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CRITICAL POINTS FOR SOME FUNCTIONALS
OF THE CALCULUS OF VARIATIONS

Benedetta Pellacci

Abstract. In this paper we prove the existence of critical points of non

differentiable functionals of the kind

J(v) =
1

2

Z

Ω

A(x, v)∇v · ∇v −
1

p + 1

Z

Ω

(v+)p+1,

where 1 < p < (N + 2)/(N − 2) if N > 2, p > 1 if N ≤ 2 and v+ stands

for the positive part of the function v. The coefficient A(x, s) = (aij(x, s))

is a Carathéodory matrix derivable with respect to the variable s. Even if
both A(x, s) and A′s(x, s) are uniformly bounded by positive constants, the

functional J fails to be differentiable on H1
0 (Ω). Indeed, J is only derivable

along directions of H1
0 (Ω)∩L∞(Ω) so that the classical critical point theory

cannot be applied.
We will prove the existence of a critical point of J by assuming that

there exist positive continuous functions α(s), β(s) and a positive con-

stants α0 and M satisfying α0|ξ|2 ≤ α(s)|ξ|2 ≤ A(x, s)ξ · ξ, A(x, 0) ≤ M ,
|A′s(x, s)| ≤ β(s), with β(s) in L1(R).

1. Introduction

The classical theory concerning the existence of critical points for functionals
of the Calculus of Variations is applicable for C1-functionals defined on Banach
spaces. However, simple examples show that this differentiability condition may
fail. In order to give a model example, consider Ω a bounded open set of RN
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and a symmetric matrix A(x, s) = (aij(x, s)), where aij(x, s) are Carathéodory
functions, i.e. mesaurable with respect to x and continuous with respect to s.
We assume that there exist a positive continuous function α(s) and positive
constants α0 and M such that the following conditions are satisfied for almost
every x in Ω and for every s in R

(1.1)

{
A(x, s)ξ · ξ ≥ α(s)|ξ|2 for all ξ ∈ RN ,

α(s) ≥ α0 > 0,

(1.2) A(x, 0) ≤M.

Moreover, we suppose that A(x, s) is derivable with respect to s and we denote
with A′s(x, s) its derivative. Regarding the matrix A′s(x, s) we assume that there
exists a positive continuous function β(s) and positive constants R0, β1 and β2

such that for almost every x in Ω and for every s in R, the following conditions
are satisfied

(1.3) |A′s(x, s)| ≤ β(s),

(1.4) β(s) ∈ L1(R),

(1.5)


β(s)
α(s)

s ≤ β1 for all s with s > R0,

β(s)s ≥ −β2 for all s with s < −R0.

Notice that conditions (1.2) and (1.4) imply that there exists a positive con-
stant β0 such that

(1.6) A(x, s) ≤ β0.

Indeed we have

lg
[
A(x, s)
A(x, 0)

]
=

∫ s

0

A′s(x, t)
A(x, t)

dt ≤ 1
α0

∫ s

0

β(t) dt <∞.

So that, taking into account (1.6) we notice that condition (1.5) implies that
β(s)|s| ≤ C for every s ∈ R as α(s) is bounded from above by β0. Then, there
exists a positive constant Λ such that

(1.7) |A′s(x, s)| ≤ Λ, |A′s(x, s)s| ≤ Λ.

Let us consider the functional I : H1
0 (Ω) → R defined by

I(v) =
1
2

∫
Ω

A(x, v)∇v · ∇v −
∫
Ω

F (v),

where F (s) = 1/(p+ 1)(s+)p+1, 1 < p < (N + 2)/(N − 2) and s+ stands for the
positive part of s, i.e. s+ = max{s, 0}. From hypothesis (1.1) and by applying De
Giorgi Theorem ([9]), it follows that I is weakly lower semicontinuous on H1

0 (Ω).
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Condition (1.6) and the definition of F imply that I is not bounded from below
on H1

0 (Ω) so that it has not a global minimum. In order to look for critical points
different from minima we consider the Gateaux derivative of I. From condition
(1.7) we can compute 〈I ′(u), v〉 for every u ∈ H1

0 (Ω) and along any direction
v ∈ H1

0 (Ω) ∩ L∞(Ω). We obtain

〈I ′(u), v〉 =
∫
Ω

A(x, u)∇u · ∇v +
1
2

∫
Ω

A′s(x, u)∇u · ∇u v −
∫
Ω

(u+)pv.

Since I is not Frechét differentiable on H1
0 (Ω), we cannot apply the classical

critical point theory suitable for C1-functionals. We say that a function u in
H1

0 (Ω) is a critical point of I if it satisfies 〈I ′(u), v〉 = 0 for every v in H1
0 (Ω) ∩

L∞(Ω). We will prove the following results.

Theorem 1. Assume (1.1)–(1.5). Let 1 < p < (N +2)/(N −2) and suppose
that the matrix A′s(x, s) is negative semidefinite for s > R0. Then there exists
u ∈ H1

0 (Ω) ∩ L∞(Ω), u ≥ 0, u 6≡ 0, critical point of the functional I.

Since (1.6) and (1.7) hold, we are considering bounded matrices with bounded
derivative. Functionals with bounded coefficients have also been treated in [2],
[8], [13]. In [8], [13] it is proved a multiplicity result using a “weak” notion
of derivative for continuous functions defined on complete metric spaces. In
[2], [3] and [6] it is proved an existence result for bounded ([2]) and unbounded
[3], [6]) coefficients by means of a suitable version of the Mountain Pass Theorem
for nondifferentiable functionals, which is proved using the Ekeland variational
principle ([10]). In all these works, as usual when dealing with elliptic problems
with quadratic gradient terms (see [5] and the references therein), it is assumed
a sign condition on A′s(x, s). Namely, it is supposed that

(S) A′s(x, s)s ≥ 0 for every s.

Thus, Theorem 1 concerns the case in which the opposite sign in (S) is assumed.
If the matrix A′s(x, s) does not satisfy any sign condition, we will prove the
following Theorem.

Theorem 2. Assume (1.1)–(1.5). Moreover, suppose that the exponent p
satisfies the condition

(1.8) min{1 + β1, 2 eψM − 1} < p <
N + 2
N − 2

,

where ψM = ‖β/α‖L1(R+)/2. Then, there exists u ∈ H1
0 (Ω) ∩ L∞(Ω), u ≥ 0,

u 6≡ 0, critical point of the functional I.

We point out that even in the case in which (S) is satisfied Theorem 2 is new
(see Remark 4.4).
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In order to prove Theorems 1 and 2 we will use critical points theory. As I
is nondifferentiable we will apply an abstract result in [2] in order to construct
a Palais–Smale sequence {un} for I. Then, we will demonstrate that {un} is
compact in H1

0 (Ω). In order to prove that {un} is bounded in H1
0 (Ω), we will

first take advantage of the fact that s+ ≡ 0 for every s ≤ 0 and we will prove that
the negative part u−n (v− = min{v, 0}) of un strongly converges to zero in H1

0 (Ω).
Then, we will use condition (1.8) (in the proof of Theorem 2) in order to prove
that u+

n is bounded in H1
0 (Ω). Condition (1.8) shows an interaction between the

nonlinearities F (s) and A(x, s). Indeed, if A′s(x, s) ≤ 0 for every s ≥ R0, then,
“roughly speaking”, the term involving A′s(x, u

+
n ) can be ignored as n tends to

infinity. Thus, the boundedness of {u+
n } in H1

0 (Ω) can be proved in the same way
as for C1-functionals inH1

0 (Ω) (see Lemma 3.1). On the other hand, if A′s(x, s) ≥
0 or A′s(x, s) is indefinite, it seems natural to expect a competition between the
terms F (s) and A(x, s) so that condition (1.8) raises (see Lemma 3.2).

In order to prove that un, bounded in H1
0 (Ω), is compact in H1

0 (Ω) we will
demostrate that, given a Palais–Smale sequence un bounded in H1

0 (Ω), then,
every u, weak cluster point of un, belongs to L∞(Ω). The key point is that this
result is proved before proving that u is a critical point, so that no bootstrap
arguments will be used to prove that a critical point belongs to L∞(Ω).
The paper is organized as follows.

Theorem 1 and 2 will be proved as a consequence of Theorems 2.1 and 2.2
respectively, that will be stated in Section 2. In Section 3 we prove some technical
results that will be useful in order to prove the Palais–Smale condition. Finally
in Section 4 we will prove Theorems 2.1 and 2.2.

2. Setting of the problem and statements of the results

Let f : Ω× R → R be a Carathéodory function such that

(2.1) f(x, s) = 0 for all s ≤ 0.

Assume that positive constants a and b exist such that for almost every x in Ω

(2.2) |f(x, s)| ≤ a|s|p + b for every s in R+,

where 1 < p < (N + 2)/(N − 2) if N > 2, p > 1 if N = 2, and

(2.3) lim
s→0+

f(x, s)
s

= 0.

Consider the functional J : H1
0 (Ω) → R defined by

J(v) =
1
2

∫
Ω

A(x, v)∇v · ∇v −
∫
Ω

F (x, v),
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where F (x, s) =
∫ s
0
f(x, t) dt is the primitive of f and A(x, s) satisfies (1.1)–(1.5).

For every v in Lq(Ω), (with 1 ≤ q ≤ ∞) we denote with ‖v‖q its norm in Lq(Ω),
and for every v ∈ H1

0 (Ω) we denote its norm with ‖v‖1,2. We set

(2.4) Y = H1
0 (Ω) ∩ L∞(Ω), ‖v‖Y = ‖v‖1,2 + ‖v‖∞.

Notice that (1.1) and (2.2) together with the Sobolev embedding Theorem imply
that J is weakly lower semicontinuous in H1

0 (Ω). In addition, from (1.6) and
(1.7) we get that there exists 〈J ′(u), v〉 for every u ∈ H1

0 (Ω), and for every v

in Y . We have

〈J ′(u), v〉 =
∫
Ω

A(x, u)∇u · ∇v +
1
2

∫
Ω

A′s(x, u)∇u · ∇u v −
∫
Ω

f(x, u)v.

Moreover, 〈J ′(u), v〉 is continuous with respect to v for every u fixed and the map
J ′v : H1

0 (Ω) → R, J ′v(u) = 〈J ′(u), v〉 is continuous in u ∈ H1
0 (Ω), for every fixed

v. We take into account condition (1.7) and we say that a function u ∈ H1
0 (Ω)

is a critical point of J if it satisfies 〈J ′(u), v〉 = 0 for every v ∈ H1
0 (Ω) ∩ L∞(Ω).

Therefore, every critical point u ∈ H1
0 (Ω)∩L∞(Ω) is a distributional solution of

the following nonlinear Dirichlet problem

(P)

{
−div(A(x, u)∇u) +

1
2
A′s(x, u)∇u · ∇u = f(x, u) in Ω,

u = 0 on ∂Ω.

Theorem 1 will be deduced from the following result.

Theorem 2.1. Assume (1.1)–(1.5), (2.1)–(2.3). In addition, suppose that
the following condition is satisfied

A′s(x, s) is negative semidefinite for every s > R0.(2.5)

∃m > 2, R1 > 0, such that 0 < mF (x, s) ≤ f(x, s)s,(2.6)

for every s > R1. Then there exists u ∈ H1
0 (Ω) ∩ L∞(Ω), u ≥ 0, u 6≡ 0, critical

point of the functional J .

Define the function

ψ(t) =
1
2

∫ t

0

β(s)
α(s)

ds.

From (1.4) we deduce that ψ(t) is bounded. Moreover, as β(s) is continuous,
from (1.1) and (1.5) we get that there exists a positive β such that

(2.7) ψ′(s)|s| ≤ β for every s ∈ R.

Define the quantity

(2.8) ψM = sup
R+

ψ(s) =
1
2

∫ ∞

0

β(s)
α(s)

ds.

Theorem 2 will be deduced from the following result.
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Theorem 2.2. Assume (1.1)–(1.5), (2.1)–(2.3). Suppose that there exist m
and R1 > 0 such that for almost every x in Ω we have

(2.9)

{
m > min{2 + β1, 2 eψM },
0 < mF (x, s) ≤ sf(x, s) for every s with s ≥ R1.

Then, there exists u ∈ H1
0 (Ω) ∩ L∞(Ω), u ≥ 0, u 6≡ 0 critical point of the

functional J .

Note that, when we consider the model example f(s) = (s+)p we get that
condition (2.9) is reduced to hypothesis (1.8).

Remark 2.3. Notice that in the semi-linear case, i.e. A(x, s) ≡ A(x), the
function β(s) (so that also the constant β1) can be chosen equal to 0. As a conse-
quence, assumption (2.9) is supposed for m > 2 and it is reduced to the classical
Ambrosetti–Rabinowitz condition (see [1]).

3. Some technical results

In order to prove Theorems 2.1 and 2.2 we will use conditions (1.1), (1.6),
(2.3) and either (2.6) or (2.9) to show that J has a geometrical behavior of
Mountain Pass type. Then, we will apply an abstract result proved in [2] in
order to contruct a Palais–Smale sequence. In this section we will prove some
techincal results that will be useful when proving that J satisfies the Palais–
Smale condition.

Suppose that there exists a sequence {un} ⊂ Y , where Y is defined in (2.4),
such that

(3.1)


J(un) → c,

‖un‖∞ ≤ 2Mn,

|〈J ′(un), v〉| ≤ εn

[
‖v‖Y
Mn

+ ‖v‖1,2

]
for all v ∈ Y,

where c is a positive constant, {Mn} ⊂ R+ \{0} is any sequence, and {εn} ⊂ R+

is a sequence converging to zero.
In the following Lemmas we will prove that for every {un} ⊂ Y (where Y is

defined in (2.4)) that satisfies (3.1) there exists u ∈ Y , u ≥ 0, such that, up to
a subsequence, un strongly converges to u in H1

0 (Ω).
In the following Lemma we prove that un is bounded in H1

0 (Ω) under the
assumptions of Theorem 2.2.

Lemma 3.1. Assume (1.1)–(1.5), (2.1), (2.2), (2.9). Let {un} ⊂ Y be a se-
quence that satisfies (3.1). Then un is bounded in H1

0 (Ω).

Proof. We will first show that u−n = min{un, 0} strongly converges to zero
in H1

0 (Ω). We take v = (u−n )e−ψ(un) as test function in (3.1). Note that this
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choice is admissible since ψ and ψ′ are bounded. Moreover, from (2.7) we have
that

‖v‖1,2 ≤ c0(1 + β)‖u−n ‖1,2 = C‖u−n ‖1,2, ‖v‖∞ ≤ c′‖un‖∞.

We get∫
Ω

e−ψ(un)A(x, un)∇un · ∇u−n

+
1
2

∫
Ω

(u−n )e−ψ(un)

[
A′s(x, un)−A(x, un)

β(un)
α(un)

]
∇un · ∇un

≤ εn[c′ + C‖u−n ‖1,2].

Notice that conditions (1.1) and (1.3) imply that

(3.2) A′s(x, un)∇un · ∇un ≤
β(un)
α(un)

A(x, un)∇un · ∇un,

so that, as u−n ≤ 0, we deduce that

(3.3)
∫
Ω

e−ψ(un)A(x, un)∇un · ∇u−n ≤ εn[c′ + C‖u−n ‖1,2].

Hypothesis (1.1) yields

(3.4) α0‖u−n ‖2
1,2 ≤ εn[c′ + C‖u−n ‖1,2].

Thus, u−n is bounded in H1
0 (Ω). Then, again from (3.4) we get that u−n → 0

strongly in H1
0 (Ω). Moreover, from (3.3) and by applying hypothesis (1.1) we

deduce that

(3.5) lim
n→∞

∫
Ω

A(x, un)∇un · ∇u−n = 0.

This, together with the fact that F (x, s) ≡ 0 for every s ≤ 0, implies that

(3.6) J(u+
n ) → c,

where c is defined in (3.1).
In order to prove that u+

n is bounded in H1
0 (Ω), consider first the case in

which min{2 + β1, 2 eψM } = 2eψM . We take v = (u+
n )e−ψ(un) as test function

in (3.1). Note that this choice is admissible since ψ and ψ′ are bounded and un
belongs to Y (where Y is defined in (2.4)). Moreover, from (2.7) we have that
‖v‖1,2 ≤ C0‖u+

n ‖1,2, for some C0 ∈ R+ and since ψ is a bounded function we get
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that ‖v‖∞ ≤ ‖un‖∞. It results∫
Ω

e−ψ(un)A(x, un)∇un · ∇u+
n −

∫
Ω

f(x, un)u+
n e
−ψ(un)

+
1
2

∫
Ω

e−ψ(un)u+
n

[
A′s(x, un)−A(x, un)

β(un)
α(un)

]
∇un · ∇un

≥ −εn(2 + C0‖u+
n ‖1,2).

From (3.2) and as u+
n ≥ 0, we obtain∫

Ω

e−ψ(un)A(x, un)∇un ·∇u+
n −

∫
Ω

f(x, un)u+
n e
−ψ(un) ≥ −εn(2+C0‖u+

n ‖1,2).

Thus we get the following estimate

(3.7)
∫
Ω

A(x, un)∇un · ∇u+
n − e−ψM

∫
Ω

f(x, un)u+
n ≥ −εn(2 + C0‖u+

n ‖1,2),

where ψM is defined in (2.8). Notice that (3.6) implies that there exists a positive
constant C ′ such that

(3.8) me−ψMJ(u+
n ) ≤ C ′.

When we subtract (3.7) from (3.8), we obtain[
m

2
e−ψM − 1

]∫
Ω

A(x, un)∇un · ∇u+
n

≤ C ′ + εn(2 + C0‖u+
n ‖1,2) + e−ψM

∫
Ω

[mF (x, un)− f(x, un)u+
n ].

From conditions (2.2) and (2.9) we deduce that there exists a positive function
a0(x) ∈ L1(Ω) such that

(3.9) mF (x, s) ≤ f(x, s)s+ a0(x) for every s in R.

Furthermore, by (2.9), we can fix ε0 such that 2eψM (1 + ε0) ≤ m. Then

me−ψM /2 ≥ (1 + ε0)

and we get

ε0

∫
Ω

A(x, un)∇un · ∇u+
n ≤ c1 + εn(2 + C0‖u+

n ‖1,2),

so that, from condition (1.1), we get that ‖u+
n ‖1,2 is bounded. This, together

with (3.4), implies that un is bounded in H1
0 (Ω).
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Now let us deal with the case in which min{2 + β1, 2 eψM } = 2 + β1. First,
we want to prove that for every positive σ > 0 and r > 0 there exists a positive
constant Mr,σ such that for all n in N, it results

(3.10)
∫

Ω−n,r

A(x, un)∇u+
n · ∇un

≤ σ

∫
Ω\Ω−n,r

A(x, un)∇u+
n · ∇un +Mr,σ + εn[C1(1 + ‖u+

n ‖1,2) + Cn],

where Ω−n,r = {x ∈ Ω : u+
n (x) ≤ r}, C1 is a positive constant, Cn ≥ 0, Cn → 0

as n tends to infinity and εn is given in (3.1). In order to prove (3.10) we will use
an idea of [8]. For every δ, with 0 < δ < min{1, α0}, let us define the function
ϑδ(s) : R → R+ by

(3.11) ϑδ(s) =


s for 0 ≤ s ≤ r,

r + δr − δs for r ≤ s ≤ (r + δr)/δ,

0 for s ≥ (r + δr)/δ or s ≤ 0.

Consider v = eψ(un)ϑδ(un). From condition (2.7) and from the definition of ϑδ(s)
we have that

‖v‖1,2 ≤ [c0‖u+
n ‖1,2 + c1‖ϑδ(un)‖1,2], ‖v‖∞ ≤ c0‖un‖∞.

As u+
n ∈ Y (where Y is defined in (2.4)) and u+

n ≥ 0, from (3.11) we deduce
that v belongs to Y and v ≥ 0. When we take v as test function in (3.1), we get
from (1.3)∫

Ω

eψ(un)A(x, un)∇un · ∇ϑδ(un)−
∫
Ω

f(x, un)eψ(un)ϑδ(un)

+
∫
Ω

A(x, un)∇un · ∇uneψ(un)ψ′(un)ϑδ(un)

≤ εn[c0(1 + ‖u+
n ‖1,2)] +

1
2

∫
Ω

β(un)|∇un|2 + εnc1‖ϑδ(un)‖1,2.

From the definition of ψ and from conditions (1.1), (2.2) it follows∫
Ω

eψ(un)A(x, un)∇un · ∇ϑδ(un)

≤
[
a

(
r + δr

δ

)p
+ b

]
eψM |Ω|r + εn[c0(1 + ‖u+

n ‖1,2) + c1‖ϑδ(un)‖1,2],
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where |Ω| denotes the Lebesgue measure of Ω. Applying Young inequality we
get

(3.12)
∫
Ω

eψ(un)A(x, un)∇un · ∇ϑδ(un)

≤ δ‖ϑδ(un)‖2
1,2 + Cr,δ + εn[c0(1 + ‖u+

n ‖1,2) + εnc
2
1/4δ],

where Cr,δ = [a((r + δr)/δ)p + b]eψM |Ω|r. On the other hand, since δ ∈ (0, 1),
from (1.1) it results

(3.13) δ‖ϑδ(un)‖2
1,2 ≤ δ‖u+

n ‖2
1,2 ≤

δ

α0

∫
Ω

A(x, un)∇un · ∇u+
n .

From (3.11)–(3.13) we get∫
Ω−n,r

eψ(un)A(x, un)∇un · ∇u+
n ≤ Cr,δ + εn[c0(1 + ‖u+

n ‖1,2) + εnc
2
1/4δ]

+
δ

α0

∫
Ω

A(x, un)∇un · ∇u+
n + δ

∫
Ωr,δ

eψ(un)A(x, un)∇un · ∇u+
n ,

where Ωr,δ = {x ∈ Ω : r < u+
n (x) ≤ (r + δr)/δ}. Therefore, we obtain

[1− δ/α0]
∫

Ω−n,r

A(x, un)∇un · ∇u+
n ≤ Cr,δ + εn[c0(1 + ‖u+

n ‖1,2) + εnc
2
1/4δ]

+ δ[eψM + 1/α0]
∫

Ω\Ω−n,r

A(x, un)∇un · ∇u+
n ,

where ψM is defined in (2.8). For every σ > 0 we fix δ < min{1, α0} such that

δ

(
α0e

ψM + 1
α0 − δ

)
< σ.

Moreover, we set C1 = α0c0/(α0 − δ), Cn = c21α0εn/4δ(α0 − δ) and we define
Mr,σ = α0Cr,δ/(α0 − δ) so that (3.10) follows.

Let us now take v = u+
n as test function in (3.1) and obtain

(3.14)
∫
Ω

A(x, un)∇un · ∇u+
n +

1
2

∫
Ω

A′s(x, un)∇un · ∇unu+
n

≥
∫
Ω

f(x, un)un − εn(1 + ‖u+
n ‖1,2).
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Let R0 and R1 be given in (1.5), (2.9) and consider r = max{R0, R1}. We define
βr = sup[0,r] β(s). From (1.1), (1.3) and (1.5) it follows

1
2

∫
Ω

A′s(x, un)∇un · ∇unu+
n

≤ rβr
2

∫
Ω−n,r

|∇u+
n |2 +

β1

2

∫
Ω\Ω−n,r

α(un)|∇u+
n |2

≤ βrr

2α0

∫
Ω−n,r

A(x, un)∇un · ∇u+
n +

β1

2

∫
Ω\Ω−n,r

α(un)|∇u+
n |2.

We set rβr/α0 = C0. From (1.1) and (3.10) we deduce

1
2

∫
Ω

A′s(x, un)∇un · ∇unu+
n(3.15)

≤ C0

2
σ

∫
Ω

A(x, un)∇un · ∇u+
n +

β1

2

∫
Ω

A(x, un)∇un · ∇u+
n

+
C0

2
Mr,σ +

C0

2
εn[C1‖u+

n ‖1,2 + Cn].

From (3.14) and (3.15) we get

(3.16)
1
2
[2 + C0σ + β1]

∫
Ω

A(x, un)∇un · ∇u+
n −

∫
Ω

f(x, un)un

≥ −εn[C ′n + C3 + C2‖u+
n ‖1,2]−

C0

2
Mr,σ,

where C ′n → 0 as n tends to infinity. Notice that (3.6) implies that there exists
a positive constant C ′ such that

(3.17) mJ(u+
n ) ≤ C ′.

When we subtract (3.16) from (3.17), we obtain

1
2
[m− 2− β1 − C0σ]

∫
Ω

A(x, un)∇un · ∇u+
n

≤ C ′ + εn[C ′n + C3 + C2‖u+
n ‖1,2] +

C0

2
Mr,σ +

∫
Ω

[mF (x, un)− f(x, un)un].

From (3.9) it follows

1
2
[m− 2− β1 − C0σ]

∫
Ω

A(x, un)∇un · ∇u+
n

≤ ‖a0‖1 + C ′ +
C0

2
Mr,σ + εn[C ′n + C3 + C2‖u+

n ‖1,2].
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Since m > 2 + β1, there exists ε0 > 0 such that m− 2 ≥ β1 + ε0. Let σ be fixed
by σ = ε0/2C0. Then, we get

ε0
4
‖u+

n ‖1,2 ≤ ‖a0‖1 + C ′ + εn[C ′n + C3 + C2‖u+
n ‖1,2] +

C0

2
Mr,σ,

so that also in this case we have proved that u+
n is bounded in H1

0 (Ω). This,
together with (3.4), implies again that un is bounded in H1

0 (Ω). ut

In the following lemma we prove the boundedness of a sequence {un} ⊂ Y

that satisfies (3.1) under the assumptions of Theorem 2.1.

Lemma 3.2. Assume (1.1)–(1.5), (2.1), (2.2), (2.5). Let {un} ⊂ Y be a
sequence that satisfies (3.1). Then un is bounded in H1

0 (Ω).

Proof. We argue as in Lemma 3.1 and we still deduce that u−n → 0 in
H1

0 (Ω) and that (3.10) holds. Then, we fix r = max{R0, R1}, where R0 and R1

are defined in (1.5) and (2.6) respectively. Hypothesis (2.5) yields

1
2

∫
Ω

A′s(x, un)∇u+
n · ∇unun ≤

1
2
βrr

∫
Ω−n,r

|∇u+
n |2 ≤

βrr

2α0

∫
Ω−n,r

A(x, un)∇un · ∇u+
n ,

where βr = max[0,r] β(s), Ω−n,r = {x ∈ Ω, 0 ≤ u+
n (x) ≤ r}. Let us set C0 =

βrr/(2α0) and take v = u+
n as test function in (3.1). From (3.10) we deduce that

(3.18) [1 + C0σ]
∫
Ω

A(x, un)∇un · ∇u+
n −

∫
Ω

f(x, un)u+
n

≥ −C0Mr,σ − εn[C2 + C1‖u+
n ‖1,2 + C ′n],

where C ′n → 0 as n tends to infinity. Note that (3.6) implies that there exists
a positive constant C such that

(3.19) mJ(u+
n ) ≤ C.

When we subtract (3.18) from (3.19) we get

1
2
[m− 2− 2C0σ]

∫
Ω

A(x, un)∇un · ∇u+
n

≤ ‖a0‖1 + C + C0Mr,σ + εn[C2 + C1‖u+
n ‖1,2 + C ′n].

As m > 2 there exists ε0 such that m ≥ 2 + ε0; we fix σ = ε0/4C0. From (1.1)
we obtain

α0

4
ε0‖u+

n ‖2
1,2 ≤ ‖a0‖1 + C + εn[C2 + C1‖u+

n ‖1,2 + C ′n] + C0Mr,σ,

then un is bounded in H1
0 (Ω). ut

Remark 3.3. Exponential functions have often been used when dealing with
elliptic problem with quadratic gradient terms (see [5] and the references therein).
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The use of the map ψ combined with exponential functions has been introduced
in [14] and in [7] in order to study problems of this kind without assuming any
sign condition on the quadratic gradient term.

Remark 3.4. Suppose that, instead of (1.3), (1.4) and (1.5), for every s

in R, the following assumptions hold

|A′s(x, s)| ≤ β1, |A′s(x, s)s| ≤ β2.

Moreover, instead of (2.9), we assume that there exist m and R1 > 0 such that{
m > 2 + β2/α0,

0 < mF (x, s) ≤ f(x, s)s, s > R1.

Then, we can prove Lemma 3.1 in a more direct way. Indeed, we take v = un as
test function in (3.1). Since J(un) is bounded, from (3.9) we get

1
2
(m− 2− β2/α0)

∫
Ω

A(x, un)∇un · ∇un ≤ c0 + c1εn‖un‖1,2.

Since m > 2 + β1/α0 we deduce that un is bounded in H1
0 (Ω).

By the preceding results we get that there exists u in H1
0 (Ω) with u ≥ 0 such

that, up to a subsequence, un weakly converges to u in H1
0 (Ω).

Define the function

(3.20) Gk(s) = (s− k)+ for every s > 0.

In order to prove that un is compact in H1
0 (Ω), we will first prove that u is

in L∞(Ω). This will be done in the following result.

Lemma 3.5. Assume conditions (1.1)–(1.5), (2.1), (2.2). Let {un} be a se-
quence in Y that satisfies (3.1) and that weakly converges in H1

0 (Ω) to a function
u ≥ 0. Then u belongs to L∞(Ω).

Proof. Since u+
n belongs to Y and u+

n ≥ 0, we can take v = eψ(un)Gk(u+
n )

as test function in (3.1). We use (1.1), (1.3) and (2.2) and we obtain

(3.21)
∫

Ω+
n,k

A(x, un)∇un · ∇u+
n e

ψ(un) ≤
∫
Ω

[a+ b|un|p]Gk(u+
n )eψ(un) + cεn,

where Ω+
n,k = {x ∈ Ω : u+

n (x) > k}. Since 0 ≤ Gk(u+
n ) ≤ u+

n , from hypothe-
sis (1.1) and by applying Hölder inequality we get

α0

∫
Ω

|∇Gk(u+
n )|2 ≤ cεn + c0

(∫
Ω

|Gk(u+
n )|2

∗
)1/2∗

|Ω+
n,k|

1−1/2∗(3.22)

+ c0

( ∫
Ω+

n,k

|u+
n |2

∗
)(p+1)/2∗

|Ω+
n,k|

1−(p+1)/2∗ ,
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where c0 = max{a, b}eψM and |Ω+
n,k| denotes the Lebesgue measure of Ω+

n,k.
Notice that ∫

Ω+
n,k

|u+
n |2

∗
=

∫
Ω+

n,k

|u+
n − k + k|2

∗

≤ c1

∫
Ω+

n,k

|Gk(u+
n )|2

∗
+ c1k

2∗ |Ω+
n,k|

≤ c2

(∫
Ω

|∇Gk(u+
n )|2

)2∗/2

+ c1k
2∗ |Ω+

n,k|.

Thereofore, we obtain

(3.23)
[ ∫
Ω+

n,k

|u+
n |2

∗
](p+1)/2∗

≤ c3

[∫
Ω

|∇Gk(u+
n )|2

](p+1)/2

+c3kp+1|Ω+
n,k|

(p+1)/2∗ .

From (3.22), (3.23) and applying Sobolev embedding Theorem, we deduce

α0

∫
Ω

|∇Gk(un+)|2 ≤ cεn + c4

(∫
Ω

|∇Gk(u+
n )|2

)1/2

|Ω+
n,k|

1−1/2∗

+ C0

{[∫
Ω

|∇Gk(un+)|2
](p+1)/2

+ kp+1|Ω+
n,k|

(p+1)/2∗
}
|Ω+
n,k|

1−(p+1)/2∗ ,

where C0 = c0c3. By Young inequality we get

(3.24) α0

∫
Ω

|∇Gk(un+)|2 ≤ cεn + C0k
p+1|Ω+

n,k|+
α0

4

∫
Ω

|∇Gk(un+)|2

+C0

[∫
Ω

|∇Gk(un+)|2
](p−1)/2[∫

Ω

|∇Gk(un+)|2
]
|Ω+
n,k|

1−(p+1)/2∗ +
c24
α0
|Ω+
n,k|

2(1−1/2∗).

Since un+ belongs to Y and it is bounded in H1
0 (Ω), there exists k0 such that for

every k ≥ k0 and for every n in N it holds

(3.25) C0

[∫
Ω

|∇Gk(u+
n )|2

](p−1)/2

|Ω+
n,k|

1−(p+1)/2∗ ≤ α0

4
.

When we use (3.25) in (3.24) we get

(3.26)
α0

2

∫
Ω

|∇Gk(u+
n )|2 ≤ cεn + C0k

p+1|Ω+
n,k|+

c24
2
|Ω+
n,k|

2(1−1/2∗).
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From (3.26), by applying Sobolev embedding theorem we get[∫
Ω

|Gk(u+
n )|2

∗
]2/2∗

≤ C1εn + C2k
p+1|Ω+

n,k|+ C3|Ω+
n,k|

2(1−1/2∗).

Applying Fatou Lemma and taking into account that u ≥ 0 we obtain[∫
Ω

|Gk(u)|2
∗
]2/2∗

=
[∫
Ω

|Gk(u+)|2
∗
]2/2∗

≤ C4k
p+1|Ω+

k |+ C5|Ω+
k |

2(1−1/2∗),

where Ω+
k = {x ∈ Ω : u(x) > k}. Applying [11, (3.4), Chapter 5] we get that

there exists k0 ≥ k1 such that |Ω+
k0
| = 0, that is u ∈ L∞(Ω). ut

Remark 3.6. The boundedness of a nonnegative weak limit u of a sequence
un ∈ Y that satisfies (3.1) will be fundamental in what follows. An argument
similar to the one used in Lemma 3.5 has been used in [4].

In the following Lemma we will take advantage of the boundedness of u in
order to prove that un converges to u in H1

0 (Ω).

Lemma 3.7. Assume conditions (1.1)–(1.5), (2.1), (2.2). Let {un} be a se-
quence in Y that satisfies (3.1) and that weakly converges in H1

0 (Ω) to a function
u ≥ 0. If u belongs to L∞(Ω), un strongly converges to u in H1

0 (Ω).

Proof. Let us consider v = eψ(un)(un − u)+. From (1.3) we deduce that
v belongs to H1

0 (Ω) ∩ L∞(Ω). Moreover, from (2.7) we have that ‖v‖1,2 ≤
c0[‖un‖1,2 + ‖un − u‖1,2] ≤ c, ‖v‖∞ ≤ c‖un‖∞. Therefore, we can take v as test
function in (3.1) and we get∫

Ω

eψ(un)A(x, un)∇un ·∇(un−u)++
∫
Ω

A(x, un)∇un ·∇uneψ(un)(un−u)+
β(un)
α(un)

≤ 1
2

∫
Ω

β(un)|∇un|2eψ(un)(un − u)+ + c1εn +
∫
Ω

f(x, un)(un − u)+eψ(un).

From the definition of ψ and from conditions (1.1) and (1.3) we obtain

(3.27)
∫
Ω

eψ(un)A(x, un)∇un ·∇(un−u)+ ≤ c1εn+
∫
Ω

|f(x, un)|(un−u)+eψ(un).

From (2.2), since p < (N + 2)/(N − 2), we deduce that the last term of (3.27)
goes to zero as n tends to infinity. Therefore, it follows

(3.28) lim sup
n→∞

∫
Ω

eψ(un)A(x, un)∇un · ∇(un − u)+ ≤ 0.
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Now let us consider v = e−ψ(un)(u− un)+. Lemma 3.5 and (1.3) imply that we
can take v as test function in (3.1). We obtain∫
Ω

e−ψ(un)A(x, un)∇un · ∇(u− un)+ −
∫
Ω

e−ψ(un)f(x, un)(u− un)+

+
1
2

∫
Ω

e−ψ(un)(u− un)+
[
A′s(x, un)−A(x, un)

β(un)
α(un)

]
∇un · ∇un ≥ −c1 εn.

From conditions (1.1) and (1.3) we deduce∫
Ω

e−ψ(un)A(x, un)∇un · ∇(u− un)+ ≥ −c1εn +
∫
Ω

e−ψ(un)f(x, un)(u− un)+.

Condition (2.2) implies that the last term of the previous inequality tends to
zero as n goes to infinity. We take into account that (u − un)+ = −(un − u)−

and we obtain

(3.29) lim sup
n→∞

∫
Ω

e−ψ(un)A(x, un)∇un · ∇(un − u)− ≤ 0.

From hypothesis (1.1) we get

α0e
−ψM ‖un − u‖2

1,2 ≤ e−ψM

∫
Ω

A(x, un)∇un · ∇(un − u)+

+ e−ψM

∫
Ω

A(x, un)∇un · ∇(un − u)− − e−ψM

∫
Ω

A(x, un)∇u · ∇(un − u),

where ψM is defined in (2.8). Condition (1.6) allows us to apply Lebesgue Dom-
inated Convergence Theorem to deduce that

(3.30) lim
n→∞

∫
Ω

A(x, un)∇u∇(un − u) = 0.

Finally, (3.28)–(3.30) imply that un strongly converges to u in H1
0 (Ω). ut

4. Proofs of Theorems 2.1 and 2.2

We are now able to prove Theorems 2.1 and 2.2.

Proof of Theorem 2.1 completed. From (1.1) and (2.3) we have that
u0 = 0 is a strict local minimum of J . Denote with ϕ the first positive eigenfunc-
tion of the Laplacian operator in Ω with homogeneus boundary conditions. Con-
ditions (1.6) and (2.6) imply that the function u1 = tϕ1 is such that J(u1) < 0,
for t sufficiently large. Define

Γ = {γ : [0, 1] → Y, continuous and such that γ(0) = 0, γ(1) = u1}.
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From the geometrical properties of J we deduce that

c = inf
Γ

max
[0,1]

J(γ(t)) > max{J(0), J(u1)} = 0.

We follow [2] and we take {γn} ∈ Γ a sequence of paths such that

c ≤ J(γn(t)) ≤ c+
1
2n
,

for every fixed n ∈ N. Consider Mn = max[0,1] ‖γ(t)‖∞ ≥ ‖u1‖∞. Notice
that | ‖ · ‖ | = ‖ · ‖∞/Mn + ‖ · ‖1,2 is a norm in Y , equivalent to the norm
‖ · ‖∞ + ‖ · ‖1,2. We apply Theorem 2.1 of [2] and we get the existence of
a sequence un = γn(tn) ∈ γn[0, 1] ⊂ Y , such that

c ≤ max J(γn(t)) ≤ c+
1
2n
,

max
[0,1]

| ‖γn(t)− γ(t)‖ |n ≤
√

1
n
,

c− 1
n
≤ J(un) ≤ c+

1
2n
,

|〈J ′(un), v〉| ≤
√

1
n
| ‖v‖ |n for all v ∈ Y.

Moreover, for n large enough, it results

‖un‖∞ = ‖γn(tn)‖∞ ≤ ‖γn(tn)− γn(tn)‖∞ + ‖γn(tn)‖∞ ≤ 2Mn.

Thus, un ∈ Y satisfies (3.1). Lemma 3.2 implies that un is bounded in H1
0 (Ω).

Therefore, there exists u in H1
0 (Ω) with u ≥ 0 such that, up to a subsequence,

un ⇀ u weakly in H1
0 (Ω). Applying Lemma 3.5 we deduce that u ∈ Y .

Lemma 3.7 implies that un → u strongly inH1
0 (Ω), so that u is a critical point

of J , i.e. ∫
Ω

A(x, u)∇u · ∇v +
1
2

∫
Ω

A′s(x, u)∇u · ∇uv −
∫
Ω

f(x, u)v = 0,

for every v ∈ H1
0 (Ω) ∩ L∞(Ω). That is u is a distributional solution of prob-

lem (P). Moreover, J(un) converges to J(u), then J(u) = c so that u 6≡ 0. ut

Proof of Theorem 2.2 completed. From (1.1), (1.6), (2.2), (2.3), and
(2.9) we deduce that J has a geometrical behavior of Mountain Pass type. The-
orem 2.1 of [2] implies the existence of a sequence {un} ⊂ Y that satisfies (3.1).
Lemma 3.1 implies that un is bounded in H1

0 (Ω). In addition, from Lemma 3.7
it follows that un → u strongly in H1

0 (Ω), so that u is a critical point of J .
Moreover, J(u) = c, which yields u 6≡ 0. ut
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Remark 4.1. In [2] and [8] assumptions (1.6) and (1.7) are imposed and
the existence of a critical point is proved under the additional hypotheses that
there exist R > 0 and δ ∈ (0,m− 2) such that almost everywhere in Ω

A′s(x, s)s ≥ 0 for all s : |s| ≥ R,(4.1)

[δA(x, s)−A′s(x, s)s]ξ · ξ ≥ α2|ξ|2 for all s : |s| ≥ R.(4.2)

Inequality (4.1) is a sign condition used in the literature in order to get the L∞

summability of a critical point of J ; hypothesis (4.2) is a sort of Ambrosetti-
Rabinowitz type condition on A(x, s) and it is used in order to prove that
a Palais–Smale sequence is bounded in H1

0 (Ω).
Assumptions (1.3)–(1.5) permit to handle matrices A(x, s) that do not satisfy

condition (4.1), as Theorems 2.1 and 2.2 show.

Example 4.2. Let us give an example of a nonmonotonous coefficient that
satisfies all the assumptions of Theorem 2.2. Consider α(s) defined as follows

α(s) =


C0 for s ≤ 2k0π,

C0 +

s∫
2k0π

sin t
t2

dt for s > 2k0π,

where k0 is sufficiently large and C0 > 1/2k0π, so that hypothesis (1.1) is satisfied
with α0 = C0 − 1/(2k0π). Moreover, hypothesis (1.2) is satisfied with M = C0.
As α′(s) = sin s/s2 for every s ≥ 2k0π and α′(s) ≡ 0 for every s < 2k0π, we have
that α also satisfies (1.3). Indeed, it is enough to take β : R → R+ defined by

β(s) =


0 for s < 0,

s

(2k0π)3
for 0 ≤ s < 2k0π,

1
s2

for s > 2k0π.

With this choice of β it results that condition (1.4) is satisfied. Moreover,
β(s)s/α(s) ≤ β1 with β1 ≥ 1/(2C0k0π − 1), so that also hypothesis (1.5) holds.

We take

2 < N < 8C0k0π − 2 and
2C0k0π

2C0k0π − 1
< p <

N + 2
N − 2

.

So that the nonlinearity f(s) = (s+)p satisfies (2.1)–(2.3) and (2.9). Then Theo-
rem 2.2 yields the existence of a critical point of the functional J : H1

0 (Ω) → R,
defined by

J(v) =
1
2

∫
Ω

α(v)|∇v|2 − 1
p+ 1

∫
Ω

(v+)p+1.
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Remark 4.3. As we noticed in the introduction condition (1.5) implies that
also (1.7) holds, i.e. there exists a positive constant Λ such that

|A′s(x, s)ξ · ξs| ≤ Λ|ξ|2 for every |s| ≥ R.

This assumption on the behavior of A′s(x, s) for large s can be obtained as well
as a consequence of the hypotheses on A(x, s) imposed in [2] and [8]. Indeed,
from (4.2) we deduce

|A′s(x, s)ξ · ξs| ≤ (δβ0 + α2)|ξ|2 for every |s| ≥ R.

Remark 4.4. Assume conditions (1.1)–(1.5), (2.2) and (2.3). In addition
assume (4.1) and suppose that (2.9) is satisfied for

(4.3) m > 2 + β1,

i.e. min{2eγM , 2+β1} = 2+β1. Then, condition (4.2) is satisfied for every s > R.
Indeed, there exists δ ∈ (0,m− 2) such that δ > β1 and it holds

δA(x, s)ξ · ξ > β1α(s)|ξ|2 ≥ β(s)s|ξ|2 ≥ A′s(x, s)ξ · ξs ≥ 0.

So that, if we assume (4.1) in addition to all the hypotheses of Theorem 2.2,
and (2.9) is satisfied when (4.3) holds, then Theorem 2.2 can be obtained as
a consequence of the results proved in [2] or [8].

On the other hand, if (2.9) is satisfied when m > 2eψM , Theorem 2.2 implies
the existence of a critical point of J also in the case in which (4.1) holds but (4.2)
may not be satisfied. Indeed, there exist functions that satisfy (4.1) and all the
hypotheses of Theorem 2.2 but do not satisfy (4.2). Let us consider the following
example. We set

S =
∞∑
n=1

1
n2
.

Let us define the function β(s) : R → R+ by

β(t) =


0 for n− 1 ≤ t < n− εn or t ≤ 0,

1
nεn

(t− n+ εn) for n− εn ≤ t < n,

− 1
nεn

(t− n− εn) for n ≤ t < n+ εn,

where εn = 1/2nS. Notice that β(s) ∈ L1(R). Finally, set m = 5/4 +
√

6/2. We
consider N < 6 and Ω a bounded open set in RN . Let us consider the functional
J : H1

0 (Ω) → R defined by

J(u) =
1
2

∫
Ω

α(u)|∇u|2 − 1
m

∫
Ω

|u|m,

where α(s) = 1 +
∫ s
0
β(t) dt. Notice that 2 < m < (2N)/(N − 2). We have that

α satisfies conditions (1.1)–(1.4) with α0 = 1 and M = 1. The function α(s)
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satisfies (1.5) with β1 = 2/3 and with no smaller number than 2/3. In addition,
by easy computations it results that

ψM =
1
2

∫ ∞

0

β(t)
α(t)

dt = log
(√

3
2

)
.

So that 2 + β1 > 2eψM . Since m = 5/4 +
√

6/2, we have that m > 2eψM so that
(2.9) is satisfied and Theorem 2.2 implies the existence of a critical point of J .
Notice that α is increasing so that condition (4.1) is satisfied, while (4.2) does
not hold. Indeed, for every δ ∈ (0,m− 2) we have

δα(s)− β(s)s ≤ (m− 2)α(s)− β(s)s.

We choose s = n and we get(√
6

2
− 3

4

)
α(s)− 1 ≤ 2

(√
6

2
− 3

4

)
− 1 = −5

2
+
√

6 < 0,

which implies that (4.2) is not satisfied.
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Anal. Non Linéaire 5 (1988), 347–364.

[6] L. Boccardo, The Bensoussan & Co. technique for the study of some critical points

problems, Preprint.

[7] L. Boccardo, S. Segura and C. Trombetti, Existence of bounded and unbounded
solutions for a class of quasi-linear elliptic problems with a quadratic gradient term,

J. Math. Pures Appl. (to appear).

[8] A. Canino and M. Degiovanni, Non smooth critical point theory and quasilinear

elliptic equations, Topological Methods in Differential Equations and Inclusions, NATO
Adr. Sci. Ser., Kluwer, Dordrecht, Montreal, 1994.
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