. also [18]).
The spaces H1

s (Ω) and L2
s(Ω) and the operator A0 are defined in a very

abstract way. It is therefore worthwhile providing a more direct description of
H1

s (Ω) and, at least in some special cases, giving a complete characterization of
the operator A0.

For p ∈M define the normal section Ωp of Ω at p to be the set of all x ∈ Ω
with φ(x) = p. If x ∈ Ωp, we denote by Ωp(x) the connected component of
Ωp containing x. We say that Ω has connected normal sections if the set Ωp is
connected for all p ∈M.

Given an arbitrary positive integer m, we denote by Hm the m-dimensional
Hausdorff measure on R` induced by the Euclidean metric. let S ⊂M be open
in M. We denote by L2(S) (resp. L2

loc(S)) the set of all square integrable (resp.
locally square integrable) Hk-measurable functions defined on S. Besides, we
denote by L2(S) (resp. L2

loc(S)) the space of all Hk-measurable tangent vector
fields X on S such that the function p 7→ 〈X(p), X(p)〉 is integrable (resp. locally
integrable) on S.

The first of our results shows that functions in H1
s (Ω) are a.e. (relative to

the corresponding Hausdorff measures) constant along the connected components
of Ωp:



206 M. Prizzi — K. P. Rybakowski

Theorem 2.5. For u ∈ H1(Ω) the following conditions are equivalent:

(1) P (x)∇u(x) = 0 a.e. in Ω.
(2) There exists a set Z ⊂ M, Hk(Z) = 0, and for all p ∈ M \ Z there

exists a set Sp ⊂ φ−1(p), H`−k(Sp) = 0, such that the following property
holds:
for all p ∈M\Z and for all x ∈ Ωp there exists a constant v(p, x) ∈ R
such that u(x) = v(p, x) for all x ∈ Ωp(x) \ Sp.

If Ω has connected normal sections, then we can completely characterize the
spaces L2

s(Ω) and H1
s (Ω). In fact, set G := φ(Ω) and define µ(p) := H`−k(Ωp)

for p ∈ G. The set G is open in M by the surjective mapping theorem, since
Dφ(x): R` → Tφ(x)M is surjective for all x ∈ U . Moreover, by the coarea formula∫

U
J0(x)g(x)dx =

∫
M

( ∫
φ−1{p}

g(x) dH`−k(x)
)

dHk(p),

the function µ:G → R is Hk-measurable and, in fact, integrable on G.
We now have the following result.

Theorem 2.6. Assume that Ω has connected normal sections. Let u ∈
L2

s(Ω). Then there exists a null set S in R` and a function v ∈ L2
loc(G) such that

u(x) = v(φ(x)) for all x ∈ Ω \ S; moreover, µ1/2v ∈ L2(G). If u ∈ H1
s (Ω), then

v ∈ H1
loc(G),

(2.1) ∇u(x) = Dφ(x)T∇v(φ(x)) a.e. in Ω

and µ1/2∇v ∈ L2(G). Conversely, let v ∈ L2
loc(G) be such that µ1/2v ∈ L2(G)

and set u(x) := v(φ(x)). Then u ∈ L2
s(Ω). If v ∈ H1

loc(G) and µ1/2∇v ∈ L2(G),
then u ∈ H1

s (Ω).

The proofs of Theorems 2.5 and 2.6 can be found in [21]. Under some ad-
ditional regularity hypotheses, we can also give a simple description of the limit
operator A0 and of the corresponding limit equation. In particular, it turns
out that A0 is equivalent to a relatively bounded perturbation of the Laplace-
Beltrami operator on an open subset of M. Suppose that Ω has connected
normal sections. Define

L2(µ,G) := {v ∈ L2
loc(G) | µ1/2v ∈ L2(G)}.

Then L2(µ,G), endowed with the scalar product

bµ(v1, v2) :=
∫
G

µ(p)v1(p)v2(p) dHk(p),

is a Hilbert space. Moreover, define

H1(µ,G) := {v ∈ H1
loc(G) | µ1/2v ∈ L2(G), µ1/2∇v ∈ L2(G)}.
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and

aµ(v1, v2) :=
∫
G

µ(p)〈∇v1(p),∇v2(p)〉 dHk(p) for v1 and v2 ∈ H1(µ,G).

Then H1(µ,G), endowed with the scalar product aµ( · , · )+ bµ( · , · ), is a Hilbert
space. Let  be the linear map

:L2
s(Ω) → L2(µ,G), u 7→ v,

where v is the function given by Theorem 2.6. Then  is an isometry of the Hilbert
space (L2

s(Ω), b0( · , · )) onto L2(µ,G). Furthermore, the restriction of the map 

to H1
s (Ω) is an isometry of the Hilbert space (H1

s (Ω), a0( · , · ) + b0( · , · )) onto
H1(µ,G).

Let Aµ be the self-adjoint operator in L2(µ,G) generated by the pair (aµ, bµ).
Then  restricts to an isometry of D(A0) onto D(Aµ) and A0 = −1Aµ.

Denote by ∂G the topological boundary of G in M. Suppose that G is ori-
entable (as a submanifold of M), ∂G = ∅ and the function µ is of class C1 on G.
By the regularity theory for elliptic equations and by the divergence formula on
Riemannian manifolds, we finally obtain

(2.2)
D(Aµ) = H2(G),

(Aµu)(p) = −(1/µ(p)) div(µ(p)∇u(p)).

As a consequence, the limit equation (1.10) is equivalent to the following reaction-
diffusion equation on G:

ut = (1/µ(p)) div(µ(p)∇u) + f(u(p)), t > 0, p ∈ G.

Instead of assuming ∂G = ∅ we may alternatively assume that ∂G is a (k − 1)-
dimensional C2-submanifold of M and that the function µ can be extended to
a strictly positive C1-function on G. In this case it not difficult to see that the
domain of the operator Aµ is the set of all functions u ∈ H2(G) satisfying the
boundary condition

〈∇u(p), ν(p)〉 = 0 Hk−1-a.e. on ∂G

in the sense of traces. Here ν(p) ∈ TpM, p ∈ ∂G, is the outward normal vector
field on ∂G. Again, for u ∈ D(Aµ), one has

(Aµu)(p) = −(1/µ(p)) div(µ(p)∇u(p)) a.e. in G.

Thus the limit equation (1.10) takes the form

ut = (1/µ(p)) div(µ(p)∇u) + f(u(p)), t > 0, p ∈ G,

〈∇u(p), ν(p)〉 = 0, t > 0, p ∈ ∂G.
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For the theory of Sobolev spaces on Riemannian manifolds the reader is referred
to [11] and [24].

Using the above characterization of A0 we will show in Section 4 that for
thin domains close to spheres, a spectral gap condition is satisfied, which can be
used to prove existence of inertial manifolds.

3. Inertial manifolds

Let f : R → R be a C1-function satisfying the growth estimate (1.5) together
with the dissipativeness condition (1.4). Then, by Theorem 2.4, for every ε ≥ 0
the semiflow πε := πε, bf possesses a global attractor Aε. Moreover, the family
(Aε)ε≥0 of attractors is upper semicontinuous at ε = 0. If the eigenvalues of the
limit operator A0 satisfy the gap condition

(3.1) lim sup
ν→∞

λ0,ν+1 − λ0,ν

λ0,ν
1/2

> 0,

then, as we shall see in Theorem 3.3 below, there exists an ε0 > 0 and a family
Iε, 0 ≤ ε ≤ ε0 of C1 inertial manifolds of some finite dimension ν such that,
whenever 0 ≤ ε ≤ ε0, then Aε ⊂ Iε and the manifold Iε is locally attracting and
locally invariant relative to the semiflow πε on a neighbourhood of the attractor
Aε. Moreover, the flows on the inertial manifolds Iε converge in the (regular)
C1-sense to the flow on I0.

The proof of Theorem 3.3 is based on the method of functions of exponential
growth, used before by a number of researchers (cf. [5], [23] and the references
contained in these papers). First one chooses an open set U in H1(Ω) which
includes all the attractors Aε, ε ∈ [0, ε0], ε0 > 0 small. Then one modifies the
Nemitskĭı operator f̂ by finding a globally Lipschitzian map g:H1(Ω) → L2(Ω)
with f̂(u) = g(u) for u ∈ U . For fixed ε ∈ [0, ε0], one seeks an invariant
manifold Iε for the modified semiflow πε,g in the form Iε = Λε(Rν), where
Λε: Rν → H1(Ω) is a map obtained from the contraction mapping principle
applied to a properly defined nonlinear operator Γε defined on a certain space
of maps y: ]−∞, 0] → H1(Ω) of exponential growth. If the operator Γε is a
contraction, then the map Λε is well-defined and Aε ⊂ Iε. It follows that Iε is
invariant with respect to solutions of the original semiflow πε, bf as long as these
solutions stay in the open set U . One can even find an open set V ⊂ Rν such
that for ε ∈ [0, ε0] the set Λε(V ) is positively invariant with respect to πε, bf and
Aε ⊂ Λε(V ) ⊂ U .

In order to describe in detail this procedure, we need to introduce some
notation. Given µ ∈ R, a Banach space (Y, | · |Y ) and a function y: ]−∞, 0] → Y

we write
|y|µ,|·|Y := sup

t∈]−∞,0]

eµt|y(t)|Y
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and we denote by BCµ(Y, | · |Y ) the set of all continuous functions y: ]−∞, 0] → Y

such that |y|µ,|·|Y < ∞. The space BCµ(Y, | · |Y ) is a Banach space with respect
to the norm y 7→ |y|µ,|·|Y . In particular, we write

(1) BCµ(L2(Ω), ε) := BCµ(L2(Ω), | · |ε), with the norm |y|µ,ε := |y|µ,|·|ε for
ε ≥ 0,

(2) BCµ(L2
s(Ω), 0) := BCµ(L2

s(Ω), | · |0), with the norm |y|µ,0 := |y|µ,|·|0 ,
(3) BCµ(H1(Ω), ε) := BCµ(H1(Ω), ‖·‖ε) with the norm ‖y‖µ,ε := ‖y‖µ,‖·‖ε

for ε > 0,
(4) BCµ(H1

s (Ω), 0) := BCµ(H1
s (Ω), ‖·‖0) with the norm ‖y‖µ,ε := ‖y‖µ,‖·‖0

for ε = 0.

For every ε ∈ [0, 1] and every ν ∈ N let Xε,ν,1 be the span of the vectors
wε,j , j = 1, . . . , ν and let Xε,ν,2 be the orthogonal complement of Xε,ν,1 in
L2(Ω) if ε > 0 and in L2

s(Ω) if ε = 0. Let Aε,ν,i be the restriction of Aε to
Xε,ν,i for i = 1, 2. Let Eε,νξ :=

∑ν
j=1 ξjwε,j , ξ ∈ Rν and Pε,ν,i be the orthogonal

projection of L2(Ω) onto Xε,ν,i, i = 1, 2 if ε > 0 and Pε,ν,i be the orthogonal
projection of L2

s(Ω) onto Xε,ν,i, i = 1, 2 if ε = 0.
Now we try to define the operator Γε = Γε,ν in the following way: for ξ ∈ Rν

and y in a suitable space of functions of exponential growth ζ with values in
H1(Ω),

Γε,ν(ξ, y)(t) = e−Aε,ν,1tEε,νξ +
∫ t

0

e−Aε,ν,1(t−s)Pε,ν,1g(y(s)) ds

+
∫ t

−∞
e−Aε,ν,2(t−s)Pε,ν,2g(y(s)) ds.

If φε(ξ): ]−∞, 0] → H1(Ω) is a fixed point of Γε,ν(ξ, · ), then φε(ξ) can be ex-
tended to a full trajectory of πε, with exponential growth ζ at −∞. The map
Λε will be defined as Λε: ξ 7→ φε(ξ)(0).

First of all, we must choose ζ in such a way that the operator Γε,ν is at least
well defined. To this end, we recall that, for every ε ∈ [0, 1] and every ν ∈ N

|e−Aε,ν,1tu|ε ≤ e−λε,νt|u|ε, u ∈ Xε,ν,1, t ≤ 0,

|e−Aε,ν,2tu|ε ≤ e−λε,ν+1t|u|ε, u ∈ Xε,ν,2, t > 0,

‖e−Aε,ν,1tu‖ε ≤ (λε,ν + 1)1/2e−λε,νt|u|ε, u ∈ Xε,ν,1, t ≤ 0,

‖e−Aε,ν,2tu‖ε ≤ ((λε,ν+1 + 1)1/2 + C1/2t
−1/2)e−λε,ν+1t|u|ε, u ∈ Xε,ν,2, t > 0.

Thus we are led to choose the exponent ζ ∈ ]λε,ν , λε,ν+1[. In that case we can
write Γε,ν(ξ, y) = Ξε,ν(ξ, g ◦ y), where

Ξε,ν(ξ, y)(t) = e−Aε,ν,1tEε,νξ + Kε,νy(t)
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and, for ξ ∈ Rν , y: ]−∞, 0] → L2(Ω) and t ≤ 0,

(3.2) Kε,νy(t) =
∫ t

0

e−Aε,ν,1(t−s)Pε,ν,1y(s) ds +
∫ t

−∞
e−Aε,ν,2(t−s)Pε,ν,2y(s) ds,

whenever the right hand side of (3.2) makes sense. The main properties of the
operator Ξε,ν , deduced from the estimates given above and from Theorem 2.2,
are stated in the following

Lemma 3.1. Let ε ∈ [0, 1], ν ∈ N and ζ ∈ ]λε,ν , λε,ν+1[ be arbitrary.
Then Ξε,ν maps Rν × BCζ(L2(Ω)) into BCζ(H1(Ω), ε) for ε > 0 and Ξε,ν

maps BCζ(L2
s(Ω)) into BCζ(H1

s (Ω), ε) for ε = 0. Moreover, for ε > 0 and
y ∈ BCζ(L2(Ω)) (resp. for ε = 0 and y ∈ BCζ(L2

s(Ω)))

|Kε,νy|ζ,ε ≤
(

1
ζ − λε,ν

+
1

λε,ν+1 − ζ

)
|y|ζ,ε,

and

‖Kε,νy‖ζ,ε ≤
(

(λε,ν + 1)1/2

ζ − λε,ν
+

(λε,ν+1 + 1)1/2

λε,ν+1 − ζ
+ C ′

1/2(λε,ν+1 − ζ)−1/2

)
|y|ζ,ε.

If λ0,ν < ζ < λ0,ν+1, εn → 0+, ξn → ξ0 in Rν and yn → y0 in BCζ(L2(Ω)),
where y0 ∈ BCζ(L2

s(Ω)), then, for all n large enough, λεn,ν < ζ < λεn,ν+1 and

‖Ξεn,ν(ξn, yn)− Ξ0,ν(ξ0, y0)‖ζ,εn → 0 as n →∞.

Now, as g is globally lipschitzian with a Lipschitz constant L̃, it follows that,
for a fixed ξ ∈ Rν , the map Γε,ν(ξ, · ) is globally lipschitzian on BCζ(H1(Ω), ε).
Its Lipschitz constant is

L̃

(
(λε,ν + 1)1/2

ζ − λε,ν
+

(λε,ν+1 + 1)1/2

λε,ν+1 − ζ
+ C ′

1/2(λε,ν+1 − ζ)−1/2

)
.

The problem is that the operator Γε,ν is not a contraction. In fact, its Lipschitz
constant cannot be made small by letting ν tend to +∞. In order to overcome
this difficulty, one usually procedes in the following way (see e.g. [8] or [16]): one
first finds some L∞-estimates for the attractors Aε, e.g. by using comparison
principles; then one cuts off the nonlinearity f outside a large interval of R. In
such a way the modified nonlinearity induces a globally lipschitzian Nemitskĭı
operator from H1(Ω) into H1(Ω). Since it can be shown that

‖Kε,νy‖ζ,ε ≤
(

1
ζ − λε,ν

+
1

λε,ν+1 − ζ

)
‖y‖ζ,ε,

the gap condition (3.1) easily implies that the Lipschitz constant of Γε,ν can
be made small by letting ν tend to ∞. The contraction principle then yields
the desired existence result. However, we do not find this approach completely
satisfactory, since the manifolds constructed in this way are inertial manifolds
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only with respect to the modified semiflows, and the latter are equal to the orig-
inal semiflows πε only on the attractor Aε but are different from πε on every
neighbourhood of it. We point out that these kind of difficulties are not due to
the particular technique we have chosen (the method of function of exponential
growth). In fact, even if alternative methods are used, e.g. the cone-squeezing
technique developed by J. Mallet Paret, G. Sell and other authors (see e.g. [16]),
the same difficulties appear as soon as one tries to exploit the contraction prin-
ciple.

Fortunately, these difficulties can be overcome by the use of an ingenious
idea due to Brunovský and Tereščák (see Theorem 4.1 in [3] and its proof).
This idea simply consists in working with a different, though equivalent, norm
on H1(Ω). More precisely, given positive numbers l and L, we introduce the
following equivalent norm

(3.3) |||u|||ε = L|u|ε + l‖u‖ε

on H1(Ω). Similarly as in [3] we now seek to choose the constants l and L in
such a way that the operator Γε is a uniform contraction with respect to the
norm ||| · |||ε. That this is possible follows from the following C1-cut-off-result for
Nemitskĭı operators:

Proposition 3.2. Let Ω be an open, bounded subset of R`, with Lipschitz
boundary. Let f ∈ C1(R → R) satisfy the growth estimate (1.5). If ` > 2,
assume, in addition, that the growth exponent β in (1.5) is subcritical , i.e. β <

(2∗/2) − 1, where, as before, 2∗ = 2`/(` − 2) > 2. Let l be an arbitrary positive
real number and B be an arbitrary bounded subset of H1(Ω). Then there exists an
open set U = U(l, B) ⊂ H1(Ω) including B, a positive real number L = L(l, B)
and a map g = g(l, B) ∈ C1(H1(Ω) → L2(Ω)) with f̂(u) = g(u) for u ∈ U and
such that g maps H1

s (Ω) into L2
s(Ω) and satisfies the estimates

sup
u∈H1(Ω)

|g(u)|ε < ∞,(3.4)

|g(u)− g(v)|ε ≤ L|u− v|ε + l‖u− v‖ε for u, v ∈ H1(Ω),(3.5)

and

(3.6) |Dg(u)v|ε ≤ L|v|ε + l‖v‖ε for u, v ∈ H1(Ω).

The key point in the proof of Proposition 3.2 is that, for all q > 2 such that
0 < `/2 − `/q < 1 and q ≥ 2(β + 1), f̂ is a C1-map from Lq(Ω) to L2(Ω).
Moreover, both |f̂(u)|L2 and |Df̂(u)|L(Lq(Ω)→L2(Ω)) are bounded on bounded
subsets of Lq(Ω). Thus there is a real positive constant M with |u|Lq < M for
u ∈ B. Now we can define the function g by g(u) := h(u)f̂(u) for u ∈ Lq(Ω),
where h(u) := φ(|u|Lq

q) and φ ∈ C1(R → R) is such that φ(x) = 1 if |x| ≤ Mq
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and φ(x) = 0 if |x| > (2M)q. Estimates (3.5) and (3.6) are an easy consequence
of the Gagliardo-Nirenberg and Young inequalities.

With this in mind, we can state our main existence result on inertial mani-
folds.

Theorem 3.3. Suppose that f ∈ C1(R → R) satisfies the growth condition
(1.5) and the dissipativness condition (1.4). Moreover, suppose that the eigen-
values of A0 satisfy the gap condition (3.1). Then there are an ε0 > 0 and an
open bounded set U ⊂ H1(Ω) such that, for every ε ∈ [0, ε0[, the attractor Aε of
the semiflow πε, bf lies in U .

Furthermore, there exists a globally Lipschitzian map g ∈ C1(H1(Ω) →
L2(Ω)) with g(u) = f̂(u) for u ∈ U .

Besides, there is a positive integer ν and for every ε ∈ [0, ε0[ there is a map
Λε ∈ C1(Rν → H1(Ω)) if ε > 0 and Λε ∈ C1(Rν → H1

s (Ω)) if ε = 0 such that

(3.7) Pε,ν,1 ◦ Λε = Eε,ν

and Λε(Rν) is an invariant manifold with respect to the semiflow πε,g.
Finally, there is an open set V ⊂ Rν such that for every ε ∈ [0, ε0[

Aε ⊂ Λε(V ) ⊂ U

and the set Λε(V ) is positively invariant with respect to the semiflow πε, bf .
The reduced equation on Λε(Rν) takes the form

(3.8) ξ̇ = vε(ξ), ξ ∈ Rν ,

where
vε: Rν → Rν , ξ 7→ −AεEε,νξ + Pε,ν,1g(Λε(ξ)).

Moreover, whenever εn → 0+ and ξn → ξ0 in Rν , then

(3.9) ‖Λεn
(ξn)− Λ0(ξ0)‖εn

+
ν∑

j=1

‖∂jΛεn
(ξn)− ∂jΛ0(ξ0)‖εn

→ 0

and

(3.10) |vεn
(ξn)− v0(ξ0)|Rν +

ν∑
j=1

|∂jvεn
(ξn)− ∂jv0(ξ0)|Rν → 0.

Sketch of the Proof. For ν ∈ N with λ0,ν+1 − λ0,ν > 0 define ην =
(λ0,ν+1 − λ0,ν)/5 and Iν = [λ0,ν + 2ην , λ0,ν + 3ην ]. It follows that

(3.11) sup
ζ∈Iν

(
1

ζ − λ0,ν
+

1
λ0,ν+1 − ζ

)
< Cν,1 := 6

1
λ0,ν+1 − λ0,ν

and

(3.12) sup
ζ∈Iν

(
(λ0,ν + 1)1/2

ζ − λ0,ν
+

(λ0,ν+1 + 1)1/2

λ0,ν+1 − ζ
+ C ′

1/2(λ0,ν+1 − ζ)−1/2

)
< Cν,2,
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where

Cν,2 := 3
(λ0,ν + 1)1/2

λ0,ν+1 − λ0,ν
+ 3

(λ0,ν+1 + 1)1/2

λ0,ν+1 − λ0,ν
+ 31/2C ′

1/2(λ0,ν+1 − λ0,ν)−1/2.

In view of (3.1) there is a C1 ∈ [0,∞[ and a strictly increasing sequence (νk)k∈N

in N such that

(3.13) Cνk,1 → 0 and Cνk,2 → C1 as k →∞.

Choose l such that 0 < l(C1 + 1) < 1/4. By Theorem 2.4 there is an ε with
0 < ε0 < 1 and a bounded set B1 in H1(Ω) such that for every ε ∈ [0, ε0] the
attractor Aε lies in B1. Let V0 be the Liapunov function of π0, bf defined by

V0:H1
s (Ω) → R, u 7→ (1/2)a0(u, u)−

∫
Ω

J0(x)F (u(x)) dx.

Here, as usual, F (s) :=
∫ s

0
f(p) dp, s ∈ R. Choose M0 ∈ ]0,∞[ so that V0(u) <

M0 for all u ∈ A0. By (1.4), it follows that

B2 := {u ∈ H1
s (Ω) | V0(u) ≤ M0}

is bounded. Define B := B1 ∪ B2 and let L = L(l, B) and U = U(l, B) and
g = g(l, B) be as in Proposition 3.2. By (3.13) there exists a k ∈ N such that

(3.14) LCνk,1 <
1
4

and lCνk,2 <
1
4
.

Fix such a k and set ν := νk. Since λε,ν → λ0,ν and λε,ν+1 → λ0,ν+1 as ε → 0+

and using (3.11) and (3.12), we may assume, by taking ε0 smaller if necessary,
that for every ε ∈ [0, ε0]

(3.15) sup
ζ∈Iν

(
1

ζ − λε,ν
+

1
λε,ν+1 − ζ

)
< Cν,1

and

(3.16) sup
ζ∈Iν

(
(λε,ν + 1)1/2

ζ − λε,ν
+

(λε,ν+1 + 1)1/2

λε,ν+1 − ζ
+ C ′

1/2(λε,ν+1 − ζ)−1/2

)
< Cν,2.

If ε > 0 endow H1(Ω) with the equivalent norm

|||u|||ε := L|u|ε + l‖u‖ε.

Write Zζ
ε := BCζ(H1(Ω), ||| · |||ε) with the corresponding norm

|||y|||ζ,ε = sup
t∈]−∞,0]

eζt|||y(t)|||ε.

If ε = 0 endow H1
s (Ω) with the equivalent norm

|||u|||0 := L|u|0 + l‖u‖0.
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Write Zζ
0 := BCζ(H1

s (Ω), ||| · |||0) with the corresponding norm

|||y|||ζ,0 = sup
t∈]−∞,0]

eζt|||y(t)|||0.

It follows that for ε ∈ [0, ε0], ζ ∈ Iν and y ∈ BCζ(L2(Ω), ε) (resp. for ε = 0 and
y ∈ BCζ(L2

s(Ω), 0))

(3.17) |||Kε,νy|||ζ,ε ≤ (1/2)|y|ζ,ε.

Now fix ζ and µ ∈ Iν with ζ < µ.
Since g:H1(Ω) → L2(Ω) is globally bounded, it follows that g ◦ y is glob-

ally bounded for every y ∈ BCζ(H1(Ω), ε), ε ≥ 0. Moreover, since g maps
H1

s (Ω) into L2
s(Ω) it follows that the nonlinear operator y 7→ g ◦ y maps Zζ

ε into
BCζ(L2(Ω), ε) for ε > 0 and it maps Zζ

0 into BCζ(L2
s(Ω), 0). Moreover,

|g(u)− g(v)|ε ≤ L|u− v|ε + l‖u− v‖ε = |||u− v|||ε for u, v ∈ H1(Ω)

so

(3.18) |g ◦ y − g ◦ w|ζ,ε ≤ |||y − w|||ζ,ε for y, w ∈ Zζ
ε .

It follows that the operator

Γε: Rν × Zζ
ε → Zζ

ε , (ξ, y) 7→ Ξε,ν(ξ, g ◦ y)

is well-defined. If 0 ≤ ε ≤ ε0 then, by (3.17) and (3.18), Γε is a uniform
contraction in the second variable with contraction constant 1/2. It follows that
for every such ε there is a uniquely defined map φε: Rν → Zζ

ε , such that

φε(ξ) = Γε(ξ, φε(ξ)) for ξ ∈ Rν .

Either proceeding directly, or by using the fiber contraction theorem as in [5] or
else by using the abstract results of [23 ] one proves that the map φε is of class
C1 as a map from Rν into Zµ

ε . Using Lemma 3.1. and the recursive formulas for
the derivatives of φε (cf. [23]), one can show that, if ξn → ξ0 in Rν and εn → 0+,
then

(3.19) |||φεn
(ξn)− φ0(ξ0)|||ζ,εn

→ 0 for n →∞,

and, for every ξ′ ∈ Rν ,

(3.20) |||Dφεn
(ξn)(ξ′)−Dφ0(ξ0)(ξ′)|||µ,εn

→ 0 for n →∞.

Now define, for 0 < ε ≤ ε0,

Λε: Rν → H1(Ω), ξ 7→ φε(ξ)(0),

and for ε = 0,
Λε: Rν → H1

s (Ω), ξ 7→ φε(ξ)(0)
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By what we have proved so far, Λε is well-defined, of class C1 and (3.7) and (3.9)
hold. It is well-known and easily proved that Λε(Rν) is an invariant manifold
of the semiflow πε,g which includes all orbits of solutions of πε,g defined for
t ≤ 0 and lying in Zζ

ε . Since g equals f̂ on U , it follows that every point in Aε

is contained in Λε(Rν). The reduced equation on the manifold Λε(Rν) clearly
takes the form (3.8) and (3.9) implies (3.10). Now let

K := {ξ ∈ Rν | V0(Λ0(ξ)) ≤ M0} = {ξ ∈ Rν | Λ0(ξ) ∈ B2}.

Since B2 is bounded and closed, it follows from (3.7) that K is bounded and
closed, i.e. compact. Define

V := {ξ ∈ Rν | V0(Λ0(ξ)) < M0}.

Thus V ⊂ K and V is open in Rν . Since Λ(K) ⊂ U and K is compact and U

is open in H1(Ω), it follows from (3.9), by choosing ε0 > 0 smaller, if necessary,
that

Λε(K) ⊂ U, ε ∈ [0, ε0].

Moreover, if ε0 > 0 is small enough, then

Λε
−1(Aε) ⊂ V, ε ∈ [0, ε0].

Set W := V0 ◦ Λ0: Rν → R. Then, for every ξ ∈ Λε
−1(U), we have

∇W (ξ) · v0(ξ) = DV0(Λ0(ξ))DΛ0(ξ)(v0(ξ)) = −|DΛ0(ξ)(v0(ξ))|20.

Since there are no equilibria u of π0, bf with V0(u) = M0, it follows that whenever
W (ξ) = M0, then DΛ0(ξ)(v0(ξ)) 6= 0. By the compactness of K we now obtain
that there is a δ > 0 such that ∇W (ξ) · v0(ξ) < −δ, whenever W (ξ) = M0.
Therefore (3.10) implies that, if ε0 > 0 is small enough, then ∇W (ξ)·vε(ξ) < −δ,
whenever W (ξ) = M0. This shows, that, for ε ∈ [0, ε0], the set V is positively
invariant for the equation (3.8) so the set Λε(V ) ⊂ U is positively invariant for
the semiflow πε, bf and Aε ⊂ Λε(V ). The theorem is proved. The complete details
can be found in [20]. �

4. An example: the sphere

We will now see that, for thin domains close to spheres, the spectral gap
condition (3.1) is satisfied, so we can prove existence of inertial manifolds.

Theorem 4.1. Suppose Ω has connected normal sections, regard Rk+1 as
isometrically imbedded into R`, let r ∈ [0,∞[ be arbitrary and assume that

G = Sk(r) := {x ∈ Rk+1 | 〈x, x〉 = r2}
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(i.e. G the k-dimensional sphere in R` of radius r centered at 0). Assume that

Cµ := sup
p∈Sk(r)

(1/µ(p))〈∇µ(p),∇µ(p)〉1/2 ≤ 1/(4r)2.

Under these assumptions the repeated sequence (λ0,j)j∈N of the eigenvalues of
the limit operator A0 satisfies the following ‘gap’ condition:

(4.1) lim sup
ν→∞

λ0,ν+1 − λ0,ν

(λ0,ν)1/2
> 0.

Sketch of the Proof. Set n := k + 1. By the results of Section 2, A0 is
equivalent to the operator Aµ defined by

D(Aµ) = H2(Sn−1(r)),

Aµu = −(1/µ) div(µ∇u) = −∆Sn−1(r)u− 〈(1/µ)∇µ,∇u〉.

Let (λj)j∈N be the repeated sequence of the eigenvalues of the operator
−∆Sn−1(r). Moreover, for ν ∈ N0, let λν denote the ν-th distinct eigenvalue
of −∆Sn−1(r). It is well known (see e.g. [4]) that

λν = r−2ν(ν + n− 2), for ν ∈ N.

Therefore we can find arbitrarily large gaps in the spectrum of ∆Sn−1(r). More
precisely, we have that

(4.2) lim sup
j→∞

λj+1 − λj

λ
1/2
j

= lim
ν→∞

λν+1 − λν

λ
1/2

ν

=
2
r
.

Now we observe that Aµ is a relatively bounded perturbation of −∆Sn−1(r). More
precisely, set A := −∆Sn−1(r) and, for u ∈ H1(Sn−1(r)), set

Bµu := −(1/µ)〈∇µ,∇u(p)〉,

so Aµ = A + Bµ. For u ∈ H2(Sn−1(r)), we have that

|Bµu|2L2 =
∫

Sn−1(r)

|〈µ−1∇µ,∇u〉|2 dHn−1 ≤ C2
µ

∫
Sn−1(r)

〈∇u,∇u〉dHn−1

= C2
µ

∫
Sn−1(r)

uAu dHn−1 ≤ C2
µ|u|L2 |Au|L2 .

It follows that, whenever δ > 0, we have

(4.3) |Bµu|L2 ≤ δ|Au|L2 +
C2

µ

4δ
|u|L2 for all u ∈ D(A).

Now let λ > 0 and let d(λ) be the distance of λ from the spectrum of A. Assume
that λI − A is invertible. Write L2 := L2(Sn−1(r)). It is well known (see e.g.
Theorem 3.17 in [13]) that a sufficient condition for λI−(A+Bµ) being invertible
is

|Bµ(λI −A)−1|L(L2,L2) < 1.
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In view of (4.3), for every δ > 0 we have

|Bµ(λI −A)−1|L(L2,L2) ≤ δ|A(λI −A)−1|L(L2,L2) +
C2

µ

4δ
|(λI −A)−1|L(L2,L2).

Observe that, since A is self-adjoint,

|(λI −A)−1|L(L2,L2) = sup
ν∈N

|λ− λν |−1 ≤ d(λ)−1

and

|A(λI −A)−1|L(L2,L2) = sup
ν∈N

|λν ||λ− λν |−1 ≤ sup
ν∈N

(1 + λ|λ− λν |−1)

≤ 1 + λd(λ)−1.

It follows that

|Bµ(λI −A)−1|L(L2,L2) ≤ δ(1 + λd(λ)−1) +
C2

µ

4δ
d(λ)−1.

So a sufficient condition for λI − (A + Bµ) being invertible is

δ(d(λ) + λ) +
C2

µ

4δ
< d(λ)

or equivalently

(4.4) δλ +
C2

µ

4δ
< (1− δ)d(λ) for some δ, 0 < δ < 1.

Using our assumption on Cµ and choosing δ := (8r)−1λ1/2 we see that (4.4) is
satisfied (and so λI −Aµ is invertible) whenever

(4.5) λ > 1/(4r)2 and d(λ) >
1
2r

λ1/2.

Now let ν > 1 be fixed. Then ν(ν + n − 2) > 1/4, so λν > 1/(4r)2. If λ ∈
]λν , λν+1[, then, in view of (4.5), λI −Aµ is invertible provided

λ− λν >
1
2r

λ1/2 and λν+1 − λ > λ1/2/2r.

Setting

ξν :=
1

8r2
+

(
1

64r4
+

λν

4r2

)1/2

and ην+1 := − 1
8r2

+
(

1
64r4

+
λν+1

4r2

)1/2

,

we see that, if λν + ξν < λν+1 − ην+1, then the interval

Iν := ]λν + ξν , λν+1 − ην+1[

is contained in the resolvent set of Aµ. An explicit computation shows that there
is a ν0 ∈ N such that for all ν ≥ ν0,

(4.6) |Iν | = (λν+1 − ην+1)− (λν + ξν) ≥ 1
3
(λν+1 − λν).
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Now all eigenvalues of Aµ larger than λν0+1 are contained in⋃
ν≥ν0+1

Jν , Jν := ]λν − ην , λν + ξν [ .

The conclusion follows from (4.2) and by noticing that

lim
ν→∞

λ
1/2

ν

(λν + ξν)1/2
= 1.

The details can be found in [21]. �
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