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MULTIPLICITY OF SOLUTIONS
FOR NONHOMOGENEUOUS NONLINEAR ELLIPTIC
EQUATIONS WITH CRITICAL EXPONENTS

NORIMICHI HIRANO

ABSTRACT. Let N > 3 and © C RY be a bounded domain with a smooth
boundary 92. We consider a semilinear boundary value problem of the
form

—Au=u?"2u+f inQ,
P) w>0 in ©,
u=20 on 0L,

where f € C(Q) and 2* = 2N/(N — 2). We show the effect of topology of
Q on the multiple existence of solutions.

1. Introduction

Let N > 3 and Q C R be a bounded domain with a smooth boundary 99.
In this paper we consider the existence and multiplicity of solutions of problem

—Au=u* 2u+f inQ,
(P) u>0 in Q,
u=0 on 01,
where 2* = 2N/(N —2) and f € C(Q) with f 0 and f > 0 on .
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We denote by (Pg) the problem (P) with f # 0. Problem (P) is a simplified
model of problems occur in physics and geometry, and the existence and nonex-
istence of solutions of problem (P) has been studied by many authors in the last
decade. The difficulty to treat this problem is caused by the lack of compactness.
Pohozaev ([12]) proved that problem (Pg) has no nontrivial solution when the
domain €2 is star-shaped. On the other hand, the existence of a nontrivial radial
solution of problem (Py) was established by Kazdon and Warner ([10]) in the
case that ) is an annulus. In the case that domain 2 has nontrivial topology, the
existence of solutions for (Pg) was established by Bahri and Coron ([2]). These
results show that the shape of the domain 2 is deeply related to the existence of
solutions of (P), and it comes of interest to study the effect of the topology of
for the multiplicity of solutions of problem (P). In [14], Rey proved that problem
(P) has cat(£2) + 1 solutions when || f||12 is sufficiently small. (See also Cao and
Chabrowski [5]). In the present paper, we establish a multiplicity result using
the homology groups of €.

‘We now state our main result:

THEOREM 1.1. There exists a residual subset D C C?(Q) and g9 > 0 such
that for each f € D with f 20, f >0 on Q and |f|()(§) < g9, problem (P) has
at least Y152 odim H,(Q2) + 1 solutions.

2. Preliminaries

Throughout the rest of this paper, cg,c1,..., and mq,ms,... stands for
various constants independent of (z,a) € Q x (1,00). For simplicity, we put
H = H(Q). For each domain U C R¥, we denote by | - |, the norm of L4(U),
q > 1. We put

DYRY) = {v e L¥ (RY) : |Vu|, € L2(RM)}.

For each v € DY(RY), we put [[v]|> = [ |Vv|?. The symbol | - || is also used
to denote the norm of H defined by ||v]|? = |Vv|3 for v € H. (-, ) stands
for the inner product in H. B,.(z) C H stands for the open ball centered at
r € H with radius r > 0. For each normed space X, a subset A C X and
r € X, we put d(A,x) = inf{||lz —y|| : y € A}. For subspaces Y,Z of X, we
denote by D(Y, Z) the distance of two spaces Y and Z. That is D(Y,Z) =
sup{d(Y,z) : z € Zwith ||z|]] < 1}. For each d > 0, Q4 stands for the set
Qg ={z € Q:d(0Q,z) < d}. For each a € R and each functional F: H — R,
we denote by F, the set F, = {v € H : F(v) < a}. We call a real number d
a critical level of a functional F' if there exists a sequence {v,} C H such that
lim,, o F(v,) = d and lim,_ ||[VF(v,)|| = 0. For a pair of topological space
(X,Y) with Y C X, we denote by H,(X,Y) the relative singular homology
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groups (cf. Spanier [15]). For two topological space X,Y, we write X =Y when
X and Y are of the same homotopy type. We define a functional I on H by

(2.1) I(u) = %/Q |Vl — 2—1>‘</Q|uJr

where u™ () = max{0,u(z)} for z € Q. The solutions of (Py) correspond to

o*
)

critical points of functional I. Let (P ) be the problem defined by

—Au = |[u|* 2u for u € DY(RV),
(Peo)

u>0 on RV,

We denote by I the functional on D!(RY) defined by (2.1) with Q = R¥.
Then each critical point of functional I°° is a solution of problem (P.). For
each (z,a) € RN x (1,00), we put

(N-2)/2
(x)=m S —
Hza) 1+ a?|z — 2|2

where m = (N(N —2))(V=2/4_ Tt is known that each u, ,) is a critical point of

I*°. By the invariance of the norm of D!(R") under translation and scaling
(2.2) u— ugr(z) = RN w(z/R) for ue D'(RYN), R>0,

we have that each u. ) have the same critical value. We put ¢ = I*°(u; q) for
(2,a) € RN x (0,00). We also set
2 }

S— {v € H\{0} :/QWUP :/Q|v+

It is easy to see that if v € H satisfies vt # 0, there exists a unique positive
number ¢ such that tv € S. It is also known that I(v) > ¢ for all v € S (cf. [2]).
The following concentrate compactness lemma play an important role for our

argument.

LEMMA 2.1 (cf. Bahri and Coron [2], Passarero [11]). Let {v,} C S such
that lim,, o I(v,) = c. Then there exist {a,} C RT and {z,} C Q such that

lim,, o @y, = 00 and limy, . ||V — Uz, 0[] = 0.

Since 0f) is smooth, we can choose 0 < dg < 1 such that for each z € Q with
d(0R2, z) < do, there exists a unique point y € 9Q such that |z — y| = d(99Q, x).
We put d(z) = min{d(9Q, z),dp} for each z € Q. For each p > 0, we put

I(p)
(p)

{(#,a) € 2 x (1,00) : d(2) - a = p},
{(z,a) € Q x (1,00) : d(2) - a > p}.
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Let n > 2 be an integer and ¢ € C°°([0,00),[0,1]) be a function such that
plx)=1forxz €[0,1—-1/n], —2n < ¢'(z) <0on [1 —1/n,1] and ¢(x) = 0 for
x € [1,00). For each (z,a) € Q x (1,00), we define a function v(, ,) € H by

r—z

V(z,a)(T) = w((M>U(27a)(x) for x € Q.

Then by the invariance of the value of I under the scaling (2.2), we have that
I(v(z,0)) = I(v(zr,ar)) for (2,0),(2',a") € Q x (1,00) with d(z)a = d(z")a’. We
also have from the definition that

(2.3) » 1)im lv(z,a) — U(z,a)ll =0 for each z € Q.
For z = (21,... ,2,) € RN and a € (1,00), we consider the eigenvalue problem
(24) —Aw = Mg(u(z,a))wv w e Dl(RN)

where g(t) = (2*—1)[t*|? =2 for t € R. Since u(, 4 is a solution of problem (Ps),
it is obvious that p_; = 1/(2* — 1) is an eigenvalue of (2.4) with eigenfunction
U(z,q)- 1t is also known that p_; is the unique eigenvalue of problem (2.4)
satisfying u < 1, and p—; is simple. We put

T(z,a) = Span{u(o,z,a)u cee 7v(N,z,a)}

where
I ~m(N —2) a™N Y21 — a?|z — )
U0a)(T) = Grtew) = T T = D
b a(N+2)/2 (xz — Zi)

i,2,a =57 UWUz,a) — — N -2 3
Wirzi) (¥) = oty = ~m(N = 2) G
for 1 <4 < N. Then recalling that each u, o) is a solution of problem (P),
we have by differentiating (Poo) by #1,... ,2n and a that each element of T, ,)
is an eigenfuction of problem (2.4) corresponding to the eigenvalue g = 1. We
denote by E((;i) and Eég)a) the subspaces of D*(RV) spanned by eigenfunctions

corresponding to the eigenvalues 1 and 1, respectively. We also put E((j()l) =

(E((;{)l) U E((S)a))l. Here u L v implies that [ (Vu, Vo) =0 for u,v € DY(RY).
Then one can verify easily that for each (z,a) €  x (1, 00),

(2.5) (—Av — g(u(z,q))v,2) =0

for all v € E((j()l) and z € E((z_()l) & E((S)a). It is known that the following lemma
holds.
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LEMMA 2.2 (cf. [8]).
(1) There exists 1 > 0 such that for each (z,a) € RN x (1, 00),

(2.6) (—Av — g(u(z,q))v,v) > ,ul/ g(u(z’a))v2 for allv e E((jt)l)
RN ’
(2) Tizo) = E((S)a) for (z,a) € Qx (1,00). That isv € DY(RY) is a solution
of problem
(2.7) —Av = g(u(z,q))v

if and only if v € T(; q)-

In case that |f|s ) is small, the existence of a solution of problem (P) near
the origin is known. That is

LEMMA 2.3 (cf. [6]). There exists g > 0 and Cy > 0 such that for each
feC) with f >0 and |f|C(§) < €9, there exists a unique solution uy € H of

(P) satisfying |uo|cr @) < Colfle) and
1 1 *
(28) Cco = /Q <2|V’LL0|2 — 27|UO|2 — qu) < g

PrOOF. We give a sketch of the proof. Let A1 be the first eigenvalue of
eigenvalue problem
—Av=Xv forveH.

Fix A € (0,\;). Let h be a truncation function of the mapping t — (t+)2 !
defined by h(t) = |t ! for t € (—oo,to] and h(t) = Xt for t > to where tg
satisfies t2 =2 = X. Then since |h(t)] < A|¢|, we have by a standard argument
that there exists a unique positive solution ug of problem

—Au=h(u)+ f forue Hj(Q).

It is easy to see that ||ug]] < C|f|2 for some C > 0. It also follows, by the
Schauder estimate, that there exists Cp > 0 such that |ug|c1 gy < Colflo@m) for
each f € C(f2). Then, choosing ¢ sufficiently small, we have that |u0|c(§) <t
for f € C(Q) with |f|o) < o- Then since h(t) = [t|2" ! for 0 < t < to, we
have that ug is a solution of problem (P). O

Let f € C(Q) with f £ 0, f > 0 on 2 and |f|C@) < €p, and ug be the
solution obtained in Lemma 2.3. Then it follows from the maximal principle and
Lemma 2.3 that, there exists £; > 0 such that

b - Oug(x)

(2.9) 5 n

< {1 for all x € 09,
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where 0/0n denotes the outer normal derivative. Then from Lemma 2.3 and the
inequality above, we have that there exists ¢ > 0 and

(2.10) lod(z) < wup(z) for xz e Q.

Throughout the rest of this paper, we assume that f € C(Q) satisfying f # 0,
J>0and |f|c) < €0, and ug € H is the solution obtained by Lemma 2.3. We
define a functional J: H — R by

1 1 x « «
J(v) = / <2|Vv|2 - 2—*((11 +ug) ) —ud —2%ud _11}}) for v € H.
o

It is then easy to see that for each critical point v € H of J, v + ug is a solution
of problem (P). From the definition of J, we can see that the following lemma
holds.

LEMMA 2.4 (cf. [3]). There exists e1 > 0 such that for each f € C(2) with
fZ0, f>0 onQ, \f|C(§) < €1 and v € H satisfying vt # 0, there exists
a unique positive number t, such that J(tv) is increasing on an interval [t1,t,)
with t1 > 0, decreasing on (t,,00), and J(t,v) = max{J(tv) : t > 0}.

We put S = {t,v: v € H\{0}}. Then we have by Lemma 2.4 that J(v) > 0
on S, and (VJ(v),v) = 0 if and only if v € SU{0}. Therefore each critical point
of J different from 0 is contained in S. We also have the following Lemma as a
direct consequence of concentrate compactness principle.

LEMMA 2.5. J satisfies Palais—Smale condition on (0,c).

PROOF. For completeness we give a sketch of proof. Let {v,} C H be a
sequence such that lim, . VJ(v,) = 0 and lim J(v,) = d € (0,¢). Then we
find that there exists a solution v € H of (P) and a sequence (z,,,a,) C RN x RT
such that

Un — AU(z, q,) — U weakly in H,
I(v,) — J(v) + M (u(s, a,)) =d, asn— oo,
where A = 0 or 1(cf. [16]). Suppose that A = 1. Then since each solution
J(v) > 0, we find that v = ug. That is d = ¢. This contradicts to the assumption.

Therefore we have that A = 0. Then we find that v is a critical point with critical
value d. 0

In the following, we fix a positive number pg > 2. Then by the definition of

U(z,a), We have

LEMMA 2.6. For each (z,a) € Il(py),
(2.11) loeall? < Ne+O(d(z)a) =2,
(2.12) [0Ga)3: = Ne—O(d(2)a) ™",



NONHOMOGENEUOUS NONLINEAR ELLIPTIC EQUATIONS 275

z,a

(213) /UO’U(Ti)l ZO(d(z)a_(N_Q)/2)7
Q
(2.14) [0z NN} < O™/ logal),

(2.15) / g N7 (0,0 MV TD < O(d(2)N NP0 N2 log al).
Q

Proor. We first note that |lu(, q)[|> = Nec for each (z,a) € Q x (1,00)
(cf. [3]). Let (z,a) € I(py) and put d = d(z). Then from the definition

[0l = [t(z.0) Vo + ©VU( 0) 3.

Since 0 < ¢ < 1 and ¢(t) =0 for ¢t > 1, we find
oo o N+2.N+1
/Q|<,0Vu(z1a)|2 < Ne—m?(N — 2)2/d mdr
< Ne—m?(N — 2)(da)~ V=2,

aln

d
d 7\ 2 N-2,,N—1
¥ a r —(N-2
Vol? < ) = dr < COn(da)" "2

/Q|u 7l _/(11/n)d<d) (1—|—a2r2)N—2 r < Cn(da)

for some C' > 0. Then we have assertion (2.11). We also have that, for some
c; >0,

) o] aN’I“N_l N
PU(z,a IZNC_/ 7(17‘2]\70—01610,_ s
otz (1—-1/mya (1 +a?r?)N ()

and then (2.12) holds. On the other hand, we have by (2.10) that ug(x) >
(02/2)d(z) for d(z)/2 < d(x) < 2d(z). We also note that that d(z) > 2/a,
because pg > 2. Then

/a  (N+2)/2,.N—1 !
A a r 2 —(N—2)/2
/9“0“(2@) > (6/ Q)d(z)/o (1 a2 o1 2 gz '

Then (2.13) holds. Similarly, we find that the inequality (2.14) holds (cf. [3]).
From (2.9), we find that there exists mg > 0 such that ug(z) < mod(z) for z €
and z € Q with |z — 2| < d(z). Then, by (2.14), we find that (2.15) holds. O

Now we put

M ={v(zq) : (2,a) € Q2 x (1,00)},
N ={ () : (2,a0) € Q2 x (1,00),X € (1/2,2)}.

We denote by 7. ,) C H}(Q) the tangent space of N at V(z,a)- Put F(; o =

{Me) + A € R}, F(t o = Tj_a) and F(, 4 = F(; o @ F(t o For each v =

(
vy +v_,v_ € F(z,a)’ vy € FY | we put Pv = v, —v_. From the definition, we

(z,a)’

have that ||Pv|| = |[v]| for v € F{; 4). Then we have



276 N. HirANO

LEMMA 2.7. There exist positive numbers r1, p1 , C1 and o such that py >
po, and for f € C(Q) with |flo@) <e2, (z,a) € (p1), and w € By, (v(z.0)),

(—Av — g(w + ug)v, Pv) > C’1||v||2 for allv € F(, 4.

Proor. To prove (2.16), it is sufficient to show that (2.16) holds for ug =0
(i.e. the case that f = 0). In fact, if (2.16) holds for ug = 0, then by choosing
b > 0 sufficiently small, we have that (2.16) holds with uy € C(f) satisfying
[uollc @)y < 2. On the other hand, by Lemma 2.3, we can choose &3 sufficiently
small that [luglc) < € for f € C(Q) with [f|oq) < €2. Therefore we give
a proof for the case that ug = 0. Suppose that the inequality (2.16) does not
hold. Then there exist sequences {(zn,an)} C Il(po) and (vy, wn) € Fo, a,) X H
such that ||v,|| =1 for n > 1, d(zn)an = pp — 00 as n — oo, lim, o0 ||wy, —
V(zn,an) |l = 0 and

lim sup(—Awv,, — g(wy)vy, Pv,) < 0.

n—oo

_ + -
Here we put v, = vy p, +v_ 5, Wwhere vy ,, € F(Z,L,an) and v, € F(zn,an)

1. Since limy, o pn = 00, we have by (2.3) that lim, . |V, a,) = U(zp,a.) || = 0.
Then, by the definition,

for n >

lim D(F, a,),sPan{T(., 4.} V(z,a)}) =0

n—oo

holds. Then lim, oo d(E( , |,v+,) = 0. Therefore we have by (2.6) that

(=801 = )0 > (1/2) [ g0
for n sufficiently large. If limsup [, g(wn)v? ,, > 1/2, we have that

lim SUP<_AU+,n - g(wn)v+,nvv+,7z> > /4.

n—oo

On the contrary, if lim sup fQ g(wn)vf_vn < 1/2, then we find

lim sup(—Avy 5, — g(Wn ) V4, V4 n) > 1/2.
Therefore we find that
(2.17) lim sup(—Avy », — g(Wn) V4 1, V4 n) > min{1/2, pq /4}.

n—oo

It is obvious from the definition of v_ ,, that
(2.18) limsup(—Av_ ,, — g(wWp)v_ p,v_ ) <1—1/p_1 =2 2%
On the other hand, recalling that lim,, . Wn=V(z,,a,) = UMp 00 Wn—U(z, a,) =
0 and lim,, d(E(J;n.an)7 Vg ) = limy, oo d(E(_Zn'an), v_ ) =0, we find by (2.5)
that
(2.19) lim sup(—Av_ ,, — g(wp)v_ n,v4 n) = 0.

n—oo
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Then combining (2.17)—(2.19), we find that lim inf,,_, o (—Av, —g(wy, ) vy, Pvy) >
0. This is a contradiction and the proof is completed. O

By Lemma 2.7, we have

LEMMA 2.8. There exists po > 0 and Cy > 0 satisfying that for each f €
C(Q) with [fle@) < €2 and each (z,a) € I(ps), there exists w(,q) € SN
By, /2(V(z,a)) such that [[w(; ) — v(z.a)l < Col|VJI(v(2,q))l and
(2.20) J(W(z,0)) = min max J(V(z,0) + v+ w)

veF() NB, 2 (0) weF () NB,, /2(0)

= max{J(w(z,q) +w):w € F((;Z) N B, 2(0)}

= min{J(w(;,q) +w) : w € F((:i) N By, /2(0)}.

PROOF. Let f € C(Q) with |flo@) < €2 and (z,a) € T(p1). Recall that
J"(u)v = —Av — g(u)v for u,v € H and that |[VJ(vi o))l — 0, as p =
d(z)a — oo . Then from (2.16), we find by a standard argument (cf. [1]) that if
p2 is sufficiently large, there exists a saddle point w(, 4) = V(. q) +2(z,q) satisfying
(2.20) for each (z,a) € II(py) with 2(z,a) € Br,2(0)NF(. q). Since v(. q) € F{2.q),
we find w(, q) € F(.q)- Then we have \w(; ) € F(;,) for A > 0. Then since
W(z,q) is a saddle point in F(; 4), (VJ(W(z,4)), W(z,a)) = 0. Therefore it follows
that w(, o) € S. On the other hand, we have that

(VI (w(z,0)); P(W(z,0) = V(z,0)))
=(VJ(V(z,0)) + I (V(2,0)) (W(z,0) = V(z,0))s P(W(z,0) = V(za)))
+ o(lwiz.a) = Vza) 1)
Then since (VJ(w(.,q)), P(W(z,0) = V(z,0))) = 0, we find by (2.16) that there exists

Cy > 0 satisfying [[w,q) — V(z,0) || < Col| VI (v(2,0))|| for all (z,a) € TI(pz). This
completes the proof. O

3. Transversality theorem

In this section, we state a transversality theorem which is needed for our
argument. Let X,Y be Banach spaces and ¥: X — Y be a C' mapping. An
element y € Y is called a regular value of W if for each x € ¥~1(y), the derivative
D¥(z) is surjective. Then we have

THEOREM 3.1. Let X,Y and Z be separable Banach spaces, V: X XY — Z
a C'-mapping, and z € Z. Assume that
(1) For each (z,y) € ¥~1(2), D,¥(x,y): X — Z is Fredholm mapping of
indez 0.
(2) For each (z,y) € $=1(2), DY(z,y): X X Y — Z is surjective.
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Then the set of y € Y satisfying that z is a regular value of U(-,y) is residual
mnY.

The theorem above is known in more general form(cf. [13] and [4]). We apply
Theorem 3.1 to our problem:

PROPOSITION 3.2 (cf. [4]). There exists a dense subset D C C*(Q) such that
for f € D, each solution u of problem (P) is nondegenerate.

PRrROOF. Proposition 3.2 is essentially the same as Theorem 3.al of [4]. Then
we give a sketch of the proof. We put

X =HQ)NH;(Q), Y=C%Q), Z=L*Q),
U(u, f) = Au+|u* u+f forue X and fe.

Then for each u € X, the mapping v — W, (u, flJv = Av+ gu)v: X — Z is a
Fredholm mapping of index 0 and then satisfies condition (1). Then to apply
Theorem 3.1 for z = 0, it is sufficient to prove (2) is satisfied with z = 0. Let
(u, f) € U=1(0). That is (u, f) satisfies —Au = |u|* ~'u+ f. Then we have that
u € C(£2). It then follows that the kernel of A+ g(u) is a finite dimensional space
contained in C%(Q). Now let h € Z. We look for v € X and f € Y satisfying

DU (u, f)v =D,V (u, f)v+ Ds¥(u, f) = Av+ g(u)v + f = h.

Let @ be the projection from X onto the kernel A + g(u). Then from the
observation above that Qh € C%(Q). Here we put f = Qh. Then it is obvious
that that there exists a unique element v € X satisfying the equality above. O

4. Proof of Theorem 1.1
LeMMA 4.1. Let f = 0. Then for each p > pa, there exists c, > ¢ such that
J(W(z,a)) > ¢, for all (z,a) € II(p).

PrOOF. Let f = 0. We first note that there exists mg > 0 such that
vz,a)ll > mo for all (z,a) € II(pz). From the definition, ||V.J (v, q))| — 0
as d(z)a — oo. Then, since [|w(;q) — V(z,0)|| < Cal| VI (v(z,q)l for each (z,a) €

II(p2), we may assume, taking py sufficiently large, that
(4.1) |Wza) — Vo) || < mo/4 for all (z,a) € I(ps).

Let p > po. Since f = 0 and w(. 4) € S, we have that J(w(; q)) > cfor all (z,a) €
II(p). Suppose that inf{J(w.q) : (2,a) € [I(p)} = c. Then, by Lemma 2.1, we
have that there exist sequences {(zn,an)} C I(p) and {(z],,al,)} C 2 x (1,00)
such that lim, . d(z;,)a;, = oo and lim, o |W(z, a,) — Uzr )l = 0. By
the definition of v(, 4, it follows that lim, .o [V(zr ar) — Uz o)l = 0 and

then lim,, oo |W(z, a,) = V(2 ,az)| = 0. Then from (4.1), lim, o (2, ,a,) —
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U(%ﬁ%)ﬂ < mp/4. On the other hand, recalling that d(z,)a, = p for all n > 1,
we have by the definition of v(, ) that lim, . [|V(z, ,a,) = V(as,,2) || = 2mo. This
is a contradiction. O

As a direct consequence of Lemma 4.1 we have that

LEMMA 4.2. There exists €3 > 0 such that €3 < min{eq,e2} and that for
each f € C(Q) with [fle@) <ess

inf{J(w(:,q)) : (2,a) € I(p2)} > c.

LEMMA 4.3. Let f € C(Q) with f #0, f >0 on Q and \f|C(§) < e3. Then
there exists ps > 0 and C3,Cy > 0 such that

J(Wiza)) < c+ Cs(d(z)a)" N2 — Cud(z)a= N2/ for (z,a) € TI(ps).

PROOF. We prove Lemma 4.3 by a parallel argument with that of Lemma 3
v.., 18 the
positive number defined in Lemma 2.4. Then J (. 4)) = max{J(tv(.,q)) : t > 0}.
Therefore, by the definition of wy. 4, we find that J(w(;q)) < J(¥(.,4)). Then
to prove the assertion it is sufficient to show that

of [5]. Let (z,a) € M(p2) and put U(z,a) = LoV(z,q), Where t, =t

(42) J(@Vza) < ¢+ C3(d(2)a) N2 — Cud(2)a=N=2/2 for (z,a) € T(p3).

From the definition of v, ,), we can see that there exist positive numbers #1,%s
such that ¢, < £, , <t for all (z,a) € TI(pz). Then from the definition of
U(z,q), We have that

J(0(z,a)) <r§133<{ /\V Vel = /(za)}

(1 L C
— min {2*/((1511(z,a>+?m)2 —ug = (togay)? — 2°tug 1U(z,a>)}-
Q

t1<t<ts

Then, by (2.11) and (2.12), it is easy to verify (cf. [5]) that

t? s [ o
. — — < —(N=2)y,
(4.3) r?;g{ 5 /Q Vool = 5 /Qv(z,a> < c+0((d(2)a) )

On the other hand, we have by [3] (cf. also [5]) that
/((tv(z,a) + U0)2* - Ug* - (trU(Z,a))Q* - 2*tu(2) _1U(z,a))
Q

Z/uo(t”(z,a))T*l—C’/uév/(N_z)(tv(zﬂ))N/(N*Q)’
Q Q
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for some C' > 0. Then, by (2.13) and (2.15),

t1<t<ts

1 * * _ — _
< (# foet —ed o [
Q Q

< —myd(2)a” V=22 Lmyd(2) N N2 N/2| log qf

1 « . “
(4.4) — min {Q*/Q((tv(z’a) —|—U0)2 —ug* — (tv(zya))z — 2*tug 1’0(27(1))}

for some mq,mg > 0. Since |loga| < a'/? for a sufficiently large,

d(z)(N+2)/2(V-2)

d(Z)N/(N_Q)a_N/QHOga‘ < p1/2

d(z)a_(N_z)/2

for large a. Then we find that by choosing ps > po sufficiently large that for
(2,a) € I(ps),

. 1 R e g
(4.5) — min {2*</Q(tv(zya)+uo)2 —ug —(tv(z,a))2 -2 tu% 1v(27a))>}

t1<t<ts

< —mad(z)a~N=2/2
for some mg3 > 0. Then, by (4.3) and (4.5), (4.2) holds. O

Here we put I' = {(z,a) € T(p3) : C4aN=2)/2 > C3d(2)~V=Y}. Then one
can see that I' 2 TI(p3) = Q. It also follows from Lemma 4.3 that

(4.6) J(w(z,a)) <c for (z,a) €T.

PrOOF OF THEOREM 1.1. We assume that f € D with f £ 0, f >0 on Q
and |f|qq) < €3- Then by Lemma 2.8, we can define a functional J:TI(p3) — R
by J(z,a) = J(w(;,q)). It is easy to see that for each critical point (z,a) €
int II(p3) of J, wy.,q) is a critical point of J (cf. [2], [9], [14]). We also have by
(2.5) that J satisfies Palais—Smale condition on (0,¢). Since I' 2 II(p3) = Q, we
have that H,(T') = H,(€2). For each [a] € H,. (') with [a] # {0}, we put

(4.7 Ca = Ortreu[g] (Zr%ié(a J(W(z,q))-

By (4.6), co < c. On the other hand, by Lemma 4.2, J(w(;q)) > c for (z,a) €
Oll(ps) = II(p3). This implies that each a € [o] with max{J(w(. q)) : (2,a) €
a} < c is contained in the interior of II(p3). Therefore ¢, is a critical value of .J
and there exists a critical point (z,a) € II(ps) of J with J(z,a) = ¢,. That is
there exists a critical point w(, 4) of J with J(w(.q)) = ca. Since each critical
point wy; 4) is nondegenerate by the assumption, we obtain that the number of
critical points obtained by the formula (4.7) is X172 (dim H,(2). O
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