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MULTIPLICITY OF SOLUTIONS
FOR NONHOMOGENEUOUS NONLINEAR ELLIPTIC

EQUATIONS WITH CRITICAL EXPONENTS

Norimichi Hirano

Abstract. Let N ≥ 3 and Ω ⊂ RN be a bounded domain with a smooth

boundary ∂Ω. We consider a semilinear boundary value problem of the
form

(P)

8><
>:

−∆u = |u|2∗−2u + f in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where f ∈ C(Ω) and 2∗ = 2N/(N − 2). We show the effect of topology of

Ω on the multiple existence of solutions.

1. Introduction

Let N ≥ 3 and Ω ⊂ RN be a bounded domain with a smooth boundary ∂Ω.
In this paper we consider the existence and multiplicity of solutions of problem

(P)


−∆u = |u|2∗−2u + f in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where 2∗ = 2N/(N − 2) and f ∈ C(Ω) with f 6≡ 0 and f ≥ 0 on Ω.
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We denote by (P0) the problem (P) with f 6≡ 0. Problem (P) is a simplified
model of problems occur in physics and geometry, and the existence and nonex-
istence of solutions of problem (P) has been studied by many authors in the last
decade. The difficulty to treat this problem is caused by the lack of compactness.
Pohožaev ([12]) proved that problem (P0) has no nontrivial solution when the
domain Ω is star-shaped. On the other hand, the existence of a nontrivial radial
solution of problem (P0) was established by Kazdon and Warner ([10]) in the
case that Ω is an annulus. In the case that domain Ω has nontrivial topology, the
existence of solutions for (P0) was established by Bahri and Coron ([2]). These
results show that the shape of the domain Ω is deeply related to the existence of
solutions of (P), and it comes of interest to study the effect of the topology of Ω
for the multiplicity of solutions of problem (P). In [14], Rey proved that problem
(P) has cat(Ω) + 1 solutions when ‖f‖L2 is sufficiently small. (See also Cao and
Chabrowski [5]). In the present paper, we establish a multiplicity result using
the homology groups of Ω.

We now state our main result:

Theorem 1.1. There exists a residual subset D ⊂ C2(Ω) and ε0 > 0 such
that for each f ∈ D with f 6≡ 0, f ≥ 0 on Ω and |f |C(Ω) < ε0, problem (P) has
at least Σ∞p=0dim Hp(Ω) + 1 solutions.

2. Preliminaries

Throughout the rest of this paper, c0, c1, . . . , and m1,m2, . . . stands for
various constants independent of (z, a) ∈ Ω × (1,∞). For simplicity, we put
H = H1

0 (Ω). For each domain U ⊂ RN , we denote by | · |q the norm of Lq(U),
q > 1. We put

D1(RN ) = {v ∈ L2∗(RN ) : |∇v|2 ∈ L2(RN )}.

For each v ∈ D1(RN ), we put ‖v‖2 =
∫

RN |∇v|2. The symbol ‖ · ‖ is also used
to denote the norm of H defined by ‖v‖2 = |∇v|22 for v ∈ H. 〈 · , · 〉 stands
for the inner product in H. Br(x) ⊂ H stands for the open ball centered at
x ∈ H with radius r > 0. For each normed space X, a subset A ⊂ X and
x ∈ X, we put d(A, x) = inf{‖x − y‖ : y ∈ A}. For subspaces Y, Z of X, we
denote by D(Y, Z) the distance of two spaces Y and Z. That is D(Y,Z) =
sup{d(Y, z) : z ∈ Zwith ‖z‖ ≤ 1}. For each d > 0, Ωd stands for the set
Ωd = {x ∈ Ω : d(∂Ω, x) < d}. For each a ∈ R and each functional F :H → R,
we denote by Fa the set Fa = {v ∈ H : F (v) ≤ a}. We call a real number d

a critical level of a functional F if there exists a sequence {vn} ⊂ H such that
limn→∞ F (vn) = d and limn→∞ ‖∇F (vn)‖ = 0. For a pair of topological space
(X, Y ) with Y ⊂ X, we denote by H∗(X, Y ) the relative singular homology
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groups (cf. Spanier [15]). For two topological space X, Y , we write X ∼= Y when
X and Y are of the same homotopy type. We define a functional I on H by

(2.1) I(u) =
1
2

∫
Ω

|∇u|2 − 1
2∗

∫
Ω

|u+|2
∗
,

where u+(x) = max{0, u(x)} for x ∈ Ω. The solutions of (P0) correspond to
critical points of functional I. Let (P∞) be the problem defined by

(P∞)

{
−∆u = |u|2∗−2u for u ∈ D1(RN ),

u > 0 on RN .

We denote by I∞ the functional on D1(RN ) defined by (2.1) with Ω = RN .
Then each critical point of functional I∞ is a solution of problem (P∞). For
each (z, a) ∈ RN × (1,∞), we put

u(z,a)(x) = m

(
a

1 + a2|x− z|2

)(N−2)/2

where m = (N(N − 2))(N−2)/4. It is known that each u(z,a) is a critical point of
I∞. By the invariance of the norm of D1(RN ) under translation and scaling

(2.2) u → uR(x) = R−N/2∗u(x/R) for u ∈ D1(RN ), R > 0,

we have that each u(z,a) have the same critical value. We put c = I∞(u(z,a)) for
(z, a) ∈ RN × (0,∞). We also set

S =
{

v ∈ H\{0} :
∫

Ω

|∇v|2 =
∫

Ω

|v+|2
∗
}

.

It is easy to see that if v ∈ H satisfies v+ 6≡ 0, there exists a unique positive
number t such that tv ∈ S. It is also known that I(v) > c for all v ∈ S (cf. [2]).
The following concentrate compactness lemma play an important role for our
argument.

Lemma 2.1 (cf. Bahri and Coron [2], Passarero [11]). Let {vn} ⊂ S such
that limn→∞ I(vn) = c. Then there exist {an} ⊂ R+ and {zn} ⊂ Ω such that
limn→∞ an = ∞ and limn→∞ ‖vn − u(zn,an)‖ = 0.

Since ∂Ω is smooth, we can choose 0 < d0 < 1 such that for each x ∈ Ω with
d(∂Ω, x) < d0, there exists a unique point y ∈ ∂Ω such that |x− y| = d(∂Ω, x).
We put d(z) = min{d(∂Ω, z), d0} for each z ∈ Ω. For each ρ > 0, we put

Π(ρ) = {(z, a) ∈ Ω× (1,∞) : d(z) · a = ρ},
Π(ρ) = {(z, a) ∈ Ω× (1,∞) : d(z) · a ≥ ρ}.
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Let n ≥ 2 be an integer and ϕ ∈ C∞([0,∞), [0, 1]) be a function such that
ϕ(x) = 1 for x ∈ [0, 1− 1/n], −2n ≤ ϕ′(x) ≤ 0 on [1− 1/n, 1] and ϕ(x) = 0 for
x ∈ [1,∞). For each (z, a) ∈ Ω× (1,∞), we define a function v(z,a) ∈ H by

v(z,a)(x) = ϕ

(
x− z

d(z)

)
u(z,a)(x) for x ∈ Ω.

Then by the invariance of the value of I under the scaling (2.2), we have that
I(v(z,a)) = I(v(z′,a′)) for (z, a), (z′, a′) ∈ Ω × (1,∞) with d(z)a = d(z′)a′. We
also have from the definition that

(2.3) lim
d(z)a→∞

‖v(z,a) − u(z,a)‖ = 0 for each z ∈ Ω.

For z = (z1, . . . , zn) ∈ RN and a ∈ (1,∞), we consider the eigenvalue problem

(2.4) −∆w = µg(u(z,a))w, w ∈ D1(RN )

where g(t) = (2∗−1)|t+|2∗−2 for t ∈ R. Since u(z,a) is a solution of problem (P∞),
it is obvious that µ−1 = 1/(2∗ − 1) is an eigenvalue of (2.4) with eigenfunction
u(z,a). It is also known that µ−1 is the unique eigenvalue of problem (2.4)
satisfying µ < 1, and µ−1 is simple. We put

T(z,a) = span{u(0,z,a), . . . , v(N,z,a)}

where

u(0,z,a)(x) =
∂

∂a
u(z,a) =

m(N − 2)
2

a(N−4)/2(1− a2|x− zi|2)
(1 + a2|x− zi|2)(N/2)

,

u(i,z,a)(x) =
∂

∂xi
u(z,a) = −m(N − 2)

a(N+2)/2(xi − zi)
(1 + a2|x− zi|2)(N/2)

,

for 1 ≤ i ≤ N . Then recalling that each u(z,a) is a solution of problem (P∞),
we have by differentiating (P∞) by x1, . . . , xN and a that each element of T(z,a)

is an eigenfuction of problem (2.4) corresponding to the eigenvalue µ0 = 1. We
denote by E

(−)
(z,a) and E

(0)
(z,a) the subspaces of D1(RN ) spanned by eigenfunctions

corresponding to the eigenvalues µ−1 and 1, respectively. We also put E
(+)
(z,a) =

(E(−)
(z,a) ∪E

(0)
(z,a))

⊥. Here u ⊥ v implies that
∫

RN 〈∇u,∇v〉 = 0 for u, v ∈ D1(RN ).
Then one can verify easily that for each (z, a) ∈ Ω× (1,∞),

(2.5) 〈−∆v − g(u(z,a))v, z〉 = 0

for all v ∈ E
(+)
(z,a) and z ∈ E

(−)
(z,a) ⊕ E

(0)
(z,a). It is known that the following lemma

holds.
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Lemma 2.2 (cf. [8]).

(1) There exists µ1 > 0 such that for each (z, a) ∈ RN × (1,∞),

(2.6) 〈−∆v − g(u(z,a))v, v〉 ≥ µ1

∫
RN

g(u(z,a))v2 for all v ∈ E
(+)
(z,a).

(2) T(z,a) = E
(0)
(z,a) for (z, a) ∈ Ω×(1,∞). That is v ∈ D1(RN ) is a solution

of problem

(2.7) −∆v = g(u(z,a))v

if and only if v ∈ T(z,a).

In case that |f |C(Ω) is small, the existence of a solution of problem (P) near
the origin is known. That is

Lemma 2.3 (cf. [6]). There exists ε0 > 0 and C0 > 0 such that for each
f ∈ C(Ω) with f ≥ 0 and |f |C(Ω) < ε0, there exists a unique solution u0 ∈ H of
(P) satisfying |u0|C1(Ω) ≤ C0|f |C(Ω) and

(2.8) c0 =
∫

Ω

(
1
2
|∇u0|2 −

1
2∗
|u0|2

∗
− fu0

)
<

c

2
.

Proof. We give a sketch of the proof. Let λ1 be the first eigenvalue of
eigenvalue problem

−∆v = λv for v ∈ H.

Fix λ ∈ (0, λ1). Let h be a truncation function of the mapping t → (t+)2
∗−1

defined by h(t) = |t+|2∗−1 for t ∈ (−∞, t0] and h(t) = λt for t ≥ t0 where t0
satisfies t2

∗−2
0 = λ. Then since |h(t)| ≤ λ|t|, we have by a standard argument

that there exists a unique positive solution u0 of problem

−∆u = h(u) + f for u ∈ H1
0 (Ω).

It is easy to see that ‖u0‖ ≤ C|f |2 for some C > 0. It also follows, by the
Schauder estimate, that there exists C0 > 0 such that |u0|C1(Ω) ≤ C0|f |C(Ω) for
each f ∈ C(Ω). Then, choosing ε0 sufficiently small, we have that |u0|C(Ω) < t0

for f ∈ C(Ω) with |f |C(Ω) < ε0. Then since h(t) = |t|2∗−1 for 0 ≤ t < t0, we
have that u0 is a solution of problem (P). �

Let f ∈ C(Ω) with f 6≡ 0, f ≥ 0 on Ω and |f |C(Ω) < ε0, and u0 be the
solution obtained in Lemma 2.3. Then it follows from the maximal principle and
Lemma 2.3 that, there exists `1 > 0 such that

(2.9)
`1
2

< −∂u0(x)
∂n

< `1 for all x ∈ ∂Ω,



274 N. Hirano

where ∂/∂n denotes the outer normal derivative. Then from Lemma 2.3 and the
inequality above, we have that there exists `2 > 0 and

(2.10) `2d(x) ≤ u0(x) for x ∈ Ω.

Throughout the rest of this paper, we assume that f ∈ C(Ω) satisfying f 6≡ 0,
f ≥ 0 and |f |C(Ω) < ε0, and u0 ∈ H is the solution obtained by Lemma 2.3. We
define a functional J :H → R by

J(v) =
∫

Ω

(
1
2
|∇v|2 − 1

2∗
((v + u0)+)2

∗
− u2∗

0 − 2∗u2∗−1
0 v]

)
for v ∈ H.

It is then easy to see that for each critical point v ∈ H of J , v + u0 is a solution
of problem (P). From the definition of J , we can see that the following lemma
holds.

Lemma 2.4 (cf. [3]). There exists ε1 > 0 such that for each f ∈ C(Ω) with
f 6≡ 0, f ≥ 0 on Ω, |f |C(Ω) < ε1 and v ∈ H satisfying v+ 6≡ 0, there exists
a unique positive number tv such that J(tv) is increasing on an interval [t1, tv)
with t1 > 0, decreasing on (tv,∞), and J(tvv) = max{J(tv) : t ≥ 0}.

We put S = {tvv : v ∈ H\{0}}. Then we have by Lemma 2.4 that J(v) > 0
on S, and 〈∇J(v), v〉 = 0 if and only if v ∈ S ∪{0}. Therefore each critical point
of J different from 0 is contained in S. We also have the following Lemma as a
direct consequence of concentrate compactness principle.

Lemma 2.5. J satisfies Palais–Smale condition on (0, c).

Proof. For completeness we give a sketch of proof. Let {vn} ⊂ H be a
sequence such that limn→∞∇J(vn) = 0 and lim J(vn) = d ∈ (0, c). Then we
find that there exists a solution v ∈ H of (P) and a sequence (zn, an) ⊂ RN ×R+

such that

vn − λu(zn,an) → v weakly in H,

I(vn) → J(v) + λI(u(zn,an)) = d, as n →∞,

where λ = 0 or 1(cf. [16]). Suppose that λ = 1. Then since each solution
J(v) ≥ 0, we find that v = u0. That is d = c. This contradicts to the assumption.
Therefore we have that λ = 0. Then we find that v is a critical point with critical
value d. �

In the following, we fix a positive number ρ0 > 2. Then by the definition of
v(z,a), we have

Lemma 2.6. For each (z, a) ∈ Π(ρ0),

‖v(z,a)‖2 ≤ Nc + O(d(z)a)−(N−2),(2.11)

|v(z,a)|2∗2∗ ≥ Nc−O(d(z)a)−N ,(2.12)
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Ω

u0v
2∗−1
(z,a) ≥ O(d(z)a−(N−2)/2),(2.13)

|v(z,a)|
N/(N−2)
N/(N−2) ≤ O(a−N/2| log a|),(2.14)

(2.15)
∫

Ω

u
N/(N−2)
0 (v(z,a))N/(N−2) ≤ O(d(z)N/(N−2)a−N/2| log a|).

Proof. We first note that ‖u(z,a)‖2 = Nc for each (z, a) ∈ Ω × (1,∞)
(cf. [3]). Let (z, a) ∈ Π(ρ0) and put d = d(z). Then from the definition

‖v(z,a)‖2 = |u(z,a)∇ϕ + ϕ∇u(z,a)|22.

Since 0 ≤ ϕ ≤ 1 and ϕ(t) = 0 for t ≥ 1, we find∫
Ω

|ϕ∇u(z,a)|2 ≤ Nc−m2(N − 2)2
∫ ∞

d

aN+2rN+1

(1 + a2r2)N
dr

≤ Nc−m2(N − 2)(da)−(N−2),

and ∫
Ω

|u∇ϕ|2 ≤
∫ d

(1−1/n)d

(
ϕ′

d

)2
aN−2rN−1

(1 + a2r2)N−2
dr ≤ Cn(da)−(N−2)

for some C > 0. Then we have assertion (2.11). We also have that, for some
c1 > 0,

|ϕu(z,a)|2∗2∗ ≥ Nc−
∫ ∞

(1−1/n)d

aNrN−1

(1 + a2r2)N
dr ≥ Nc− c1(da)−N ,

and then (2.12) holds. On the other hand, we have by (2.10) that u0(x) ≥
(`2/2)d(z) for d(z)/2 ≤ d(x) ≤ 2d(z). We also note that that d(z) > 2/a,
because ρ0 > 2. Then∫

Ω

u0v
2∗−1
(z,a) ≥ (`2/2)d(z)

∫ 1/a

0

a(N+2)/2rN−1

(1 + a2r2)(N+2)/2
dr ≥ `2

4N2(N+2)/2
da−(N−2)/2.

Then (2.13) holds. Similarly, we find that the inequality (2.14) holds (cf. [3]).
From (2.9), we find that there exists m0 > 0 such that u0(x) ≤ m0d(z) for z ∈ Ω
and x ∈ Ω with |z − x| ≤ d(z). Then, by (2.14), we find that (2.15) holds. �

Now we put

M = {v(z,a) : (z, a) ∈ Ω× (1,∞)},
N = {λv(z,a) : (z, a) ∈ Ω× (1,∞), λ ∈ (1/2, 2)}.

We denote by T(z,a) ⊂ H1
0 (Ω) the tangent space of N at v(z,a). Put F−(z,a) =

{λv(z,a) : λ ∈ R}, F+
(z,a) = T ⊥(z,a) and F(z,a) = F−(z,a) ⊕ F+

(z,a). For each v =
v+ + v−, v− ∈ F−(z,a), v+ ∈ F+

(z,a), we put Pv = v+− v−. From the definition, we
have that ‖Pv‖ = ‖v‖ for v ∈ F(z,a). Then we have
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Lemma 2.7. There exist positive numbers r1, ρ1 , C1 and ε2 such that ρ1 >

ρ0, and for f ∈ C(Ω) with |f |C(Ω) < ε2, (z, a) ∈ Π(ρ1), and w ∈ Br1(v(z,a)),

〈−∆v − g(w + u0)v, Pv〉 ≥ C1‖v‖2 for all v ∈ F(z,a).

Proof. To prove (2.16), it is sufficient to show that (2.16) holds for u0 = 0
(i.e. the case that f ≡ 0). In fact, if (2.16) holds for u0 = 0, then by choosing
ε′2 > 0 sufficiently small, we have that (2.16) holds with u0 ∈ C(Ω) satisfying
‖u0‖C(Ω) < ε′2. On the other hand, by Lemma 2.3, we can choose ε2 sufficiently
small that ‖u0‖C(Ω) < ε′2 for f ∈ C(Ω) with |f |C(Ω) < ε2. Therefore we give
a proof for the case that u0 = 0. Suppose that the inequality (2.16) does not
hold. Then there exist sequences {(zn, an)} ⊂ Π(ρ0) and (vn, wn) ∈ F(zn,an)×H

such that ‖vn‖ = 1 for n ≥ 1, d(zn)an = ρn → ∞ as n → ∞ , limn→∞ ‖wn −
v(zn,an)‖ = 0 and

lim sup
n→∞

〈−∆vn − g(wn)vn, Pvn〉 ≤ 0.

Here we put vn = v+,n + v−,n, where v+,n ∈ F+
(zn,an) and v−,n ∈ F−(zn,an) for n ≥

1. Since limn→∞ ρn = ∞, we have by (2.3) that limn→∞ ‖v(zn,an)−u(zn,an)‖ = 0.
Then, by the definition,

lim
n→∞

D(F(zn,an), span{T(zn,an), v(z,a)}) = 0

holds. Then limn→∞ d(E+
(zn,an), v+,n) = 0. Therefore we have by (2.6) that

〈−∆v+,n − g(wn)v+,n, v+,n〉 ≥ (µ1/2)
∫

Ω

g(wn)v2
+,n.

for n sufficiently large. If lim sup
∫
Ω

g(wn)v2
+,n ≥ 1/2, we have that

lim sup
n→∞

〈−∆v+,n − g(wn)v+,n, v+,n〉 ≥ µ1/4.

On the contrary, if lim sup
∫
Ω

g(wn)v2
+,n < 1/2, then we find

lim sup
n→∞

〈−∆v+,n − g(wn)v+,n, v+,n〉 ≥ 1/2.

Therefore we find that

(2.17) lim sup
n→∞

〈−∆v+,n − g(wn)v+,n, v+,n〉 ≥ min{1/2, µ1/4}.

It is obvious from the definition of v−,n that

(2.18) lim sup
n→∞

〈−∆v−,n − g(wn)v−,n, v−,n〉 ≤ 1− 1/µ−1 = 2− 2∗.

On the other hand, recalling that limn→∞ wn−v(zn,an) = limn→∞ wn−u(zn,an) =
0 and limn→∞ d(E+

(zn.an), v+,n) = limn→∞ d(E−(zn.an), v−,n) = 0, we find by (2.5)
that

(2.19) lim sup
n→∞

〈−∆v−,n − g(wn)v−,n, v+,n〉 = 0.
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Then combining (2.17)–(2.19), we find that lim infn→∞〈−∆vn−g(wn)vn, Pvn〉 >

0. This is a contradiction and the proof is completed. �

By Lemma 2.7, we have

Lemma 2.8. There exists ρ2 > 0 and C2 > 0 satisfying that for each f ∈
C(Ω) with |f |C(Ω) < ε2 and each (z, a) ∈ Π(ρ2), there exists w(z,a) ∈ S ∩
Br1/2(v(z,a)) such that ‖w(z,a) − v(z,a)‖ ≤ C2‖∇J(v(z,a))‖ and

(2.20) J(w(z,a)) = min
v∈F

(+)
(z,a)∩Br1/2(0)

max
w∈F

(−)
(z,a)∩Br1/2(0)

J(v(z,a) + v + w)

= max{J(w(z,a) + w) : w ∈ F
(−)
(z,a) ∩Br1/2(0)}

= min{J(w(z,a) + w) : w ∈ F
(+)
(z,a) ∩Br1/2(0)}.

Proof. Let f ∈ C(Ω) with |f |C(Ω) < ε2 and (z, a) ∈ Π(ρ1). Recall that
J ′′(u)v = −∆v − g(u)v for u, v ∈ H and that ‖∇J(v(z,a))‖∗ → 0, as ρ =
d(z)a →∞ . Then from (2.16), we find by a standard argument (cf. [1]) that if
ρ2 is sufficiently large, there exists a saddle point w(z,a) = v(z,a)+z(z,a) satisfying
(2.20) for each (z, a) ∈ Π(ρ2) with z(z,a) ∈ Br1/2(0)∩F(z,a). Since v(z,a) ∈ F(z,a),
we find w(z,a) ∈ F(z,a). Then we have λw(z,a) ∈ F(z,a) for λ ≥ 0. Then since
w(z,a) is a saddle point in F(z,a), 〈∇J(w(z,a)), w(z,a)〉 = 0. Therefore it follows
that w(z,a) ∈ S. On the other hand, we have that

〈∇J(w(z,a)), P (w(z,a) − v(z,a))〉
= 〈∇J(v(z,a)) + J ′′(v(z,a))(w(z,a) − v(z,a)), P (w(z,a) − v(z,a))〉

+ o(‖w(z,a) − v(z,a)‖2).

Then since 〈∇J(w(z,a)), P (w(z,a)−v(z,a))〉 = 0, we find by (2.16) that there exists
C2 > 0 satisfying ‖w(z,a) − v(z,a)‖ ≤ C2‖∇J(v(z,a))‖ for all (z, a) ∈ Π(ρ2). This
completes the proof. �

3. Transversality theorem

In this section, we state a transversality theorem which is needed for our
argument. Let X, Y be Banach spaces and Ψ:X → Y be a C1 mapping. An
element y ∈ Y is called a regular value of Ψ if for each x ∈ Ψ−1(y), the derivative
DΨ(x) is surjective. Then we have

Theorem 3.1. Let X, Y and Z be separable Banach spaces, Ψ:X × Y → Z

a C1-mapping, and z ∈ Z. Assume that

(1) For each (x, y) ∈ Ψ−1(z), DxΨ(x, y):X → Z is Fredholm mapping of
index 0.

(2) For each (x, y) ∈ Ψ−1(z), DΨ(x, y):X × Y → Z is surjective.
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Then the set of y ∈ Y satisfying that z is a regular value of Ψ(·, y) is residual
in Y .

The theorem above is known in more general form(cf. [13] and [4]). We apply
Theorem 3.1 to our problem:

Proposition 3.2 (cf. [4]). There exists a dense subset D ⊂ C2(Ω) such that
for f ∈ D, each solution u of problem (P) is nondegenerate.

Proof. Proposition 3.2 is essentially the same as Theorem 3.a1 of [4]. Then
we give a sketch of the proof. We put

X = H2(Ω) ∩H1
0 (Ω), Y = C2(Ω), Z = L2(Ω),

Ψ(u, f) = ∆u + |u|2
∗−1u + f for u ∈ X and f ∈ Y.

Then for each u ∈ X, the mapping v → Ψu(u, f)v = ∆v + g(u)v:X → Z is a
Fredholm mapping of index 0 and then satisfies condition (1). Then to apply
Theorem 3.1 for z = 0, it is sufficient to prove (2) is satisfied with z = 0. Let
(u, f) ∈ Ψ−1(0). That is (u, f) satisfies −∆u = |u|2∗−1u+f . Then we have that
u ∈ C(Ω). It then follows that the kernel of ∆+g(u) is a finite dimensional space
contained in C2(Ω). Now let h ∈ Z. We look for v ∈ X and f ∈ Y satisfying

DΨ(u, f)v = DuΨ(u, f)v + DfΨ(u, f) = ∆v + g(u)v + f = h.

Let Q be the projection from X onto the kernel ∆ + g(u). Then from the
observation above that Qh ∈ C2(Ω). Here we put f = Qh. Then it is obvious
that that there exists a unique element v ∈ X satisfying the equality above. �

4. Proof of Theorem 1.1

Lemma 4.1. Let f ≡ 0. Then for each ρ ≥ ρ2, there exists cρ > c such that

J(w(z,a)) > cρ for all (z, a) ∈ Π(ρ).

Proof. Let f ≡ 0. We first note that there exists m0 > 0 such that
‖v(z,a)‖ > m0 for all (z, a) ∈ Π(ρ2). From the definition, ‖∇J(v(z,a))‖ → 0
as d(z)a → ∞. Then, since ‖w(z,a) − v(z,a)‖ ≤ C2‖∇J(v(z,a)‖ for each (z, a) ∈
Π(ρ2), we may assume, taking ρ2 sufficiently large, that

(4.1) ‖w(z,a) − v(z,a)‖ < m0/4 for all (z, a) ∈ Π(ρ2).

Let ρ ≥ ρ2. Since f ≡ 0 and w(z,a) ∈ S, we have that J(w(z,a)) > c for all (z, a) ∈
Π(ρ). Suppose that inf{J(w(z,a)) : (z, a) ∈ Π(ρ)} = c. Then, by Lemma 2.1, we
have that there exist sequences {(zn, an)} ⊂ Π(ρ) and {(z′n, a′n)} ⊂ Ω × (1,∞)
such that limn→∞ d(z′n)a′n = ∞ and limn→∞ ‖w(zn,an) − u(z′n,a′n)‖ = 0. By
the definition of v(z,a), it follows that limn→∞ ‖v(z′n,a′n) − u(z′n,a′n)‖ = 0 and
then limn→∞ ‖w(zn,an) − v(z′n,a′n)‖ = 0. Then from (4.1), limn→∞ ‖v(zn,an) −
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v(a′n,z′n)‖ ≤ m0/4. On the other hand, recalling that d(zn)an = ρ for all n ≥ 1,
we have by the definition of v(z,a) that limn→∞ ‖v(zn,an)−v(a′n,z′n)‖ ≥ 2m0. This
is a contradiction. �

As a direct consequence of Lemma 4.1 we have that

Lemma 4.2. There exists ε3 > 0 such that ε3 < min{ε1, ε2} and that for
each f ∈ C(Ω) with |f |C(Ω) < ε3,

inf{J(w(z,a)) : (z, a) ∈ Π(ρ2)} > c.

Lemma 4.3. Let f ∈ C(Ω) with f 6≡ 0, f ≥ 0 on Ω and |f |C(Ω) < ε3. Then
there exists ρ3 > 0 and C3, C4 > 0 such that

J(w(z,a)) ≤ c + C3(d(z)a)−(N−2) − C4d(z)a−(N−2)/2 for (z, a) ∈ Π(ρ3).

Proof. We prove Lemma 4.3 by a parallel argument with that of Lemma 3
of [5]. Let (z, a) ∈ Π(ρ2) and put ṽ(z,a) = tvv(z,a), where tv = tvz,a

is the
positive number defined in Lemma 2.4. Then J(ṽ(z,a)) = max{J(tv(z,a)) : t > 0}.
Therefore, by the definition of w(z,a), we find that J(w(z,a)) ≤ J(ṽ(z,a)). Then
to prove the assertion it is sufficient to show that

(4.2) J(ṽ(z,a)) ≤ c + C3(d(z)a)−(N−2) − C4d(z)a−(N−2)/2 for (z, a) ∈ Π(ρ3).

From the definition of v(z,a), we can see that there exist positive numbers t1, t2
such that t1 < tv(z,a) < t2 for all (z, a) ∈ Π(ρ2). Then from the definition of
ṽ(z,a), we have that

J(ṽ(z,a)) ≤ max
t≥0

{
t2

2

∫
Ω

|∇v(z,a)|2 −
t2

∗

2∗

∫
Ω

v2∗

(z,a)

}
− min

t1≤t≤t2

{
1
2∗

∫
Ω

((tv(z,a) + u0)2
∗
− u2∗

0 − (tv(z,a))2
∗
− 2∗tu2∗−1

0 v(z,a))
}

.

Then, by (2.11) and (2.12), it is easy to verify (cf. [5]) that

(4.3) max
t≥0

{
t2

2

∫
Ω

|∇v(z,a)|2 −
t2

∗

2∗

∫
Ω

v2∗

(z,a)

}
≤ c + O((d(z)a)−(N−2)).

On the other hand, we have by [3] (cf. also [5]) that∫
Ω

((tv(z,a) + u0)2
∗
− u2∗

0 − (tv(z,a))2
∗
− 2∗tu2∗−1

0 v(z,a))

≥
∫

Ω

u0(tv(z,a))2
∗−1 − C

∫
Ω

u
N/(N−2)
0 (tv(z,a))N/(N−2),
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for some C > 0. Then, by (2.13) and (2.15),

(4.4) − min
t1≤t≤t2

{
1
2∗

∫
Ω

((tv(z,a) + u0)2
∗
− u2∗

0 − (tv(z,a))2
∗
− 2∗tu2∗−1

0 v(z,a))
}

≤ − 1
2∗

(
t2

∗−1
1

∫
Ω

u0v
2∗−1
(z,a) − Ct

N/(N−2)
2

∫
Ω

u
N/(N−2)
0 v

N/(N−2)
(z,a)

)
≤ −m1d(z)a−(N−2)/2 + m2d(z)N/(N−2)a−N/2| log a|

for some m1,m2 > 0. Since | log a| ≤ a1/2 for a sufficiently large,

d(z)N/(N−2)a−N/2| log a| ≤ d(z)(N+2)/2(N−2)

ρ1/2
d(z)a−(N−2)/2

for large a. Then we find that by choosing ρ3 > ρ2 sufficiently large that for
(z, a) ∈ Π(ρ3),

(4.5) − min
t1≤t≤t2

{
1
2∗

( ∫
Ω

(tv(z,a)+u0)2
∗
−u2∗

0 −(tv(z,a))2
∗
−2∗tu2∗−1

0 v(z,a))
)}

≤ −m3d(z)a−(N−2)/2

for some m3 > 0. Then, by (4.3) and (4.5), (4.2) holds. �

Here we put Γ = {(z, a) ∈ Π(ρ3) : C4a
(N−2)/2 > C3d(z)−(N−1)}. Then one

can see that Γ ∼= Π(ρ3) ∼= Ω. It also follows from Lemma 4.3 that

(4.6) J(w(z,a)) < c for (z, a) ∈ Γ.

Proof of Theorem 1.1. We assume that f ∈ D with f 6≡ 0, f ≥ 0 on Ω
and |f |C(Ω) ≤ ε3. Then by Lemma 2.8, we can define a functional J : Π(ρ3) → R
by J(z, a) = J(w(z,a)). It is easy to see that for each critical point (z, a) ∈
intΠ(ρ3) of J , w(z,a) is a critical point of J (cf. [2], [9], [14]). We also have by
(2.5) that J satisfies Palais–Smale condition on (0, c). Since Γ ∼= Π(ρ3) ∼= Ω, we
have that H∗(Γ) ∼= H∗(Ω). For each [α] ∈ H∗(Γ) with [α] 6= {0}, we put

(4.7) cα = min
α∈[α]

max
(z,a)∈α

J(w(z,a)).

By (4.6), cα < c. On the other hand, by Lemma 4.2, J(w(z,a)) > c for (z, a) ∈
∂Π(ρ3) = Π(ρ3). This implies that each α ∈ [α] with max{J(w(z,a)) : (z, a) ∈
α} < c is contained in the interior of Π(ρ3). Therefore cα is a critical value of J

and there exists a critical point (z, a) ∈ Π(ρ3) of J with J(z, a) = cα. That is
there exists a critical point w(z,a) of J with J(w(z,a)) = cα. Since each critical
point w(z,a) is nondegenerate by the assumption, we obtain that the number of
critical points obtained by the formula (4.7) is Σ∞p=0dim Hp(Ω). �
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