ON A "REVERSED" VARIATIONAL INEQUALITY

Dimitri Mugnai

Abstract

We are concerned with a class of penalized semilinear elliptic problems depending on a parameter. We study some multiplicity results and the limit problem obtained when the parameter goes to ∞. We obtain a "reversed" variational inequality, which is deeply investigated in low dimension.

1. Introduction

A large class of well studied equations admits, as a limit case, a variational inequality which we can call "reversed", since the sign of the inequality is not the usual one.

A meaningful example is given by the classic jumping problem (see [11], [12] and the references therein), which we write in the following way
(J, ω)

$$
\begin{cases}\Delta u+\alpha u-\omega(e+u)^{-}=0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a smooth and bounded domain of \mathbb{R}^{N}, e is a positive function and α and ω are real coefficients (in most cases $e=e_{1}$, the first positive eigenfunction of $-\Delta$ in $W_{0}^{1,2}(\Omega)$.

2000 Mathematics Subject Classification. Primary 35J65, 35J35; Secondary 35J40, 35R45.
Key words and phrases. Reversed variational inequalities, topological and variational methods.

The author wishes to thank Professor Antonio Marino for many useful discussions on this subject.

If $\left(\omega_{n}\right)_{n \in \mathbb{N}}$ is a sequence diverging to $+\infty$ and $\left(u_{\omega_{n}}\right)_{n \in \mathbb{N}}$ is a sequence of solutions of $\left(J, \omega_{n}\right)$ which weakly converges to u in $W_{0}^{1,2}(\Omega)$, then u satisfies the "reversed inequality"
$(J, \infty) \quad\left\{\begin{array}{l}\int D u \cdot v-\alpha \int u v \leq 0 \quad \text { for all } v \text { in } W_{0}^{1,2}(\Omega) \text { such that } v \geq 0, \\ u \geq-e .\end{array}\right.$
Of course we also require that u satisfies the equation in the set of x 's in Ω where $u(x)>-e(x)$, which will be defined in a suitable way. And it is clear that, from this point of view, we are interested in those solutions u 's which do not satisfy the equation on the whole of Ω.

We can observe that in the particular case $N=1, \Omega=(a, b)$, if $u(x)$ is the trajectory depending on the time x of a material point which moves in the (unidimensional) billiard \mathbb{R}^{+}, bouncing on the boundary $\{0\}$, then u satisfies the reversed inequality (J, ∞).

Note that the functionals defined on $W_{0}^{1,2}(\Omega)$ associated to problems (J, ω)

$$
F_{\omega}(u)=\frac{1}{2} \int|D u|^{2}-\frac{\alpha}{2} \int u^{2}-\frac{\omega}{k} \int\left[(u+e)^{-}\right]^{2}
$$

have an increasing lack of convexity as ω goes to $+\infty$ and tend to the functional

$$
F_{\infty}(u)= \begin{cases}\frac{1}{2} \int|D u|^{2}-\frac{\alpha}{2} \int u^{2} & \text { if } u \geq-e \\ -\infty & \text { elsewhere }\end{cases}
$$

We will consider a family of problems which, however, seem to have many links (at least for $\omega<\infty$) with the ones above

$$
\begin{cases}\Delta^{2} u+c \Delta u-\alpha u+\omega\left((u-\phi)^{-}\right)^{k-1}=0 & \text { in } \Omega \\ u=\Delta u=0 & \text { on } \partial \Omega\end{cases}
$$

where Δ^{2} is the biharmonic operator, c and α are real numbers, ω is a positive parameter, $k>2$ and k is subcritical.

The corresponding limit problem is

$$
\int \Delta u \Delta \psi-c \int D u \cdot D \psi-\alpha \int u \psi \leq 0
$$

for all ψ in $H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$ such that $\psi \geq 0$. The choice $k>2$ allows an a priori bound of a suitable family of solutions. The presence of the biharmonic operator lets us show that in some cases there are limit solutions u 's which do not satisfy the equation

$$
\Delta^{2} u+c \Delta u-\alpha u=0
$$

in the whole of Ω.
In this paper we study existence and multiplicity of solutions of $\left(\mathrm{P}_{\omega}\right)$ and of a stronger version of $\left(\mathrm{P}_{\infty}\right)$.

In fact if $N \leq 3$ it is possible to prove that a solution of $\left(\mathrm{P}_{\infty}\right)$ satisfies the following "reversed" variational inequality

$$
\int \Delta u \Delta(v-u)-c \int D u \cdot D(v-u)-\alpha \int u(v-u) \leq 0
$$

for all v in $H_{0}^{1}(\Omega) \cap H^{2}(\Omega), v \geq \phi$. The name "reversed" comes from the comparison between this inequality and the "classical" variational inequalities introduced in [10]. In fact in that case, if Φ is an obstacle, that is $\Phi_{\mid \partial \Omega}<0$ and Φ is positive on a set of positive measure, if one looks for

$$
\min \left\{\int|\Delta v|^{2} \mid v \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega), v \geq \Phi\right\}
$$

one finds that the unique solution u of this problem solves

$$
\int \Delta u \Delta(v-u) \geq 0 \quad \text { for all } v \text { in } H_{0}^{1}(\Omega) \cap H^{2}(\Omega), v \geq \Phi
$$

At this point we also observe that problem $\left(\mathrm{P}_{\omega}\right)$ can be compared to the problem introduced by Lazer and McKenna in [7] as a model to study travelling waves in suspension bridges. The problem is the following one

$$
\begin{cases}\Delta^{2} u+c \Delta u-b u-b(u+1)^{-}=0 & \text { in } \Omega \\ u=\Delta u=0 & \text { on } \partial \Omega\end{cases}
$$

A large number of results have been found on this context: important results are given in [6], [7], [13]-[17], [21].

2. Setting of the problem

Let Ω be a bounded and smooth domain of $\mathbb{R}^{N}, N \geq 1$. We will make the following fundamental assumptions

$$
\left\{\begin{array}{l}
\omega \in \mathbb{R}, \omega>0 \tag{H}\\
2<k(\text { and } k<2 N /(N-4) \text { if } N \geq 5) \\
\alpha, c \in \mathbb{R} \text { and } \phi \in L^{k}(\Omega)
\end{array}\right.
$$

For some technical results, such as the Palais-Smale condition, we will not make other assumptions on ϕ, but in most cases we will assume $\phi \leq 0$ a.e. in Ω or $\sup _{\Omega} \phi<0$. We observe that such a requirement is related to the physical model of travelling waves in suspension bridges, where $\phi \equiv-1$ (see [6], [7], [13]-[17], [21]).

Now consider the following sequence of problems

$$
\begin{cases}\Delta^{2} u+c \Delta u-\alpha u+\omega\left((u-\phi)^{-}\right)^{k-1}=0 & \text { in } \Omega \\ u=\Delta u=0 & \text { on } \partial \Omega\end{cases}
$$

where Δ^{2} is the biharmonic operator, $v^{-}=\max \{0,-v\}$ and $u \in H=H_{0}^{1}(\Omega) \cap$ $H^{2}(\Omega)$. In H we set $\langle u, v\rangle=\int \Delta u \Delta v,\|u\|^{2}=\int|\Delta u|^{2}$.

Remark 2.1. The norm just introduced is equivalent in H to the norm of $H^{2}(\Omega)$.

In fact $\Delta: H \rightarrow L^{2}(\Omega)$ is linear, injective (if $\Delta u=0$ and $u=0$ on $\partial \Omega$, then $u \equiv 0$), continuous if H is endowed with the $H^{2}(\Omega)$ norm and surjective (by regularity theorems). Then $\int|\Delta u|^{2} \geq c\|u\|_{H^{2}(\Omega)}$ by the Open Mapping Theorem.

Remark 2.2. H is a closed subspace of $H^{2}(\Omega)$.
In order to study problem $\left(P_{\omega}\right)$, we will follow a variational approach. Consider $f_{\omega}: H \rightarrow \mathbb{R}$ defined as follows

$$
f_{\omega}(u)=\frac{1}{2} \int|\Delta u|^{2}-\frac{c}{2} \int|D u|^{2}-\frac{\alpha}{2} \int u^{2}-\frac{\omega}{k} \int\left((u-\phi)^{-}\right)^{k} .
$$

We observe that, if $k>1, f_{\omega}$ is of class C^{1}, and if $k>2$, it is of class C^{2}. Moreover, its critical points are solutions of $\left(\mathrm{P}_{\omega}\right)$.

We will also sometimes use the following notation for the quadratic form defined on H as

$$
Q_{c, \alpha}(u)=\frac{1}{2} \int|\Delta u|^{2}-\frac{c}{2} \int|D u|^{2}-\frac{\alpha}{2} \int u^{2}
$$

Remark 2.3. The following problem

$$
\begin{cases}\Delta^{2} u+c \Delta u=\Lambda u & \text { in } \Omega \\ u=\Delta u=0 & \text { on } \partial \Omega\end{cases}
$$

has an increasing sequence of eigenvalues $\Lambda_{i}=\lambda_{n_{i}}\left(\lambda_{n_{i}}-c\right), i \geq 1$, where the sequence $\left(\lambda_{n_{i}}\right)_{i \in \mathbb{N}}$ is a rearrangement of the eigenvalues of $\Delta u+\lambda u=0, u=0$ on $\partial \Omega$ (if $c>\lambda_{k}+\lambda_{j}, j<k$, then $\lambda_{k}^{2}-c \lambda_{k}<\lambda_{j}^{2}-c \lambda_{j}$). The eigenfunctions of the former problem are the ones corresponding to the latter problem $\left(E_{i}=e_{n_{i}}\right)$, and they are orthonormal in $L^{2}(\Omega)$. We recall that e_{1} can be chosen strictly positive in Ω.

Observe that, since $\lambda_{r} \rightarrow \infty$ as $r \rightarrow \infty$, there is possibly only a finite number of negative or null Λ_{i} 's, and $\Lambda_{i} \rightarrow \infty$ as $i \rightarrow \infty$. Note that the first eigenvalue is not simple any more, in general. Finally set $H_{j}=\operatorname{Span}\left(E_{1}, \ldots, E_{j}\right)$ for any $j \geq 1$.

3. Palais-Smale condition

We will investigate the existence of critical points of f_{ω} through some variational tools that we recall in the Appendix.

Proposition 3.1. Suppose $\alpha \neq \lambda_{1}^{2}-c \lambda_{1}$ and hypothesis (H) holds. Then f_{ω} satisfies $(\mathrm{PS})_{\mathfrak{c}}$ for every \mathfrak{c} in \mathbb{R}.

Proof. Let $\left(u_{h}\right)_{h}$ be a $(\mathrm{PS})_{\mathfrak{c}}$ sequence, that is $f_{\omega}\left(u_{h}\right) \rightarrow \mathfrak{c}$ and $f_{\omega}^{\prime}\left(u_{h}\right) \rightarrow 0$. It is enough to show that $\left\|u_{h}\right\|$ is bounded, since for all z in H

$$
\nabla f_{\omega}(z)=z+i^{*}\left(c \Delta z-\alpha z+\omega\left((z-\phi)^{-}\right)^{k-1}\right)
$$

where $i^{*}: L^{2}(\Omega) \longrightarrow H$, the adjoint of the immersion $i: H \longrightarrow L^{2}(\Omega)$, is a compact operator. In fact, if $u_{n} \rightharpoonup u$ in H, then u_{n} converges strongly in $L^{k}(\Omega)$. So $\left(\left(u_{n}-\phi\right)^{-}\right)^{k-1}$ converges strongly in $L^{k /(k-1)}(\Omega)$ and thus in H^{\prime}. But then $u_{n}=\nabla f_{\omega}\left(u_{n}\right)-i^{*}\left(c \Delta u_{n}-\alpha u_{n}+\omega\left(\left(u_{n}-\phi\right)^{-}\right)^{k-1}\right)$ converges strongly, since $\left(\Delta u_{n}\right)_{n}$ and $\left(u_{n}\right)_{n}$ are bounded in $L^{2}(\Omega)$.

Thus suppose by contradiction that, up to a subsequence, $\left\|u_{h}\right\|$ diverges. Then there is v in H such that (up to a subsequence) $v_{h}=u_{h} /\left\|u_{h}\right\| \rightharpoonup v$ in H. Note that, dividing $f_{\omega}\left(u_{h}\right)$ by $\left\|u_{h}\right\|^{k}$ and passing to the limit, we get $\int\left(v^{-}\right)^{k}=0$, and so $v \geq 0$.

Now observe that for all $\varepsilon>0$, exists $C_{\varepsilon}>0$ such that

$$
\left|\int\left(\left(u_{h}-\phi\right)^{-}\right)^{k-1} \phi\right| \leq \varepsilon \int\left(\left(u_{h}-\phi\right)^{-}\right)^{k}+C_{\varepsilon}
$$

In fact

$$
\begin{aligned}
\left|\int\left(\left(u_{h}-\phi\right)^{-}\right)^{k-1} \phi\right| & \leq\left(\int\left(\left(u_{h}-\phi\right)^{-}\right)^{k}\right)^{1-1 / k}\|\phi\|_{L^{k}(\Omega)} \\
& \leq\|\phi\|_{L^{k}(\Omega)}\left(\widetilde{\varepsilon} \int\left(\left(u_{h}-\phi\right)^{-}\right)^{k}+\widetilde{C}_{\varepsilon}\right)
\end{aligned}
$$

Here we used the fact that for every $R \geq 0$, for every $0<\alpha<p$ and for every $\varepsilon>0$

$$
\begin{equation*}
R^{\alpha} \leq \frac{\alpha}{p} \varepsilon R^{p}+\frac{p-\alpha}{p}\left(\frac{1}{\varepsilon}\right)^{\alpha /(p-\alpha)} \tag{1}
\end{equation*}
$$

In this way

$$
\begin{aligned}
\frac{f_{\omega}^{\prime}\left(u_{h}\right)\left(u_{h}\right)}{\left\|u_{h}\right\|}= & \frac{1}{\left\|u_{h}\right\|}\left\{\int\left|\Delta u_{h}\right|^{2}-c \int\left|D u_{h}\right|^{2}-\alpha \int u_{h}^{2}\right. \\
& \left.+\omega \int\left(\left(u_{h}-\phi\right)^{-}\right)^{k-1} u_{h}\right\} \\
= & \frac{1}{\left\|u_{h}\right\|}\left\{2 f_{\omega}\left(u_{h}\right)+\left(\frac{2}{k}-1\right) \omega \int\left(\left(u_{h}-\phi\right)^{-}\right)^{k}\right. \\
& \left.+\omega \int\left(\left(u_{h}-\phi\right)^{-}\right)^{k-1} \phi\right\} \\
\leq & \frac{1}{\left\|u_{h}\right\|}\left\{2 f_{\omega}\left(u_{h}\right)+\left(\frac{2}{k}-1+\varepsilon\right) \omega \int\left(\left(u_{h}-\phi\right)^{-}\right)^{k}+\omega C_{\varepsilon}\right\}
\end{aligned}
$$

But $f_{\omega}^{\prime}\left(u_{h}\right)\left(u_{h}\right) /\left\|u_{h}\right\| \rightarrow 0$ as $h \rightarrow 0$ and passing to the limit we get, if ε is small enough (i.e. $2 / k-1+\varepsilon<0$),

$$
\lim _{h \rightarrow \infty} \frac{\int\left(\left(u_{h}-\phi\right)^{-}\right)^{k}}{\left\|u_{h}\right\|}=0 \quad \text { and hence } \quad \lim _{h \rightarrow \infty} \frac{\int\left(\left(u_{h}-\phi\right)^{-}\right)^{k-1} \phi}{\left\|u_{h}\right\|}=0
$$

Moreover, since $u_{h}=\left(u_{h}-\phi\right)+\phi$,

$$
\lim _{h \rightarrow \infty} \frac{\int\left(\left(u_{h}-\phi\right)^{-}\right)^{k-1} u_{h}}{\left\|u_{h}\right\|}=0
$$

But in this way

$$
\begin{aligned}
& \frac{f_{\omega}^{\prime}\left(u_{h}\right)\left(u_{h}\right)}{\left\|u_{h}\right\|^{2}}=1-c \int\left|D v_{h}\right|^{2}-\alpha \int v_{h}^{2}+\frac{\omega \int\left(\left(u_{h}-\phi\right)^{-}\right)^{k-1} u_{h}}{\left\|u_{h}\right\|^{2}} \\
& \rightarrow 1-c \int|D v|^{2}-\alpha \int v^{2}
\end{aligned}
$$

On the other hand $f_{\omega}^{\prime}\left(u_{h}\right)\left(u_{h}\right) /\left\|u_{h}\right\|^{2} \rightarrow 0$ as $h \rightarrow \infty$. Therefore if c and α are non positive we get a contradiction. Otherwise $v \not \equiv 0$.

Now observe that $\int\left(\left(u_{h}-\phi\right)^{-}\right)^{k-1} e_{1} /\left\|u_{h}\right\| \rightarrow 0$, since

$$
\frac{\int\left(\left(u_{h}-\phi\right)^{-}\right)^{k-1} e_{1}}{\left\|u_{h}\right\|} \leq\left(\frac{1}{\left\|u_{h}\right\|} \int e_{1}^{k}\right)^{1 / k}\left(\frac{1}{\left\|u_{h}\right\|} \int\left(\left(u_{h}-\phi\right)^{-}\right)^{k}\right)^{1-1 / k}
$$

Therefore

$$
\begin{aligned}
& \frac{f_{\omega}^{\prime}\left(u_{h}\right) e_{1}}{\left\|u_{h}\right\|}=\frac{1}{\left\|u_{h}\right\|}\left\{\int \Delta u_{h} \Delta e_{1}-c \int D u_{h} \cdot D e_{1}-\alpha \int u_{h} e_{1}\right. \\
&\left.+\omega \int\left(\left(u_{h}-\phi\right)^{-}\right)^{k-1} e_{1}\right\}
\end{aligned} \rightarrow\left(\lambda_{1}^{2}-c \lambda_{1}-\alpha\right) \int v e_{1} .
$$

But $f_{\omega}^{\prime}\left(u_{h}\right) e_{1} /\left\|u_{h}\right\| \rightarrow 0$ as $h \rightarrow \infty$ and the previous limit implies $v \equiv 0$, since $\alpha \neq \lambda_{1}^{2}-c \lambda_{1}$. Then a contradiction arises.

Remark 3.2. We observe that the requirement $\alpha \neq \lambda_{1}^{2}-c \lambda_{1}$ is not merely a technical assumption: indeed, if $\alpha=\lambda_{1}^{2}-c \lambda_{1}$ we can take the sequence $u_{n}=t_{n} e_{1}, t_{n}>0$ and $t_{n} \rightarrow \infty$. Such a sequence is such that $f_{\omega}\left(u_{n}\right)=0$ and $f_{\omega}^{\prime}\left(u_{n}\right)=0$ for all ω and all n in \mathbb{N}. But, of course, it is impossible to find a converging subsequence.

4. Existence of one forcing solution

From now on we will also assume that $\phi \leq 0$, in order to find some solutions to problem $\left(\mathrm{P}_{\omega}\right)$. In particular our goal is to find some particular solutions, the ones which we call forcing solutions.

Definition 4.1. A function u in H is called a forcing solution of problem $\left(\mathrm{P}_{\omega}\right)$ if it is a solution such that $(u-\phi)^{-} \neq 0$.

The definition just given is justified by the fact that in some cases, if a sequence of forcing solutions weakly converges to u, such a u is forced to be over ϕ and to touch ϕ somewhere.

REmark 4.2. If u is a solution of $\left(\mathrm{P}_{\omega}\right)$ such that $f_{\omega}(u) \neq 0$, then u is a forcing solution. In fact, if $u \geq \phi$ a.e. in Ω, then $0=f_{\omega}^{\prime}(u) \psi=\int \Delta u \Delta \psi-$ $c \int D u \cdot D \psi-\alpha \int u \psi$ for every ψ in H, and so, taking $\psi=u$, we would have $f_{\omega}(u)=0$.

Conversely, if $\phi \leq 0$, every forcing solution u is such that $f_{\omega}(u)>0$. In fact

$$
0=f_{\omega}^{\prime}(u) u=2 f_{\omega}(u)+\left(\frac{2}{k}-1\right) \omega \int\left((u-\phi)^{-}\right)^{k}+\omega \int\left((u-\phi)^{-}\right)^{k-1} \phi
$$

and then $f(u)>0$.
In this section we want to show that if $\phi \leq 0$, then there exists a forcing solution u_{ω} of problem $\left(\mathrm{P}_{\omega}\right)$ for every $\omega>0$. Actually we show that there exists a forcing solution for all $N \geq 1$ if $\alpha<\lambda_{1}^{2}-c \lambda_{1}$ and for all $N \geq 2$ if $\alpha>\lambda_{1}^{2}-c \lambda_{1}$. In view of Proposition 3.1 and Remark 3.2 we will not take into account the case $\alpha=\lambda_{1}^{2}-c \lambda_{1}$.

We finally observe that, if $\phi \leq 0 u \equiv 0$ is always a solution of $\left(\mathrm{P}_{\omega}\right)$, whatever c, α and ω are.

Lemma 4.3. Let k be in $[1, \infty)$ and such that $k<2 N /(N-4)$ if $N>4$, $\phi \in L^{k}(\Omega)$ and $\phi \leq 0$. Then

$$
\int\left((u-\phi)^{-}\right)^{k}=O\left(\|u\|^{k}\right)
$$

Proof. Denote by $\{u-\phi \leq 0\}$ the set $\{x \in \Omega \mid u(x)-\phi(x) \leq 0\}$.
Case 1. $N>4$. Set $q=2 N /(N-4)$. Then

$$
\int\left((u-\phi)^{-}\right)^{k}=\int_{\{u-\phi \leq 0\}}(-u+\phi)^{k}
$$

and since $0 \leq-u+\phi \leq-u$, the last quantity is less or equal to

$$
\begin{aligned}
\int_{\{u-\phi \leq 0\}}(-u)^{k} & \leq\left(\int_{\{u-\phi \leq 0\}}(-u)^{q}\right)^{k / q} m(\{u-\phi \leq 0\})^{1-k / q} \\
& \leq\left(\int_{\Omega}|u|^{q}\right)^{k / q} m(\{u-\phi \leq 0\})^{1-k / q}
\end{aligned}
$$

and by the Sobolev's Embedding Theorem it is smaller than

$$
C\|u\|^{k} m(\{u-\phi \leq 0\})^{1-k / q}
$$

for a universal constant $C>0$ (here $m(A)$ stands for the Lebesgue measure of any set A).

Case 2. $N=4$. Starting as in the previous step

$$
\int\left((u-\phi)^{-}\right)^{k} \leq\|u\|_{L^{s}(\Omega)}^{k} m(\{u-\phi \leq 0\})^{1-k / s}
$$

for every $s>k$. As before, there exists a universal positive constant C such that the last quantity is less or equal to $C\|u\|^{k} m(\{u-\phi \leq 0\})^{1-k / s}$.

Case 3. $N \leq 3$. In this case there exists $C>0$ such that for every u in H

$$
\int\left((u-\phi)^{-}\right)^{k} \leq\|u\|_{L^{\infty}(\Omega)}^{k} m(\{u-\phi \leq 0\}) \leq C\|u\|^{k} m(\{u-\phi \leq 0\})
$$

As already said, in the theorems involving the existence of forcing solutions, we distinguish two cases: the first one in which $\alpha<\lambda_{1}^{2}-c \lambda_{1}$ and the one in which $\alpha>\lambda_{1}^{2}-c \lambda_{1}$.

REmark 4.4. If there exists $l \geq 1$ such that $e_{1} \notin H_{l}$, then there isn't any non trivial non negative (or non positive) function in H_{l}. In fact for all v in H such that $v \geq 0, v \not \equiv 0$, we get $\left\langle v, e_{1}\right\rangle=\lambda_{1}^{2} \int v e_{1}>0$.

Lemma 4.5. Assume (H) and $\Lambda_{l} \leq \alpha<\Lambda_{l+1}, l \geq 1$. Then
(a) $\sup _{H_{l}} f_{\omega}=0$,
(b) if $\phi \leq 0$, there exists $C_{l}^{+}>0$ such that

$$
\lim _{\rho \rightarrow 0} \frac{1}{\rho^{2}} \inf _{\substack{w \in H_{l}^{\perp},\|w\|=\rho}} f_{\omega}(w) \geq C_{l}^{+}
$$

(c) if $\alpha<\lambda_{1}^{2}-c \lambda_{1}$, then

$$
\lim _{\substack{v \in H_{l}, \sigma \geq 0,\left\|v-\sigma e_{1}\right\| \rightarrow \infty}} f_{\omega}\left(v-\sigma e_{1}\right)=-\infty .
$$

Proof. (a) It is obvious, since $f_{\omega}(v) \leq\left(\Lambda_{l}-\alpha\right) / 2 \int v^{2}$ for all v in H_{l} and $f_{\omega}(0)=0$.
(b) Observe that, by Lemma 4.3, for any $\varepsilon>0$ there exists $\rho>0$ such that, if $\|w\| \leq \rho, f_{\omega}(w) \geq C_{l}^{+}\|w\|^{2}-\varepsilon\|w\|^{2}$, where $C_{l}^{+}=\inf _{n_{i} \geq l+1}\left(\lambda_{n_{i}}^{2}-c \lambda_{n_{i}}-\alpha\right) / \lambda_{n_{i}}^{2}$. The thesis follows.
(c) Suppose by contradiction that there exist v_{h} in $H_{l}, \sigma_{h} \geq 0$ and C in \mathbb{R} such that $\left\|v_{h}-\sigma_{h} e_{1}\right\| \rightarrow \infty$ and
(2) $\frac{1}{2} \int\left|\Delta\left(v_{h}-\sigma_{h} e_{1}\right)\right|^{2}-\frac{c}{2} \int\left|D\left(v_{h}-\sigma_{h} e_{1}\right)\right|^{2}$

$$
-\frac{\alpha}{2} \int\left(v_{h}-\sigma_{h} e_{1}\right)^{2}-\frac{\omega}{k} \int\left(\left(v_{h}-\sigma_{h} e_{1}-\phi\right)^{-}\right)^{k} \geq C
$$

Up to a subsequence we can suppose that $\left(v_{h}-\sigma_{h} e_{1}\right) /\left\|v_{h}-\sigma_{h} e_{1}\right\| \rightarrow v-\sigma e_{1}$ in H, in $L^{k}(\Omega)$ and a.e. in Ω, where $v \in H_{l}$ and $\sigma \geq 0$ (remember that this is a finite dimensional case). Dividing both sides of inequality (2) by $\left\|v_{h}-\sigma_{h} e_{1}\right\|^{2}$ and passing to the limit, we obtain that

$$
\limsup _{h \rightarrow \infty}\left\|v_{h}-\sigma e_{1}\right\|^{k-2} \int\left(\left(\frac{v_{h}-\sigma_{h} e_{1}-\phi}{\left\|v_{h}-\sigma_{h} e_{1}\right\|}\right)^{-}\right)^{k}
$$

is a real non negative number. In this way $v-\sigma e_{1} \geq 0$ a.e. in Ω.
Since $\alpha<\lambda_{1}^{2}-c \lambda_{1}, e_{1} \in H_{l}^{\perp}$. In this way $\left\langle v, e_{1}\right\rangle=0$, and so $0 \leq\langle v-$ $\left.\sigma e_{1}, e_{1}\right\rangle=-\sigma \lambda_{1}^{2}$, which is possible if and only if $\sigma=0$. This implies $v \geq 0$ in H_{l}, which is impossible for Remark 4.4.

As we will see, the proof of the following theorem is essentially based on an application of Theorem A.3, which topologically degenerates in a mountain pass structure if the quadratic form is positive definite.

Theorem 4.6. Suppose (H) holds, $\phi \leq 0$ and $\alpha<\lambda_{1}^{2}-c \lambda_{1}$. Then there exists a non trivial critical point u_{ω} of f_{ω} (i.e. a forcing solution of problem $\left(\mathrm{P}_{\omega}\right)$). Moreover, $0<f_{\omega}\left(u_{\omega}\right)$ for all ω, and for all $\bar{\omega}>0 \sup _{\omega \geq \bar{\omega}} f_{\omega}\left(u_{\omega}\right)<\infty$.

Proof. There are two cases.
Case 1. Suppose that $\Lambda_{i}>0$ for all i in \mathbb{N}. Then $Q_{c, \alpha}$ is positive definite and we can introduce the following scalar product in $H:(u, v)=\int \Delta u \Delta v-$ $c \int D u \cdot D v-\alpha \int u v$. We observe that the induced norm $\|\|\cdot\|$ is equivalent to the norm introduced in H. In fact there exist positive a_{0} and b_{0} such that $a_{0}\|u\|^{2} \leq\|u\|^{2} \leq b_{0}\|u\|^{2}$, where b_{0} is obtained by the continuity of $Q_{c, \alpha}$ on H, while a_{0} is obtained from next Remark 4.7.

Observe that $f_{\omega}(0)=0, \lim _{t \rightarrow \infty} f_{\omega}\left(-t e_{1}\right)=-\infty$ and that f_{ω} is locally coercive. In fact $Q_{c, \alpha}(u) \geq\left(a_{0} / 2\right)\|u\|^{2}$. By Lemma 4.3 for every ε in $\left(0, a_{0} / 2 \omega\right)$ there exists $\rho_{\omega}>0$ such that $\inf _{\|u\| \|=\rho_{\omega}} f_{\omega}(u) \geq\left(a_{0} / 2-\omega \varepsilon\right) \rho_{\omega}^{2}$. In this way, by the Mountain Pass Theorem, there exists a critical point u_{ω} with positive critical value. We observe that the Palais-Smale condition also holds with this norm, as one can easily check adapting the proof of Proposition 3.1.

Moreover, by Remark 4.2 we get that $\left(u_{\omega}-\phi\right)^{-} \neq 0$, since $f_{\omega}\left(u_{\omega}\right)>0$.
Finally, we find an upper bound for the critical values. In fact, if $t_{\omega}>0$ is such that $f_{\omega}\left(-t_{\omega} e_{1}\right) \leq 0$, then

$$
\begin{aligned}
\left(\frac{a_{0}}{2}-\omega \varepsilon\right) \rho_{\omega}^{2} & \leq f_{\omega}\left(u_{\omega}\right) \leq \sup _{t \in\left[0, t_{\omega}\right]} f_{\omega}\left(-t e_{1}\right) \\
& \leq \sup _{t \in\left[0, t_{\omega}\right]} f_{\bar{\omega}}\left(-t e_{1}\right) \leq \sup _{t \in[0, \infty)} f_{\bar{\omega}}\left(-t e_{1}\right)<\infty
\end{aligned}
$$

Here we used the fact that if $\omega_{1}<\omega_{2}$ and $u \in H$, then $f_{\omega_{1}}(u) \geq f_{\omega_{2}}(u)$.

Case 2. Now suppose that exists $l \geq 1$ such that $\Lambda_{l} \leq \alpha<\Lambda_{l+1}$. Lemma 4.5 implies that there exist R_{ω} and ρ_{ω} such that $R_{\omega}>\rho_{\omega}>0$ and

$$
\inf _{\substack{w \in H \perp \\\|w\|=\rho_{\omega}}} f_{\omega}(w)>\sup _{z \in \Sigma_{R_{\omega}}} f_{\omega}(z)
$$

where $\Sigma_{R_{\omega}}=\left\{z=v-\sigma e_{1} \mid v \in H_{l}, \sigma \geq 0,\|z\|=R_{\omega}\right\}$. In this way the hypotheses of the Linking Theorem are satisfied, so there exists a critical point u_{ω} such that

$$
0<\inf _{\substack{w \in H_{\perp}^{\perp} \\\|w\|=\rho_{\omega}}} f_{\omega}(w) \leq f_{\omega}\left(u_{\omega}\right) \leq \sup _{z \in \Delta_{R_{\omega}}} f_{\omega}(z)
$$

where $\Delta_{R_{\omega}}=\left\{z=v-\sigma e_{1} \mid v \in H_{l}, \sigma \geq 0,\|z\| \leq R_{\omega}\right\}$. More precisely, this is a forcing solution of problem $\left(\mathrm{P}_{\omega}\right)$, by Remark 4.2. The Linking Theorem also provides the existence of another critical point with non positive critical value, but it is the trivial one.

We observe that also in this case we can find a uniform bound for the critical values $f_{\omega}\left(u_{\omega}\right)$. In fact from the Linking Theorem for any $\bar{\omega}>0$

$$
f_{\omega}\left(u_{\omega}\right) \leq \sup _{z \in \Delta_{R_{\omega}}} f_{\omega}(z) \leq \sup _{z \in \Delta_{R_{\omega}}} f_{\bar{\omega}}(z) \leq \sup _{\substack{v \in H_{1}, \sigma \geq 0}} f_{\bar{\omega}}\left(v-\sigma e_{1}\right)<\infty
$$

Remark 4.7. If the quadratic form $Q_{c, \alpha}$ is positive definite, there exists $a_{0}>0$ such that for every w in H

$$
\int|\Delta w|^{2}-c \int|D w|^{2}-\alpha \int w^{2} \geq a_{0}\|w\|^{2}
$$

In fact, every w in H can be written as $w=\sum_{i=1}^{\infty} \beta_{i} E_{i}, \beta_{i} \in \mathbb{R}$, so

$$
\begin{aligned}
\int|\Delta w|^{2}-c \int|D w|^{2}-\alpha \int w^{2} & =\sum \beta_{i}^{2} \frac{\left(\lambda_{n_{i}}^{2}-c \lambda_{n_{i}}-\alpha\right)}{\lambda_{n_{i}}^{2}} \lambda_{n_{i}}^{2} \\
& \geq a_{0} \sum \beta_{i}^{2} \lambda_{n_{i}}^{2}=a_{0}\|w\|^{2}
\end{aligned}
$$

Here a_{0} is the infimum of $\left(\lambda_{n_{i}}^{2}-c \lambda_{n_{i}}-\alpha_{n}\right) / \lambda_{n_{i}}^{2}$ for $n_{i} \geq 1$, and this infimum is positive, since the quotient goes to 1 as $i \rightarrow \infty$ and it is strictly positive for every finite subset of indices.

For the case $\alpha>\lambda_{1}^{2}-c \lambda_{1}$ we obtain a result which is analogous to the one of Theorem 4.6, at least if $N \geq 2$. Note that if $\alpha>\lambda_{1}^{2}-c \lambda_{1}$, then there exists $l \geq 1$ such that $\Lambda_{l} \leq \alpha<\Lambda_{l+1}$ and $e_{1} \in H_{l}$.

Now let e be in H_{l}^{\perp} such that ess $\sup e=+\infty$ (if $N \geq 4$) or there exists x_{0} on $\partial \Omega$ such that $\partial u\left(x_{0}\right) / \partial \nu=-\infty($ if $N=2$ or $N=3)$, where ν is the unit outward normal to $\partial \Omega$. In both cases $m(\{x \in \Omega \mid e(x)>v(x)\})>0$ for
all v in H_{l}, since functions belonging to H_{l} are smooth. We remark that such a function e exists since the mapping

$$
u \mapsto\left\{u_{\mid \partial \Omega}, \frac{\partial u}{\partial \nu}\right\}
$$

is linear, continuous and surjective from $W^{2,2}(\Omega)$ onto $W^{3 / 2,2}(\partial \Omega) \times W^{1 / 2,2}(\partial \Omega)$ (see [2] or [8]).

The following Lemma is the one corresponding to (c) of Lemma 4.5 in the case $\alpha>\lambda_{1}^{2}-c \lambda_{1}$.

Lemma 4.8. Assume (H) and $N \geq 2$. Suppose $\alpha>\lambda_{1}^{2}-c \lambda_{1}$ and $\Lambda_{l} \leq \alpha<$ Λ_{l+1}. Then

$$
\lim _{\substack{v \in H_{l, \sigma \geq 0} \\\|v-\sigma e\| \rightarrow \infty}} f(v-\sigma e)=-\infty .
$$

Proof. Suppose by contradiction that there exist v_{h} in $H_{l}, \sigma_{h} \geq 0$ and C in \mathbb{R} such that $\left\|v_{h}-\sigma_{h} e\right\| \rightarrow \infty$ and

$$
\text { (3) } \begin{aligned}
\frac{1}{2} \int\left|\Delta\left(v_{h}-\sigma_{h} e\right)\right|^{2}- & \frac{c}{2} \int\left|D\left(v_{h}-\sigma_{h} e\right)\right|^{2} \\
& -\frac{\alpha}{2} \int\left(v_{h}-\sigma_{h} e\right)^{2}-\frac{\omega}{k} \int\left(\left(v_{h}-\sigma_{h} e-\phi\right)^{-}\right)^{k} \geq C .
\end{aligned}
$$

Up to a subsequence we can suppose that

$$
\left(v_{h}-\sigma_{h} e\right) /\left\|v_{h}-\sigma_{h} e\right\| \rightarrow v-\sigma e
$$

in H, where $v \in H_{l}$ and $\sigma \geq 0$. Dividing both sides of inequality (3) by $\| v_{h}-$ $\sigma_{h} e \|^{2}$ and passing to the limit, we obtain

$$
\int|\Delta(v-\sigma e)|^{2}-c \int|D(v-\sigma e)|^{2}-\alpha \int(v-\sigma e)^{2} \geq 0
$$

and $v-\sigma e \geq 0$ a.e. in Ω. By the choice of e we get $\sigma=0, v \geq 0$ and $\int|\Delta v|^{2}-$ $c \int|D v|^{2}-\alpha \int v^{2} \geq 0$. But $v \in H_{l}$, so $Q_{c, \alpha}(v)=0$ and v belongs to the subspace spanned by the eigenfunctions associated to the null eigenvalues of $Q_{c, \alpha}$. In this way $\left\langle v, e_{1}\right\rangle=0$, since $\alpha>\lambda_{1}^{2}-c \lambda_{1}$. But $v \not \equiv 0(\|v\|=1)$, so $\left\langle v, e_{1}\right\rangle=\lambda_{1}^{2} \int v e_{1}>0$ and a contradiction arises.

Theorem 4.9. Assume (H), $\phi \leq 0, \alpha>\lambda_{1}^{2}-c \lambda_{1}$ and $N \geq 2$. Then for all $\omega>0$ there exists a non trivial critical point u_{ω} of f_{ω} (i.e. is a forcing solution of $\left(\mathrm{P}_{\omega}\right)$). Moreover, $0<f_{\omega}\left(u_{\omega}\right)$ for all ω and all $\bar{\omega}>0 \sup _{\omega \geq \bar{\omega}} f_{\omega}\left(u_{\omega}\right)<\infty$.

Proof. We can suppose that exists $l \geq 1$ such that $\Lambda_{l} \leq \alpha<\Lambda_{l+1}$ and $e_{1} \in H_{l}$. Observe that (a) and (b) of Lemma 4.5 still hold in this case, as well as Lemma 4.8.

As in the previous case, by Lemma 4.8, it is possible to apply the Linking Theorem and find a critical point u_{ω} for every ω such that $\left(u_{\omega}-\phi\right)^{-} \neq 0$ and $\sup _{\omega \geq \bar{\omega}} f_{\omega}\left(u_{\omega}\right)<\infty$ for all $\bar{\omega}>0$.

Remark 4.10. In both Theorem 4.6 and Theorem 4.9, if $N \leq 3$, $\sup \phi<0$ in Ω and ρ is small enough, the ε used in the Mountain Pass Theorem or in the Linking Theorem can be replaced by 0 , since H is continuously embedded in $C^{0}(\Omega)$. In this way for all $\omega>0, \inf _{\omega} f_{\omega}\left(u_{\omega}\right)>0$ (see also Corollary 5.19).

Definition 4.11. For any $j \geq 1$ set

$$
\Lambda_{j}^{*}=\max \left\{\int|\Delta v|^{2}-c \int|D v|^{2} \mid v \in H_{j}, v \geq 0, \int v^{2}=1\right\} .
$$

Observe that in general $\Lambda_{j}^{*} \leq \Lambda_{j}$. But if r is such that $e_{1}=E_{r}$ and if $j>r$, then $\Lambda_{j}^{*}<\Lambda_{j}$. In fact, suppose v in H_{j} gives the maximum in Definition 4.11 and $v=\sum_{m=1}^{j} \beta_{m} E_{m}$. Since $E_{j} \neq e_{1}$, then $\left|\beta_{j}\right|<1$ and $\beta_{r}>0$, since for all v in H such that $v \geq 0, v \not \equiv 0,\left\langle v, e_{1}\right\rangle=\lambda_{1}^{2} \int v e_{1}=\lambda_{1}^{2} \beta_{r}>0$.

Theorem 4.12. Suppose (H) holds, $\phi \leq 0, \alpha>\lambda_{1}^{2}-c \lambda_{1}, l \geq 1$ is such that $\Lambda_{l} \leq \alpha<\Lambda_{l+1}, \alpha>\Lambda_{l+1}^{*}$ and $N \geq 1$. Then there exists a non trivial critical point u_{ω} of f_{ω} (which is a forcing solution of problem $\left(\mathrm{P}_{\omega}\right)$). Moreover, $0<f_{\omega}\left(u_{\omega}\right)$ for all ω and all $\bar{\omega}>0 \sup _{\omega \geq \bar{\omega}} f_{\omega}\left(u_{\omega}\right)<\infty$.

Proof. The proof is very similar to the one of the previous theorem, but in this case we create a linking with E_{l+1}. In fact, proceeding as in the proof of Lemma 4.8, with e replaced by E_{l+1}, we would get that there exists v in H_{l}, σ in \mathbb{R} such that $\left\|v+\sigma E_{l+1}\right\|=1$ and $0 \leq Q_{c, \alpha}\left(v+\sigma E_{1}\right) \leq\left(\Lambda_{l+1}^{*}-\alpha\right) \int\left(v+\sigma E_{l+1}\right)^{2}$, which would imply $v+\sigma E_{l+1}=0$, which is impossible. The rest follows in the same way.

5. Multiplicity of forcing solutions

In theorems related to multiplicity of forcing solutions we will consider a special case starting from the assumption that there exist $l \geq 1$ and $s \geq l+1$ such that $\Lambda_{l}<\Lambda_{l+1}=\ldots=\Lambda_{s}<\Lambda_{s+1}$. We will consider two cases, according to whether $\Lambda_{s}<\lambda_{1}^{2}-c \lambda_{1}$ or $\lambda_{1}^{2}-c \lambda_{1} \leq \Lambda_{l}$.

It is clear, for example, that if \bar{m} is such that $c \leq \lambda_{1}+\lambda_{\bar{m}}$ and $\lambda_{\bar{m}}>\lambda_{1}$, then the eigenvalue $\Lambda_{l}=\lambda_{m}^{2}-c \lambda_{\bar{m}}$ satisfies $\lambda_{1}^{2}-c \lambda_{1} \leq \Lambda_{l}$, while if \bar{m} is such that $c>\lambda_{1}+\lambda_{\bar{m}}$ and $\lambda_{\bar{m}}>\lambda_{1}$, then $\Lambda_{s}=\lambda_{m}^{2}-c \lambda_{\bar{m}}$ satisfies $\Lambda_{s}<\lambda_{1}^{2}-c \lambda_{1}$.

We now need some preliminary results and to obtain them, we consider the case $\Lambda_{s}<\lambda_{1}^{2}-c \lambda_{1}$ and the case $\lambda_{1}^{2}-c \lambda_{1} \leq \Lambda_{l}$ separately.

Case 1. $\Lambda_{s}<\lambda_{1}^{2}-c \lambda_{1}$. We recall that in this case there aren't non trivial non negative functions in H_{s}.

Lemma 5.1. Assume (H) and $\Lambda_{s}<\lambda_{1}^{2}-c \lambda_{1}$. Then

$$
\lim _{\substack{v \in H_{s},\|v\| \rightarrow \infty}} f_{\omega}(v)=-\infty .
$$

Proof. Suppose by contradiction that there exist v_{h} in H_{s} and C in \mathbb{R} such that $\left\|v_{h}\right\| \rightarrow \infty$ and

$$
\begin{equation*}
\frac{1}{2} \int\left|\Delta v_{h}\right|^{2}-\frac{c}{2} \int\left|D v_{h}\right|^{2}-\frac{\alpha}{2} \int v_{h}^{2}-\frac{\omega}{k} \int\left(\left(v_{h}-\phi\right)^{-}\right)^{k} \geq C \tag{4}
\end{equation*}
$$

Up to a subsequence we can suppose that $v_{h} /\left\|v_{h}\right\| \rightarrow v$ in $H_{s} \backslash\{0\}$. Dividing both sides of inequality (4) by $\left\|v_{h}\right\|^{k}$, we get $v \geq 0$ and this is a contradiction.

Actually each functional f_{ω} depends on α, too. We do not emphasize such a dependence explicitly in view of the results we will prove in the last sections, but, anyway, it should be kept in mind that $f_{\omega}=f_{\omega, \alpha}$. With such a convention, we can give the following

Definition 5.2. For every α in $\mathbb{R}, \omega>0$ and $j \geq 1$ set $M_{j}^{\omega}(\alpha)=\max _{H_{j}} f_{\omega}$.
Proposition 5.3. Assume (H) and $\Lambda_{j}<\lambda_{1}^{2}-c \lambda_{1}$. Then, for every $\omega>0$,
(a) $M_{j}^{\omega}(\alpha)<\infty$,
(b) $\sup \phi<0$ and $\alpha<\Lambda_{j} \Rightarrow M_{j}^{\omega}(\alpha)>0$,
(c) $\alpha \geq \Lambda_{j} \Rightarrow M_{j}^{\omega}(\alpha)=0$,
(d) $\lim _{\alpha \rightarrow \Lambda_{j}} M_{j}^{\omega}(\alpha)=0$.

Proof. (a) Suppose by contradiction that there exists v_{h} in H_{j} such that

$$
\begin{equation*}
\frac{1}{2} \int\left|\Delta v_{h}\right|^{2}-\frac{c}{2} \int\left|D v_{h}\right|^{2}-\frac{\alpha}{2} \int v_{h}^{2}-\frac{\omega}{k} \int\left(\left(v_{h}-\phi\right)^{-}\right)^{k} \geq h \tag{5}
\end{equation*}
$$

Whatever c and α are, we get $\left\|v_{h}\right\| \rightarrow \infty$, and so, up to a subsequence, $v_{h} /\left\|v_{h}\right\| \rightarrow$ v in $H_{j} \backslash\{0\}$. Dividing both sides of inequality (5) by $\left\|v_{h}\right\|^{k}$ we get $v \geq 0$, which is impossible.
(b) Let $E \neq 0$ be an eigenfunction with eigenvalue Λ_{j} and such that $E-\phi \geq 0$ (this is possible since $\sup \phi<0$ and functions with eigenvalue Λ_{j} are smooth). Then $f_{\omega}(E)=\left(\Lambda_{j}-\alpha\right) / 2 \int E^{2}>0$.
(c) This is nothing else but (a) of Lemma 4.5.
(d) By contradiction, suppose there exist $\alpha_{h} \rightarrow \Lambda_{j}, v_{h}$ in H_{j} and $\varepsilon>0$ such that
(6) $M_{j}^{\omega}\left(\alpha_{h}\right)=\frac{1}{2} \int\left|\Delta v_{h}\right|^{2}-\frac{c}{2} \int\left|D v_{h}\right|^{2}-\frac{\alpha_{h}}{2} \int v_{h}^{2}-\frac{\omega}{k} \int\left(\left(v_{h}-\phi\right)^{-}\right)^{k} \geq \varepsilon>0$.

If $\left(v_{h}\right)_{h}$ is bounded, then, up to a subsequence, $v_{h} \rightarrow v$ in H_{j} and

$$
0=M_{j}\left(\Lambda_{j}\right) \geq \frac{1}{2} \int|\Delta v|^{2}-\frac{c}{2} \int|D v|^{2}-\frac{\Lambda_{j}}{2} \int v^{2}-\frac{\omega}{k} \int\left((v-\phi)^{-}\right)^{k} \geq \varepsilon>0
$$

which is clearly absurd. Then $\left\|v_{h}\right\| \rightarrow \infty$ and, up to a subsequence, $v_{h} /\left\|v_{h}\right\| \rightarrow v$ in $H_{j} \backslash\{0\}$. Dividing both sides of inequality (6) by $\left\|v_{h}\right\|^{k}$ we get $v \geq 0$, which is impossible.

Proposition 5.4. Assume (H), $\phi \leq 0$ and let $\Lambda_{l} \leq \alpha<\Lambda_{l+1} \leq \ldots \leq \Lambda_{s}<$ $\Lambda_{s+1}, s \geq l+1$ and $\Lambda_{s}<\lambda_{1}^{2}-c \lambda_{1}$. Then there exist $\rho^{\prime \prime}>\rho>\rho^{\prime} \geq 0$ and $\rho_{1}>0$ such that

$$
\inf _{\substack{w \in H^{\perp},\|w\|=\rho}} f_{\omega}(w)>0 \geq \sup _{u \in \mathcal{T}} f_{\omega}(u)
$$

where $\mathcal{T}=\partial_{H_{s}} \mathcal{D}$ and
$\mathcal{D}=\left\{u=v+w \mid v \in H_{l}, w \in \operatorname{Span}\left(E_{l+1}, \ldots, E_{s}\right),\|v\| \leq \rho_{1}, \rho^{\prime} \leq\|w\| \leq \rho^{\prime \prime}\right\}$.

Proof. By (c) of Proposition $5.3 M_{l}^{\omega}(\alpha)=0$, by Lemma 5.1 and by (b) of Lemma 4.5 there exist $R>\rho>0$ such that

$$
\inf _{\substack{w \in H_{l}^{\perp},\|w\|=\rho}} f_{\omega}(w)>\max \left\{M_{l}^{\omega}(\alpha), \sup _{\substack{v \in H_{s},\|v\|=R}} f_{\omega}(v)\right\},
$$

and the thesis follows.
Lemma 5.5. Assume (H) and $\Lambda_{s}<\lambda_{1}^{2}-c \lambda_{1}$. Then

$$
\lim _{\substack{v \in H_{s}, \sigma \geq 0 \\\left\|v-\sigma e_{1}\right\| \rightarrow \infty}} f_{\omega}\left(v-\sigma e_{1}\right)=-\infty .
$$

Proof. Assume by contradiction that there exist v_{h} in $H_{s}, \sigma_{h} \geq 0$ and C in \mathbb{R} such that $\left\|v_{h}-\sigma_{h} e_{1}\right\| \rightarrow \infty$ and

$$
\begin{align*}
\frac{1}{2} \int\left|\Delta\left(v_{h}-\sigma_{h} e_{1}\right)\right|^{2} & -\frac{c}{2} \int\left|D\left(v_{h}-\sigma_{h} e_{1}\right)\right|^{2} \tag{7}\\
& -\frac{\alpha}{2} \int\left(v_{h}-\sigma_{h} e_{1}\right)^{2}-\frac{\omega}{k} \int\left(\left(v_{h}-\sigma_{h} e_{1}-\phi\right)^{-}\right)^{k} \geq C
\end{align*}
$$

Up to a subsequence, $\left(v_{h}-\sigma_{h} e_{1}\right) /\left\|v_{h}-\sigma_{h} e_{1}\right\| \rightarrow v-\sigma e_{1}$, where $v \in H_{s}$ and $\sigma \geq 0$. Dividing both sides of inequality (7) by $\left\|v_{h}-\sigma_{h} e_{1}\right\|^{k}$ we get $v-\sigma e_{1} \geq 0$. Then $0 \leq\left\langle v-\sigma e_{1}, e_{1}\right\rangle=-\sigma \lambda_{1}^{2}$, and so $\sigma=0$. In this way $v \geq 0$. But $\|v\|=1$ and this is not possible.

REmark 5.6. Note that if $e_{1} \in \operatorname{Span}\left(E_{l+1}, \ldots, E_{s}\right)$ we can substitute e_{1} with the function e chosen for the case $\alpha>\lambda_{1}^{2}-c \lambda_{1}$, and then Lemma 5.5 holds for all $N \geq 2$, and it gives a forcing solution of $\left(\mathrm{P}_{\omega}\right)$ applying the Linking Theorem.

Proposition 5.7. Assume (H), $\phi \leq 0$ and let $\Lambda_{l}<\Lambda_{l+1}=\ldots=\Lambda_{s}<$ $\Lambda_{s+1}, s \geq l+1$ and $\Lambda_{s}<\lambda_{1}^{2}-c \lambda_{1}$. Then there exists an open neighbourhood \mathcal{O}_{s}^{ω} of Λ_{s} such that, if $\alpha \in \mathcal{O}_{s}^{\omega} \cap\left[\Lambda_{l}, \Lambda_{s}\right)$, there exist $R>\rho>0$ such that

$$
\inf _{\substack{w \in H^{\perp},\|w\|=\rho}} f_{\omega}(w)>\sup _{z \in \Sigma_{R}\left(H_{s}, e_{1}\right)} f_{\omega}(z)
$$

where $\Sigma_{R}\left(H_{s}, e_{1}\right)$ is the boundary in $H_{s} \oplus \operatorname{Span}\left(e_{1}\right)$ of $\Delta_{R}\left(H_{s}, e_{1}\right)$ and

$$
\Delta_{R}\left(H_{s}, e_{1}\right)=\left\{z=v-\sigma e_{1} \mid v \in H_{s}, \sigma \geq 0,\|z\| \leq R\right\}
$$

Proof. Define

$$
\mathcal{O}_{s}^{\omega}=\left\{\alpha \in\left[\Lambda_{l}, \Lambda_{s+1}\right) \mid \exists \rho>0 \text { such that } M_{s}^{\omega}(\alpha)<\inf _{\substack{w \in H, \frac{1}{s},\|w\|=\rho}} f_{\omega}(w)\right\}
$$

By (d) of Proposition $5.3 M_{s}^{\omega}(\alpha) \rightarrow 0$ as $\alpha \rightarrow \Lambda_{s}$; by (b) of Lemma 4.5

$$
\lim _{\rho \rightarrow 0} \frac{1}{\rho^{2}} \inf _{\substack{w \in H, H_{s}^{+} \\\|w\|=\rho}} f_{\omega}(w) \geq C_{s}^{+}=\inf _{n_{i} \geq s+1} \frac{\lambda_{n_{i}}^{2}-c \lambda_{n_{i}}-\alpha}{\lambda_{n_{i}}^{2}}
$$

But

$$
C_{s}^{+} \geq \inf _{n_{i} \geq s+1} \frac{\lambda_{n_{i}}^{2}-c \lambda_{n_{i}}-\Lambda_{s}}{\lambda_{n_{i}}^{2}}>0
$$

for every $\alpha<\Lambda_{s}$. In this way $\mathcal{O}_{s}^{\omega} \neq \emptyset$ and it is an open neighbourhood of Λ_{s}. Moreover, by Lemma 5.5, there exists $R>\rho>0$ such that

$$
\inf _{\substack{w \in H_{s}^{\perp},\|w\|=\rho}} f_{\omega}(w)>\sup _{\substack{v \in H_{s}, \sigma \geq 0,\left\|v-\sigma e_{1}\right\|=R}} f_{\omega}\left(v-\sigma e_{1}\right),
$$

and the thesis follows.
Case 2. $\lambda_{1}^{2}-c \lambda_{1} \leq \Lambda_{l}$. As usual we suppose that there exists $1 \leq r \leq l$ such that $E_{r}=e_{1}$.

Proposition 5.8. Assume (H), $\lambda_{1}^{2}-c \lambda_{1} \leq \Lambda_{l}$ and let $j \geq r$. Then, for every $\omega>0$,
(a) $\alpha>\Lambda_{j}^{*} \Rightarrow M_{j}^{\omega}(\alpha)<\infty$,
(b) $\sup \phi<0$ and $\alpha<\Lambda_{j} \Rightarrow M_{j}^{\omega}(\alpha)>0$,
(c) $\alpha \geq \Lambda_{j} \Rightarrow M_{j}^{\omega}(\alpha)=0$,
(d) $j>r \Rightarrow \lim _{\alpha \rightarrow \Lambda_{j}} M_{j}^{\omega}(\alpha)=0$.

Proof. The proof is very similar to the one of Proposition 5.3.
(a) Starting as in the proof of (a) of Proposition 5.3, we obtain a function $v \geq 0$ in H_{j} such that $\|v\|=1$ and such that $0 \leq Q_{c, \alpha}(v) \leq\left(\Lambda_{j}^{*}-\alpha\right) / 2 \int v^{2}$, which implies $v \equiv 0$, and this is absurd.
(b) and (c) are proved as in Proposition 5.3.
(d) Starting as in the proof of (d) of Proposition 5.3 we obtain a function v in H_{j} such that $\|v\|=1$ and $v \geq 0$. But moreover $Q_{c, \alpha}(v)=0$. So v belongs to the subspace spanned by the eigenfunctions associated to Λ_{j}, and this is impossible, since $j>r$.

Lemma 5.9. Assume (H) and $\alpha>\Lambda_{j}^{*}, j \geq r$. Then

$$
\lim _{\substack{v \in H_{j},\|v\| \rightarrow \infty}} f_{\omega}(v)=-\infty
$$

Proof. Starting as in Lemma 5.1 we obtain that there is v in $H_{j}, v \geq 0$, $\|v\|=1$ such that $0 \leq Q_{c, \alpha}(v) \leq\left(\Lambda_{j}^{*}-\alpha\right) / 2 \int v^{2}$. This implies $v \equiv 0$, which is absurd.

Proposition 5.10. Assume (H), $\phi \leq 0$ and let $\lambda_{1}^{2}-c \lambda_{1} \leq \Lambda_{l} \leq \alpha<\Lambda_{l+1} \leq$ $\ldots \leq \Lambda_{s}<\Lambda_{s+1}, s \geq l+1$. Suppose $\alpha>\Lambda_{s}^{*}$. Then there exist $\rho^{\prime \prime}>\rho>\rho^{\prime} \geq 0$ and $\rho_{1}>0$ such that

$$
\inf _{\substack{w \in H^{\perp},\|w\|=\rho}} f_{\omega}(w)>0 \geq \sup _{u \in \mathcal{T}} f_{\omega}(u)
$$

where $\mathcal{T}=\partial_{H_{s}} \mathcal{D}$ and $\mathcal{D}=\left\{u=v+w \mid v \in H_{l}, w \in \operatorname{Span}\left(E_{l+1}, \ldots, E_{s}\right),\|v\| \leq \rho_{1}, \rho^{\prime} \leq\|w\| \leq \rho^{\prime \prime}\right\}$.

Proof. By (c) of Proposition 5.8, $M_{l}^{\omega}(\alpha)=0$; by Lemma 5.9 (applied with $j=s$) and by (b) of Lemma 4.5 there exist $R>\rho>0$ such that

$$
\inf _{\substack{w \in H_{l}^{\perp},\|w\|=\rho}} f_{\omega}(w)>\max \left\{M_{l}^{\omega}(\alpha), \sup _{\substack{v \in H_{s},\|v\|=R}} f_{\omega}(v)\right\}
$$

and the thesis follows.
If $N \geq 2$ consider again the function e chosen before.
Lemma 5.11. Assume (H) and let $\lambda_{1}^{2}-c \lambda_{1} \leq \Lambda_{l} \leq \alpha \leq \Lambda_{l+1} \leq \ldots \leq \Lambda_{s}<$ $\Lambda_{s+1}, s \geq l+1$. If $\alpha>\Lambda_{s}^{*}$, then

$$
\lim _{\substack{v \in H_{s}, \sigma \geq 0 \\\|v-\sigma e\| \rightarrow \infty}} f_{\omega}(v-\sigma e)=-\infty .
$$

Proof. Starting as in Lemma 5.5 we find v in H_{s} and $\sigma \geq 0$ such that $v-\sigma e \geq 0,\|v-\sigma e\|=1$ and $0 \leq Q_{c, \alpha}(v-\sigma e)$. Then $\sigma=0$ and $v \geq 0$, so that $0 \leq Q_{c, \alpha}(v) \leq\left(\Lambda_{k}^{*}-\alpha\right) / 2 \int v^{2}$. This implies $v \equiv 0$, which is absurd.

REMARK 5.12. If $\Lambda_{s+1}^{*}<\Lambda_{s}$ and $\alpha>\Lambda_{s+1}^{*}$, we can substitute e with E_{s+1} and Lemma 5.11 holds for all $N \geq 1$. But, in general, this condition is hardly satisfied.

Proposition 5.13. Assume (H), $\phi \leq 0$ and let $\lambda_{1}^{2}-c \lambda_{1} \leq \Lambda_{l}<\Lambda_{l+1}=$ $\ldots=\Lambda_{s}<\Lambda_{s+1}, s \geq l+1$ and $N \geq 2$. Then there exists an open neighbourhood \mathcal{O}_{s}^{ω} of Λ_{s} such that, if $\alpha \in \mathcal{O}_{s}^{\omega} \cap\left[\Lambda_{l}, \Lambda_{s}\right)$, there exist $R>\rho>0$ such that

$$
\inf _{\substack{w \in H_{\frac{\perp}{d}},\|w\|=\rho}} f_{\omega}(w)>\sup _{z \in \Sigma_{R}\left(H_{s}, e\right)} f_{\omega}(z),
$$

where $\Sigma_{R}\left(H_{s}, e\right)$ is the boundary of $\Delta_{R}\left(H_{s}, e\right)$ in $H_{s} \oplus \operatorname{Span}(e)$ and

$$
\Delta_{R}\left(H_{s}, e\right)=\left\{z=v-\sigma e \mid v \in H_{s}, \sigma \geq 0,\|z\| \leq R\right\} .
$$

Proof. Consider the set

$$
\mathcal{O}_{s}^{\omega}=\left\{\alpha \in\left(\Lambda_{l}, \Lambda_{s+1}\right) \mid \alpha>\Lambda_{s}^{*}, \exists \rho>0 \text { such that } M_{s}(\alpha)<\inf _{\substack{w \in H, \perp \\\|w\|=\rho}} f(w)\right\} .
$$

Since $s \geq l+1, \Lambda_{s}^{*}<\Lambda_{s}$; by (b) of Lemma 4.5 there exist $\rho>0$ and $C_{s}^{+}>0$ such that

$$
\inf _{\substack{w \in H_{s}^{\perp} \\\|w\|=\rho}} f_{\omega}(w) \geq C_{s}^{+} \rho^{2}
$$

Moreover, by (d) of Proposition 5.11, $M_{s}^{\omega}(\alpha) \rightarrow 0$ if $\alpha \rightarrow \Lambda_{s}$. We deduce that \mathcal{O}_{s}^{ω} is a non empty open neighbourhood of Λ_{s}. Moreover, by Lemma 5.11, there exist $R>\rho>0$ such that

$$
\inf _{\substack{w \in H_{s}^{\perp},\|w\|=\rho}} f_{\omega}(w)>\sup _{\substack{v \in H_{s}, \sigma \geq 0,\|v-\sigma e\|=R}} f_{\omega}(v-\sigma e) .
$$

Lemma 5.14. Assume (H), $\phi \leq 0$ and let $\Lambda_{l}<\Lambda_{l+1} \leq \ldots \leq \Lambda_{s}<\Lambda_{s+1}$, $s \geq l+1$. Then, for any $\delta>0$, there exists $\varepsilon_{0}>0$ such that for every α in $\left[\Lambda_{l}+\delta, \Lambda_{s+1}-\delta\right]$, the unique critical point of f constrained on $H_{l} \oplus H_{s}^{\perp}$ in $f_{\omega}^{-1}\left(\left[-\varepsilon_{0}, \varepsilon_{0}\right]\right)$ is the trivial one.

Proof. Suppose by contradiction that there exist $\delta>0, \alpha_{n}$ in $\left[\Lambda_{l}+\delta, \Lambda_{s+1}-\right.$ $\delta], \alpha_{n} \rightarrow \alpha$ and u_{n} in $H_{l} \oplus H_{s}^{\perp} \backslash\{0\}$ such that

$$
f_{\omega}^{n}\left(u_{n}\right):=\frac{1}{2} \int\left|\Delta u_{n}\right|^{2}-\frac{c}{2} \int\left|D u_{n}\right|^{2}-\frac{\alpha_{n}}{2} \int u_{n}^{2}+\frac{\omega}{k} \int\left(\left(u_{n}-\phi\right)^{-}\right)^{k} \rightarrow 0
$$

and, for every u in $H_{l} \oplus H_{s}^{\perp}$,

$$
\begin{equation*}
\int \Delta u_{n} \Delta u-c \int D u_{n} \cdot D u-\alpha_{n} \int u_{n} u+\omega \int\left(\left(u_{n}-\phi\right)^{-}\right)^{k-1} u=0 \tag{8}
\end{equation*}
$$

Set $u_{n}=v_{n}+w_{n}$, where $v_{n} \in H_{l}$ and $w_{n} \in H_{s}^{\perp}$.
(I) In (8) take $u=w_{n}-v_{n}$. Then
(9)

$$
\begin{aligned}
& \left(\int\left|\Delta w_{n}\right|^{2}-c \int\left|D w_{n}\right|^{2}-\alpha_{n} \int w_{n}^{2}\right) \\
- & \left(\int\left|\Delta v_{n}\right|^{2}-c \int\left|D v_{n}\right|^{2}-\alpha_{n} \int v_{n}^{2}\right)=-\omega \int\left(\left(u_{n}-\phi\right)^{-}\right)^{k-1}\left(w_{n}-v_{n}\right)
\end{aligned}
$$

But

$$
\begin{align*}
-\omega \int\left(\left(u_{n}-\right.\right. & \left.\phi)^{-}\right)^{k-1}\left(w_{n}-v_{n}\right) \tag{10}\\
& \leq \omega\left(\int\left(\left(u_{n}-\phi\right)^{-}\right)^{k}\right)^{1-1 / k}\left\|w_{n}-v_{n}\right\|_{L^{k}(\Omega)} \\
& \leq C\left(\int\left(\left(u_{n}-\phi\right)^{-}\right)^{k}\right)^{1-1 / k}\left\|w_{n}-v_{n}\right\| \\
& =C\left(\int\left(\left(u_{n}-\phi\right)^{-}\right)^{k}\right)^{1-1 / k}\left\|u_{n}\right\|
\end{align*}
$$

since v_{n} and w_{n} are orthogonal.
Now we want to show that there exists a positive constant a such that the l.h.s. of (9) is greater than $a\left\|u_{n}\right\|^{2}$. First of all observe that

$$
\int\left|\Delta v_{n}\right|^{2}-c \int\left|D v_{n}\right|^{2}-\alpha_{n} \int v_{n}^{2} \leq \max _{n_{i} \leq l}\left(-\frac{\delta}{\lambda_{n_{i}}^{2}}\right)\left\|v_{n}\right\|^{2}
$$

Moreover, there exists $C_{s}^{+}>0$ such that, for all w in H_{s}^{\perp},

$$
\int\left|\Delta w_{n}\right|^{2}-c \int\left|D w_{n}\right|^{2}-\alpha_{n} \int w_{n}^{2} \geq C_{s}^{+}\|w\|^{2}
$$

In this way we have proved that there exists $a>0$ such that

$$
\begin{equation*}
\int\left|\Delta u_{n}\right|^{2}-c \int\left|D u_{n}\right|^{2}-\alpha_{n} \int u_{n}^{2} \geq a\left(\left\|v_{n}\right\|^{2}+\left\|w_{n}\right\|^{2}\right)=a\left\|u_{n}\right\|^{2} \tag{11}
\end{equation*}
$$

Since $u_{n} \not \equiv 0,(9),(10)$ and (11) give

$$
\begin{equation*}
a\left\|u_{n}\right\| \leq C\left(\int\left(\left(u_{n}-\phi\right)^{-}\right)^{k}\right)^{1-1 / k} \tag{12}
\end{equation*}
$$

(II) Putting $u=u_{n}$ in (8), we get

$$
0=2 f_{\omega}^{n}\left(u_{n}\right)+\left(\frac{2}{k}-1\right) \omega \int\left(\left(u_{n}-\phi\right)^{-}\right)^{k}+\omega \int\left(\left(u_{n}-\phi\right)^{-}\right)^{k-1} \phi
$$

and this equality implies that $\int\left(\left(u_{n}-\phi\right)^{-}\right)^{k}$ and $\int\left(\left(u_{n}-\phi\right)^{-}\right)^{k-1} \phi$ go to 0 as n goes to ∞. Then (12) implies that $\left\|u_{n}\right\| \rightarrow 0$. But $\left(\int\left(\left(u_{n}-\phi\right)^{-}\right)^{k}\right)^{1-1 / k}=$ $O\left(\left\|u_{n}\right\|^{k-1}\right)$ (see Lemma 4.3) and a contradiction arises.

Lemma 5.15. Assume (H) and let $\Lambda_{l}<\Lambda_{l+1} \leq \ldots \leq \Lambda_{s}<\Lambda_{s+1}, s \geq l+1$, $\alpha \neq \lambda_{1}^{2}-c \lambda_{1}$. Denote by $P: H \longrightarrow\left(E_{l+1}, \ldots, E_{s}\right)$ and $Q: H \rightarrow H_{l} \oplus H_{s}^{\perp}$ the orthogonal projections. Suppose u_{n} in H is such that $f_{\omega}\left(u_{n}\right)$ is bounded, $P u_{n} \rightarrow 0$ and $Q \nabla f_{\omega}\left(u_{n}\right) \rightarrow 0$. Then $\left(u_{n}\right)_{n}$ is bounded in H.

Proof. Suppose by contradiction that there exists a sequence $\left(u_{n}\right)_{n}$ in H such that $\left\|u_{n}\right\| \rightarrow \infty, P u_{n} \rightarrow 0, f_{\omega}\left(u_{n}\right)$ is bounded and

$$
Q\left(u_{n}+i^{*}\left(c \Delta u_{n}-\alpha u_{n}+\omega\left(\left(u_{n}-\phi\right)^{-}\right)^{k-1}\right) \rightarrow 0\right.
$$

where $i^{*}: L^{2}(\Omega) \rightarrow H$ is the compact adjoint operator of the immersion $i: H \rightarrow$ $L^{2}(\Omega)$. Up to a subsequence, we can suppose that $u_{n} /\left\|u_{n}\right\| \rightharpoonup u$ in H.

Since $f_{\omega}\left(u_{n}\right)$ is bounded, dividing it by $\left\|u_{n}\right\|^{k}$, we get $\int\left(u^{-}\right)^{k}=0$, and so $u \geq 0$.

Now observe that

$$
\begin{aligned}
\left\langle Q \nabla f\left(u_{n}\right),\right. & \left.u_{n}\right\rangle=\left\langle\nabla f\left(u_{n}\right), u_{n}\right\rangle-\left\langle P \nabla f\left(u_{n}\right), u_{n}\right\rangle \\
= & 2 f_{\omega}\left(u_{n}\right)+\left(\frac{2}{k}-1\right) \omega \int\left(\left(u_{n}-\phi\right)^{-}\right)^{k}+\omega \int\left(\left(u_{n}-\phi\right)^{-}\right)^{k-1} \phi \\
& -\int \Delta P\left(u_{n}+i^{*}\left(c \Delta u_{n}-\alpha u_{n}+\omega\left(\left(u_{n}-\phi\right)^{-}\right)^{k-1}\right)\right) \Delta u_{n} \\
= & 2 f_{\omega}\left(u_{n}\right)+\left(\frac{2}{k}-1\right) \omega \int\left(\left(u_{n}-\phi\right)^{-}\right)^{k}+\omega \int\left(\left(u_{n}-\phi\right)^{-}\right)^{k-1} \phi \\
& -\int\left|\Delta P u_{n}\right|^{2}-\int \Delta P i^{*}\left(c \Delta u_{n}-\alpha u_{n}+\omega\left(\left(u_{n}-\phi\right)^{-}\right)^{k-1}\right) \Delta u_{n}
\end{aligned}
$$

Now observe that $P i^{*}\left(c \Delta u_{n}-\alpha u_{n}+\omega\left(\left(u_{n}-\phi\right)^{-}\right)^{k-1}\right) \in \operatorname{Span}\left(E_{l+1}, \ldots, E_{s}\right)$, so it is a smooth function. In this way the last integral above is equal to

$$
\begin{aligned}
\int \Delta^{2} P i^{*} & {\left[\left(c \Delta u_{n}-\alpha u_{n}+\omega\left(\left(u_{n}-\phi\right)^{-}\right)^{k-1}\right)\right] u_{n} } \\
& =\int \Delta^{2} P i^{*}\left[\left(c \Delta u_{n}-\alpha u_{n}+\omega\left(\left(u_{n}-\phi\right)^{-}\right)^{k-1}\right)\right] P u_{n} \\
& =\int \Delta^{2} i^{*}\left(\left(c \Delta u_{n}-\alpha u_{n}+\omega\left(\left(u_{n}-\phi\right)^{-}\right)^{k-1}\right)\right) P u_{n} \\
& =-c \int\left|D P u_{n}\right|^{2}-\alpha \int\left(P u_{n}\right)^{2}+\omega \int\left(\left(u_{n}-\phi\right)^{-}\right)^{k-1} P u_{n}
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\left|\int\left(\left(u_{n}-\phi\right)^{-}\right)^{k-1} P u_{n}\right| & \leq\left(\int\left(\left(u_{n}-\phi\right)^{-}\right)^{k}\right)^{1-1 / k}\left(\int\left|P u_{n}\right|^{k}\right)^{1 / k} \\
& \leq C\left(\int\left(\left(u_{n}-\phi\right)^{-}\right)^{k}\right)^{1-1 / k}\left\|P u_{n}\right\|
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\left\langle Q \nabla f\left(u_{n}\right), u_{n}\right\rangle= & 2 f_{\omega}\left(u_{n}\right)+\left(\frac{2}{k}-1\right) \omega \int\left(\left(u_{n}-\phi\right)^{-}\right)^{k} \\
& +\omega \int\left(\left(u_{n}-\phi\right)^{-}\right)^{k-1} \phi-\int\left|\Delta P u_{n}\right|^{2}+c \int\left|D P u_{n}\right|^{2} \\
& +\alpha \int\left(P u_{n}\right)^{2}-\omega \int\left(\left(u_{n}-\phi\right)^{-}\right)^{k-1} P u_{n} .
\end{aligned}
$$

Dividing by $\left\|u_{n}\right\|^{k /(k-1)}$, we get

$$
\begin{aligned}
0 \leq & \frac{(1-2 / k) \omega \int\left(\left(u_{n}-\phi\right)^{-}\right)^{k}}{\left\|u_{n}\right\|^{k /(k-1)}}=-\frac{\left\langle Q \nabla f\left(u_{n}\right), u_{n}\right\rangle}{\left\|u_{n}\right\|^{k /(k-1)}}+\frac{2 f_{\omega}\left(u_{n}\right)}{\left\|u_{n}\right\|^{k /(k-1)}} \\
& +\frac{\omega \int\left(\left(u_{n}-\phi\right)^{-}\right)^{k-1} \phi}{\left\|u_{n}\right\|^{k /(k-1)}}-\frac{\int\left|\Delta P u_{n}\right|^{2}}{\left\|u_{n}\right\|^{k /(k-1)}}+\frac{c \int\left|D P u_{n}\right|^{2}}{\left\|u_{n}\right\|^{k /(k-1)}} \\
& +\frac{\alpha \int\left(P u_{n}\right)^{2}}{\left\|u_{n}\right\|^{k /(k-1)}}-\frac{\omega \int\left(\left(u_{n}-\phi\right)^{-}\right)^{k-1} P u_{n}}{\left\|u_{n}\right\|^{k /(k-1)}} .
\end{aligned}
$$

Throwing away the non positive terms, the last quantity is less or equal to

$$
\begin{aligned}
& -\frac{\left\langle Q \nabla f_{\omega}\left(u_{n}\right), u_{n}\right\rangle}{\left\|u_{n}\right\|^{k /(k-1)}}+\frac{2 f_{\omega}\left(u_{n}\right)}{\left\|u_{n}\right\|^{k /(k-1)}} \\
& \quad+\frac{|c| \int\left|D P u_{n}\right|^{2}}{\left\|u_{n}\right\|^{k /(k-1)}}+\frac{|\alpha| \int\left(P u_{n}\right)^{2}}{\left\|u_{n}\right\|^{k /(k-1)}}-\frac{\omega \int\left(\left(u_{n}-\phi\right)^{-}\right)^{k-1} P u_{n}}{\left\|u_{n}\right\|^{k /(k-1)}} \\
& \quad \leq o(1)+C\left(\frac{1}{\left\|u_{n}\right\|^{k /(k-1)}} \int\left(\left(u_{n}-\phi\right)^{-}\right)^{k}\right)^{1-1 / k} \frac{\left\|P u_{n}\right\|}{\left\|u_{n}\right\|^{1 /(k-1)}}
\end{aligned}
$$

where $o(1) \rightarrow 0$ as $n \rightarrow \infty$. In this way $\int\left(\left(u_{n}-\phi\right)^{-}\right)^{k} /\left\|u_{n}\right\|^{k /(k-1)}$ is bounded, and, up to a subsequence, it converges to 0 . Then $\left(\left(u_{n}-\phi\right)^{-}\right)^{k-1} /\left\|u_{n}\right\|$ converges to 0 in $L^{k /(k-1)}(\Omega)$, and hence in H^{\prime}.

But $Q u_{n}=u_{n}-P u_{n}$, so

$$
\begin{align*}
\frac{Q \nabla f\left(u_{n}\right)}{\left\|u_{n}\right\|}=\frac{u_{n}}{\left\|u_{n}\right\|}- & \frac{P u_{n}}{\left\|u_{n}\right\|} \tag{13}\\
& +Q i^{*}\left(c \frac{\Delta u_{n}}{\left\|u_{n}\right\|}-\alpha \frac{u_{n}}{\left\|u_{n}\right\|}+\omega \frac{\left(\left(u_{n}-\phi\right)^{-}\right)^{k-1}}{\left\|u_{n}\right\|}\right) \rightarrow 0
\end{align*}
$$

and then $u_{n} /\left\|u_{n}\right\| \rightarrow u$ strongly in H and $\|u\|=1$. But, on the other hand, from (13) we get that $u \in H_{l} \oplus H_{s}^{\perp}$ and it is a solution of

$$
\begin{cases}\Delta^{2} u+c \Delta u-\alpha u=0 & \text { in } \Omega \tag{14}\\ u=\Delta u=0 & \text { on } \partial \Omega\end{cases}
$$

in $H_{l} \oplus H_{s}^{\perp}$, which is also non negative. But then u is a non negative and non trivial function belonging to the subspace spanned by the eigenfunctions associated to null eigenvalues of $Q_{c, \alpha}$, and this is impossible, since e_{1} doesn't belong to this space. In fact, if $u=\sum \beta_{i} E_{i}$, multiplying the equation of (14) by e_{1} and integrating, we get $\left(\lambda_{1}^{2}-c \lambda_{1}-\alpha\right) \beta_{1}=0$, which would imply $\beta_{1}=0$, while $u \geq 0, u \not \equiv 0$, so its component along e_{1} must be positive.

Proposition 5.16. Assume (H), $\phi \leq 0$ and let $\Lambda_{l}<\Lambda_{l+1} \leq \ldots \leq \Lambda_{s}<$ $\Lambda_{s+1} \leq \ldots, s \geq l+1$ and $\alpha \neq \lambda_{1}^{2}-c \lambda_{1}$. For every $\delta>0$ there exists $\varepsilon_{0}>0$ such that for every ε^{\prime}, $\varepsilon^{\prime \prime}$ in $\left(0, \varepsilon_{0}\right)$ and for every α in $\left[\Lambda_{l}+\delta, \Lambda_{s+1}-\delta\right]$, the condition $(\nabla)\left(f_{\omega}, H_{l} \oplus H_{s}^{\perp}, \varepsilon^{\prime}, \varepsilon^{\prime \prime}\right)$ holds.

Proof. Take ε) as in Lemma 5.14. Suppose by contradiction that there exists a sequence $\left(u_{n}\right)_{n}$ in H such that $\left\|P u_{n}\right\|=d\left(u_{n}, H_{l} \oplus H_{s}^{\perp}\right) \rightarrow 0, Q \nabla f_{\omega}\left(u_{n}\right) \rightarrow$ $0, \varepsilon^{\prime} \leq f_{\omega}\left(u_{n}\right) \leq \varepsilon^{\prime \prime}$. By Lemma $5.15\left(u_{n}\right)_{n}$ is bounded and, up to a subsequence, $u_{n} \rightarrow u$ in H with $P u=0$ and $Q \nabla f(u)=0$, that is u is a critical point of f_{a} constrained on $H_{l} \oplus H_{s}^{\perp}$. By Lemma 5.14, $u=0$. But then $0=f_{\omega}(u)=\lim f_{\omega}\left(u_{n}\right) \geq \varepsilon^{\prime}$, since f_{ω} is continuous, and thus we get a contradiction.

Theorem 5.17. Assume (H), $\phi \leq 0, \Lambda_{l}<\Lambda_{l+1}=\ldots=\Lambda_{s}<\Lambda_{s+1} \leq \ldots$, $s \geq l+1$ and $\lambda_{1}^{2}-c \lambda_{1}>\Lambda_{s}$. Then there exists $\tau_{s}^{\omega}>0$ such that, if $\alpha \in$ $\left(\Lambda_{s}-\tau_{s}^{\omega}, \Lambda_{s}\right)$, then f_{ω} has at least three non trivial critical points which are forcing solutions of problem $\left(\mathrm{P}_{\omega}\right)$.

Proof. The proof parallels the proof of next Theorem 5.18.
Theorem 5.18. Assume (H), $\phi \leq 0, N \geq 2, \Lambda_{l}<\Lambda_{l+1}=\ldots=\Lambda_{s}<$ $\Lambda_{s+1} \leq \ldots, s \geq l+1, \lambda_{1}^{2}-c \lambda_{1} \leq \Lambda_{l}$. Then there exists $\tau_{s}^{\omega}>0$ such that, if $\alpha \in\left(\Lambda_{s}-\tau_{s}^{\omega}, \Lambda_{s}\right)$, then f_{ω} has at least three non trivial critical points which are forcing solutions of problem $\left(\mathrm{P}_{\omega}\right)$. If $\Lambda_{s+1}^{*}<\Lambda_{s}$ the thesis is true for all $N \geq 1$.

Proof. Fix $\delta>0$, take ε_{0} as in Proposition 5.16 and define $\mathcal{U}_{s}^{\omega}=\mathcal{O}_{s}^{\omega} \cap$ $\mathcal{A}_{s}^{\omega}(\delta)$, where

$$
\mathcal{A}_{s}^{\omega}(\delta)=\left\{\alpha \in\left[\Lambda_{l}-\delta, \Lambda_{s+1}-\delta\right] \mid M_{s}^{\omega}(\alpha)<\varepsilon_{0}\right\}
$$

By (c) and (d) of Proposition 5.8, \mathcal{U}_{s}^{ω} is not empty and it is an open neighbourhood of Λ_{s}. Moreover, Proposition 5.10 and $(\nabla)\left(f_{\omega}, H_{l} \oplus H_{s}^{\perp}, \varepsilon^{\prime}, \varepsilon^{\prime \prime}\right)$ hold, where $\varepsilon^{\prime}<\varepsilon^{\prime \prime}$, and

$$
\max \left\{\sup f_{\omega}(\mathcal{T}), 0\right\}<\varepsilon^{\prime}<\inf _{\substack{w \in H_{\perp}^{\perp},\|w\|=\rho}} f_{\omega}(w) \quad \text { and } \quad M_{s}^{\omega}(\alpha)<\varepsilon^{\prime \prime}<\varepsilon_{0}
$$

So the (∇)-Theorem A. 5 gives 3 critical points u_{ω}^{i} such that $f_{\omega}\left(u_{\omega}^{i}\right) \leq M_{s}^{\omega}(\alpha)$.

By Proposition 5.13 and the Linking Theorem, there exist 2 critical points $v_{\omega}^{1}, v_{\omega}^{2}$ such that

$$
\sup _{\Delta_{R}} f_{\omega} \geq f_{\omega}\left(v_{\omega}^{1}\right) \geq \inf _{\substack{w \in H^{\perp},\|w\|=\rho}} f_{\omega}(w)>\sup _{\Sigma_{R}} f_{\omega} \geq f_{\omega}\left(v_{\omega}^{2}\right) \geq \inf _{\substack{w \in H,\|w\| \leq \rho}} f_{\omega}(w) .
$$

In this way $v_{\omega}^{1} \neq u_{\omega}^{i}$ by the very definition of $\mathcal{O}_{s}^{\omega}\left(\inf _{w \in H_{s}^{\perp},\|w\|=\rho} f_{\omega}(w)>\right.$ $\left.M_{s}^{\omega}(\alpha)\right)$.

Corollary 5.19. Under the assumptions of Theorem 5.17 or of Theorem 5.18, if $N \leq 3$ and $\sup \phi<0$, two different critical levels c_{ω}^{1} and c_{ω}^{2} are such that $\liminf _{\omega} c_{\omega}^{1}>\lim \sup _{\omega} c_{\omega}^{2}$. Moreover, there exists $\varepsilon>0$ such that

$$
\inf _{\omega} f_{\omega}\left(u_{\omega}\right) \geq \varepsilon
$$

u_{ω} being one of the critical points of f_{ω} found in Theorem 5.17 or in Theorem 5.18.

Proof. Since $\sup \phi<0$, in all the inequalities obtained for proving the existence of one solution, we can suppose that the radius of the small sphere in the Mountain Pass Theorem or the radii of the vertical spheres in the Linking Theorems $\left(\left\{w \in H_{l}^{\perp} \mid\|w\|=\rho\right\}\right)$ are small enough so that the values of the functionals f_{ω} are not influenced by the perturbation term $\omega \int\left((u-\phi)^{-}\right)^{k}$. So there exists $\varepsilon>0$ such that
$f_{\omega}\left(u_{\omega}\right)=\frac{1}{2} \int\left|\Delta u_{\omega}\right|^{2}-\frac{c}{2} \int\left|D u_{\omega}\right|^{2}-\frac{\alpha}{2} \int u_{\omega}^{2}-\frac{\omega}{K} \int\left(\left(u_{\omega}-\varphi\right)^{-}\right)^{K} \geq \varepsilon \quad$ for all ω.
Moreover, we can find $\sigma_{1}>\sigma_{2}>\sigma_{3}>\sigma_{4}>0$ and three sequences of solutions v_{ω}^{1} and $u_{\omega}^{j}, j=1,2$ such that for all ω

$$
\begin{aligned}
\sigma_{1} & >f_{\omega}\left(v_{\omega}^{1}\right)=c_{\omega}^{1} \geq \sigma_{2}\left(=\inf _{\substack{w \in H_{s}^{\perp},\|w\|=\rho_{\omega}}} f_{\omega}(w)\right) \\
& >\sigma_{3}\left(=M_{s}^{\omega}(\alpha)\right) \geq f_{\omega}\left(u_{\omega}^{j}\right)=c_{\omega}^{2}>\sigma_{4}>0
\end{aligned}
$$

Indeed, M_{s}^{ω} is a decreasing function of ω. So in the definition of \mathcal{O}_{s}^{ω}, in which we require that there exists ρ_{ω} such that

$$
M_{s}^{\omega}(\alpha)<\inf _{\substack{w \in H_{s}^{\perp} \\\|w\|=\rho_{\omega}}} f_{\omega}(w)
$$

we can choose ρ_{ω} constant (for example equal to ρ_{1}) and small enough so that $(w-\phi)^{-}=0$ and so $\inf _{w \in H_{s}^{\perp},\|w\|=\rho_{\omega}} f_{\omega}(w)$ is independent on ω. In this way \mathcal{O}_{s}^{ω} is independent on ω, too.

Passing to the limit we get

$$
\liminf _{\omega \rightarrow \infty} c_{\omega}^{1}>\limsup _{\omega \rightarrow \infty} c_{\omega}^{2} .
$$

We finally observe that the procedure to obtain the multiplicity results above can be repeated for any functional in which the quadratic form $Q_{c, \alpha}$ is replaced by a quadratic form whose gradient has the form (linear operator) + (compact operator). For example, one can consider functionals defined on $W_{0}^{1,2}(\Omega)$ having the form

$$
\widetilde{f}(u)=\frac{1}{2} \int|D u|^{2}-\frac{\alpha}{2} \int u^{2}-\frac{\omega}{k} \int\left((u-\phi)^{-}\right)^{k} .
$$

See [18] for an application, where $-\phi$ is replaced by e_{1}.

6. A priori estimate

From now on we will consider a sequence $\left(\omega_{n}\right)_{n}$ of real positive numbers such that $\omega_{n} \rightarrow \infty$ as $n \rightarrow \infty$. For the sake of simplicity, we will write ω instead of ω_{n} and with $\omega \rightarrow \infty$ we will mean that $n \rightarrow \infty$ (and then $\omega_{n} \rightarrow \infty$).

Theorem 6.1. Assume (H), $\alpha \neq \lambda_{1}^{2}-c \lambda_{1}$, there exists $\tau>0$ such that $\tau e_{1}+\phi \leq 0$ a.e. in $\Omega($ for example $\sup \phi<0)$ and u_{ω} is a solution of $\left(\mathrm{P}_{\omega}\right)$ with $\sup _{\omega} f_{\omega}\left(u_{\omega}\right)<\infty$. Then

- $\inf _{\omega} f_{\omega}\left(u_{\omega}\right)>-\infty$,
- $\sup _{\omega} \omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k}<\infty$,
- $\inf _{\omega} \omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1} \phi>-\infty$,
- $\left(u_{\omega}\right)_{\omega}$ is bounded in H.

Proof. Suppose by contradiction that $\left(u_{\omega}\right)_{\omega}$ is unbounded. We can suppose that, up to a subsequence, $\left\|u_{\omega}\right\| \rightarrow \infty$ and that there exists v in H such that $v_{\omega}=u_{\omega} /\left\|u_{\omega}\right\|$ weakly converges to v in H, strongly in $L^{k}(\Omega)$ and a.e. in Ω. Now,

$$
\begin{align*}
0=f_{\omega}^{\prime}\left(u_{\omega}\right) u_{\omega}= & \int\left|\Delta u_{\omega}\right|^{2}-c \int|D u|^{2}-\alpha \int u_{\omega}^{2} \tag{15}\\
& +\omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1} u_{\omega} \\
= & 2 f_{\omega}\left(u_{\omega}\right)+\left(\frac{2}{k}-1\right) \omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k} \\
& +\omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1} \phi,
\end{align*}
$$

and, since ϕ is negative, if we divide by $\left\|u_{\omega}\right\|$ and pass to the limit, we obtain

$$
\lim _{\omega \rightarrow \infty} \frac{\omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k}}{\left\|u_{\omega}\right\|}=0, \quad \lim _{\omega \rightarrow \infty} \frac{\omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1} \phi}{\left\|u_{\omega}\right\|}=0
$$

and also

$$
\begin{equation*}
\lim _{\omega \rightarrow \infty} \frac{\omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1} u_{\omega}}{\left\|u_{\omega}\right\|}=0 \tag{16}
\end{equation*}
$$

since $\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1} u_{\omega}=-\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k}+\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1} \phi$. In this way

$$
\begin{aligned}
& 0=\frac{f^{\prime}\left(u_{\omega}\right)\left(u_{\omega}\right)}{\left\|u_{\omega}\right\|^{2}}=1-c \int\left|D v_{\omega}\right|^{2}-\alpha \int v_{\omega}^{2}+\frac{\omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1} u_{\omega}}{\left\|u_{\omega}\right\|^{2}} \\
& \rightarrow 1-c \int|D v|^{2}-\alpha \int v^{2}
\end{aligned}
$$

If α and c are ≤ 0 this is immediately absurd. Otherwise this equality implies that $v \not \equiv 0$. But

$$
0=\frac{f_{\omega}^{\prime}\left(u_{\omega}\right)\left(u_{\omega}\right)}{\omega\left\|u_{\omega}\right\|^{k}} \rightarrow-\int\left(v^{-}\right)^{k}
$$

and so $v \geq 0$. Now observe that

$$
\begin{equation*}
0=f_{\omega}^{\prime}\left(u_{\omega}\right) \tau e_{1}=\left(\lambda_{1}^{2}-c \lambda_{1}-\alpha\right) \tau \int u_{\omega} e_{1}+\omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1} \tau e_{1} \tag{17}
\end{equation*}
$$

But

$$
\begin{aligned}
\int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1} \tau e_{1} & =\int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1}\left(\tau e_{1}+\phi-u_{\omega}+u_{\omega}-\phi\right) \\
& \leq-\int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1} u_{\omega}
\end{aligned}
$$

and, by (16), we get

$$
\lim _{\omega \rightarrow \infty} \frac{\omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1} e_{1}}{\left\|u_{\omega}\right\|}=0
$$

Therefore, from (17), we obtain

$$
0=\left(\lambda_{1}^{2}-c \lambda_{1}-\alpha\right) \int v e_{1},
$$

which is possible if and only if $v \equiv 0$. A contradiction arises and so $\left(u_{\omega}\right)_{\omega}$ is bounded. From (15) the other statements of the thesis follow.

REmARK 6.2. As already remarked, no existence and bound theorem is proved in the case $\alpha=\lambda_{1}^{2}-c \lambda_{1}$, since it is trivial in the part of existence and it is impossible in the part of an a priori estimate. So the requirement $\alpha \neq \lambda_{1}^{2}-c \lambda_{1}$ is natural in this problem.

Corollary 6.3. Assume (H), $\alpha \neq \lambda_{1}^{2}-c \lambda_{1}$, $\sup \phi<0$ and u_{ω} is a solution of $\left(\mathrm{P}_{\omega}\right)$ such that the sequence $\left(u_{\omega}\right)_{\omega}$ is bounded. Then

$$
\sup _{\omega} \omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1}<\infty .
$$

Proof. From (15) we get that there exists $M>0$ such that

$$
-\omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1} \phi \leq M \quad \text { for all } \omega
$$

but the l.h.s of this inequality is bigger than $-\omega \sup \phi \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1}$, and the thesis follows.

Under the assumptions of Theorem 6.1, $\left(u_{\omega}\right)_{\omega}$ is bounded, so we can take a weakly convergent subsequence. On the other hand, if there exist a sequence of solutions $\left(u_{\omega}\right)_{\omega}$ and u in H such that $u_{\omega} \rightharpoonup u$ in H, then $\omega \int\left(\left(u_{\omega}-\right.\right.$ $\left.\phi)^{-}\right)^{k}$ and $\omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1} \phi$ are bounded, and thus $\inf _{\omega} f_{\omega}\left(u_{\omega}\right)>-\infty$ and $\sup _{\omega} f_{\omega}\left(u_{\omega}\right)<\infty$. In fact

$$
0=\int\left|\Delta u_{\omega}\right|^{2}-c \int\left|D u_{\omega}\right|^{2}-\alpha \int u_{\omega}^{2}+\omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1} u_{\omega}
$$

and so the last integral is bounded. But it equals $-\int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k}+\int\left(\left(u_{\omega}-\right.\right.$ $\left.\phi)^{-}\right)^{k-1} \phi$ and since these integrals are both non positive, they are both bounded and the thesis follows.

7. Bounce

If u_{ω} is a forcing solution of $\left(\mathrm{P}_{\omega}\right)$, we define \mathcal{A}_{ω} as (a set equivalent to)

$$
\mathcal{A}_{\omega}=\left\{x \in \Omega \mid u_{\omega}(x)<\phi(x)\right\}
$$

$\mathcal{A}=\{x \in \Omega \mid$ exists a neighbourhood U of x and exists ω_{0} such that for all $\left.\omega \geq \omega_{0} m\left(U \cap \mathcal{A}_{\omega}\right)=0\right\}$.

We observe that \mathcal{A} is an open subset of Ω, and so its complementary set \mathfrak{B} is closed, where

$$
\begin{aligned}
& \mathfrak{B}=\left\{x \in \Omega \mid \text { for all neighbourhood } U \text { of } x \text { and all } \omega_{0}\right. \\
& \left.\qquad \text { exists } \omega \geq \omega_{0} \text { such that } m\left(U \cap \mathcal{A}_{\omega}\right)>0\right\} .
\end{aligned}
$$

We also remark that such a set \mathfrak{B} is, in some sense, the set of points in which u touches ϕ, or the contact set; actually, if $N \leq 3$ and ϕ is continuous \mathfrak{B} coincides with the set of points x 's of Ω such that $u(x)=\phi(x)$.

Theorem 7.1. If u_{ω} is a solution of $\left(\mathrm{P}_{\omega}\right)$ such that $u_{\omega} \rightharpoonup u$ in H, then
(i) $u \geq \phi$ a.e. in Ω,
(ii) $\int \Delta u \Delta \psi-c \int D u \cdot D \psi-\alpha \int u \psi \leq 0$ for all ψ in H such that $\psi \geq 0$ in Ω,
(iii) $\int \Delta u \Delta \psi-c \int D u \cdot D \psi-\alpha \int u \psi=0$ for all ψ in H such that $\psi=0$ on \mathfrak{B}.
In other words, in the sense of distributions in Ω, we have
(ii)' $\Delta^{2} u+c \Delta u-\alpha u \leq 0$ in Ω,
(iii)' $\Delta^{2} u+c \Delta u-\alpha u=0$ in $\Omega \backslash \mathfrak{B}$.

In particular there exists a positive Radon measure μ such that

$$
\begin{equation*}
\int \Delta u \Delta \psi-c \int D u \cdot D \psi-\alpha \int u \psi+\int \psi d \mu=0 \tag{18}
\end{equation*}
$$

for all ψ in $\mathcal{D}(\Omega)$, and μ is supported in \mathfrak{B}.
Proof. (i) Suppose by contradiction that $u-\phi<0$ in a set of positive measure. From the equality

$$
\begin{equation*}
\int \Delta u_{\omega} \Delta \psi-c \int D u_{\omega} \cdot D \psi-\alpha \int u_{\omega} \psi=-\omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1} \psi \tag{19}
\end{equation*}
$$

for all ψ in H, passing to the limit, we would have $\int \Delta u \Delta \psi-c \int D u \cdot D \psi-$ $\alpha \int u \psi=\infty$, which is clearly absurd.
(ii) Take ψ in H and $\psi \geq 0$. Passing to the limit in equation (19), we get the thesis.
(iii) Define the linear operator $L_{\omega}: \mathcal{D}(\Omega) \rightarrow \mathbb{R}$ in this way: if $\psi \in \mathcal{D}(\Omega)$

$$
L_{\omega}(\psi)=\omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1} \psi=-\int \Delta u_{\omega} \Delta \psi+c \int D u_{\omega} \cdot D \psi+\alpha \int u_{\omega} \psi
$$

Since $u_{\omega} \rightharpoonup u$ in H, L_{ω} converges to a linear and bounded operator L defined as $L(\psi)=-\int \Delta u \Delta \psi+c \int D u \cdot D \psi+\alpha \int u \psi$ for every ψ in $\mathcal{D}(\Omega)$. But if $\psi \geq 0$, $L_{\omega}(\psi) \geq 0$ and so $L(\psi) \geq 0$, that is L is a linear and positive operator defined on $\mathcal{D}(\Omega)$. By Riesz Representation Theorem (see [1] or [4]) there exists a positive Radon measure μ such that $L(\psi)=\int \psi d \mu$ for all ψ in $\mathcal{D}(\Omega)$.

Let us show that $\operatorname{supp} \mu \subseteq \mathfrak{B}$. Let $x_{0} \in \Omega \backslash \mathfrak{B}$. Then, by definition, there exists a neighbourhood U of x_{0} and ω_{0} such that for all $\omega \geq \omega_{0}$ one has $m(U \cap$ $\left.\mathcal{A}_{\omega}\right)=0$, that is $u_{\omega}(x) \geq \phi(x)$ in U for all $\omega \geq \omega_{0}$. Then for all ψ in $C_{C}^{\infty}(U)$ we have $\int \Delta u_{\omega} \Delta \psi-c \int D u_{\omega} \cdot D \psi-\alpha \int u_{\omega} \psi=0$ for all $\omega \geq \omega_{0}$. Passing to the limit

$$
\int \Delta u \Delta \psi-c \int D u \cdot D \psi-\alpha \int u \psi=0
$$

for all ψ in $C_{C}^{\infty}(U)$, that is $\Delta^{2} u+c \Delta u-\alpha u=0$ in U. So $x_{o} \notin \operatorname{supp} \mu$.

REmark 7.2. We remark that the functionals $L_{\omega}(\psi)$ converge for every ψ in H, but in general we cannot write the limit functional as an integral, since $\mathcal{D}(\Omega)$ is not dense in H. Moreover, this fact implies that the distributional versions (ii)' and (iii)' of the previous Theorem are, in some sense, weaker than the other ones.

Remark 7.3. At this point we want to underline that the variational inequality we obtain is, in some sense, "reversed". In fact, if $K_{\phi}=\{u \in H \mid u \geq \phi\}$ is the set of admissible functions, we are looking for a solution in K_{ϕ} of

$$
\Delta^{2} u+c \Delta u-\alpha u \leq 0
$$

while the classical variational inequality is $\Delta^{2} u+c \Delta u-\alpha u \geq 0$ (see [5], for example).

We now want to prove some regularity results in the case $\alpha=0$.
The fact that u is not a solution of a classical variational problem doesn't let us apply the regularization methods related to that theory. Anyway we can still get some information on the solution of the variational inequality by the following

Theorem 7.4 (Maximum Principle). Suppose $c<\lambda_{1}$ and u satisfies

$$
\begin{cases}\Delta^{2} u+c \Delta u \leq 0 & \text { in } \Omega \tag{20}\\ u=\Delta u=0 & \text { on } \partial \Omega\end{cases}
$$

Then either $u \equiv 0$ or, for every ball B contained in $\Omega, \sup _{B} u<0$.
See [16] for a proof.
As an immediate application of this Theorem we get the following
Proposition 7.5. Suppose $c<\lambda_{1}$, u is the weak limit of a sequence of solutions of $\left(\mathrm{P}_{\omega}\right)$ with $\alpha=0$. Then $\phi \leq u<0$ a.e. in Ω.

REMARK 7.6. A symmetric result holds if we consider the problem

$$
\min \left\{\int_{\Omega}|D u|^{2} \mid u \in W_{0}^{1,2}(\Omega), u \geq \Phi\right\}
$$

where Φ is an "obstacle" (that is $\Phi_{\mid \partial \Omega}<0$ and $\Phi>0$ in a subset with positive measure of Ω). In fact, if u_{0} is the unique minimal point, then $0 \leq u_{0}$ (see [9]). We observe that the same holds for the problem

$$
\min \left\{\int_{\Omega}|\Delta u|^{2} \mid u \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega), u \geq \Phi\right\}
$$

which gives $\Delta^{2} u \geq 0$ (see [5]).

Proposition 7.7. Suppose $\phi \in C^{4}(\bar{\Omega})$, u satisfies problem (20) and $\Delta^{2} \phi+$ $c \Delta \phi>0$ in Ω; then the "contact set" $\mathfrak{B}=\{x \in \Omega \mid u(x)=\phi(x)\}$ does not have interior points.

Proof. Suppose there exists x_{0} in the interior of \mathfrak{B}. In this case $\Delta^{2} u\left(x_{0}\right)=$ $\Delta^{2} \phi\left(x_{0}\right)$. But then

$$
0 \geq \Delta^{2} u\left(x_{0}\right)+c \Delta u\left(x_{0}\right)=\Delta^{2} \phi\left(x_{0}\right)+c \Delta \phi\left(x_{0}\right)
$$

The last sum is strictly positive and a contradiction arises.
Suppose u satisfies $\Delta^{2} u+c \Delta u \leq 0$ in $\mathcal{D}(\Omega)$. We want to show that u has some finer properties of regularity. In general we cannot expect to recover the regularity results for the biharmonic operator (see [3] and [5]), but something can still be said in the case $\alpha=0$. To do that, however, we follow the ideas of those papers to prove the following proposition.

Proposition 7.8. If u satisfies (20) and $N \geq 2$, then there exists a function W such that
(a) $W=\Delta u$ a.e. in Ω,
(b) W is lower semicontinuous,
(c) for every x_{0} in Ω and for every sequence of balls $B_{\rho}\left(x_{0}\right)$ with center in x_{0} and radius ρ, we get

$$
f_{B_{\rho}\left(x_{0}\right)} W \uparrow W\left(x_{0}\right) \quad \text { as } \rho \downarrow 0 .
$$

Proof. Take x in $\Omega, \rho>0$ and define

$$
w_{\rho}(x)=\oint_{B_{\rho}(x)}[\Delta u(y)+c u(y)] d y .
$$

First of all we observe that for every x_{0} in $\Omega, w_{\rho}(x)$ is a decreasing function of ρ. In fact if u is a regular function, Green's formula gives

$$
\Delta u\left(x_{0}\right)+c u\left(x_{0}\right)=\oint_{S_{\rho}\left(x_{0}\right)}(\Delta u+c u)-\int_{B_{\rho}\left(x_{0}\right)}\left(\Delta^{2} u+c \Delta u\right) G_{\rho}\left(x_{0}-y\right) d y
$$

where G_{ρ} is the Green's function in the ball of radius ρ :

$$
G_{\rho}(x-y)= \begin{cases}\gamma_{3}\left(|x-y|^{2-N}-\rho^{2-N}\right. & \text { if } N>3 \\ \gamma_{2} \log \left(\frac{\rho}{|x-y|}\right) & \text { if } N=2\end{cases}
$$

$\gamma_{i}>0, i \geq 2$.
In the same way, if $\rho^{\prime}>\rho$, we get

$$
\Delta u\left(x_{0}\right)+c u\left(x_{0}\right)=\oint_{S_{\rho^{\prime}}\left(x_{0}\right)}(\Delta u+c u)-\int_{B_{\rho^{\prime}}\left(x_{0}\right)}\left(\Delta^{2} u+c \Delta u\right) G_{\rho^{\prime}}\left(x_{0}-y\right) d y
$$

But $0<G_{\rho} \leq G_{\rho^{\prime}}$, so if $\Delta^{2} u+c \Delta u \leq 0$, we get

$$
\oint_{S_{\rho}\left(x_{0}\right)}(\Delta u+c u) \geq \oint_{S_{\rho^{\prime}}\left(x_{0}\right)}(\Delta u+c u)
$$

Integrating

$$
\begin{equation*}
\oint_{B_{\rho}\left(x_{0}\right)}(\Delta u+c u) \geq \oint_{B_{\rho^{\prime}}\left(x_{0}\right)}(\Delta u+c u) . \tag{21}
\end{equation*}
$$

If $u \in H^{2}(\Omega)$ and $\Delta^{2} u+c \Delta u \leq 0$, setting u_{ε} the ε-regularized functions of u, then $\Delta^{2} u_{\varepsilon}+c \Delta u_{\varepsilon} \leq 0$, so (21) holds with u replaced by u_{ε}. Letting ε going to 0 , we get (21) for any u in $H^{2}(\Omega)$. In this way $w_{\rho}\left(x_{0}\right)$ is an decreasing function of ρ and a function w is defined as

$$
w_{\rho}\left(x_{0}\right) \uparrow w\left(x_{0}\right) \quad \text { as } \rho \downarrow 0 .
$$

Every w_{ρ} is continuous, so w is lower semicontinuous. By Lebesgue Theorem $w_{\rho} \rightarrow \Delta u+c u$ a.e. in Ω. Setting

$$
W(x)=w(x)-c u(x),
$$

the proof is complete.
8. The limit problem in the case $\sup \phi<0$ and $N \leq 3$

The limit problem, as it was established in (18), holds for any ψ in $C_{C}^{\infty}(\Omega)$. Now we want to show that, if $N \leq 3$ and $\sup \phi<0$, it holds for all ψ in H. First of all define a sequence of measures $\left(\mu_{\omega}\right)_{\omega}$ in such a way that

$$
\int \psi d \mu_{\omega}=\omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1} \psi \quad \text { for all } \psi \text { in } C_{0}^{0}(\Omega)
$$

Moreover, $H \hookrightarrow C_{0}^{0}(\Omega)$ (but not in $\left.C_{C}^{0}(\Omega)\right)$ and we already know that $\int \psi d \mu_{\omega} \rightarrow$ $\int \psi d \mu$ for all ψ in $C_{C}^{\infty}(\Omega)$. So we only need to prove that $\int \psi d \mu_{\omega} \rightarrow \int \psi d \mu$ for all ψ in $C_{0}^{0}(\Omega)$.

To do that we remind some basic concepts of measure theory.
Definition 8.1. Let ν_{ω} be a sequence of measures and ν be a measure on Ω. We say that ν_{ω} weakly converges to ν, and we write $\nu_{\omega} \stackrel{*}{\rightharpoonup} \nu$, if the induced functionals on the dual of $C_{0}^{0}(\Omega)$ converge in the weak-*topology: $\int \psi d \nu_{\omega} \rightarrow$ $\int \psi d \nu$ for all ψ in $C_{0}^{0}(\Omega)$.

It is easy to show that, if the total variations of $\left(\nu_{\omega}\right)_{\omega}$ are bounded, that is $\sup _{\omega}\left|\nu_{\omega}\right|(\Omega)<\infty$, this condition is equivalent to the fact that $\int \psi d \nu_{\omega} \rightarrow \int \psi d \nu$ for all ψ in $C_{C}^{\infty}(\Omega)$.

In the problem under investigation we assume $\sup \phi<0$, so that Corollary 6.3 implies that $\sup _{\omega} \mu_{\omega}(\Omega)=\sup _{\omega} \omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1}<\infty$. In this way the
convergence of the induced functionals over ψ 's in $C_{C}^{\infty}(\Omega)$ is equivalent to the convergence over ψ 's in $C_{0}^{0}(\Omega)$. In particular $\int \psi d \mu \rightarrow \int \psi d \mu$ for all ψ in H.

Lemma 8.2. If $\nu_{\omega} \stackrel{*}{\rightharpoonup} \nu$ and $z_{\omega} \rightarrow z$ uniformly in $C_{0}^{0}(\Omega)$, then $\int z_{\omega} d \nu_{\omega} \rightarrow$ $\int z d \nu$.

Proof.

$$
\left|\int z_{\omega} d \nu_{\omega}-\int z d \nu\right| \leq\left|\int z_{\omega} d \nu_{\omega}-\int z d \nu_{\omega}\right|+\left|\int z d \nu_{\omega}-\int z d \nu\right|
$$

The first term of the right hand side of the previous inequality goes to 0 , since it is less or equal to $\left\|z_{\omega}-z\right\|_{\infty}\left|\nu_{\omega}\right|(\Omega)$, while the second one goes to 0 by definition.

An immediate consequence is the following
Theorem 8.3. If $N \leq 3, \phi \in C^{0}(\Omega)$, u_{ω} is a solution of $\left(\mathrm{P}_{\omega}\right)$, $u_{\omega} \rightharpoonup u$ in H and μ is the measure defined in (18), then

$$
\begin{equation*}
\int \Delta u \Delta v-c \int D u \cdot D v-\alpha \int u v=-\int v d \mu \quad \text { for all } v \text { in } H . \tag{22}
\end{equation*}
$$

Proof. Let $v \in H$. Then
$\int \Delta u_{\omega} \Delta v-c \int D u_{\omega} \cdot D v-\alpha \int u_{\omega} v=-\omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1} v \quad$ for all ω.
Passing to the limit, Lemma 8.2 implies the thesis.
Lemma 8.4. Suppose $N \leq 3$, $\sup \phi<0$ and u_{ω} is a solution of $\left(\mathrm{P}_{\omega}\right)$ such that $u_{\omega} \rightharpoonup u$; then

$$
\lim _{\omega \rightarrow \infty} \omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k}=0
$$

Proof. From Corollary 6.3 we get that the total variations of the sequence $\left(\mu_{\omega}\right)_{\omega}$ is bounded from above: $\sup _{\omega} \mu_{\omega}(\Omega)<\infty$. So

$$
\omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k} \leq \omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1}\left\|\left(u_{\omega}-\phi\right)^{-}\right\|_{L^{\infty}(\Omega)}
$$

But $\left\|\left(u_{\omega}-\phi\right)^{-}\right\|_{L^{\infty}(\Omega)} \rightarrow 0$, and the thesis follows.
Corollary 8.5. Suppose $N \leq 3$ and $\sup \phi<0$. If u_{ω} is a solution of $\left(\mathrm{P}_{\omega}\right)$ such that $u_{\omega} \rightharpoonup u$ in H, then $\liminf _{\omega \rightarrow \infty} \omega\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k}=0$ a.e. in Ω.

Proof. It follows from Lemma 8.4 and from Fatou's Lemma.
REMARK 8.6. If $u \rightarrow u$ uniformly, $f_{\omega}\left(u_{\omega}\right) \neq 0$ (i.e. u_{ω} is a forcing solution of $\left.\left(\mathrm{P}_{\omega}\right)\right), \phi \in C^{0}(\Omega)$ and $\sup \phi<0$, then $\{x \in \Omega \mid u(x)=\phi(x)\} \neq \emptyset$.

In fact, since $u_{\omega} \rightarrow u$ uniformly, there would exist ω_{0} such that $u_{\omega}-\phi>0$ for all $\omega \geq \omega_{0}$. But $\int \Delta u_{\omega} \Delta \psi-c \int D u_{\omega} \cdot D \psi-\alpha \int u_{\omega} \psi=-\omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1} \psi$ for every ψ in H, so $\omega \geq \omega_{0}, \int \Delta u_{\omega} \Delta \psi-c \int D u_{\omega} \cdot D \psi-\alpha \int u_{\omega} \psi=0$, which implies $f_{\omega}\left(u_{\omega}\right)=0$ (choosing $\psi=u_{\omega}$) and this is a contradiction.

As a corollary of Theorem 7.1 we get the following

Theorem 8.7. Assume $N \leq 3, \phi \in C^{0}(\Omega), \sup \phi<0, u_{\omega}$ is a solution of $\left(\mathrm{P}_{\omega}\right)$ and $u_{\omega} \rightharpoonup u$, then:

- $u_{\omega} \rightarrow u$ uniformly and μ is supported in the contact set $\mathfrak{B}=\{x \in \Omega \mid$ $u(x)=\phi(x)\}$, that is $\mu(\Omega \backslash \mathfrak{B})=0$,
- if $\alpha \neq \Lambda_{i}$ for all i and if $\{x \in \Omega \mid u(x)=\phi(x)\} \neq \emptyset$ (for example if $\left(u_{\omega}-\phi\right)^{-} \neq 0$ for all $\left.\omega\right)$, then $\mu(\{x \in \Omega \mid u(x)=\phi(x)\})>0$,
- if G is any neighbourhood of $\partial \Omega$ such that $\bar{G} \subset \bar{\Omega} \backslash \mathfrak{B}$, then $u \in H_{\mathrm{loc}}^{4}(G)$, $\Delta^{2} u+c \Delta u-\alpha u=0$ a.e. in G and $\int \Delta u \Delta \psi-c \int D u \cdot D \psi-\alpha \int u \psi=0$ for all ψ in H such that $\operatorname{supp} \psi \subset G$.

Proof. Since $N \leq 3, u_{\omega} \rightarrow u$ uniformly. $\phi \in C^{0}(\Omega)$ and $\sup \phi<0$, thus the contact set \mathfrak{B} is a compact subset of Ω. Let $\psi \in C_{C}^{\infty}(\Omega \backslash \mathfrak{B})$; then $\int \Delta u_{\omega} \Delta \psi-$ $c \int D u_{\omega} \cdot D \psi-\alpha \int u_{\omega} \psi+\omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1} \psi=0$. But if ω is big enough $\left(u_{\omega}-\phi\right)^{-} \psi=0$ and so, passing to the limit, $\int \Delta u \Delta \psi-c \int D u \cdot D \psi-\alpha \int u \psi=0$ for all ψ in $C_{C}^{\infty}(\Omega \backslash \mathfrak{B})$, that is μ in supported in \mathfrak{B}.

Now suppose $\alpha \neq \Lambda_{i}$ for all i and $\mathfrak{B} \neq \emptyset$; assume by contradiction that $\mu=0$. Then Theorem 8.3 gives $\int \Delta u \Delta \psi-c \int D u \cdot D \psi-\alpha \int u \psi=0$ for all ψ in H. Since $u \not \equiv 0, u$ is an eigenfunction in H of the biharmonic operator; therefore there exists i in \mathbb{N} such that $\alpha=\Lambda_{i}$ and this is a contradiction.

Since $u_{\omega} \rightarrow u$ uniformly, $\left(u_{\omega}-\phi\right)^{-}=0$ definitely in every compact subset of $\Omega \backslash \mathfrak{B}$. If ψ in H is such that $\operatorname{supp} \psi \subset G$, for ω large enough we have $\int \Delta u_{\omega} \Delta \psi-c \int D u_{\omega} \cdot D \psi-\alpha \int u_{\omega} \psi=0$. Then $\int \Delta u \Delta \psi-c \int D u \cdot D \psi-\alpha \int u \psi=0$. In particular $u \in H_{\mathrm{loc}}^{4}(G)$ and $\Delta^{2} u+c \Delta u-\alpha u=0$ a.e. in G.

Theorem 8.8. Suppose $N \leq 3$, $\sup \phi<0$. If u_{ω} is a solution of $\left(\mathrm{P}_{\omega}\right)$ and u_{ω} weakly converges to u in H, then $u_{\omega} \rightarrow u$ strongly in H.

Proof. Putting u in (22) we get

$$
\begin{equation*}
\int|\Delta u|^{2}-c \int|D u|^{2}-\alpha \int u^{2}+\int u d \mu=0 \tag{23}
\end{equation*}
$$

But

$$
\int\left|\Delta u_{\omega}\right|^{2}=c \int\left|D u_{\omega}\right|^{2}+\alpha \int u_{\omega}^{2}-\omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1} u_{\omega}
$$

By Lemma 8.2, the right hand side of the last equality converges to

$$
c \int|D u|^{2}+\alpha \int u^{2}-\int u d \mu
$$

By (23) we get

$$
\lim _{\omega \rightarrow \infty} \int\left|\Delta u_{\omega}\right|^{2}=\int|\Delta u|^{2}
$$

and the thesis follows.
Set $K_{\phi}=\{v \in H \mid v \geq \phi$ a.e. in $\Omega\}$, which is a convex and closed subset of H. We can now prove this

Theorem 8.9 (Reversed variational inequality). Suppose $N \leq 3$, $\sup \phi<0$, u is the limit of a sequence of forcing solutions u_{ω} of $\left(\mathrm{P}_{\omega}\right)$. Then

$$
\begin{equation*}
\int \Delta u \Delta(v-u)-c \int D u \cdot D(v-u)-\alpha \int u(v-u) \leq 0 \quad \text { for all } v \text { in } K_{\phi} \tag{24}
\end{equation*}
$$

Proof. Let v be a function of K_{ϕ}. Then

$$
\begin{aligned}
\int \Delta u_{\omega} \Delta\left(v-u_{\omega}\right)-c \int D u_{\omega} \cdot D\left(v-u_{\omega}\right) & -\alpha \int u_{\omega}\left(v-u_{\omega}\right) \\
& =-\omega \int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1}\left(v-u_{\omega}\right)
\end{aligned}
$$

But $\int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1}\left(v-u_{\omega}\right)=\int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1}(v-\phi)-\int\left(\left(u_{\omega}-\phi\right)^{-}\right)^{k-1}\left(u_{\omega}-\right.$ $\phi) \geq 0$. By Theorem 8.8 and Lemma 8.4 the thesis follows.

REmark 8.10. This is quite a surprising result, since this Theorem states the exact contrary of the statement of a classical variational inequality: if Φ is an obstacle (that is $\Phi_{\mid \partial \Omega} \leq 0$ and $\Phi>0$ in a subset of positive measure in Ω) and one looks for

$$
\begin{equation*}
\min _{u \in K_{\Phi}} \int|\Delta u|^{2} \tag{25}
\end{equation*}
$$

then

$$
\int \Delta u \Delta(v-u) \geq 0 \quad \text { for all } v \text { in } K_{\Phi}
$$

where $K_{\Phi}=\{v \in H \mid v \geq \Phi$ a.e. in $\Omega\}$ (see [5]).

9. Multiplicity results for the reversed variational inequality in low dimension

As a corollary of Theorem 8.8, it is easy to prove the following
THEOREM 9.1. If $N \leq 3, \sup \phi<0, \alpha \neq \lambda_{1}^{2}-c \lambda_{1}$ and u is the weak limit of a sequence of forcing solutions u_{ω} of $\left(\mathrm{P}_{\omega}\right)$, then there is at least one non trivial solutions of the limit problem (24).

Proof. By Theorem $8.9 u$ is a solution of (24). Moreover, by Corollary 5.19, there exists $\varepsilon>0$ such that $f_{\omega}\left(u_{\omega}\right)=\frac{1}{2} \int\left|\Delta u_{\omega}\right|^{2}-\frac{c}{2} \int\left|D u_{\omega}\right|^{2}-\frac{\alpha}{2} \int u_{\omega}^{2}-\frac{\omega}{K} \int\left(\left(u_{\omega}-\varphi\right)^{-}\right)^{K} \geq \varepsilon \quad$ for all ω.
By Theorem 8.8, $u_{\omega} \rightarrow u$ strongly in H and by Lemma 8.4

$$
\int|\Delta u|^{2}-c \int|D u|^{2}-\alpha \int u^{2} \geq 2 \varepsilon>0
$$

that is $u \not \equiv 0$.
In particular we can prove the following multiplicity result.

Theorem 9.2. Suppose $N \leq 3$ and $\sup \phi<0$. Under the hypotheses of Theorem 5.17 or of Theorem 5.18, there exists $\tau_{s}>0$ such that for all α in $\left(\Lambda_{s}-\tau_{s}, \Lambda_{s}\right)$ there exist at least two distinct non trivial solutions of equation (24).

Proof. In Corollary 5.19 we proved that there exists $\sigma_{1}>\sigma_{2}>\sigma_{3}>\sigma_{4}>0$ and three sequences of solutions v_{ω}^{1} and $u_{\omega}^{j}, j=1,2$ such that for all ω

$$
\sigma_{1}>f_{\omega}\left(v_{\omega}^{1}\right) \geq \sigma_{2}\left(=\inf _{\substack{w \in H_{s}^{\perp},\|w\|=\rho_{\omega}}} f_{\omega}(w)\right)>\sigma_{3}\left(=M_{s}^{\omega}(\alpha)\right) \geq f_{\omega}\left(u_{\omega}^{j}\right)>\sigma_{4}>0
$$

and such that $v_{\omega}^{1} \rightarrow v$ and $u_{\omega}^{j} \rightarrow u_{j}, j=1,2$ in H. We recall that M_{s}^{ω} is a decreasing function of ω. But since $N \leq 3$, in the definition of \mathcal{O}_{s}^{ω} (in which we require that there exists ρ_{ω} such that $\left.M_{s}^{\omega}<\inf _{w \in H_{s}^{\perp},\|w\|=\rho_{\omega}} f_{\omega}(w)\right)$ we can choose ρ_{ω} constant and small enough so that $(w-\phi)^{-}=0$, and so $\inf _{w \in H_{s}^{\perp},\|w\|=\rho_{\omega}} f_{\omega}(w)$, is independent on ω.

Passing to the limit we get

$$
\begin{aligned}
\sigma_{1} & \geq \frac{1}{2}\left(\left.\int \Delta v\right|^{2}-c \int|D v|^{2}-\alpha \int v^{2}+\int v d \mu\right) \geq \sigma_{2} \\
& >\sigma_{3} \geq \frac{1}{2}\left(\left.\int \Delta u_{j}\right|^{2}-c \int\left|D u_{j}\right|^{2}-\alpha \int u_{j}^{2}+\int u_{j} d \mu\right) \geq \sigma_{4}>0 .
\end{aligned}
$$

Of course we cannot distinguish u_{1} and u_{2} in the range [σ_{4}, σ_{3}], so we can only establish the existence of one solution in that range.

We observe that this is quite an interesting fact. Indeed we have proved that for a "reversed" linear variational inequality there are some non trivial solutions. And such a result is not obvious at all, since the existence of one non trivial solution is not evident, either.

10. A deeper look on the case $N \leq 3$

Let us consider any solution u of (24). For simplicity consider the case $c=\alpha=0$. Then

$$
\int \Delta u \Delta v \leq \int|\Delta u|^{2} \quad \text { for all } v \text { in } K_{\phi}
$$

The (unique) solution of problem (25) satisfies

$$
\int \Delta u \Delta(v-u) \geq 0 \quad \text { for all } v \text { in } K_{\phi}
$$

as already remarked. But by Minty's Lemma (see [5]), the last inequality holds if and only if

$$
\int \Delta v \Delta(v-u) \geq 0 \quad \text { for all } v \text { in } K_{\phi}
$$

If we combine these two inequalities we immediately get

$$
\int|\Delta u|^{2} \leq \int|\Delta v|^{2} \quad \text { for all } v \text { in } K_{\phi}
$$

as expected.
In our case a property analogous to Minty's Lemma is not possible. In fact, if (24) was equivalent to the following "reversed" Minty's Lemma

$$
\int|\Delta v|^{2} \leq \int \Delta u \Delta v \quad \text { for all } v \text { in } K_{\phi}
$$

we would get

$$
\int|\Delta u|^{2} \geq \int|\Delta v|^{2} \quad \text { for all } v \text { in } K_{\phi}
$$

which is clearly absurd, since

$$
\sup _{v \in K_{\phi}} \int|\Delta v|^{2}=\infty .
$$

Anyway we observe that the "reversed" Minty's Lemma implies (24). In fact for all v in K_{ϕ} we have

$$
0 \leq \int|\Delta(v-u)|^{2}=\int|\Delta v|^{2}-2 \int \Delta u \Delta v+\int|\Delta u|^{2}
$$

and by the "reversed" Minty's Lemma it is less or equal to

$$
-\int \Delta u \Delta v+\int|\Delta u|^{2}
$$

and so (24) holds.
We also observe that the "reversed" inequality is not equivalent to a classical variational one, neither when the constraint $u \geq \phi$ is replaced by $U \leq-\phi$. In fact if we consider the function $U=-u$, then U satisfies $\int \Delta U \Delta(V-U)-$ $c \int D U \cdot D(V-U)-\alpha \int U(V-U) \leq 0$ for all $V \leq-\phi$.

Finally we prove some regularity results in the case $\alpha=0$.
Proposition 10.1. Suppose u satisfies (24) with $\alpha=0, W$ is the function defined in Proposition 7.8 and $c<\lambda_{1}$. Then $W \geq 0$ in Ω.

Proof. Fix x_{o} in Ω and $\rho>0$ such that $\overline{B_{\rho}\left(x_{0}\right)} \subset \Omega$. Denote by χ_{B} the characteristic function of $B_{\rho}\left(x_{0}\right)$ and let z be the solution of the problem

$$
\begin{cases}\Delta z+c z=-\chi_{B} & \text { in } \Omega \\ z=0 & \text { on } \partial \Omega\end{cases}
$$

By the regularity theorem for elliptic equations, $z \in H$ and by the Maximum Principle $z \geq 0$ a.e. in Ω. Then $v=u+z \in K_{\phi}$. In this way, putting such a v in (24), we get

$$
\int \Delta u \Delta z-c \int D u \cdot D z \leq 0
$$

Substituting the value of Δz and integrating by parts we get

$$
\int_{B_{\rho}\left(x_{0}\right)} \Delta u=\int_{B_{\rho}\left(x_{0}\right)} W \geq 0
$$

By (c) of Proposition 7.8, dividing by the measure of $B_{\rho}\left(x_{0}\right)$ and passing to the limit, we get $W\left(x_{0}\right) \geq 0$.

Since $W=\Delta u$ a.e. in Ω, we get the following
Corollary 10.2. If u satisfies problem (20) and $c<\lambda_{1}$, then $\Delta u \geq 0$ a.e. in Ω, that is u is subharmonic in Ω.

Of course, by the Maximum Principle we obtain again Proposition 7.5.

A. Variational theorems

Definition A.1. Let H be a Hilbert space, $f: H \longrightarrow \mathbb{R}$ be a C^{1}-function and $\mathfrak{c} \in \mathbb{R}$. We say that $(\mathrm{PS})_{\mathfrak{c}}$, Palais-Smale condition at level \mathfrak{c}, holds if for any u_{n} such that $\lim f\left(u_{n}\right)=\mathfrak{c}$ and $\lim \nabla f\left(u_{n}\right)=0$, there exists a converging subsequence of $\left(u_{n}\right)$.

Theorem A. 2 (Mountain Pass). Let B be a real Banach space and $f \in$ $C^{1}(B, \mathbb{R})$ such that $f(0)=0$ and
(i) there are positive constants ρ and α such that $f_{\mid \partial B_{\rho}} \geq \alpha$,
(ii) there exists e in $B \backslash B_{\rho}$ such that $f(e) \leq 0$.

Suppose (PS) ${ }_{c}$ holds for all $\mathfrak{c} \geq \alpha$. Then f has a critical value $c \geq \alpha$. Moreover, c can be characterized as

$$
c=\inf _{g \in \Gamma} \max _{u \in g([0,1])} f(u)
$$

where $\Gamma=\left\{g \in C^{0}([0,1], B) \mid g(0)=0, g(1)=e\right\}$. Here B_{ρ} stands for the ball of radius ρ : $B_{\rho}=\{u \in B \mid\|u\| \leq \rho\}$.

See [19] or [20] for a proof.
Theorem A. 3 (Linking Theorem). Let H be a Hilbert space which is topological direct sum of subspaces H_{1} and H_{2}, one of those having finite dimension. Let f be a C^{1} real function defined on H and let $e \in H_{1}, e \not \equiv 0$ and $\rho_{1}, \rho_{2}>0$ such that
(i) $\left|\rho_{1}-\rho_{2}\right|<\|e\|<\rho_{1}+\rho_{2}$,
(ii) $\sup _{\Sigma_{1}} f<\inf _{\Sigma_{2}} f$,
(iii) $-\infty<a=\inf _{B_{1}} f$ and $b=\sup _{B_{2}} f<\infty$,
where B_{1} is the ball in H_{1} centered at 0 with radius ρ_{1}, Σ_{1} is its boundary in H_{1}, B_{2} is the ball in $\operatorname{Span}(e) \oplus H_{2}$ centered at e with radius ρ_{2} and Σ_{2} is its boundary
in Span $(e) \oplus H_{2}$. Suppose $(\mathrm{PS})_{\mathfrak{c}}$ holds for every $\mathfrak{c} \in[a, b]$. Then there exist two critical levels c_{1} and c_{2} such that

$$
a \leq c_{1} \leq \sup _{\Sigma_{1}} f<\inf _{\Sigma_{2}} f \leq c_{1} \leq b
$$

See [11] for a proof of this theorem.
Definition A.4. Let H be a Hilbert space, $f: H \rightarrow \mathbb{R}$ be a C^{1}-function, X a closed subspace of $H, a, b \in \mathbb{R} \cup\{-\infty, \infty\}$. We say that condition $(\nabla)(f, X, a, b)$ holds if there exists $\gamma>0$ such that $\inf \left\{\left\|P_{X} \nabla f(u)\right\| \mid a \leq f(u) \leq b\right.$, $\operatorname{dist}(u, X) \leq$ $\gamma\}>0$, where $P_{X}: H \rightarrow X$ is the orthogonal projection of H onto X.

Theorem A. $5\left((\nabla)\right.$-Theorem). Let H be a Hilbert space and $H_{i}, i=1,2,3$ three subspaces of H such that $H=H_{1} \oplus H_{2} \oplus H_{3}$ and $\operatorname{dim}\left(H_{i}\right)<\infty$ for $i=1,2$. Denote by P_{i} the orthogonal projection of H onto H_{i}. Let $f: H \rightarrow \mathbb{R}$ be a $C^{1,1}$-function. Let $\rho, \rho^{\prime}, \rho^{\prime \prime}, \rho_{1}$ be such that $\rho_{1}>0,0 \leq \rho^{\prime}<\rho<\rho^{\prime \prime}$ and define

$$
\begin{gathered}
\Delta=\left\{u \in H_{1} \oplus H_{2} \mid \rho^{\prime} \leq\left\|P_{2} u\right\| \leq \rho^{\prime \prime},\left\|P_{1} u\right\| \leq \rho_{1}\right\} \quad \text { and } \quad T=\partial_{H_{1} \oplus H_{2}} \Delta \\
S_{23}(R)=\left\{u \in H_{2} \oplus H_{3} \mid\|u\|=R\right\} \quad \text { and } \quad B_{23}=\left\{u \in H_{2} \oplus H_{3} \mid\|u\| \leq R\right\} .
\end{gathered}
$$

Assume that

$$
a^{\prime}=\sup f(T)<\inf f\left(S_{23}(\rho)\right)=a^{\prime \prime}
$$

Let a and b be such that $a^{\prime}<a<a^{\prime \prime}$ and $b>\sup f(\Delta)$. Assume $(\nabla)\left(f, H_{1} \oplus\right.$ $\left.H_{3}, a, b\right)$ holds and that (PS) $)_{\mathfrak{c}}$ holds for every \mathfrak{c} in $[a, b]$. Then f has at least two critical points in $\left.f^{-1}([a, b])\right)$. Moreover, if $a_{1}<\inf f\left(B_{23}(\rho)\right)>-\infty$ and (PS) ${ }_{c}$ holds at any \mathfrak{c} in $\left[a_{1}, b\right]$, then f has another critical level in $\left[a_{1}, a^{\prime}\right]$.

See [12] for the proof.

References

[1] M. A. Al-Gwaiz, Theory of Distributions, M. Dekker, New York, 1992.
[2] H. Brezis, Analyse fonctionelle - Théorie et applications, Masson Editeur, Paris, 1983.
[3] L. A. Caffarelli and A. Friedman, The obstacle problem for the biharmonic operator, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 6 (1979), 151-184.
[4] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992.
[5] A. Friedman, Variational Principles and Free-Boundary Problems, Robert E. Krieger Publishing Co., Inc., Malabar, FL, 1988.
[6] A. C. Lazer and P. J. McKenna, Global bifurcation and a theorem of Tarantello, J. Math. Anal. Appl. 181 (1994), 648-655.
[7] , Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev. 32 (1990), 537-578.
[8] J. L. Lions and E. Magenes, Problèmes aux Limites non Homogènes, vol. 3, Dunod, 1968.
[9] J. L. Lions and G. Stampacchia, On existence and smoothness of solutions of some non-coercive variational inequalities, Arch. Rational Mech. Anal. 41 (1971), 241-253.
[10] \qquad , Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493-519.
[11] A. Marino, A. M. Micheletti and A. Pistoia, A nonsymmetric asymptotically linear elliptic problem, Topol. Methods Nonlinear Anal. 4 (1994), 289-339.
[12] A. Marino and C. Saccon, Some variational theorems of mixed type and elliptic problems with jumping nonlinearities, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), 661-665.
[13] A. M. Micheletti and A. Pistoia, About the multiplicity of solutions for certain class of fourth order semilinear problems, Le Matematiche LI (1996), 253-271.
[14] _ Multiplicity results for a fourth-order semilinear elliptic problem, Nonlinear Anal. 31 (1998), 895-908.
[15] , Nontrivial solutions for some fourth order semilinear elliptic problems, Nonlinear Anal. 34 (1998), 509-523.
[16] , On the number of solutions for a class of fourth order elliptic problems, Comm. Appl. Nonlinear Anal. 6 (1999), 49-69.
[17] A. M. Micheletti, A. Pistoia and C. Saccon, Three solutions of a fourth order elliptic problem via variational theorems of mixed type, Appl. Anal. 75 (2000), 43-59.
[18] A. Pistoin, An application of a variational theorem of mixed type to a superlinear elliptic problem, J. Math. Anal. Appl. 237 (1999), 303-319.
[19] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Published for the Conference Board of the Mathematical Sciences, Washington, D.C., Amer. Math. Soc., Providence, R.I., 1986.
[20] M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, 1990.
[21] G. Tarantello, A note on a semilinear elliptic problem, Differential Integral Equations 5 (1992), 561-565.

Dimitri Mugnai

Dipartimento di Matematica "L. Tonelli"
Via F. Buonarroti 2
Pisa, ITALY
E-mail address: mugnai@dm.unipi.it

