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EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS
FOR A NONLOCAL BOUNDARY VALUE PROBLEM

George L. Karakostas — P. Ch. Tsamatos

Abstract. Sufficient conditions are given for the existence of multiple pos-

itive solutions of a boundary value problem of the form x′′(t)+q(t)f(x(t)) =

0, t ∈ [0, 1], x(0) = 0 and x(1) =
R β

α x(s)dg(s), where 0 < α < β < 1. A

weaker boundary value problem is used to get information on the corre-
sponding integral operator. Then the results follow by applying the Kras-

nosel’skĭı fixed point theorem on a suitable cone.

1. Introduction

We deal with the existence of multiple positive solutions of a second order
ordinary differential equa tion of the form

(1.1) x′′(t) + q(t)f(x(t)) = 0, t ∈ [0, 1],

which satisfy the conditions

x(0) = 0,(1.2)

x(1) =
∫ β

α

x(s) dg(s),(1.3)

where 0 < α < β < 1 and g: [α, β] → R is an increasing function.
Nonlocal boundary value problems of the form (1.1)–(1.3) constitute a natu-

ral extension of two-point, three-point and multi-point boundary value problems,
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studied extensively in the litereture. We refer to Bitsadze ([3]) and Bitsadze and
Samarskĭı ([4]) from the early sixties, followed by a great number of authors, see,
e.g. [11]–[13], [15]–[17], [21]–[23]. On the other hand the problem of the existence
of positive solutions for various types of boundary value problems is recently the
subject of several papers (see e.g. [1], [2], [5]–[10], [14]–[18], [23], [24]). All these
works concern problems with restrictions on the slope of the solutions (see e.g.
[14]–[17]) and problems with restrictions on the solutions themselves. And as the
first class is concerned the things seem to be simple, because some rather mild
conditions may guarrantee the existence of a fixed point of the corresponding in-
tegral operator, which is positive. The situation becomes interesting in the case
which is discussed in this paper: The integral condition (1.3) concerning values
of the solution does not lead to a positive integral operator and an application
of the Krasnosel’skĭı fixed point theorem on cones is not directly applicable. To
overcome this problem we consider a new representation of the operator by using
the (seemingly weaker) boundary value problem of the form

u′′(t) + q(t)f(x(t)) = 0, t ∈ [0, 1],

u(0) = 0,

u(1) = u(ξ)g(β),

where x ∈ C([0, 1], R) and ξ ∈ [α, β] are given. Then we find it more convenient
to apply the well known fixed point theorem due to Krasnosel’skĭı [19], which
states as follows:

Theorem 1.1. Let B a Banach space and let K be a cone in B. Assume Ω1,
Ω2 are open subsets of B, with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let

A: K ∩ (Ω2 \ Ω1) → K

be a completely continuous operator such that either

‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2

or ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (Ω2 \ Ω1).

One of the most advantage of this theorem is that it can help to estimate the
maximum values of the solutions. Moreover it can provide information on the
least number of the solutions of such problems by applying it repeatedly. The
latter works in the same way as the classical Bolzano–Weierstrass Theorem may
give information on the number of zeros of continuous functions on intervals of
the real line.

In this paper we apply Theorem 1.1 and obtain existence results for one,
two and three positive solutions of the boundary value problem (1.1)–(1.3). Our
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motivations are the problems examined mainly in [15]–[17], [24] and especially
in [23]. We among others extend the results given in [23].

The paper is organized as follows: Section 1 contains the basic preliminaries
and some very useful lemmas. These lemmas imply several corollaries. The main
results are given in Section 3, where two applications are also presented.

2. Preliminaries and some lemmas

In the sequel we shall denote by R the real line and by I the interval [0, 1].
Then C(I) will denote the space of all continuous functions x: I → R. Let C0(I)
be the space of all continuous functions x: I → R, with x(0) = 0. The spaces
C(I) and C0(I) become Banach spaces when they are furnished with the usual
sup-norm ‖ · ‖.

For the function g we make the following assumption:

(A1) g: [α, β] → R is an increasing function such that β(g(β)− g(α)) < 1.

It is clear that without loss of generality we can (and shall) assume that
g(α) = 0.

Lemma 2.1. If x ∈ C0(I) is a concave function satisfying condition (1.3)
and g is a function satisdying (A1), then we have

(i) x(t) ≥ 0, t ∈ I and
(ii) x(t) ≥ µ‖x‖, t ∈ [α, 1], where

µ := min{γ, 1− β, (β − α)γg(β)} and γ := min{α, 1− β, (1− β)/(1− α)}.

(Notice that 0 < µ < 1.)

Proof. (i) If x(1) ≥ 0, then, by the concavity of x and the fact that x(0) =
0, we have x(t) ≥ 0, t ∈ I.

Assume that x(1) < 0. From (1.3), (A1) and the mean value theorem, it
follows that there is ξx ∈ [α, β] such that x(1) = x(ξx)g(β) (notice that g(α) = 0).
Moreover, since g(β) > 0 and x(1) < 0, we have x(ξx) < 0. This and g(β)β < 1
lead to

x(1) = g(β)x(ξx) >
1
β

x(ξx) ≥ 1
ξx

x(ξx),

which contradicts the concavity of x.
(ii) First we shall prove that, if x is a concave function in C0(I), then

x(s) ≥ γ‖x‖, s ∈ [α, β].

Indeed let t0 ∈ I be such that ‖x‖ = x(t0). We distinguish three cases: (Notice
that x ≥ 0 by the argument we proved in (i).)
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(1) β ≤ t0. Then s ≤ t0, for every s ∈ [α, β] and, since x is a concave
function, we have sx(t0) ≤ t0x(s). This implies α‖x‖ ≤ x(s) and hence

γ‖x‖ ≤ x(s).

(2) α ≤ t0 ≤ β. If s ∈ [α, t0] then again, following case (1), we obtain
α‖x‖ ≤ x(s).

Let s ∈ (t0, β]. Then observe that

1− s

1− t0
≤ x(s)− x(1)

x(t0)− x(1)
,

because of the concavity of the function x. Thus we have

(1− s)x(t0) ≤ (1− t0)x(s) + (1− s− 1 + t0)x(1)

= (1− t0)x(s) + (t0 − s)x(1) ≤ (1− t0)x(s),

since t0 ≤ s. This implies that

(1− β)x(t0) ≤ (1− α)x(s) or
1− β

1− α
x(t0) ≤ x(s)

and finally, γ‖x‖ ≤ x(s).
(3) t0 < α. Then t0 < s for every s ∈ [α, β] and, following the same argu-

ments as in case (2) above, we obtain

(1− s)x(t0) ≤ (1− t0)x(s) or (1− β)‖x‖ ≤ x(s)

and so γ‖x‖ ≤ x(s).
Now, in order to show that x(s) ≥ µ‖x‖, s ∈ [α, 1], we distinguish the cases

x(β) < x(1) and x(1) ≤ x(β).
If x(β) < x(1), then by the concavity, for every s ≥ β, we have x(β) ≤ x(s).

Therefore, by the above first part of our proof, for all s ∈ [α, 1] it holds

x(s) ≥ min{min{x(s) : s ∈ [α, β]},min{x(s) : s ∈ [β, 1]}}
≥ min{γ‖x‖, x(β)} = γ‖x‖.

If x(1) ≤ x(β) then again, by the concavity, we have x(s) ≥ x(1), for every
s ∈ [β, 1]. Therefore, from (1.3), for any such s we have

x(s) ≥
∫ β

α

x(r) dg(r) ≥ γ‖x‖(β − α)g(β).

Hence in any case it holds x(s) ≥ µ‖x‖, s ∈ [α, 1] and the proof is complete. �

To proceed we need give our basic assumptions on the functions f and q. We
shall do that by presenting also the appropriate remarks and giving the lemmas
which are needed in the sequel. Assume that

(A2) f : R → R, q: [0, 1] → [0,∞) are continuous functions, with f(x) ≥ 0,
when x ≥ 0 and q is not identically zero on [β, 1].
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It is easy to see that the problem (1.1)–(1.3) is equivalent to the operator
equation

x = Ax, x ∈ C0(I),

where A is the completely continuous operator defined by

(2.1) Ax(t) := δt

∫ 1

0

(1− s)q(s)f(x(s)) ds

− δt

∫ β

α

∫ r

0

(r − s)q(s)f(x(s)) ds dg(r)−
∫ t

0

(t− s)q(s)f(x(s)) ds,

where we have set
δ :=

1

1−
∫ β

α
s dg(s)

(> 0).

Now define the set K := {x ∈ C0(I) : x is concave and (1.3) holds}, and observe
that it is a cone in C0(I). By the first argument of Lemma 2.1 the cone K
consists of nonnegative functions.

Lemma 2.2. If the functions f , q, g satisfy assumptions (A1), (A2), then it
holds

AK ⊂ K.

Proof. Fix a x ∈ K. Then we have f(x(t)) ≥ 0 for all t. It can also be
easily seen that

(Ax)′′(t) = −q(t)f(x(t)), t ∈ I,

and (Ax)′′ ≤ 0. This implies that Ax is a concave function. Moreover, it is clear
that Ax satisfies the boundary conditions (1.2), (1.3), which proves the result.�

Now we assume:

(A3) There exist ν > 0 with

δν

∫ 1

0

(1− s)q(s)ds ≤ 1

and N > 0 such that

f(u) ≤ νN for all u ∈ [0, N ]

or, equivalently,

fs(N) := sup
0≤u≤N

f(u) ≤ νN.

Lemma 2.3. For all x ∈ K, with ‖x‖ = N , we have ‖Ax‖ ≤ ‖x‖.

Proof. Indeed, if ‖x‖ = N then 0 ≤ x(s) ≤ N for every s ∈ I. (Keep in
mind Lemma 2.1(1).) Then, by (A3) and (2.1), for every t ∈ I, we have

Ax(t) ≤ δt

∫ 1

0

(1− s)q(s)f(x(s)) ds ≤ δtν‖x‖
∫ 1

0

(1− s)q(s) ds ≤ ‖x‖. �
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Next we set
fi(w) := inf{f(z) : z ∈ [µw, w]},

where µ is the positive number defined in Lemma 2.1. We suppose that:

(A4) There exist λ > 0, with

(2.2) 1− βg(β) ≤ λα

∫ 1

β

(1− s)q(s) ds

and M > 0 such that

(2.3) fi(M) ≥ λM.

Lemma 2.4. For all x ∈ K, with ‖x‖ = M , we have ‖Ax‖ ≥ ‖x‖.

Proof. Fix x ∈ K with ‖x‖ = M . Then, from Lemma 2.1, we have

µ‖x‖ ≤ x(t) ≤ ‖x‖, t ∈ [α, 1]

and therefore it holds

(2.4) f(x(s)) ≥ fi(‖x‖), s ∈ [β, 1].

Now observe that the function u(t) := Ax(t), t ∈ I is the unique solution of the
boundary value problem

u′′ + q(t)f(x(t)) = 0, t ∈ I, u(0) = 0, u(1) =
∫ β

α

u(s) dg(s).

We let

E(u) :=
{

ξ ∈ [α, β] :
∫ β

α

u(s) dg(s) = u(ξ)
∫ β

α

dg(s) = u(ξ)g(β)
}

be the set of all mean values of u with respect to the (Borel) measure generated
by the function g. Obviously E(u) is a compact set. Consider the point

ξu := min E(u).

It is clear that u solves the boundary value problem

y′′ + q(t)f(x(t)) = 0, t ∈ I, y(0) = 0, y(1) = y(ξu)g(β)

and so, u is the function given by the closed formula

u(t) = ζut

∫ 1

0

(1− s)q(s)f(x(s)) ds

− ζutg(β)
∫ ξu

0

(ξu − s)q(s)f(x(s)) ds−
∫ t

0

(t− s)q(s)f(x(s)) ds

for t ∈ I, where

ζu :=
1

1− ξug(β)
.
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Notice that α ≤ ξu ≤ β and, in view of (A1), ζu > 0. Then we have

(Ax)(ξu) =u(ξu)

= ζuξu

∫ 1

0

(1− s)q(s)f(x(s)) ds

− ζuξug(β)
∫ ξu

0

(ξu − s)q(s)f(x(s)) ds−
∫ ξu

0

(ξu − s)q(s)f(x(s)) ds

= ξuζu

∫ 1

0

(1− s)q(s)f(x(s)) ds− ζu

∫ ξu

0

(ξu − s)q(s)f(x(s)) ds

= ξuζu

∫ 1

0

q(s)f(x(s)) ds− ξuζu

∫ 1

0

sq(s)f(x(s)) ds

− ξuζu

∫ ξu

0

q(s)f(x(s)) ds + ζu

∫ ξu

0

sq(s)f(x(s)) ds

= ξuζu

∫ 1

ξu

(1− s)q(s)f(x(s)) ds + ζu(1− ξu)
∫ ξu

0

sq(s)f(x(s)) ds.

Taking into account (2.4), (2.3) and (2.2) we finally obtain that

(Ax)(ξu) ≥ ζuα

∫ 1

β

(1− s)q(s)λ‖x‖ ds

= λζuα‖x‖
∫ 1

β

(1− s)q(s) ds ≥ ζu(1− βg(β))‖x‖ ≥ ‖x‖.

Clearly this argument implies the result. �

Now we assume that the quantities

T0 := lim
u→0

f(u)
u

and T∞ := lim
u→∞

f(u)
u

exist. The previous lemmas imply the following corollaries:

Corollary 2.5. If T0 = 0, then there exists m0 > 0 such that for every
m ∈ (0,m0] and for every x ∈ K, with ‖x‖ = m, we have ‖Ax‖ ≤ ‖x‖.

Proof. Let ε > 0 be such that

δε

∫ 1

0

(1− s)q(s) ds ≤ 1.

Then, since T0 = 0, there exists m0 > 0 such that for every u ∈ (0,m0] we
have f(u) ≤ εu. Let now m ∈ (0,m0] be fixed. For every u ∈ (0,m] we have
f(u) ≤ εu ≤ εm. Thus assumption (A3) is valid with ν := ε and N := m. So,
Lemma 2.3 applies. �
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Corollary 2.6. If T∞ = ∞ then there exists H0 > 0 such that, for every
H ≥ H0 and for every x ∈ K, with ‖x‖ = H, we have ‖Ax‖ ≥ ‖x‖.

Proof. Choose R > 0 so that

1− βg(β) ≤ Rα

∫ 1

β

(1− s)q(s) ds.

Since T∞ = ∞, there is a H1 > 0 such that for every u ≥ H1 we have f(u) ≥
Ru/µ. Set H0 := H1/µ. Then for any H ≥ H0 we have µH ≥ H1. So, if
u ∈ [µH, H] then u ≥ H1. Hence

f(u) ≥ 1
µ

Ru ≥ RH.

Therefore
fi(H) ≥ RH.

Hence assumption (A4) is valid with λ := R and M := H, and Lemma 2.4
applies. �

Corollary 2.7. If T0 = ∞ then there exists h0 > 0 such that, for every
h ∈ (0, h0) and for every x ∈ K, with ‖x‖ = m, we have ‖Ax‖ ≥ ‖x‖.

Proof. Choose R > 0 so that

1− βg(β) ≤ Rα

∫ 1

β

(1− s)q(s) ds.

Since T0 = ∞, there is a h1 > 0 such that, for every u ∈ (0, h1], we have
f(u) ≥ Ruµ. Set h0 := µh1. Then for any h ∈ (0, h0] and u ∈ [µh, h] we have
0 < u ≤ h ≤ h0 = µh1 < h1 and thus

f(u) ≥ 1
µ

Ru ≥ Rh.

Therefore
fi(h) ≥ Rh.

So, assumption (A4) is valid with λ := R and M := h, and Lemma 2.4 applies.�

Corollary 2.8. If T∞ = 0, then there exists D0 > 0 large as we want such
that, for every x ∈ K, with ‖x‖ = D0, we have ‖Ax‖ ≤ ‖x‖.

Proof. Let ε > 0 be such that

δε

∫ 1

0

(1− s)q(s) ds ≤ 1.

We distinguish two cases:
(1) Assume first that f is bounded. Then there is a b > 0 such that f(u) ≤ b,

for all u ≥ 0. We set D0 := b/ε. Then, for all v ≤ D0, it holds f(v) ≤ b = εD0.
Hence fs(D0) ≤ εD0.
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(2) If f is not bounded then, since T∞ = 0, there is D0 so large as we want
such that fs(D0) = f(D0) ≤ εD0.

In any case, assumption (A3) holds with ν := ε and N := D0. Finally,
Lemma 2.3 applies. �

3. Main results

Now it is time to state and prove our main results.

Theorem 3.1. Consider the functions f , q, g satisfying the assumptions
(A1), (A2) and moreover, one of the following statements:

(i) (A3) and (A4),
(ii) (A3) and T0 = ∞,
(iii) (A3) and T∞ = ∞,
(iv) (A4) and T0 = 0,
(v) (A4) and T∞ = 0,
(vi) T0 = 0 and T∞ = ∞,
(vii) T0 = ∞ and T∞ = 0.

Then the boundary value problem (1.1)–(1.3) admits at least one positive solution.

Proof. The result of the theorem is easily obtained if we apply Theorem 1.1
to the completely continuous operator A on the cone K and use Lemmas 2.3
and 2.4 if (i) holds, Lemma 2.3 and Corollary 2.7 if (ii) holds, Lemma 2.3 and
Corollary 2.6 if (iii) holds, Lemma 2.4 and Corollary 2.5 if (iv) holds, Lemma 2.4
and Corollary 2.8 if (v) holds, Corollaries 2.5 and 2.6 if (vi) holds, and Corollar-
ies 2.7 and 2.8 if (vii) holds. In all cases we keep in mind Lemma 2.2. �

Remark 1. In any case the application of Theorem 1.1 provides information
on the norm of the fixed points, namely of the maximum value of the correspond-
ing solution of the problem. For instance, in case (i) the norm of the solution
lies in the interval (min{M,N},max{M,N}).

Theorem 3.2. Assume that the functions f , q, g satisfy the assumptions
(A1)–(A4). Moreover, let one of the following statements holds:

(i) M < N and T0 = 0,
(ii) M < N and T∞ = ∞,
(iii) N < M and T0 = ∞,
(iv) N < M and T∞ = 0.

Then the boundary value problem (1.1)–(1.3) admits at least two positive solu-
tions. (In any case the remark of Theorem 3.1 keeps in force.)

Proof. As in the proof of Theorem 3.1, we apply (twice) Theorem 1.1 on
the completely continuous operator A on the cone K and use Lemmas 2.3, 2.4 in
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connection with Corollary 2.5 if (i) holds, Corollary 2.6 if (ii) holds, Corollary 2.7
if (iii) holds and Corollary 2.8 if (iv) holds. Again, keep in mind Lemma 2.2. �

Theorem 3.3. Consider the functions f , q, g satisfying the assumptions
(A1)–(A4), and moreover, one of the following:

(i) M < N , T0 = 0 and T∞ = ∞,
(ii) N < M , T0 = ∞ and T∞ = 0.

Then the boundary value problem (1.1)–(1.3) admits at least three positive solu-
tions. (In any case the remark of Theorem 3.1 keeps in force.)

Proof. The result follows, as in the previous theorems. We use now Lem-
mas 2.3, 2.4 in connection with Corollaries 2.5, 2.6 if (i) holds and Corollaries 2.7,
2.8, if (ii) holds. �

Remark 2. Theorem 1 in [23] deals with the cases (vi) and (vii) of The-
orem 3.1 above. Moreover, the three-point boundary condition used in [23] is
a special form of the general boundary condition (1.3). This shows that Theo-
rem 1 of [23] is a special case of our Theorem 3.1. This claim is also shown in
the following example.

Example 1. Consider the boundary value problem

x′′(t) +
1
2
(x(t)− 2)2ex(t)−1 = 0, t ∈ I,(3.1)

x(0) = 0 and x(1) = 2x(0.25),(3.2)

which is a very special case of the problem (1.1)–(1.3). Here we have

g(s) =

{
0 if 1/8 ≤ s < 1/4,

2 if s = 1/4.

In this problem we have f(u) = (u − 2)2eu−1, u ∈ [0,∞). To set it in our
situation we let q(t) = 1/2, α := 1/8, β := 1/4, δ := 2, γ := 1/8 and µ := 1/32.
It is obvious that the function f does not satisfy the assumption (i) or (ii) of
Theorem 1.1 in [23]. So this theorem does not imply any existence result for the
boundary value problem (3.1)–(3.2).

Consider a N such that 0 < N < 2. Then, taking into account that f(u)
decreases for u < 2, it is easy to see that fs(N) = 4/e. Moreover, since∫ 1

0
q(s)(1 − s) ds = (1/2)

∫ 1

0
(1 − s) ds = 1/4, we must have that ν ≤ 2. Choose

ν = 2. Thus for N := 2/e we have fs(N) = 4/e ≤ νN . Hence assumption (A3)
is satisfied.

On the other hand, since
∫ 1

β
q(s)(1 − s) ds = (1/2)

∫ 1

1/4
(1 − s) ds = 9/64,

we can get λ := 256/9. So, for instance, if M := 224 then it holds (µM −
2)2eµM−1 ≥ λM . Since the function f(u) increases in the interval [2,∞), we
have fi(M) = f(µM) = (µM − 2)2eµM−1 ≥ λM . Hence assumption (A4) is



Existence Results for a Nonlocal BVP 119

satisfied. Moreover, if we choose h := 0.05 then it holds (h − 2)2eh−1 ≥ λh

and hence assumption (A4) is also satisfied. Finally we observe that T0 = ∞.
Therefore, since assumptions (A1), (A2) are obviously satisfied by Theorem 3.2
(case (iii)), it follows that the boundary value problem (3.1)–(3.2) admits at least
two positive solutions x1, x2 such that

0.05 < ‖x1‖ <
2
e

< ‖x2‖ < 224.

The lower bound for ‖x1‖ can be found via the arguments in the proof of Corol-
lary 2.7.

Example 2. Consider the continuous function

f(u) :=


4u2 if u ≤ 15.2,

924.16 if 15.2 ≤ u ≤ 1848.32,
25

92416
u2 if 1848.32 ≤ u,

and formulate the boundary value problem

x′′(t) + f(x(t)) = 0, t ∈ I,(3.3)

x(0) = 0 and x(1) = x(0.1) + 0.9x(0.5).(3.4)

Here we set

g(s) =


0 if 0 ≤ s ≤ 0.1,

1 if 0.1 < s < 0.5,

1.9 if 0.5 ≤ s ≤ 1.

For the function f we observe that it holds

T0 = 0 and T∞ = ∞.

Also we have

δ :=
1

1− 0.1− 0.9× 0.5
=

100
45

, γ := 0.1, µ := 0.076.

Choose
ν := 0.5, λ := 4,

as well as

M := 200, N := 1848.32, m0 := 0.125 and H0 := 2560000.

Then observe that assumptions of case (i) of Theorem 3.3 are satisfied and hence
we conclude that problem (3.3)–(3.4) admits at least three positive solutions x1,
x2, x3. Using the arguments in the proofs of Corollaries 2.5 and 2.6 we can
immediately see that these solutions satisfy

0.125 < ‖x1‖ < 200 < ‖x2‖ < 1848.32 < ‖x3‖ < 2560000.



120 G. L. Karakostas — P. Ch. Tsamatos

Acknowledgments. The authors would like to express their thanks to the
referee for his/her comments on the last example of the paper.

References

[1] R. P. Agarwal and D. O’Regan, Positive Solutions of Differential, Difference and
Integral Equations, Kluwer Academic Publishers, Dordrehht, 1999.

[2] V. Anuradha, D. D. Hai and R. Shivaji, Existence results for superlinear semiposi-

tone BVP’s, Proc. Amer. Math. Soc. 124 (1996), 757–763.

[3] A. V. Bitsadze, On the theory of nonlocal boundary value problems, Soviet Math. Dock.
30 (1964), 8–10.
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