SETS OF SOLUTIONS OF NONLINEAR INITIAL-BOUNDARY VALUE PROBLEMS

Vladimír Ďurikovič - Monika Ďurikovičová

Abstract

In this paper we deal with the general initial-boundary value problem for a second order nonlinear nonstationary evolution equation. The associated operator equation is studied by the Fredholm and Nemitskii operator theory. Under local Hölder conditions for the nonlinear member we observe quantitative and qualitative properties of the set of solutions of the given problem. These results can be applied for the different mechanical and natural science models.

Introduction

The generic properties of solutions of the second order ordinary differential equations was studied by L. Brüll and J. Mawhin in [2], J. Mawhin in [16] and by V. Šeda in [21]. Such questions were solved for nonlinear diffusional type problems with the especial Dirichlet, Neumann and Newton type conditions in the papers [9]-[10].

In the present paper we study the set structure of classic solutions, bifurcation points and the surjectivity of an associated operator to a general second order nonlinear evolution problem, by the Fredholm operator theory. The present results allows us to search the generic properties of non-parabolic models which decribe mechanical, physical, reaction-diffusion and ecology processes.

2000 Mathematics Subject Clasification. 35K20, 35K60; 47F05, 47A53, 47H30.
Key words and phrases. Initial-boundary value problem, Fredholm operator, Hölder space, bifurcation point, surjectivity.

1. The formulation of problem and basic notions

Throughout this paper we assume that the set $\Omega \subset \mathbb{R}^{n}$ for $n \in \mathbb{N}$ is a bounded domain with the sufficiently smooth boundary $\partial \Omega$. The real number T is positive and $Q:=(0, T] \times \Omega, \Gamma:=(0, T] \times \partial \Omega$.

We use the notation D_{t} for $\partial / \partial t$ and D_{i} for $\partial / \partial x_{i}$ and $D_{i j}$ for $\partial^{2} / \partial x_{i} \partial x_{j}$, where $i, j=1, \ldots, n$ and $D_{0} u$ for u. The symbol cl M means the closure of set M in \mathbb{R}^{n}.

We consider the nonlinear differential equation (possibly a non-parabolic type)

$$
\begin{equation*}
D_{t} u-A\left(t, x, D_{x}\right) u+f\left(t, x, u, D_{1} u, \ldots, D_{n} u\right)=g(t, x) \tag{1.1}
\end{equation*}
$$

for $(t, x) \in Q$, where the coefficients $a_{i j}, a_{i}, a_{0}$ for $i, j=1, \ldots, n$ of the second order linear operator

$$
A\left(t, x, D_{x}\right) u=\sum_{i, j=1}^{n} a_{i j}(t, x) D_{i j} u+\sum_{i=1}^{n} a_{i}(t, x) D_{i} u+a_{0}(t, x) u
$$

are continuous functions from the space $C(\operatorname{cl} Q, \mathbb{R})$. The function f is from the space $C\left(\operatorname{cl} Q \times \mathbb{R}^{n+1}, \mathbb{R}\right)$ and $g \in C(\operatorname{cl} Q, \mathbb{R})$.

Together with the equation (1.1) we consider the following general homogeneous boundary condition

$$
\begin{equation*}
\left.B_{3}\left(t, x, D_{x}\right) u\right|_{\Gamma}:=\sum_{i=1}^{n} b_{i}(t, x) D_{i} u+\left.b_{0}(t, x) u\right|_{\Gamma}=0 \tag{1.2}
\end{equation*}
$$

where the coefficients b_{i} for $i=1, \ldots, n$ and b_{0} are continuos functions from $C(\operatorname{cl} \Gamma, \mathbb{R})$.

Furthermore we require for the solution of (1.1) to satisfy the homogeneous initial condition

$$
\begin{equation*}
\left.u\right|_{t=0}=0 \quad \text { on } \operatorname{cl} \Omega . \tag{1.3}
\end{equation*}
$$

Remark 1.1. In the case, if $b_{i}=0$ for $i=1, \ldots, n$ and $b_{0}=1$ in (1.2) we get the Dirichlet problem studied in [9].

If we consider the vector function $\nu:=\left(0, \nu_{1}, \ldots, \nu_{n}\right): \operatorname{cl} \Gamma \rightarrow \mathbb{R}^{n+1}$ which the value $\nu(t, x)$ means the unit inner normal vector to $\mathrm{cl} \Gamma$ at the point $(t, x) \in \operatorname{cl} \Gamma$ and we put $b_{i}=\nu_{i}$ for $i=1, \ldots, n$ on $\operatorname{cl} \Gamma$, then the problem (1.1)-(1.3) represents the Newton or Neuman problem investigated in [10].

Our considerations are concerned to a broad class of nonparabolic operators. However let us remind the definition of the uniform parabolicity for a operator of the type $D_{t}-A\left(t, x, D_{x}\right)$ (see [14, p. 12]), which we need in Proposition 2.2.

Definition 1.1 (The uniform parabolicity condition (P)). We say that the differential operator

$$
D_{t}-A\left(t, x, D_{x}\right)
$$

is uniform parabolic on $\mathrm{cl} Q$ in the sense of I . G. Petrovskiŭ with the constant δ or shortly, the operator satisfies the parabolicity condition (P) if there is a constant $\delta>0$ such that for all $(t, x) \in \operatorname{cl} Q$ and each $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right) \in \mathbb{R}^{n}$ the inequality

$$
\sum_{i, j=1}^{n} a_{i j}(t, x) \sigma_{i} \sigma_{j} \geq \delta\left[\sum_{i=1}^{n} \sigma_{i}^{2}\right]
$$

holds.
In the following definitions we shall use the notations

$$
\begin{align*}
\langle u\rangle_{t, \mu, Q}^{s}:= & \sup _{\substack{(t, x),(s, x) \in \operatorname{cl} Q \\
t \neq s}} \frac{|u(t, x)-u(s, x)|}{|t-s|^{\mu}}, \tag{1.4}\\
\langle u\rangle_{x, \nu, Q}^{y}: & \sup _{\substack{(t, x),(t, y) \in \operatorname{cl} Q \\
x \neq y}} \frac{|u(t, x)-u(t, y)|}{|x-y|^{\nu}}, \tag{1.5}\\
\langle f\rangle_{t, x, u}^{s, y, v}:= & \left|f\left(t, x, u_{0}, \ldots, u_{n}\right)-f\left(s, y, v_{0}, \ldots, v_{n}\right)\right| \\
\langle f\rangle_{t, x, u(t, y)}^{s, y, v(s, y)}: & =\mid f\left[t, x, u(t, x), D_{1} u(t, x), \ldots, D_{n} u(t, x)\right] \\
& -f\left[s, y, v(s, y), D_{1} v(s, y), \ldots, D_{n} v(s, y)\right] \mid,
\end{align*}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)$ are from \mathbb{R}^{n} and $|x-y|=\left[\sum_{i=1}^{n}\left(x_{i}-\right.\right.$ $\left.\left.y_{i}\right)^{2}\right]^{1 / 2}$ and $\mu, \nu \in \mathbb{R}$.

The concept of a domain with a locally smooth boundary is given in the following definition.

Definition 1.2. Let $r \in(1, \infty)$ and $\Omega \subset \mathbb{R}^{n}$ be a bounded domain. We say that the boundary $\partial \Omega$ belongs to the class $C^{r}, r \geq 1$ if:
(i) there exists a tangential space to $\partial \Omega$ in any point from boundary $\partial \Omega$,
(ii) assume $y \in \partial \Omega$ and let $\left(y ; z_{1}, \ldots, z_{n}\right)$ be a local orthonormal coordinate system with the center y and with the axis z_{n} oriented like the inner normal to $\partial \Omega$ at the point y. Then there exists a number $b>0$ such that for every $y \in \partial \Omega$ there exists a neighbourhood $O(y) \subset \mathbb{R}^{n}$ of the point y and a function $F \in C^{r}(\operatorname{cl} B, \mathbb{R})$ such that the part of boundary

$$
\partial \Omega \cap O(y)=\left\{\left(z^{\prime}, F\left(z^{\prime}\right)\right) \in \mathbb{R}^{n}, z^{\prime}=\left(z_{1}, \ldots, z_{n-1}\right) \in B\right\}
$$

where $B=\left\{z^{\prime} \in \mathbb{R}^{n-1}| | z^{\prime} \mid<b\right\}$.

Here $C^{r}(\operatorname{cl} B, \mathbb{R})$ is a vector space of the functions $u \in C^{l}(\operatorname{cl} B, \mathbb{R})$ for $l=[r]$ with the finite norm

$$
\|u\|_{l+\alpha}=\sum_{0 \leq k \leq l} \sup _{x \in \mathrm{cl} B}\left|D_{x}^{k} u(x)\right|+\sum_{k=l}\left\langle D_{x}^{k} u\right\rangle_{x, \alpha, B}^{y}
$$

whereby $\alpha=r-[r] \in[0,1)$ and $r=l+\alpha$.
Further, we shall need the following Hölder spaces (see [6, p. 147]).
Definition 1.3. Let $\alpha \in(0,1)$.
(1) By the symbol $C_{t, x}^{(1+\alpha) / 2,1+\alpha}(\operatorname{cl} Q, \mathbb{R})$ we denote the vector space of continuous functions $u: \operatorname{cl} Q \rightarrow \mathbb{R}$ which have continuous derivatives $D_{i} u$ for $i=1, \ldots, n$ on $\operatorname{cl} Q$ and the norm

$$
\begin{align*}
\|u\|_{(1+\alpha) / 2,1+\alpha, Q}:= & \sum_{i=0}^{n} \sup _{(t, x) \in \mathrm{clQ}}\left|D_{i} u(t, x)\right|+\langle u\rangle_{t,(1+\alpha) / 2, Q}^{s}+ \tag{1.6}\\
& +\sum_{i=1}^{n}\left\langle D_{i} u\right\rangle_{t, \alpha / 2, Q}^{s}+\sum_{i=1}^{n}\left\langle D_{i} u\right\rangle_{x, \alpha / 2, Q}^{y}
\end{align*}
$$

is finite.
(2) The symbol $C_{(t, x)}^{(2+\alpha) / 2,2+\alpha}(\operatorname{cl} Q, \mathbb{R})$ means the vector space of continuous functions $u: \operatorname{cl} Q \rightarrow \mathbb{R}$ for which there exist continuous derivatives $D_{t} u, D_{i} u$, $D_{i j} u$ on $\operatorname{cl} Q, i, j=1, \ldots, n$ and the norm
(1.7) $\|u\|_{(2+\alpha) / 2,2+\alpha, Q}=\sum_{i=0}^{n} \sup _{(t, x) \in \mathrm{cl} Q}\left|D_{i} u(t, x)\right|+\sup _{(t, x) \in \mathrm{cl} Q}\left|D_{t} u(t, x)\right|$

$$
\begin{aligned}
& +\sum_{i, j=1}^{n} \sup _{(t, x) \in \mathrm{cl} Q}\left|D_{i j} u(t, x)\right|+\sum_{i=1}^{n}\left\langle D_{i} u\right\rangle_{t,(1+\alpha) / 2, Q}^{s}+\left\langle D_{t}\right\rangle u_{t, \alpha / 2, Q}^{s} \\
& +\sum_{i, j=1}^{n}\left\langle D_{i j} u\right\rangle_{t, \alpha / 2 . Q}^{s}+\left\langle D_{t} u\right\rangle_{x, \alpha, Q}^{y}+\sum_{i, j=1}^{n}\left\langle D_{i j} u\right\rangle_{x, \alpha, Q}^{y}
\end{aligned}
$$

is finite.
(3) The symbol $C_{t, x}^{(3+\alpha) / 2,3+\alpha}(\operatorname{cl} Q, \mathbb{R})$ means the vector space of continuous functions $u: \operatorname{cl} Q \rightarrow \mathbb{R}$ for which the derivatives $D_{t}, D_{i} u, D_{t} D_{i} u, D_{i j} u, D_{i j k} u$, $i, j, k=1, \ldots, n$ are continuous on $\mathrm{cl} Q$ and the norm

$$
\begin{aligned}
&(1.8)\|u\|_{(3+\alpha) / 2,3+\alpha, Q}:=\sum_{i=0}^{n} \sup _{(t, x) \in \mathrm{clQ} Q}\left|D_{i} u(t, x)\right|+\sum_{i, j=1}^{n} \sup _{(t, x) \in \mathrm{clQ} Q}\left|D_{i j} u(t, x)\right| \\
&+\sum_{i=0}^{n} \sup _{(t, x) \in \mathrm{cl} Q}\left|D_{t} D_{i} u(t, x)\right|+\sum_{i, j, k=1}^{n} \sup _{(t, x) \in \mathrm{cl} Q}\left|D_{i j k} u(t, x)\right| \\
&+\left\langle D_{t} u\right\rangle_{t,(1+\alpha) / 2, Q}^{s}+\sum_{i, j=1}^{n}\left\langle D_{i j} u\right\rangle_{t,(1+\alpha) / 2, Q}^{s}+\sum_{i=1}^{n}\left\langle D_{t} D_{i} u\right\rangle_{t, \alpha / 2, Q}^{s}
\end{aligned}
$$

$$
+\sum_{i, j, k=1}^{n}\left\langle D_{i j k} u\right\rangle_{t, \alpha / 2, Q}^{s}+\sum_{i=1}^{n}\left\langle D_{t} D_{i} u\right\rangle_{x, \alpha, Q}^{y}+\sum_{i, j, k=1}^{n}\left\langle D_{i j k} u\right\rangle_{x, \alpha, Q}^{y}
$$

is finite.
The above defined norm spaces are Banach ones.
Now we can define the Hölder space of functions defined on the manifold $\mathrm{cl} \Gamma$ (see [14, p. 10]).

Definition 1.4. Let the boundary $\partial \Omega$ of a domain $\Omega \subset \mathbb{R}^{n}$ belong to C^{r} for $r \geq 1$ (see Definition 1.2). We put $S_{y}:=\partial \Omega \cap O(y)$ and $\Gamma_{y}=(0, T] \times S_{y}$ for $y \in \partial \Omega$, where $O(y)$ is a neighbourhood of the point y from Definition 1.2.

The symbol $C_{t, x}^{(2+\alpha) / 2,2+\alpha}(\operatorname{cl} \Gamma, \mathbb{R})$ means the vector space of continuous functions $u: \operatorname{cl} \Gamma \rightarrow \mathbb{R}$ for which there exist continuous derivates $D_{t} u, D_{i} u, D_{i j} u$ on $\mathrm{cl} \Gamma, i, j=1, \ldots, n$ and the norm

$$
\|u\|_{(2+\alpha) / 2,2+\alpha, \Gamma}=\sup _{y \in \partial \Omega}\|u\|_{(2+\alpha) / 2,2+\alpha, \Gamma_{y}}
$$

is finite. Here $\alpha \in(0,1)$ and the norm on the right hand side of the last equality is defined by the formula (1.7) in which we write Γ_{y} instead of Q.

Definition 1.5. (The smoothness condition $\left(S_{3}^{1+\alpha}\right)$). Let $\alpha \in(0,1)$. We say that the differential operator $A\left(t, x, D_{x}\right)$ from (1.1) and $B_{3}\left(t, x, D_{x}\right)$ from (1.2), respectively satisfies the smoothness condition $\left(S_{3}^{1+\alpha}\right)$ if
(i) the coefficients $a_{i j}, a_{i}, a_{0}$ from (1.1) for $i, j=1, \ldots, n$ belong to the space $C_{t, x}^{(1+\alpha) / 2,1+\alpha}(\operatorname{cl} Q, \mathbb{R})$ and $\partial \Omega \in C^{3+\alpha}$ and
(ii) the coefficients b_{i} from (1.2) for $i=1, \ldots, n$ belong to the space $C_{t, x}^{(2+\alpha) / 2,2+\alpha}(\operatorname{cl} \Gamma, \mathbb{R})$.

Definition 1.6 (The complementary condition (C)). If at least one of the coefficients b_{i} for $i=1, \ldots, n$ of the differential operator $B_{3}\left(t, x, D_{x}\right)$ in (1.2) is not zero we say that $B_{3}\left(t, x, D_{x}\right)$ satisfies the complementary condition (C).

Now we are prepared to formulate hypotheses for the deriving of fundamental lemmas.

Definition 1.7. (1) Fredholm conditions:
($\mathrm{A}_{3} .1$) Consider the operator $A_{3}: X_{3} \rightarrow Y_{3}$, where

$$
A_{3} u=D_{t} u-A\left(t, x, D_{x}\right) u, u \in X_{3}
$$

and the operators $A\left(t, x, D_{x}\right)$ and $B_{3}\left(t, x, D_{x}\right)$ satisfy the smoothness condition $\left(S_{3}^{1+\alpha}\right)$ for $\alpha \in(0,1)$ and the complementary condition (C).

Here we consider the vector spaces

$$
\begin{aligned}
& D\left(A_{3}\right):=\left\{u \in C_{t, x}^{(3+\alpha) / 2,3+\alpha}(\operatorname{cl} Q, \mathbb{R})\left|B_{3}\left(t, x, D_{x}\right) u\right|_{\Gamma}=0,\right. \\
& \left.\left.u\right|_{t=0}(x)=0 \text { for } x \in \operatorname{cl} Q\right\} \\
& H\left(A_{3}\right):=\left\{v \in C_{t, x}^{(1+\alpha) / 2,1+\alpha}(\operatorname{cl} Q, \mathbb{R})\left|B_{3}\left(t, x, D_{x}\right) v(t, x)\right|_{t=0, x \in \partial \Omega}=0\right\}
\end{aligned}
$$

and Banach subspaces (of the given Hölder spaces)

$$
X_{3}=\left(D\left(A_{3}\right),\|\cdot\|_{(3+\alpha) / 2,3+\alpha, Q}\right) \quad \text { and } \quad Y_{3}=\left(H\left(A_{3}\right),\|\cdot\|_{(1+\alpha) / 2,1+\alpha, Q}\right)
$$

$\left(\mathrm{A}_{3} .2\right)$ There is a second order linear homeomorphism $C_{3}: X_{3} \rightarrow Y_{3}$ with

$$
C_{3} u=D_{t} u-C\left(t, x, D_{x}\right) u, \quad u \in X_{3},
$$

where

$$
C\left(t, x, D_{x}\right) u=\sum_{i, j=1}^{n} c_{i j}(t, x) D_{i j} u+\sum_{i=1}^{n} c_{i}(t, x) D_{i} u+c_{0}(t, x) u
$$

satisfying the smoothness condition $\left(S_{3}^{1+\alpha}\right)$. The operator C_{3} is not necessary parabolic one.
(2) Local Hölder and compatibility conditions:

Let $f:=f\left(t, x, u_{0}, \ldots, u_{n}\right): \operatorname{cl} Q \times \mathbb{R}^{n+1} \rightarrow \mathbb{R}, \alpha \in(0,1)$ and let p, q, p_{r} for $r=0, \ldots, n$ be nonnegative constants. Here, D represents any compact subset of $(\operatorname{cl} Q) \times \mathbb{R}^{n+1}$. For f we need the following assumtions:
$\left(\mathrm{N}_{3} .1\right)$ Let $f \in C^{1}\left(\mathrm{cl} Q \times \mathbb{R}^{n+1}, \mathbb{R}\right)$ and let the first derivatives $\partial f / \partial x_{i}, \partial f / \partial u_{j}$ be locally Hölder continuous on $\operatorname{cl} Q \times \mathbb{R}^{n+1}$ such that

$$
\left.\begin{array}{l}
\left\langle\partial f / \partial x_{i}\right\rangle_{t, x, u}^{s, y, v} \tag{1.9}\\
\left\langle\partial f / \partial u_{j}\right\rangle_{t, x, u}^{s, y, v}
\end{array}\right\} \leq p|t-s|^{\alpha / 2}+q|x-y|^{\alpha}+\sum_{r=0}^{n} p_{r}\left|u_{r}-v_{r}\right|
$$

for $i=1, \ldots, n$ and $j=0, \ldots, n$ and any D.
$\left(\mathrm{N}_{3} .2\right)$ Let $f \in C^{3}\left(\mathrm{cl} Q \times \mathbb{R}^{n+1}, \mathbb{R}\right)$ and let the local growth conditions for the third derivatives of f hold on any D :

$$
\left.\begin{array}{l}
\left\langle\partial^{3} f / \partial \tau \partial x_{i} \partial u_{j}\right\rangle_{t, x, u}^{t, x, v} \tag{1.11}\\
\left\langle\partial^{3} f / \partial \tau \partial u_{j} \partial u_{k}\right\rangle_{t, x, x, u}^{t, x} \\
\left\langle\partial^{3} f / \partial x_{i} \partial x_{l} \partial u_{j}\right\rangle_{t, x, u}^{t, x, v} \\
\left\langle\partial^{3} f / \partial x_{i} \partial u_{j} \partial u_{k}\right\rangle_{t, x, u}^{t, x, v} \\
\left\langle\partial^{3} f / \partial u_{j} \partial u_{k} \partial u_{r}\right\rangle_{t, x, u}^{t, x}
\end{array}\right\} \leq \sum_{s=0}^{n} p_{s}\left|u_{s}-v_{s}\right|^{\beta_{s}}
$$

where $\beta_{s}>0$ for $s=0, \ldots, n$ and $i, l=1, \ldots, n, j, k, r=0, \ldots, n$.
($\mathrm{N}_{3} .3$) The equality of compatibility

$$
\sum_{i=1}^{n} b_{i}(t, x) D_{i} f(t, x, 0, \ldots, 0)+\left.b_{0}(t, x) f(t, x, 0, \ldots, 0)\right|_{t=0, x \in S}=0
$$

holds.
(3) Almost coercive condition:

Let for any bounded set $M_{3} \subset Y_{3}$ there be the number $K>0$ such that for all solutions $u \in X_{3}$ of the problem (1.1), (1.2), (1.3) with the right hand side $g \in M_{3}$, the following alternative holds:
($\mathrm{F}_{3} .1$) Either
$\left(\alpha_{3}\right)\|u\|_{(1+\alpha) / 2,1+\alpha, Q} \leq K, f:=f\left(t, x, u_{0}\right): \operatorname{cl} Q \times \mathbb{R} \rightarrow \mathbb{R}$ and the coefficients of the operators A_{3} and C_{3} (see (1.1) and ($\mathrm{A}_{3} .2$)) satisfy the equations

$$
a_{i j}=c_{i j}, a_{i}=c_{i} \quad \text { for } i, j=1, \ldots, n, a_{0} \neq c_{0} \text { on } \operatorname{cl} Q
$$

or
$\left(\beta_{3}\right)\|u\|_{(2+\alpha) / 2,2+\alpha, Q} \leq K, f: f\left(t, x, u_{0}, \ldots, u_{n}\right): \operatorname{cl} Q \times \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ and the coefficients of the operators A_{3} and C_{3} satisfy the relations
$a_{i j}=c_{i j} \quad$ for $i, j=1, \ldots, n \quad$ and $\quad a_{i} \neq c_{i}$ for at least one $i=1, \ldots, n$ on $\operatorname{cl} Q$.

Remark 1.2. (1) Especialy, the condition $\left(\mathrm{A}_{3} .2\right)$ is satisfied for the diffusion operator

$$
C_{3} u=D_{t} u-\Delta u, \quad u \in X_{3}
$$

or for any uniformly parabolic operator C_{3} with sufficiently smooth coefficients (see Definition 1.1 and Proposition 2.2). However the operator C_{3} is not necessarily uniform parabolic.
(2) The local Hölder condition in $\left(\mathrm{N}_{3} .1\right)$ and $\left(\mathrm{N}_{3} .2\right)$ admit sufficiently strong growths of f in the last variables u_{0}, \ldots, u_{n}. For example, it includes exponential and power type growths.

Definition 1.8.

(1) A couple $(u, g) \in X_{3} \times Y_{3}$ will be called the bifurcation point of the mixed problem (1.1)-(1.3) if u is a solution of that mixed problem and there exists a sequence $\left\{g_{k}\right\} \subset Y_{3}$ such that $g_{k} \rightarrow g$ in Y_{3} as $k \rightarrow \infty$ and the problem (1.1)-(1.3) for $g=g_{k}$ has at least two different solutions u_{k}, v_{k} for each $k \in N$ and $u_{k} \rightarrow u, v_{k} \rightarrow u$ in X_{3} as $k \rightarrow \infty$.
(2) The set of all solutions $u \in X_{3}$ of (1.1)-(1.3) (or the set of all functions $\left.g \in Y_{3}\right)$ such that (u, g) is a bifurcation point of the problem (1.1)-(1.3)
will be called the domain of bifurcation (the bifurcation range) of that problem.

Recall some other notions in the following definitions:
Definition 1.9. Let X and Y be two Banach spaces either both real or both complex.
(1) The mapping $F: X \rightarrow Y$ is proper (resp. σ-proper) if for each compact $K \subset Y$, the set $F^{-1}(K)$ is compact (resp. is a countable union of compact sets).
(2) The mapping $F: X \rightarrow Y$ is closed if for each closed set $S \subset X$, the set of image $f(S)$ is closed in Y.
(3) We call $F: X \rightarrow Y$ a coercive mapping if for each bounded set $S \subset Y$, the set $F^{-1}(S)$ is bounded in X.

Definition 1.10. Let M_{1}, M_{2} be two metric spaces.
(1) The mapping $F: M_{1} \rightarrow M_{2}$ is said locally injective at a point $u_{0} \in M_{1}$ if there is a neighbourhood $U\left(u_{0}\right)$ of u_{0} such that F is injective in $U\left(u_{0}\right)$. F is injective in M_{1} if it is locally injective at each points $u \in M_{1}$.
(2) Let the mapping $F: M_{1} \rightarrow M_{2}$ be continuous. Then F is said locally invertible at a point $u_{0} \in M_{1}$ if there is neighbourhood $U\left(u_{0}\right)$ of u_{0} and a neighbourhood $U_{1}\left(F\left(u_{0}\right)\right)$ of $F\left(u_{0}\right)$ such that F is a homeomorphism of $U\left(u_{0}\right)$ onto $U_{1}\left(F\left(u_{0}\right)\right)$. F je locally invertible in M_{1} if it is locally invertible at each point $u \in M_{1}$.
(3) Let the mapping $F: X \rightarrow Y$ be continuous (X, Y are Banach spaces, $F \in C(X, Y)$). We denote by Σ the set of all points $u \in X$ for which F is not locally invertible.

Definition 1.11. We say that $G=I-g: X \rightarrow X$ is strict solvable field, if it is a condensing field and there is a sequence $r_{k} \rightarrow \infty$ as $k \rightarrow \infty$ such that the degree of the mapping $G \operatorname{deg}\left(G, U\left(0, r_{k}\right), 0\right) \neq 0$, where $U\left(0, r_{k}\right) \subset X$ is the sphere with the center 0 and the radius r_{k} for $k=1,2, \ldots$

Definition 1.12.

(1) If $D \subset X$ is a nonempty open set and $F:(D \subset X) \rightarrow Y$ is a Frèchet differentiable mapping, then $u_{0} \in D$ is called a regular point of F if the Frèchet derivative $F^{\prime}\left(u_{0}\right)$ is a linear homeomorphism of X onto Y $\left(F^{\prime}\left(u_{0}\right): X \rightarrow Y\right.$ is bijective). The point $u_{1} \in D$ is called a critical point of F, if the equation $F^{\prime}\left(u_{1}\right) h=0 \in Y$ has a nontrivial solution $h \in X$.
(2) If $u_{0} \in D$ is not regular point of F, then it is called a singular point of F.
(3) The image by F of a singular point is called a singular value of F. If S is the set of all singular point of $F: X \rightarrow Y$, then $F(S)$ is called the set of all singular values of F and $Y-F(S)$ is the set of all regular values of F.
(4) A subset of a topological space Z is residual, when it is a countable intersection of dense open subset of Z.

Definition 1.13. The mapping $F: X \rightarrow Y$ is called a local C^{1}-diffeomorphism at u_{0}, if there exists a neighbourhood $U\left(u_{0}\right)$ of u_{0} and $U_{1}\left(F\left(u_{0}\right)\right)$ of $F\left(u_{0}\right)$ such that F bijectively maps $U_{1}\left(u_{0}\right)$ onto $U_{2}\left(F\left(u_{0}\right)\right)$ and both F and F^{-1} are C^{1}-maps.

Remark 1.2.

(1) The set $X-\Sigma$ is open. Hence Σ is closed subset of X.
(2) It is clear that if F is locally invertible at u_{0}, then F is locally injective at u_{0}.
(3) By the Baire theorem, if Z is a complete metric space or if Z is a locally compact Hausdorff topological space, then a residual set is dense in Z.

2. General results

The following results will be used to prove fundamental lemmas and main results for the nonlienar problem (1.1)-(1.3). Here X and Y are Banach spaces either both real or complex.

Proposition 2.1 (S. M. Nikol'skiĭ, see [25, p. 233]). A linear bounded operator $A: X \rightarrow Y$ is Fredholm of the zero index if and only if $A=C+T$, where $C: X \rightarrow Y$ is a linear homeomorphism and $T: X \rightarrow Y$ is a linear completly continuous operator. (For the definition of a linear and nonlinear Fredholm operator (see [27, p. 365-366]))

The following proposition deals with the solution of a linear parabolic problem (see [14, p. 21], or [11]).

Proposition 2.2. Let the operator A be from (1.1) and the assumptions (P), (C), $\left(S_{3}^{1+\alpha}\right)$ satisfy. The necessary and sufficient condition for the existence and uniqueness of the solution $u \in C_{t, x}^{(3+\alpha) / 2,3+\alpha}(\operatorname{cl} Q, \mathbb{R})$ of the linear parabolic problem for the equation

$$
D_{t} u-A\left(t, x, D_{x}\right) u=f(t, x) \quad \text { on } \Omega
$$

with the data (1.2), (1.3) is that for $f \in C_{t, x}^{(1+\alpha) / 2,1+\alpha}(\operatorname{cl} Q, \mathbb{R})$ and the compatibility condition from $\left(\mathrm{N}_{3} .3\right)$

$$
\sum_{i=1}^{n} b_{i}(t, x) D_{i} f(t, x)+\left.b_{0}(t, x) f(t, x)\right|_{t=0, x \in \partial \Omega}=0
$$

holds. Then moreover, there exists a constant $K>0$ independent of f such that

$$
K^{-1}\|f\|_{(1+\alpha) / 2,1+\alpha, Q} \leq\|u\|_{(3+\alpha) / 2,3+\alpha, Q} \leq K\|f\|_{(1+\alpha) / 2,1+\alpha, Q}
$$

Proposition 2.3 ([21, Proposition 2.1]). Let $F: X \rightarrow Y$ be a coutinuous mapping. If F is proper, then F is a nonconstant closed mapping. Conversely if $\operatorname{dim} X=\infty$ and $F: X \rightarrow Y$ is a nonconstant closed mapping, then F is proper.

Proposition 2.4 ([21, Proposition 2.2]). Let $F: X \rightarrow Y, F=F_{1}+F_{2}$, where $F_{1}: X \rightarrow Y$ is a coutinuous proper mapping and $F_{2}: X \rightarrow Y$ is a completely continuous one. Then
(j) The restriction of the mapping F to an arbitrary bounded closed set in X is a proper mapping.
(jj) If moreover, F is coercive, then F is a proper mapping.
The relation between the local invertibility and homeomorphism of X on Y gives R. Caccioppoli in [3]; see [27, p. 174].

Proposition 2.5 (The global inverse mapping theorem). Let $F \in C(X, Y)$ be locally invertible mapping in X, then F is a homeomorphism of X onto Y if and only if F is proper.

Proposition 2.6 (The Ambrosetti theorem [1, p. 216]). Let $F \in C(X, Y)$ be a proper mapping. Then the cardinal number card $F^{-1}(\{q\})$ of the set $F^{-1}(\{q\})$ is constant and finite (it may be zero) for each q taken from the same (connected) component of the set $Y-F(\Sigma)$.

Proposition 2.7 ([21, Theorem 3.2, Corollary 3.3, Remark 3.1]). Let the assumptions:
(i) $F=I-f: X \rightarrow X$ is a condensing and coercive map,
(ii) there exists a strictly solvable field $G=I-g: X \rightarrow X$ and $K>0$ such that for all solution $u \in X$ of the equation

$$
F(u)=k G(u) \quad \text { and for all } k<0
$$

the estimate $\|u\|_{X}<K$ holds,
or the assumptions:
(i') $F=A+N: X \rightarrow Y$ is a coercive mapping, where $A=C+T:$ $X \rightarrow Y$ and C is linear homeomorphism of X onto $Y, T: X \rightarrow Y$ is a linear completely continuous operator and $N: X \rightarrow Y$ is completely continuous,
(ii') there is a strictly solvable field $G=I-g: X \rightarrow X$ and $K>0$ such that for all solution $u \in X$ of the equation

$$
F(u)=k C \circ G(u) \quad \text { and for all } k<0,
$$

$$
\text { the estimate }\|u\|_{X}<K \text { holds, }
$$

be satisfied, respectively. Then the following statements are true:
(j) F is a proper map,
(jj) F is surjective.
The following proposition gives the important theorem for nonlinear Fredholm mapping.

Proposition 2.8 (S. Smale [19], F. Quinn [17]). If $F: X \rightarrow Y$ is a Fredholm mapping of class $C^{q}, q>\max (\operatorname{ind} F, 0)$ and either X has a countable basis (Smale) or F is σ-proper (Quinn), then the set R_{F} of all regular values of F is residual in Y. If F is proper, then R_{F} is open and dense in Y.

Proposition 2.9 ([27, p. 172]). Let $F:\left(U\left(u_{0}\right) \subset X\right) \rightarrow Y$ be a C^{1} mapping. Then F is a local C^{1}-diffeomorphism at u_{0} if and only if u_{0} is a regular point of F.

Proposition 2.10 ([18, Corollary 2.3.14, p. 89]). Let $\operatorname{dim} Y \geq 3$ and let $F: X \rightarrow Y$ be a Fredholm mapping of the zero index. If u_{0} is an isolated singular point of F, then the mapping F is localy invertibly at u_{0}.

3. Fundamental lemmas

Lemma 3.1. Let the conditions $\left(\mathrm{A}_{3} .1\right)$ and $\left(\mathrm{A}_{3} .2\right)$ hold (see Definition 1.7). Then
(j) $\operatorname{dim} X_{3}=\infty$.
(jj) The operator $A_{3}: X_{3} \rightarrow Y_{3}$ is a linear bounded Fredholm operator of the zero index.

Proof. (j) To prove the first part of this lemma we use the decomposition theorem from [24, p. 139]:

Let X be linear space and $x^{*}: X \rightarrow \mathbb{R}$ be a linear functional on X such that $x^{*} \neq 0$. Further put $M=\left\{x \in X \mid x^{*}(x)=0\right\}$ and $x_{0} \in X-M$. Then every element $x \in X$ can be expressed by the formula

$$
x=\left[\frac{x^{*}(x)}{x^{*}\left(x_{0}\right)}\right] x_{0}+m \quad \text { for } m \in M,
$$

i.e. there is a one-dimensional subspace L_{1} of X such that $X=L_{1} \oplus M$.

If we put now

$$
M_{1}:=\left\{u \in C_{t, x}^{(3+\alpha) / 2,3+\alpha}(\operatorname{cl} Q, \mathbb{R})=: H^{3+\alpha}\left|B_{3}\left(t, x, D_{x}\right) u\right|_{\Gamma}=0\right\}
$$

which is the linear subspace of $H^{3+\alpha}$, then there exists a linear subspace L_{1} of $H^{3+\alpha}$ with $\operatorname{dim} L_{1}=1$ such that $H^{3+\alpha}=L_{1} \oplus M_{1}$. Similar, if we take $M_{2}:=\left\{u \in M_{1}|u|_{t=0}=0\right.$ on $\left.\operatorname{cl} Q\right\}$, then there is a subspace L_{2} of M_{1} with
$\operatorname{dim} L_{2}=1$ such that $M_{1}=L_{2} \oplus M_{2}$. Hence, we have $H^{3+\alpha}=L_{1} \oplus L_{2} \oplus D\left(A_{3}\right)$. Since $\operatorname{dim} H^{3+\alpha}=\infty$ we get that $\operatorname{dim} X_{3}=\infty$.
(jj) 1. In the first step we prove the boundedness of the linear operator A_{3}. For this aim we observe the norm $\left\|A_{3} u\right\|_{(1+\alpha) / 2,1+\alpha, Q}$ for $u \in D\left(A_{3}\right)$. From the assumption $\left(S_{3}^{1+\alpha}\right)$ we get for $k=0,1, \ldots, n$

$$
\begin{equation*}
\sup _{(t, x) \in \mathrm{cl} Q}\left|D_{k} A_{3} u(t, x)\right| \leq K_{1}\|u\|_{(3+\alpha) / 2,3+\alpha, Q}, \quad \text { for } K_{1}>0 \tag{3.1}
\end{equation*}
$$

Applying again the smoothness assumption $\left(S_{3}^{1+\alpha}\right)$, the mean value theorem for the function u and $D_{i} u$ and the boundedness of Q we obtain for the second member of the above mentioned norm the following estimation:

$$
\begin{align*}
\left\langle A_{3} u\right\rangle_{t,(1+\alpha) / 2, Q}^{s} & =\sup _{\substack{(t, x),(s, x) \in \operatorname{cl} Q \\
t=s}} \frac{\left|A_{3} u(t, x)-A_{3} u(s, x)\right|}{|t-s|^{(1+\alpha) / 2}} \tag{3.2}\\
& \leq K_{2}\|u\|_{(3+\alpha) / 2,3+\alpha, Q}, \quad \text { for } K_{2}>0
\end{align*}
$$

The third member of the norm (1.6) we estimate for $k=1, \ldots, n$ as follows:

$$
\begin{align*}
\left\langle D_{k} A_{3} u\right\rangle_{t, \alpha / 2, Q}^{s} & =\sup _{\substack{(t, x),(s, x) \in \operatorname{cl} Q \\
t \neq s}} \frac{\left|D_{k} A_{3} u(t, x)-D_{k} A_{3} u(s, x)\right|}{|t-s|^{\alpha / 2}} \tag{3.3}\\
& \leq K_{3}\|u\|_{(3+\alpha) / 2,3+\alpha, Q}, \quad \text { for } K_{3}>0 .
\end{align*}
$$

An estimation of the last member in (1.6) for $A_{3} u$ is given by the following inequality for $k=1, \ldots, n$

$$
\begin{align*}
&\left\langle D_{k} A_{3} u\right\rangle_{x, \alpha / 2, Q}^{y}=\sup _{\substack{(t, x),(t, y) \in \mathrm{cl} Q \\
x \neq y}} \frac{\left|D_{k} A_{3} u(t, x)-D_{k} A_{3} u(t, y)\right|}{|x-y|^{\alpha / 2}} \tag{3.4}\\
& \leq K_{4}\|u\|_{(3+\alpha) / 2,3+\alpha, Q} \\
& \text { for } K_{4}>0 .
\end{align*}
$$

From the estimations (3.1)-(3.4) we can conclude that

$$
\left\|A_{3} u\right\|_{Y_{3}}=\left\|A_{3} u\right\|_{(1+\alpha) / 2,1+\alpha, Q} \leq K\left(n, T, \alpha, \Omega, a_{i j}, a_{i}, a_{0}\right)\|u\|_{X_{3}} .
$$

2. To prove that A_{3} is a Fredholm operator with the zero index we express it in the form

$$
A_{3} u=C_{3} u+\left[C\left(t, x, D_{x}\right)-A\left(t, x, D_{x}\right)\right] u=: C_{3} u+T_{3} u
$$

where C_{3} is the linear homeomorphism and C is the linear operator from $\left(\mathrm{A}_{3} .2\right)$. By the decomposition Nikol'skiĭ theorem from Proposition 2.1, it is sufficient to show that $T_{3}: X_{3} \rightarrow Y_{3}$ is the linear completely continuous operator.

The complete continuity of T_{3} can be proved by the Ascoli-Arzela theorem (see [23, p. 141]).

From $\left(S_{3}^{1+\alpha}\right)$ the uniform boundedness of the operator

$$
\begin{aligned}
T_{3} u= & \sum_{i, j=1}^{n}\left[c_{i j}(t, x)-a_{i j}(t, x)\right] D_{i j} u \\
& +\sum_{i=1}^{n}\left[c_{i}(t, x)-a_{i}(t, x)\right] D_{i} u+\left[c_{0}(t, x)-a_{0}(t, x)\right] u
\end{aligned}
$$

follows by the same way as the boundedness of operator A_{3} in the previous part 1. Thus for all $u \in M \subset X_{3}$, where M is a bounded set by the constant $K_{1}>0$, we obtain the estimate

$$
\left\|T_{3} u\right\|_{Y_{3}} \leq K\left(n, \alpha T, \Omega, a_{i j}, c_{i j}, a_{i}, c_{i}, a_{0}, c_{0}\right)\|u\|_{X_{3}} \leq K K_{1}
$$

Using the smoothness condition of the operators A and C we get inequalities:

$$
\begin{aligned}
\mid T_{3} u(t, x)- & T_{3} u(s, y)\left|\leq \sum_{i, j=1}^{n}\right|\left[c_{i j}-a_{i j}\right](t, x)-\left[c_{i j}-a_{i j}\right](s, y)| | D_{i j} u(t, x) \mid \\
& +\sum_{i, j=1}^{n}\left|c_{i j}(s, y)-a_{i j}(s, y)\right|\left|D_{i j} u(t, x)-D_{i j} u(s, y)\right| \\
& +\sum_{i=1}^{n}\left|\left[c_{i}-a_{i}\right](t, x)-\left[c_{i}-a_{i}\right](s, y)\right|\left|D_{i} u(t, x)\right| \\
& +\sum_{i=1}^{n}\left|c_{i}(s, y)-a_{i}(s, y)\right|\left|D_{i} u(t, x)-D_{i} u(s, y)\right| \\
& +\left|\left[c_{0}-a_{0}\right](t, x)-\left[c_{0}-a_{0}\right](s, y)\right||u(t, x)| \\
& +\left|c_{0}(s, y)-a_{0}(s, y)\right||u(t, x)-u(s, y)| \\
\leq & 4 K_{1} K n^{2}\left[|t-s|^{\alpha / 2}+|x-y|^{\alpha}\right] \\
& +2 K_{1} K n\left[\left(|t-s|^{\alpha / 2}+|x-y|^{\alpha}\right)+\left(|t-s|^{(1+\alpha) / 2}+|x-y|\right)\right] \\
& +2 K_{1} K\left[\left(|t-s|^{\alpha / 2}+|x-y|^{\alpha}\right)+(|t-s|+|x-y|)\right]
\end{aligned}
$$

where K_{1}, K are positive constants. Hence the equicontinuity of $T_{3} M \subset Y_{3}$ follows. This finishes the proof of Lemma 3.1.

The Lemma 3.1 implies the following alternative.
Corollary 3.1. Let L mean the set of all second order linear differential operators

$$
A_{3}=D_{t}-A\left(t, x, D_{x}\right): X_{3} \rightarrow C_{t, x}^{(1+\alpha) / 2,1+\alpha}(\operatorname{cl} Q, \mathbb{R})
$$

satifying the condition (C) and $\left(S_{2}^{1+\alpha}\right)$. Then for each $A_{3} \in L$ the mixed homogeneous problem $A_{3} u=0$ on Q, (1.2), (1.3) has a nontrivial solution or any $A_{3} \in L$ is a linear bounded Fredholm operator of the zero index mapping X_{3} onto Y_{3}.

The following lemma establishes the complete continuity of the Nemitskiĭ operator from the nonlinear part of the equation (1.1).

Lemma 3.2. Let the assumptions $\left(\mathrm{N}_{3} .1\right)$ and $\left(\mathrm{N}_{3} .3\right)$ satisfy. Then the $N e-$ mitski乞 operator $N_{3}: X_{3} \rightarrow Y_{3}$ defined by

$$
\begin{equation*}
\left(N_{3} u\right)(t, x)=f\left[t, x, u(t, x), D_{1} u(t, x), \ldots, D_{n} u(t, x)\right] \tag{3.5}
\end{equation*}
$$

for $u \in X_{3}$ and $(t, x) \in \operatorname{cl} Q$ is completely continuous.
Proof. Let $M_{3} \subset X_{3}$ be a bounded set. By the Ascoli-Arzela theorem it is sufficient to show that the set $N_{3}\left(M_{3}\right)$ is uniform bounded and equicontinuous. The assumption ($\mathrm{N}_{3} .3$) we use to prove the inclusion $N_{3}\left(M_{3}\right) \subset Y_{3}$.

Take $u \in M_{3}$. According to the assumption $\left(\mathrm{N}_{3} .1\right)$ we obtain the local boundedness of the function f and its derivatives $\partial f / \partial x_{i}$ on $(\mathrm{cl} Q) \times \mathbb{R}^{n+1}$ for $i=1, \ldots, n$. Hence and from the equation

$$
D_{i}\left(N_{3} u\right)(t, x)=\left\{D_{i} f[\cdot]+\sum_{l=0}^{n} \frac{\partial f}{\partial u_{l}}[\cdot] D_{i} D_{l} u\right\}\left[\cdot, \cdot, u, D_{1} u, \ldots, D_{n} u\right](t, x)
$$

we have the estimation

$$
\sup _{(t, x) \in \mathrm{cl} Q}\left|D_{i}\left(N_{3} u\right)(t, x)\right| \leq K_{1}
$$

for $i=0, \ldots, n$ with a positive sufficiently large constant K_{1} not depending on $u \in M_{3}$.

Using the differentiability of f and the mean value theorem in the variable t for the difference of the derivatives of u we can write

$$
\left\langle N_{3} u\right\rangle_{t,(1+\alpha) / 2, Q}^{s} \leq K_{1} .
$$

Similarly, by (1.9) and (1.10), we have

$$
\left\langle D_{i} N_{3} u\right\rangle_{t, \alpha / 2, Q}^{s} \leq K_{1} \quad \text { and } \quad\left\langle D_{i} N_{3} u\right\rangle_{x, \alpha, Q}^{y} \leq K_{1}
$$

for $i=1, \ldots, n$ and $u \in M_{3}$. The previous estimations yield the inequality

$$
\left\|N_{3} u\right\|_{Y_{3}} \leq K_{1} \quad \text { for all } u \in M_{3}
$$

With respect to $\left(\mathrm{N}_{3} .1\right)$ for any $u \in M_{3}$ and $(t, x),(s, y) \in \operatorname{cl} Q$ such that $|t-s|^{2}+|x-y|^{2}<\delta^{2}$ with a sufficiently small $\delta>0$ we have

$$
\left|N_{3} u(t, x)-N_{3} u(s, y)\right|<\varepsilon, \quad \varepsilon>0,
$$

which is the equicontinuity of $N_{3}\left(M_{3}\right)$. This finishes the proof of Lemma 3.2.

Lemma 3.3. Let the assumptions $\left(\mathrm{A}_{3} .1\right)$, $\left(\mathrm{A}_{3} .2\right)$, $\left(\mathrm{N}_{3} .1\right)$, ($\mathrm{N}_{3} .3$) and ($\left.\mathrm{F}_{3} .1\right)$ hold. Then the operator $F_{3}=A_{3}+N_{3}: X_{3} \rightarrow Y_{3}$ is coercive.

Proof. We need prove that if the set $M_{3} \subset Y_{3}$ is bounded in Y_{3}, then the set of arguments $F_{3}^{-1}\left(M_{3}\right) \subset X_{3}$ is bounded in X_{3}.

In the both cases $\left(\alpha_{3}\right)$ and $\left(\beta_{3}\right)$ we get for all $u \in F_{3}^{-1}\left(M_{3}\right)$

$$
\left\|N_{3} u\right\|_{(1+\alpha) / 2,1+\alpha, Q} \leq K_{1},
$$

where $K_{1}>0$ is a sufficiently large constant. Hence $\left\|A_{3} u\right\|_{Y_{3}} \leq K_{1}$ for any $u \in F_{3}^{-1}\left(M_{3}\right)$.

The hypothesis $\left(\mathrm{A}_{3} .2\right)$ ensures the existence and uniqueness of the solution $u \in X_{3}$ of the linear equation $C_{3} u=y$ and for any $y \in Y_{3}$

$$
\begin{equation*}
\|u\|_{X_{3}} \leq K_{1}\|y\|_{Y_{3}} \tag{3.6}
\end{equation*}
$$

If we write

$$
\begin{aligned}
C_{3} u= & A_{3} u+\sum_{i, j=1}^{n}\left[a_{i j}(t, x)-c_{i j}(t, x)\right] D_{i j} u \\
& +\sum_{i=1}^{n}\left[a_{i}(t, x)-c_{i}(t, x)\right] D_{i} u+\left[a_{0}(t, x)-c_{0}(t, x)\right] u,
\end{aligned}
$$

then in the both cases and for each $u \in F_{3}^{-1}\left(M_{3}\right)$ we obtain

$$
\|y\|_{Y_{3}} \leq\left\|C_{3} u\right\|_{Y_{3}} \leq K_{1}
$$

whence by the inequality (3.6) we can conclude that the operator F_{3} is coercive.
Lemma 3.4. Let the Nemitskǐ operator $N_{3}: X_{3} \rightarrow Y_{3}$ from (3.5) satisfy the conditions $\left(\mathrm{N}_{3} .2\right),\left(\mathrm{N}_{3} .3\right)$. Then the operator N_{3} is continuously Fréchet differentiable, i.e. $N_{3} \in C^{1}\left(X_{3}, Y_{3}\right)$ and it is completely continuous.

Proof. From $\left(\mathrm{N}_{3} .2\right)$ we obtain $\left(\mathrm{N}_{3} .1\right)$ which implies by Lemma 3.2 the complete continuity of N_{3}. To obtain the first part of the assertion of this lemma we need prove that the Fréchet derivative $N_{3}^{\prime}: X_{3} \rightarrow L\left(X_{3}, Y_{3}\right)$ defined by the equation

$$
N_{3}^{\prime}(u) h(t, x)=\sum_{j=0}^{n} \frac{\partial f}{\partial u_{j}}\left(t, x, u(t, x), D_{1} u(t, x), \ldots, D_{n} u(t, x)\right] D_{j} h(t, x)
$$

for $u, h \in X_{3}$ is continuous on X_{3}. Thus we must prove for every $v \in X_{3}$:

$$
\begin{equation*}
\forall \varepsilon>0 \exists \delta(\varepsilon, v)>0 \quad \forall u \in X_{3},\|u-v\|_{X_{3}}<\delta: \quad \underset{\sup _{h \in X_{3},\|h\|_{X_{3}} \leq 1}\left\|N_{3}^{\prime}(u)-N_{3}^{\prime}(v) h\right\|_{Y_{3}}<\varepsilon .}{ } \tag{3.7}
\end{equation*}
$$

Using the norms (1.6), (1.8) and the estimation $\|u-v\|_{X_{3}}<\delta$ we have for the first term of (3.7) by the mean value theorem:

$$
\begin{aligned}
\sum_{i=0}^{n} & \sup _{(t, x) \in \mathrm{cl} Q}\left|D_{i}\left[N_{3}^{\prime}(u)-N_{3}^{\prime}(v)\right] h(t, x)\right| \\
\quad \leq & \sum_{i, j=0}^{n} \sup _{(t, x) \in \mathrm{cl} Q}\left[\left\langle\partial^{2} f / \partial x_{i} \partial u_{j}\right\rangle_{t, x, u(t, x)}^{t, x, v(t, x)}\left|D_{j} h(t, x)\right|\right. \\
& +\sum_{k=0}^{n}\left\langle\partial^{2} f / \partial u_{j} \partial u_{k}\right\rangle_{t, x, u(t, x)}^{t, x, v(t, x)}\left|D_{i k} u\right| \cdot\left|D_{j} h\right|(t, x) \\
& +\sum_{k=0}^{n}\left|\partial^{2} f / \partial u_{j} \partial u_{k}(t, x, v(t, x), \ldots)\right|\left|D_{i k} u-D_{i k} v\right|\left|D_{j} h\right|(t, x) \\
& \left.+\left\langle\partial f / \partial u_{j}\right\rangle_{t, x, u(t, x)}^{t, x, v(t, x)}\left|D_{i j} h(t, x)\right|\right]<K \delta \quad \text { for } K>0 .
\end{aligned}
$$

The second term of (3.7) we estimate as follows:

$$
\begin{aligned}
& \left\langle\left[N_{3}^{\prime}(u)-N_{3}^{\prime}(v)\right] h\right\rangle_{t,(1+\alpha) / 2, Q}^{s} \\
& \leq \leq \sum_{j=0}^{n} \sup _{\operatorname{cl} Q, t \neq s}|t-s|^{-(1+\alpha) / 2}\left[\left|\int_{s}^{t} D_{\tau}\left\langle\partial f / \partial u_{j}\right\rangle_{\tau, x, u(\tau, x)}^{\tau, x, v(\tau, x)} d \tau\right|\left|D_{j} h(t, x)\right|\right. \\
& \left.\quad+\left\langle\partial f / \partial u_{j}\right\rangle_{s, x, u(s, x)}^{s, x, v(s, x)}\left|\int_{s}^{t} D_{\tau} D_{j} h(\tau, x) d \tau\right|\right] \leq K \delta \quad \text { for } K>0 .
\end{aligned}
$$

Here we have used the mean value theorem for $\partial^{2} f / \partial \tau \partial u_{j}, \partial^{2} f / \partial u_{j} \partial u_{k}$ and $\partial f / \partial u_{j}$ for $j, k=0, \ldots, n$.

The third term of (3.7) gives by (1.11), (1.12), (1.14), (1.15):

$$
\begin{aligned}
& \sum_{i=1}^{n}\left\langle D_{i}\left\{\left[N_{3}^{\prime}(u)-N_{3}^{\prime}(v)\right] h\right\}\right\rangle_{t, \alpha / 2, Q}^{s} \\
& \leq \sum_{i=1}^{n} \sum_{j=0}^{n} \sup _{\mathrm{cl} Q, t \neq s}|t-s|^{-\alpha / 2}\left\{\left|\int_{s}^{t} D_{\tau}\left\langle\partial^{2} f / \partial x_{i} \partial u_{j}\right\rangle_{\tau, x, u(\tau, x)}^{\tau, x, v(\tau, x)} d \tau\right|\left|D_{j} h(t, x)\right|\right. \\
&+\left\langle\partial^{2} f / \partial x_{i} \partial u_{j}\right\rangle_{s, x, x, v(s, s, x)}^{s, x, s(s, x}\left|\int_{s}^{t} D_{\tau} D_{j} h(\tau, x) d \tau\right| \\
&+\sum_{k=0}^{n}\left[\left|\int_{s}^{t} D_{\tau}\left\langle\partial^{2} f / \partial u_{j} \partial u_{k}\right\rangle_{\tau, x, x, u(\tau, x)}^{\tau, x, x)} d \tau\right|\left|D_{i k} u\right|\left|D_{j} h\right|(t, x)\right. \\
&+\mid \int_{s}^{t} D_{\tau}\left[\partial^{2} f / \partial u_{j} \partial u_{k}(\tau, x, v, \ldots) d \tau| | D_{i k} u(t, x)-D_{i k} v(t, x)| | D_{j} h(t, x) \mid\right. \\
&+\left\langle\partial^{2} f / \partial u_{j} \partial u_{k}\right\rangle_{s, x, v, v(s, x)}^{s, x}\left|D_{i k} u(t, x)-D_{i k} u(s, x)\right|\left|D_{j} h(t, x)\right| \\
&+\left|\partial^{2} f / \partial u_{j} \partial u_{k}(s, x, v, \ldots)\right| \mid D_{i k} u(t, x)-D_{i k} v(t, x) \\
&-\left[D_{i k} u(s, x)-D_{i k} v(s, x)\right]| | D_{j} h(t, x) \mid
\end{aligned}
$$

$$
\begin{aligned}
& +\left\langle\partial^{2} f / \partial u_{j} \partial u_{k}\right\rangle_{s, x, x, v(s, x)}^{s, x, v(s)}\left|D_{i k} u(s, x)\right|\left|\int_{s}^{t} D_{\tau} D_{j} h(\tau, x) d \tau\right| \\
& +\left|\partial^{2} f / \partial u_{j} \partial u_{k}(s, x, v, \ldots)\right|\left|D_{i k} u(s, x)-D_{i k} v(s, x)\right|\left|\int_{s}^{t} D_{\tau} D_{j} h(\tau, x) d \tau\right| \\
& +\left|\int_{s}^{t} D_{\tau}\left\langle\partial f / \partial u_{j}\right\rangle_{\tau, x, u(\tau, x, x)}^{\tau_{, x, x}} d \tau\right|\left|D_{i j} h(t, x)\right| \\
& \left.\left.+\left\langle\partial f / \partial u_{j}\right\rangle_{s, x, u(s, s, x)}^{s, x, x)}\left|D_{i j} h(t, x)-D_{i j} h(s, x)\right|\right]\right\} \\
& \leq K\left(\sum_{s=0}^{n} \delta^{\beta_{s}}+\delta\right) \text { for } K>0 .
\end{aligned}
$$

Making the corresponding changes the last term of (3.7)

$$
\sum_{i=1}^{n}\left\langle D_{i}\left\{\left[N_{3}^{\prime}(u)-N_{3}^{\prime}(v)\right] h\right\}\right\rangle_{x, \alpha, Q}^{y}
$$

by the condition $\left(\mathrm{N}_{3} .2\right)$ gives the required estimation. This finishes the proof of Lemma 3.4.

The results of Lemmas 3.1-3.4 we can sum up in
Theorem 3.1. The following implications are true:
(1) $\left(\mathrm{A}_{3} .1\right)$, ($\left.\mathrm{A}_{3} .2\right)$ imply that the operator $A_{3}: X_{3} \rightarrow Y_{3}$ is linear bounded Fredholm operator of the zero index.
(2) $\left(\mathrm{N}_{3} .1\right)$, ($\mathrm{N}_{3} .3$) imply that the Nemitskiu operator $N_{3}: X_{3} \rightarrow Y_{3}$ is completely continuous.
(3) $\left(\mathrm{A}_{3} .1\right),\left(\mathrm{A}_{3} .2\right),\left(\mathrm{N}_{3} .1\right),\left(\mathrm{N}_{3} .3\right),\left(\mathrm{F}_{3} .1\right)$ imply that the operator $F_{3}=A_{3}+$ $N_{3}: X_{3} \rightarrow Y_{3}$ is coercive.
(4) ($\mathrm{N}_{3} .2$), ($\mathrm{N}_{3} .3$) imply that $\mathrm{N}_{3} \in C^{1}\left(X_{3}, Y_{3}\right)$ and completely continuous.

4. Generic properties for continuous operators

On a mutual equivalence between the solution of the given initial-boundary value problem and an operator equation says the following lemma.

Lemma 4.1. Let $A_{3}: X_{3} \rightarrow Y_{3}$ be the linear operator from Lemma 3.1 and let $N_{3}: X_{3} \rightarrow Y_{3}$ be the Nemitskiı operator from Lemma 3.2 and $F_{3}=A_{3}+N_{3}$: $X_{3} \rightarrow Y_{3}$. Then
(j) the function $u \in X_{3}$ is a solution of the initial-boundary value problem (1.1)-(1.3) for $g \in Y_{3}$ if and only if $F_{3} u=g$,
(jj) the couple $(u, g) \in X_{3} \times Y_{3}$ is the bifurcation point of the initial-boundary value problem (1.1)-(1.3) if and only if $F_{3}(u)=g$ and $u \in \Sigma$, where Σ means the set of all points of X_{3} at which F_{3} is not locally invertible (see Definition 1.10).

Proof. (j) The first equivalence directly follows from the definition of operator F_{3} and the mixed problem (1.1)-(1.3).
(jj) If (u, g) is a bifurcation point of the mixed problem (1.1)-(1.3) and u_{k}, v_{k} and g_{k} for $k=1,2 \ldots$ have the same meaning as in Definition 1.8, then with respect to (j) we have $F_{3}(u)=g, F_{3}\left(u_{k}\right)=g_{k}=F_{3}\left(v_{k}\right)$. Thus F_{3} is not locally injective at u. Hence, F_{3} is not locally invertible at u, i.e. $u \in \Sigma$. Conversely, if F_{3} is not locally invertible at u and $F_{3}(u)=g$, then F_{3} is not locally injective at u. Indirectly, from Definition 1.8, we see that the couple (u, g) is a bifurcation point of (1.1)-(1.3).

Lemma 4.2. Let
(i) the operator $A\left(t, x, D_{x}\right) \neq 0$ from (1.1) and the operator $B_{3}\left(t, x, D_{x}\right)$ from (1.2) satisfy the smoothness condition $\left(S_{3}^{1+\alpha}\right)$,
(ii) the nonlinear part f of the equation (1.1) belong to $C\left(\operatorname{cl} Q \times \mathbb{R}^{n+1}, \mathbb{R}\right)$,
(iii) the operator $A_{3}+N_{3}: X_{3} \rightarrow Y_{3}$ be nonconstant.

Then for any compact set of the right hand sides $g \in Y_{3}$ from (1.1), the set of all solutions of problem (1.1)-(1.3) is compact (possibly empty).

Proof. Following the proof of Lemma 3.1 we see that $\operatorname{dim} X_{3}=\infty$ and the linear operator $A_{3}: X_{3} \rightarrow Y_{3}$ is continuous and accordingly closed. From the hypothesis (ii) the Nemitskiĭ operator $N_{3}: X_{3} \rightarrow Y_{3}$ given in (3.5) is closed, too. By the Proposition 2.3 the operator $F_{3}=A_{3}+N_{3}: X_{3} \rightarrow Y_{3}$ is proper and with respect to Definition 1.9 and Lemma 4.1 we get our assertion.

Theorem 4.1. Under the assumptions $\left(\mathrm{A}_{3} .1\right)$, $\left(\mathrm{A}_{3} .2\right)$ and $\left(\mathrm{N}_{3} .1\right),\left(\mathrm{N}_{3} .3\right)$ the following statements hold for the problem (1.1)-(1.3):
(a) the operator $F_{3}=A_{3}+N_{3}: X_{3} \rightarrow Y_{3}$ is continuous,
(b) for any compact set of the right hand sides $g \in Y_{3}$ from (1.1), the corresponding set of all solutions is a countable union of compact sets,
(c) for $u_{0} \in X_{3}$ there exists a neighbourhood $U\left(u_{0}\right)$ of u_{0} and $U\left(F_{3}\left(u_{0}\right)\right.$) of $F_{3}\left(u_{0}\right) \in Y_{3}$ such that for each $g \in U\left(F_{3}\left(u_{0}\right)\right)$ there is a unique solution of (1.1)-(1.3) if and only if the operator F_{3} is locally injective at u_{0}.
Moreover, if $\left(\mathrm{F}_{3} .1\right)$ is assumed, then
(d) for each compact set of Y_{3} the corresponding set of all solutions is compact (possibly empty).

Proof. Assertion (a) is evident by Lemma 3.1 and Lemma 3.2.
Using the Nikol'skiĭ theorem (Proposition 2.1) for A_{3} we can write

$$
\begin{equation*}
F_{3}=C_{3}+\left(T_{3}+N_{3}\right) \tag{4.1}
\end{equation*}
$$

where $C_{3}: X_{3} \rightarrow Y_{3}$ is a continuous homeomorpism and is proper (see Proposition 2.3) and $T_{3}+N_{3}: X_{3} \rightarrow Y_{3}$ is a completely continuous mapping. Now
take the compact set $K \subset Y_{3}$ and $F_{3}^{-1}(K)$. Then there exists a sequence of the closed and bounded sets $M_{n} \subset F_{3}^{-1}(K) \subset X_{3}$ for $n=1,2, \ldots$ such that $\bigcup_{n=1}^{\infty} M_{n}=F_{3}^{-1}(K)$

According to Proposition 2.4(j) the restrictions $\left.F_{3}\right|_{M_{n}}$ for $n=1,2, \ldots$ are proper mappings and $\left(\left.F_{3}\right|_{M_{n}}\right)^{-1}(K)=M_{n}$ is compact set. Hence, the operator F_{3} is σ-proper, which gives the result (b).

The assertion (d) is a direct consequence of Proposition 2.4(jj).
Suppose, now, that F_{3} is injective in a neighbourhood $U\left(u_{0}\right)$ of $u_{0} \in X_{3}$. From decomposition (4.1) the mapping

$$
C_{3}^{-1} F_{3}=I+C_{3}^{-1}\left(T_{3}+N_{3}\right),
$$

where $I: X \rightarrow Y$ is the identity, is completely continuous and injective in $U\left(u_{0}\right)$. On the basis of the Schauder domain invariance theorem (see [5, p. 66]) the set $C_{3}^{-1} F_{3}\left(U\left(u_{0}\right)\right)$ is open in X_{3} and the restriction $\left.C_{3}^{-1} F_{3}\right|_{U\left(u_{0}\right)}$ is a homeomorphism of $U\left(u_{0}\right)$ onto $C_{3}^{-1} F_{3}\left(U\left(u_{0}\right)\right)$. Therefore F_{3} is locally invertible. From the Definition 1.10.2 and Lemma 4.1 we obtain (c).

The most important properties of the mapping F_{3}, whereby A_{3} is linear bounded Fredholm operator of zero index, N_{3} is copletely continuous and F_{3} is coercive, gives the following theorem.

THEOREM 4.2. If the hypotheses $\left(\mathrm{A}_{3} .1\right)$, ($\mathrm{A}_{3} .2$), $\left(\mathrm{N}_{3} .1\right)$, ($\mathrm{N}_{3} .3$) and ($\mathrm{F}_{3} .1$) are satysfied, then for the initial-boundary value problem (1.1)-(1.3) the following statements hold:
(e) For each $g \in Y_{3}$ the set $S_{3 g}$ of all solutions is compact (possibly empty).
(f) The set $R\left(F_{3}\right)=\left\{g \in Y_{3}\right.$; there exists at least one solution of the given problem $\}$ is closed and connected in Y_{3}.
(g) The domain of bifurcation $D_{3 b}$ is closed in X_{3} and the bifurcation range $R_{3 b}$ is closed in $Y_{3} . F_{3}\left(X_{3}-D_{3 b}\right)$ is open in Y_{3}.
(h) If $Y_{3}-R_{3 b} \neq \emptyset$, then each component of $Y_{3}-R_{3 b}$ is a nonempty open set (i.e. a domain).
The number $n_{3 g}$ of solutions is finite, constant (it may be zero) on each component of the set $Y_{3}-R_{3 b}$, i.e. for every g belonging to the same component of $Y_{3}-R_{3 b}$.
(i) If $R_{3 b}=0$, then the given problem has a unique solution $u \in X_{3}$ for each $g \in Y_{3}$ and this solution continuously depends on g as a mapping from Y_{3} onto X_{3}.
(j) If $R_{3 b} \neq \emptyset$, then the boundary of the F_{3}-image of the set of all points from X_{3} in which the operator F_{3} is locally invertible, is a subset of the F_{3}-image of all points from X_{3} in which F_{3} is not locally invertible, i.e.

$$
\partial F_{3}\left(X_{3}-D_{3 b}\right) \subset F_{3}\left(D_{3 b}\right)=R_{3 b}
$$

Proof. The statement (e) follows immediately from Theorem 4.1(d).
(f) Let the sequence $\left\{g_{n}\right\}_{n \in N} \subset R\left(F_{3}\right) \subset Y_{3}$ converge to $g \in Y_{3}$ as $n \rightarrow \infty$. By Theorem 4.1(d) there is a compact set of all solutions $\left\{u_{\gamma}\right\}_{\gamma \in I} \subset X_{3}$ (I is a index set) of the equations $F_{3}(u)=g_{n}$ for all $n=1,2, \ldots$ Then there exists a sequence $\left\{u_{n_{k}}\right\}_{k \in N} \subset\left\{u_{\gamma}\right\}_{\gamma \in I}$ converging to $u \in X_{3}$ for which $F_{3}\left(u_{n_{k}}\right)=$ $g_{n_{k}} \rightarrow g$. Since, the operator F_{3} is proper (Theorem 4.1(d)), whence it is closed (Proposition 2.3), such we have $F_{3}(u)=g$. Hence $g \in R\left(F_{3}\right)$ and $R\left(F_{3}\right)$ is a closed set.

The connectedness of $R\left(F_{3}\right)=F_{3}\left(X_{3}\right)$ follows from the fact that $R\left(F_{3}\right)$ is a conditinuous image of the connected set X_{3}.
(g) According to Lemma 4.1(jj) $D_{3 b}=\Sigma_{3}$ and $R_{3 b}=F_{3}\left(D_{3 b}\right)$. Since $X_{3}-\Sigma_{3}$ is an open set, $D_{3 b}$ and its coutinuous image $R_{3 b}$ are the closed sets in X_{3} and Y_{3}, respectively.

Since $X_{3}-D_{3 b}$ is a set of all points in which the mapping F_{3} is locally invertible, the Definition 1.10.2 ensures that to each $u_{0} \in X_{3}-D_{3 b}$ there is a neighborhood $U_{1}\left(F_{3}\left(u_{0}\right)\right) \subset F_{3}\left(X_{3}-D_{3 b}\right)$ which means that the set $F_{3}\left(X_{3}-D_{3 b}\right)$ is open.
(h) The set $Y_{3}-R_{3 b}=Y_{3}-F_{3}\left(D_{3 b}\right) \neq 0$ is open in Y_{3}, then each its component is noempty and open.

The second part of (h) follows from A. Ambrosetti theorem (Proposition 2.6).
(i) Since $R_{3 b}=\emptyset$, the mapping F_{3} is a locally invertible in X_{3}. From Proposition $2.4(\mathrm{jj})$ we get that F_{3} is a proper mapping. Then The Global Inverse Mapping Theorem (Proposition 2.5) proves this statement.
(j) By (f) and (g), we have $\left(\Sigma_{3}=D_{3 b}\right)$

$$
\begin{equation*}
F_{3}\left(X_{3}\right)=F_{3}\left(\Sigma_{3}\right) \cup F_{3}\left(X_{3}-\Sigma_{3}\right)=F_{3}\left(\Sigma_{3}\right) \cup \overline{F_{3}\left(X_{3}-\Sigma_{3}\right)}=\overline{F\left(X_{3}\right)} \tag{4.2}
\end{equation*}
$$

Furter $\partial F_{3}\left(X_{3}-\Sigma_{3}\right)=\overline{F\left(X_{3}-\Sigma_{3}\right)}-F\left(X_{3}-\Sigma_{3}\right)$ and thus the previous equality implies the assertion (j).

Theorem 4.3. Under the assumption $\left(\mathrm{A}_{3} .1\right)$, $\left(\mathrm{A}_{3} .2\right)$, ($\mathrm{N}_{3} .1$), ($\mathrm{N}_{3} .3$) and ($\mathrm{F}_{3} .1$) each of the following conditions is sufficient for the solvability of problem (1.1)-(1.3) for each $g \in Y_{3}$:
(k) For each $g \in R_{3 b}$ there is a solution u of (1.1)-(1.3) such that $u \in$ $X_{3}-D_{3 b}$.
(l) The set $Y_{3}-R_{3 b}$ is connected and there is a $g \in R\left(F_{3}\right)-R_{3 b}$.

Proof. First of all we see that the conditions (k) and (l) are mutualy equivalent to the conditions:
$\left(\mathrm{k}^{\prime}\right) F_{3}\left(D_{3 b}\right) \subset F_{3}\left(X_{3}-D_{3 b}\right)$,
(l') $Y_{3}-R_{3 b}$ is a connected set and

$$
\begin{equation*}
F_{3}\left(X_{3}-D_{3 b}\right)-R_{3 b} \neq \emptyset, \tag{4.3}
\end{equation*}
$$

respectively $\left(D_{3 b}=\Sigma_{3}\right)$. Then it is sufficient to show that the conditions $\left(k^{\prime}\right)$ and (l'), respectively are sufficient for the surjectivity of the operator F_{3} : $X_{3} \rightarrow Y_{3}$.
(k') From the first equality of (4.2) we obtain $F_{3}\left(X_{3}\right)=F_{3}\left(X_{3}-D_{3 b}\right)$. Hence $R\left(F_{3}\right)$ is an open as well as closed subset of the connected space Y_{3}. Thus $R\left(F_{3}\right)=Y_{3}$.
(l') By (h) of Theorem 4.2 card $F_{3}^{-1}(\{q\})=\mathrm{const}=: k \geq 0$ for every $q \in$ $Y_{3}-R_{3 b}$.

If $k=0$, then $F_{3}\left(X_{3}\right)=R_{3 b}$ and $F_{3}\left(X_{3}-D_{3 b}\right) \subset R_{3 b}$. This is a contradiction to (4.3). Then $k>0$ and $R\left(F_{3}\right)=Y_{3}$.

The other surjecivity theorem is true:
THEOREM 4.4. Let the hypotheses $\left(\mathrm{A}_{3} .1\right)$, ($\left.\mathrm{A}_{3} .2\right),\left(\mathrm{N}_{3} .1\right),\left(\mathrm{N}_{3} .3\right),\left(\mathrm{F}_{3} .1\right)$ and
(i) there exists a constant $K>0$ such that all solutions $u \in X_{3}$ of the initial-boundary value problem for the equation

$$
\begin{equation*}
C_{3} u+\mu\left[A_{3} u-C_{3} u+N_{3} u\right]=0, \quad \mu \in(0,1) \tag{4.4}
\end{equation*}
$$

with data (1.2), (1.3) fulfill one of the conditions $\left(\alpha_{3}\right)$ or $\left(\beta_{3}\right)$ of the almost coercive condition $\left(\mathrm{F}_{3} .1\right)$. Then
(m) the problem (1.1)-(1.3) has at least one solution for each $g \in Y_{3}$,
(n) the number $n_{3 g}$ of solutions (1.1)-(1.3) is finite, constant and different from zero on each component of the set $Y_{3}-R_{3 b}$ (for all g belonging to the same component of $Y_{3}-R_{3 b}$).

Proof. (m) It is sufficient to prove the surjectivity of the mapping F_{3} : $X_{3} \rightarrow Y_{3}$. From Lemma 3.1 we can write

$$
F_{3}=A_{3}+N_{3}=C_{3}+\left(T_{3}+N_{3}\right)
$$

where $C_{3}: X_{3} \rightarrow Y_{3}$ is a linear homeomorphism X_{3} onto Y_{3} and $T_{3}+N_{3}: X_{3} \rightarrow$ Y_{3} is a completely continuous operator. Then the operator

$$
C_{3}^{-1} F_{3}=I+C_{3}^{-1}\left(T_{3}+N_{3}\right): X_{3} \rightarrow X_{3}
$$

is a completely continuous and condensing (see [27, p. 496]). The set $\Sigma_{3}=D_{3 b}$ is the set of all points $u \in X_{3}$ where $C_{3}^{-1} F_{3}$, as well as F_{3}, is not locally invertible.

Denote $S_{1} \subset X_{3}$ a bounded set. Then $C_{3}\left(S_{1}\right)=: S$ is bounded in Y_{3} and by Lemma $3.3 F_{3}^{-1}(S)=F_{3}^{-1}\left(C_{3}\left(S_{1}\right)\right)=\left(C_{3}^{-1} \circ F_{3}\right)^{-1}\left(S_{1}\right)$ is a bounded set in X_{3}. Thus the operator $C_{3}^{-1} \circ F_{3}$ is coercive.

Now we show that the condition (i) implies (ii) in Proposition 2.7 for $F(u)=$ $C_{3}^{-1} \circ F_{3}(u)$ and $C(u)=G(u)=u, u \in X_{3}$.

In fact, as $C_{3}^{-1} \circ F_{3}(u)=k u$ if and only if $F_{3}(u)=k C_{3}(u)$ we get for $k<0$

$$
\begin{equation*}
C_{3} u+(1-k)^{-1}\left[A_{3} u-C_{3} u+N_{3} u\right]=0 \tag{4.5}
\end{equation*}
$$

where $(1-k)^{-1} \in(0,1)$. This implies by (i): in the case $\left(\alpha_{3}\right)$, there is a constant $K>0$ such that, for all solution $u \in X_{3}$ of (4.5), $\|u\|_{(1+\alpha) / 2,1+\alpha, Q} \leq K$ and, in the case $\left(\beta_{3}\right),\|u\|_{(2+\alpha) / 2,2+\alpha, Q} \leq K$. Further, by the same method as in Lemma 3.3 we get the estimation $\|u\|_{X_{3}}<K_{1}, K_{1}>0$ for all solution $u \in X_{3}$ of $C_{3}^{-1} \circ F_{3} u=k u$. By Proposition 2.7 we get the surjectivity of F_{3} and thus (m).
(n) From the Theorem $4.2(\mathrm{~h})$ and the surjectivity of F_{3} it follows that there is $n_{3 g} \neq 0$. This finishes the proof of Theorem 4.4.

5. Generic properties for C^{1}-differentiable operator

In the case, if the Nemitskiĭ operator $N_{3} \in C^{1}(X, Y)$, we get stronger results, than in the Section 4.

Theorem 5.1. Assume that the hypotheses $\left(\mathrm{A}_{3} .1\right)$, $\left(\mathrm{A}_{3} .2\right)$, $\left(\mathrm{N}_{3} .2\right)$, $\left(\mathrm{N}_{3} .3\right)$ hold. Then the open set $Y_{3}-R_{3 b}$ is dense in Y_{3} and thus the range of bifurcation $R_{3 b}$ of initial-boundary value problem (1.1)-(1.3) is nowhere dense in Y_{3}.

Proof. The Theorem 3.1 ensures that the operator A_{3} is a linear Fredholm operator of the zero index, the Nemitskiĭ operator $N_{3}: X_{3} \rightarrow Y_{3}$ is completely continuous and $N_{3} \in C^{1}\left(X_{3}, Y_{3}\right)$.

Since $N_{3}^{\prime}(u): X_{3} \rightarrow Y_{3}$ is complete continuous, by Proposition 2.1 the operator $F_{3}^{\prime}(u)==A_{3}+N_{3}^{\prime}(u): X_{3} \rightarrow Y_{3}$ is a linear Fredholm operator of the zero index for each $u \in X_{3}$ and $F_{3} \in C^{1}\left(X_{3}, Y_{3}\right)$ is also a Fredholm operator of the zero index (see [27, p. 366]).
$F_{3}^{\prime}(u)$ is a linear homeomorphism if and only if it is bijective. Since $F_{3}^{\prime}(u)$ is a Fredholm mapping of zero index so $F_{3}^{\prime}(u)$ is bijective if and only if it is injective. Thus $u \in X_{3}$ is a singular point of Fredholm operator F_{3} if and only if u is a critical point of F_{3}. Since Σ_{3} is a subset of all critical points of F_{3} (see Proposition 2.9), then evidently Σ_{3} is a subset of all singular points S_{3} of F_{3}, i.e. $\Sigma_{3} \subset S_{3}$. Hence, the open set of the regular values of F_{3}

$$
R_{F_{3}}=Y_{3}-F_{3}\left(S_{3}\right) \subset Y_{3}-F_{3}\left(\Sigma_{3}\right) \subset Y_{3}-R_{3 b} .
$$

By Theorem 4.1(b) and Proposition 2.8, $R_{F_{3}}$ is a residual set in Y_{3}. From Proposition 2.3 the operator F_{3} is proper. Then again from Proposition 2.8 the set $R_{F_{3}}$ is dense in Y_{3}. Applying Lemma 4.1 we get our assertion.

Recall that the point $u \in X_{3}$ means a singular or critical or regular solution of the mixed problem (1.1)-(1.3) if it is singular or critical or regular point of the operator F_{3}, respectively. Also we shall investigate the linear problem in $h \in X_{3}$ for some $u \in X_{3}$

$$
\begin{equation*}
A_{3} h(t, x)+\sum_{j=0}^{n} \frac{\partial f}{\partial u_{j}}\left[t, x, u(t, x), D_{1} u(t, x), \ldots D_{n} u(t, x)\right] D_{j} h(t, x)=g(t, x) \tag{5.1}
\end{equation*}
$$

with the conditions (1.2), (1.3).

Theorem 5.2. Assume that the hypotheses $\left(\mathrm{A}_{3} .1\right)$, $\left(\mathrm{A}_{3} .2\right)$, $\left(\mathrm{N}_{3} .2\right)$, $\left(\mathrm{N}_{3} .3\right)$ and ($\mathrm{F}_{3} .1$) hold. Then
(a) For any compact set of Y_{3} (of the right hand sides $g \in Y_{3}$ of the equation (1.1)) the set of all corresponding solutions of the initial-boundary value problem (1.1)-(1.3) is compact.
(b) The number of solutions of (1.1)-(1.3) is constant and finite (it may be zero) on each connected component of the open set $Y_{3}-F\left(S_{3}\right)$, i.e. for any g belonging to the same connected component of $Y_{3}-F_{3}\left(S_{3}\right)$. Here S_{3} means the set of all critical points of problem (1.1)-(1.3).
(c) Let $u_{0} \in X_{3}$ is regular solutions of (1.1)-(1.3) with the right hand side $g_{0} \in Y_{3}$. Then there exists a neighbourhood $U\left(g_{0}\right) \subset Y_{3}$ of g_{0} such that for any $g \in U\left(g_{0}\right)$ the initial-boundary value problem (1.1)-(1.3) has one and only one solution $u \in X_{3}$. This solution continuously depends on g.

The associated linear problem (5.1), (1.2), (1.3) for $u=u_{0}$ has a unique solution $h \in X_{3}$ for any g from a neighbourhood $U\left(g_{0}\right)$ of $g_{0}=F_{3}\left(u_{0}\right)$. This solution continuously depends on g.
(d) Denote by G_{3} the set of all right hand side $g \in Y_{3}$ of equation (1.1) for which the corresponding solutions $u \in X_{3}$ of the problem (1.1)-(1.3) are its critical solutions. Then G_{3} is closed and nowhere dense in Y_{3}.
(e) If the singular points set of the initial-boundary value problem (1.1)(1.3) is empty, then this problem has unique solution $u \in X_{3}$ for each $g \in Y_{3}$. It continuously depends of the right hand side g.

Proof. By the given hypotheses we obtain the assertions (1)-(4) from Theorem 3.1.

With respect to assertion (jj) of Proposition 2.4 the operator F_{3} is proper, what implies (a).

In the proof of Theorem 5.1 we have showed that the set of all singular points of F_{3} is equal to the set of all critical points of F_{3}. Then the assertion (b) follows from Proposition 2.6 (Ambrosetti).
(c) Since $u_{0} \in X_{3}-S_{3}$, where S_{3} is a set of all singular (under our assumptions all critical) points, then according to Proposition 2.9 the mapping F_{3} is a local homeomorphism at u_{0}, which proves the first part of (c).

However, F_{3} is a local C^{1}-diffeomorphism. Thus $F_{3}^{\prime} \in C\left(X_{3}, Y_{3}\right)$, where

$$
F_{3}^{\prime}(u) h=A_{3} h+\sum_{j=0}^{n} \frac{\partial f}{\partial u_{j}}\left[t, x, u, D_{1} u, \ldots D_{n} u\right] D_{j} h
$$

and $\left(F_{3}^{-1}\right)^{\prime} \in C\left(Y_{3}, X_{3}\right)$, where $\left(F_{3}^{-1}\right)^{\prime}\left(F_{3} u\right)=\left[F_{3}^{\prime}(u)\right]^{-1}$ for every $u \in X_{3}$ (see [8, p. 115]). Hence the linear problem (5.1), (1.2), (1.3) for $u=u_{0}$ has a unique
solution $h \in X_{3}$ for any g from a neighbourhood $U\left(g_{0}\right)$ of $g_{0}=F_{3}\left(u_{0}\right)$. This solution continuously depends of the right hand side g. The proof of (c) is completed.
(d) In our case the set of all singular points S_{3} of F_{3} is equal to the set of all critical point F_{3} and $G_{3}=F_{3}\left(S_{3}\right)$. We get (d) from the Proposition 2.8 (Smale, Quinn).
(e) By Proposition 2.9, the operator $F_{3}: X_{3} \rightarrow Y_{3}$ is locally C^{1}-diffeomorphism at any point $u \in X_{3}$, i.e. it is C^{1}-deffeomorphism on X_{3}. Hence we get the last assertion.

Corollary 5.1. Let the hypothesis of Theorem 5.2 hold and
(i) the linear homogeneous problem (5.1), (1.2), (1.3) (for $g=0)$ has only zero solution $h=0 \in X_{3}$ for any $u \in X_{3}$.
Then the initial-boundary value nonlinear problem (1.1)-(1.3) has a unique solution $u \in X_{3}$ for any $g \in Y_{3}$. This solution u is continuously depend of g. Moreover, linear problem (5.1), (1.2), (1.3) has a unique solution $h \in X_{3}$ for any $u \in X_{3}$ and right hand side $g \in Y_{3}$ of (5.1) and this solution continuously depends on g.

The proof of Corollary 5.1 follows by (c) of Theorem 5.2.
Corollary 5.2. Let the hypothesis of Theorem 5.2 hold. Then
(f) If $S_{3} \neq \emptyset$, then $\partial F_{3}\left(X_{3}-S_{3}\right) \subset F_{3}\left(S_{3}\right)$.
(g) If $F_{3}\left(S_{3}\right) \subset F_{3}\left(X_{3}-S_{3}\right)$ then the problem (1.1)-(1.3) has the solution $u \in X_{3}$ for any $g \in Y_{3}$, i.e. $R\left(F_{3}\right)=Y_{3},\left(F_{3}\right.$ is a surjectivity X_{3} onto Y_{3}).
(h) If $Y_{3}-F_{3}\left(S_{3}\right)$ is connected and $X_{3}-S_{3} \neq \emptyset$, then $R\left(F_{3}\right)=Y_{3}$ (the surjectivity of F_{3} or the solvability of (1.1)-(1.3) for any $\left.g \in Y_{3}\right)$.

Proof. By (f) of Theorem 4.2 and (d) of Theorem 5.2 the sets $F_{3}\left(X_{3}\right)$ and $F_{3}\left(S_{3}\right)$ are closed and $F_{3}\left(X_{3}-S_{3}\right)$ is open. Hence we have the relation

$$
\begin{equation*}
F_{3}\left(X_{3}\right)=F_{3}\left(S_{3}\right) \cup F_{3}\left(X_{3}-S_{3}\right)=F_{3}\left(S_{3}\right) \cup \overline{F_{3}\left(X_{3}-S_{3}\right)}=\overline{F_{3}\left(X_{3}\right)} \tag{5.2}
\end{equation*}
$$

which is similar to (4.2).
(f) Since $F \in C^{1}\left(X_{3}, Y_{3}\right)$, such as in Theorem 5.1 we get $\Sigma_{3} \subset S_{3}$. Hence and from Theorem 4.2(j)

$$
\partial F\left(X_{3}-S_{3}\right) \subset \partial F\left(X_{3}-\Sigma_{3}\right) \subset F\left(\Sigma_{3}\right) \subset F\left(S_{3}\right)
$$

(g) From the first equation of (5.2) we have $F_{3}\left(X_{3}\right)=F_{3}\left(X_{3}-S_{3}\right)$ and so $R\left(F_{3}\right)$ is an open as well as a closed subset of the connected space Y_{3}. Thus $R\left(F_{3}\right)=Y_{3}$.
(h) Since $Y_{3}-F_{3}\left(S_{3}\right)$ is connected, then by Amhnesetti theorem (Proposition 2.6) we obtain that card $F_{3}^{-1}(\{g\})=$ const $=: k \geq 0$ for each $g \in Y_{3}-F_{3}\left(S_{3}\right)$.

If $k=0$, then $F_{3}\left(X_{3}\right)=F_{3}\left(S_{3}\right)$ and $F\left(X_{3}-S_{3}\right) \subset F\left(S_{3}\right)$. This is a contradiction with $X_{3}-S_{3} \neq \emptyset$. Hence $k>0$. Then $R\left(F_{3}\right)=Y_{3}$.

Theorem 5.3. Suppose that the hypotheses $\left(\mathrm{A}_{3} .1\right)$, $\left(\mathrm{A}_{3} .2\right)$, $\left(\mathrm{N}_{3} .2\right)$, $\left(\mathrm{N}_{3} .3\right)$ and $\left(\mathrm{F}_{3} .1\right)$ hold together with the condition
(i) Each point $u \in X_{3}$ is either a regular point or an isolated critical point of problem (1.1)-(1.3).

Then to each $g \in Y_{3}$ there exists one solution $u \in X_{3}$ of the problem (1.1)-(1.3) and it is continuously depends on g.

Proof. The associated operator $F_{3}: X_{3} \rightarrow Y_{3}$ is a proper C^{1}-Fredholm mapping of the zero index. By Proposition 2.9 and $2.10 F_{3}$ is a locally homeomorphic mapping of X_{3} into Y_{3}, and Proposition 2.5 (the global inversion theorem) implies the statement of this theorem.

References

[1] A. Ambrosetti, Global inversion theorems and applications to nonlinear problems, Conferenze del Seminario di Matematica dell' Università di Bari, Atti del 3° Seminario di Analisi Funzionale ed Applicazioni, A Survey on the Theoretical and Numerical Trends in Nonlinear Analysis, Gius. Laterza et Figli, Bari, 1976, pp. 211-232.
[2] L. Brüll and J. Mawhin, Finiteness of the set of solutions of some boundary value problems for ordinary differential equations, Arch. Math. (Brno) 24 (1988), 163-172.
[3] R. Cacciopoli, Un principio di inversione per le corrispondenze funzionali e sue applicazioni alle equazioni alle derivate parziali, Rend. Accad. Naz. Lincei (VI) 16 (1932).
[4] K. Deimling, Nonliear Functional Analysis, Springer-Verlag, New York, 1985.
[5] J. Dugundji and A. Granas, Fixed Point Theory, PWN, Warszawa, 1982.
[6] V. Ďurikovič, An initial-boundary value problem for quasi-linear parabolic systems of higher order, Ann. Polon. Math. XXX (1974), 145-164.
[7] , A nonlinear elliptic boundary value problem generated by a parabolic problem, Acta Math Univ. Comenian XLIV-XLV (1984), 225-235.
[8] , Funkcionálna analýza. Nelineárne metódy, Univerzita Komenského, Bratislava, 1989.
[9] , Generic properties of the nonlinear mixed Dirichlet problem, Proceedings of the International Scientific Conference of Mathematics, Žilina, 1998, pp. 57-63.
[10] V. Ďurikovič and M. Ďurikovičová, Some generic properties of nonlinear second order diffusional type problem, Arch. Math. (Brno) 35 (1999), 229-244.
[11] S. D. Eidelman and S. D. Ivasišen, The investigation of the Green's matrix for a nonhomogeneous boundary value problems of parabolic type, Trudy Moskov. Mat. Obshch. 23 (1970), 179-234. (in Russian)
[12] A. Friedmann, Partial Differential Equations of Parabolic Type, Izd. Mir, Moscow, 1968. (in Russian)
[13] A. Haraux, Nonlinear Evolution Equations - Global Behaviour of Solutions, SpringerVerlag, Berlin, Heidelberg, New York, 1981.
[14] S. D. Ivasišen, Green Matrices of Parabolic Boundary Value Problems, Vyšša Škola, Kijev, 1990. (in Russian)
[15] O. A. Ladyzhenskaja, V. A. Solonikov and N. N. Ural'ceva, Linejnyje i kvazilinejnyje urovnenija paraboliceskogo tipa, Izd. Nauka, Moscow, 1967. (in Russian)
[16] J. Mawhin, Generic properties of nonlinear boundary value problems, Differential Equations and Mathematical Physics, Academic Press Inc., New York, 1992, pp. 217-234.
[17] F. Quinn, Transversal approximation on Banach manifolds, Proc. Sympos. Pure Math. (Global Analysis) 15 (1970), 213-223.
[18] R. S. Sadyrchanov, Selected Question of Nonlinear Functional Analysis, Publishers ELM, Baku, 1989. (in Russian)
[19] S. Smale, An infinite dimensional version of Sard's theorem, Amer. J. Math. 87 (1965), 861-866.
[20] V. A. Solonikov, On Boundary value problem for linear parabolic systems of differential equations of the general type, Trudy Math. Inst. Steklov 83 (1965), 3-162. (in Russian)
[21] V. ŠEDA, Fredholm mappings and the generalized boundary value problem, Differential Integral Equation 8 (1995), 19-40.
[22] , Surjectivity of an operator, Czechoslovak Math. J. 40 (1990), 46-63.
[23] G. J. Šilov, Mathematical analysis, ALFA, Vydavatel'stvo Technickej a Ekonomickej Literatúry, Bratislava, 1974. (in Slovak)
[24] A. E. Taylor, Introduction of Functional Analysis, John Wiley and Sons, Inc., New York, 1958.
[25] V. A. Trenogin, Functional Analysis, Nauka, Moscow, 1980. (in Russian)
[26] K. Yosida, Functional Analysis, Springer-Verlag, Berlin, Heidelberg, New York, 1980.
[27] E. Zeidler, Nonlinear Functional Analysis and its Application I, Fixed-Point Theorems, Springer-Verlag, Berlin, Heidelberg, Tokyo, 1986.

Manuscript received December 13, 2000

Vladimír Ďurikovič
Department of Mathematical Analysis
Komensky University
Mlynská Dolina
84248 Bratislava, SLOVAK REPUBLIC

and

Department of Applied Mathematics
SS. Cyril and Methodius University
nám. J. Herdu 2
91700 Trnava, SLOVAK REPUBLIC
E-mail address: vdurikovic@fmph.uniba.sk

Monika Ďurikovičová
Department of Mathematics
Slovak Technical University
nám. Slobody 17
81231 Bratislava, SLOVAK REPUBLIC
E-mail address: duricovi@sjf.stuba.sk

TMNA: Volume $17-2001-\mathrm{N}^{\mathrm{o}} 1$

