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ON SOME CLASSES OF OPERATOR INCLUSIONS
WITH LOWER SEMICONTINUOUS NONLINEARITIES

Ralf Bader — Mikhail Kamenskĭı — Valeri Obukhovskĭı

Abstract. We consider a class of multimaps which are the composition of

a superposition multioperator PF generated by a nonconvex-valued almost
lower semicontinuous nonlinearity F and an abstract solution operator S.

We prove that under some suitable conditions such multimaps are con-

densing with respect to a special vector-valued measure of noncompactness
and construct a topological degree theory for this class of multimaps yield-

ing some fixed point principles. It is shown how abstract results can be

applied to semilinear inclusions, inclusions with m-accretive operators and
time-dependent subdifferentials, nonlinear evolution inclusions and integral

inclusions in Banach spaces.

1. Introduction

Differential inclusions with lower semicontinuous right-hand sides are the
object of the constant interest of many researchers in the recent years (see, for
example [12]–[16], [10], [7] and others). Much of the importance of this class
stems from the fact that in this case convexity of the values of the multival-
ued nonlinearity is redundant that allows to cover a large number of important
applications.
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In the case of inclusions with convex-valued multis the methods based on the
topological degree theory proved their high efficiency. The non-convexity does
not allow to apply the machinery of the classical degree theory directly. From
the other side, while study semilinear differential inclusions in Banach spaces,
in many cases which are important for applications, the semigroup generated
by linear part is neither compact nor analytic. This leads to the case when the
corresponding solution operator is non-compact and this circumstance also does
not permit the application of topological degree for compact maps.
It is known that mild solution of semilinear type differential inclusion may

be interpreted as a fixed point:

(∗) x ∈ S ◦ PF (x)

where PF is a superposition multioperator generated by multivalued nonlinearity
F and S is a solution operator of inclusion. In a pure semilinear case operator
S may be written explicitly in terms of a semigroup generated by a linear part
of the differential inclusion (see, for example [12], [13], [17]). In a nonlinear case
the solution operator S was studied by many authors (see [2], [17], [18] and other
works).
In a recent paper [12] it was mentioned that the regularity condition for the

nonlinearity F with respect to the Hausdorff measure of noncompactness implies
that the multioperator S ◦ PF is condensing with respect to a special measure
of noncompactness in a functional space. In a present work we consider the
case of an abstract solution operator satisfying conditions (S1) and (S2) below
and assume that multivalued nonlinearity F is almost lower semicontinuous and
nonconvex-valued. We prove that the multioperator S ◦ PF is condensing with
respect to the vector-valued measure of noncompactness ψ and this allows to
construct a special topological degree theory allowing to study not only the
semilinear version of the inclusion (∗) but to consider also significantly more
wide classes of differential and integral inclusions in a Banach space.
The paper is organized in the following way. After preliminaries, we construct

the topological degree theory for a special class of condensing multioperators. We
describe the main properties of the degree including the general fixed point prin-
ciple and derive from it the nonlinear alternative and Leray–Schauder type fixed
point theorem. As application of the developed abstract theory we consider the
solvability problems for semilinear inclusions, inclusions with m-accretive op-
erators and time-dependent subdifferentials, nonlinear evolution inclusions and
Volterra type problems for integral inclusions in a Banach space.

Preliminaries. Let (X, ρX) and (Y, ρY ) be metric spaces, P (Y ) denote the
collection of all nonempty subsets of Y . A multivalued map (multimap)

F : X → P (Y )
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is said to be lower semicontinuous at a point x ∈ X provided for every open set
V ⊂ Y such that F(x) ∩ V 6= ∅ there exists such δ > 0 that F(x′) ∩ V 6= ∅ for
all x′ ∈ X, ρX(x, x′) < δ. If this property is fulfilled for every point x ∈ X then
F is called lower semicontinuous (l.s.c.) (see, e.g. [4]–[6] for further details).
Let E be a Banach space; K(E) denote the collection of all nonempty com-

pact subsets of E. A multifunction G : [0, d]→ K(E) is said to be

(i) measurable if G−1(V ) = {t ∈ [0, d] : G(t) ⊂ V } is Lebesgue measurable
for every open set V ⊆ E (see e.g. [8], [5], [6] for equivalent definitions
and details),

(ii) p-integrable (p ≥ 1) provided it has a Bochner p-summable selection
g ∈ Lp([0, d];E), i.e. g(t) ∈ G(t) for a.e. t ∈ [0, a]; (see e.g. [8], [4] for
equivalent defintions and details). For p-integrable multifunction G the
set of all p-summable selections of G will be denoted as SpG.

Recall also the following notions (see, e.g. [1]). Let E be a Banach space,
B(E) denote the collection of all bounded subsets of E and (A,≥) be a partially
ordered set. A map

β : B(E)→ A

is called a measure of noncompactness (MNC) in E if, for every Ω ∈ B(E),

β(coΩ) = β(Ω).

A MNC β is called:

(i) monotone if Ω0,Ω1 ∈ B(E), Ω0 ⊆ Ω1 implies β(Ω0) ≤ β(Ω1),
(ii) nonsingular if β({a} ∪ Ω) = β(Ω) for every a ∈ E,Ω ∈ B(E),
(iii) regular if β(Ω) = 0 is equivalent to the relative compactness of Ω.

As the example of MNC possessing all these properties we may consider the
Hausdorff MNC

χ(Ω) = inf {ε > 0 : Ω has a finite ε-net} .

At last, let us consider the following notion. The nonempty subset M ⊂
L1([0, d];E) is said to be decomposable provided for every f, g ∈ M and each
Lebesgue measurable subset m in [0, d],

fχm + gχ[0,d]\m ∈M,

where χm is the characteristic function of the set m.

Lemma 1 (see [11]). Let X be a compact metric space, E a Banach space,
Z = L1([0, d];E). Then every l.s.c. multimap F : X → P (Z) with closed de-
composable values has a continuous selection, i.e. there exists a continuous map
f : X → Z such that f(x) ∈ F(x) for all x ∈ X.
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2. Topological degree for a class of condensing multimaps

Let E be a Banach space. We will consider a multimap F : [0, d]×E → K(E)
satisfying the following assumptions.

(F1) F is almost lower semicontinuous (a.l.s.c.) in the sense that for given
ε > 0 and ∅ 6= C ⊂ E compact, there exists a compact Iε ⊂ [0, d] with
meas([0, d] \ Iε) < ε such that restriction of F on Iε × C is l.s.c. and
spanF (Iε × C) is separable,

(F2) there exisits I ⊂ [0, d] of full measure such that for each D ∈ B(E) the
set F (I ×D) is bounded,

(F3) there exists a function k( · ) ∈ L1+[0, d] such that for every bounded set
D ⊂ E we have that

χ(F (t,D)) ≤ k(t) · χ(D) for a.e. t ∈ [0, d].

From (F1) it follows easily (cf. e.g. [10]) that for every function x( · ) ∈
C([0, d];E) the multifunction F (t, x(t)) is measurable with range in a separable
Banach space and thus p-integrable for any p, 1 ≤ p ≤ ∞, as it follows from
the property (F2). Hence, we may define the superposition multioperator PF :
C([0, d];E)→ P (Lp([0, d];E)) in the following way:

PF (x) = SpF ( · ,x( · )).

Also it is clear that, for every x ∈ C([0, d];E), the set PF (x) is closed and
decomposable. Further, following [16], [10] and [12], we may prove the next
statement.

Lemma 2. The multimap PF is l.s.c.

As an easy consequence of Lemmas 1 and 2 we have the following statement:

Corollary 1. Let X ⊂ C([0, d];E) compact. Then, for every p ≥ 1, the
superposition multioperator PF : X → P (Lp([0, d];E)) has a continuous selec-
tion.

Consider now a continuous map S : Lp([0, d];E)→ C([0, d];E) satisfying the
following assumptions:

(S1) there is a constant N > 0 such that, for every f, g ∈ Lp([0, d];E),

‖S(f)(t)− S(g)(t)‖ ≤ N
∫ t
0
‖f(s)− g(s)‖ ds for every t ∈ [0, d],

(S2) for every compact set K ⊂ E the set S(MK), where

MK = {f ∈ Lp([0, d];E) : f(t) ∈ K for a.e. t ∈ [0, d]},

is relatively compact in C([0, d];E).
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Denote ` = C([0, d];E) and let U ⊂ ` be an open bounded subset. Under
above assumptions consider a composition

(1) F = S ◦ PF : U → P (`)

and assume that it is fixed point tree on the boudary ∂U :

x 6∈ F(x) for all x ∈ ∂U.

Our aim is to present the topological degree for the multimap F . The fact
that this multimap is condensing with respect to a special MNC in ` will be
crucial in our constructions.
Consider the partially ordered set (R × R,≥) with the order ≥ induced by

the cone R2 of nonnegative pairs and define the following MNC ψ : B(`) →
(R× R,≥):

ψ(Ω) = (ν(Ω),modC(Ω))

where
ν(Ω) = max

∆∈D(Ω)
sup
t∈[0,d]

{e−Ltχ(∆(t))},

D(Ω) denotes the collection of all denumerable subsets of Ω; ∆(t) = {y(t) : y ∈
∆}, L > 0 and

modC(Ω) = lim
δ→0
sup
x∈Ω

max
|t1−t2|<δ
t1,t2∈[0,d]

‖x(t1)− x(t2)‖

is the modulo of equicontinuity of the set Ω. It is easy to see that the MNC ψ
is monotone and nonsingular.

Lemma 3. For L large enough, the multioperator F is ψ-condensing, i.e. the
relation

(2) ψ(F(Ω)) ≥ ψ(Ω)

for any bounded Ω ⊂ U implies the relative compactness of Ω.

For the proof we need the following result proved in [9], [13] which is given
in the form convenient for the sequel.

Lemma 4. Let {fn} ⊂ Lp([0, d];E) be an p-integrably bounded sequence such
that

χ({fn(t)}) ≤ µ(t) for a.e. t ∈ [0, d]
where µ( · ) ∈ L1+[0, d]. Then for every ε > 0 there exist a compact Kε ⊂ E, a
measurable set eε ⊂ [0, d], and a sequence of functions {gεn} ⊂ Lp([0, d];E) such
that:

(i) meas eε < ε,
(ii) {gεn(t)} ⊂ Kε for a.e. t ∈ [0, d],
(iii) ‖fn(t)− gεn(t)‖ < 2µ(t) + ε for a.e. t ∈ [0, d] \ eε.
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Proof of Lemma 3. Choose L > 0 large enough to provide

q = 2N · sup
t∈[0,d]

e−Lt
∫ t
0
k(s)eLs ds < 1

where N is a constant from the condition (S1) and k( · ) is the function from the
condition (F3). Let us demonstrate that the multimap F is (q, ν)-condensing,
i.e.

(3) ν(F(Ω)) ≤ qν(Ω)

for every bounded Ω ⊂ U . In fact, let {zn} be any sequence of elements from
F(Ω). Then there exists a sequence {xn} in Ω, a sequence of elements {fn} such
that fn ∈ PF (xn), n ≥ 1, and

(4) zn = S(fn) for all n ≥ 1.

Notice that from the condition (F2) it follows that the sequence {fn} is bounded
and we have also that, for a.e. t ∈ [0, d],

χ({fn(t)}) ≤ χ(F (t, {xn(t)})) ≤ k(t) · χ({xn(t)}) ≤ k(t) · eLtν(Ω).

By virtue of Lemma 4, for the sequence {fn(t)} there exist a a compact set Kε ⊂
E, a measurable set eε ⊂ [0, d], and a sequence of functions {gεn} ⊂ Lp([0, d];E)
satisfying the properties (i)–(iii) for µ(t) = k(t) · eLtν(Ω). Further, from the
hypothesis (S2) it follows that the set {Sgεn} is relatively compact in `. But
applying the properties (S1) and (iii) we obtain that

(5) e−Lt‖Sfn(t)− Sgεn(t)‖ ≤ Ne−Lt
∫ t
0
‖fn(s)− gεn(s)‖ ds

≤ 2Ne−Ltν(Ω)
∫ t
0
k(s) · eLs ds+ Cε ≤ q · ν(Ω) + Cε,

where C is a certain constant. Now the estimate (3) follows from the arbitrariness
of ε.
Further, let us mention that the equality ν(Ω) = 0 implies the relative com-

pactness of the set F(Ω) (notice that the MNC ν is not regular). In fact, from
the estimate (5) it follows that in this case for any sequence {zn} defined by
the equality (4) we may construct a compact net consisting of functions {Sgεn}
which would be arbitrary close to {zn}.
Now from relations (2) and (3) it follows that

ν(Ω) ≤ ν(F(Ω)) ≤ q · ν(Ω)

and hence ν(Ω) = 0 and so F(Ω) is relatively compact. But then modC(F(Ω)) =
0 and the relation (2) implies that also modC(Ω) = 0, and so ψ(Ω) = 0. From
the known Arzela–Ascoli criterion it follows that the MNC ψ is regular and hence
Ω is relatively compact. �
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Now let X be a closed subset of a Banach space E and G : X → P (E) be a
multimap. Recall (see e.g. [4], [5]) that a closed convex set T ⊆ E is said to be
fundamental for G if:
(a) G(X ∩ T ) ⊆ T ,
(b) x0 ∈ co (G(x0) ∪ T ) implies x0 ∈ T .
We emphasize that this definition does not exclude the case T = ∅ or X∩T =

∅, which necessarily implies that the fixed points set FixG := {x ∈ X : x ∈ G(x)}
is empty.
Let us note that the whole space E and coG(X) are examples of fundamental

sets.
The following properties of fundamental sets can be easily verified.

Proposition 1. The fixed points set FixG is included in every fundamental
set of G.

Proposition 2. If T is a fundamental set for a multimap G and P ⊂ T ,
then the set

T̃ = co (G(X ∩ T ) ∪ P )
is also fundamental.

Proposition 3. If {Tτ} is an arbitrary system of fundamental sets of G
then the set

T̂ =
⋂
τ

Tτ

is also fundamental.

Lemma 5. The multimap F given in (1) has a compact fundamental set T∞
such that U ∩ T∞ 6= ∅.

Proof. Take an arbitrary point p ∈ U and consider the collection {Tσ} of
all fundamental sets of F containing p. Notice that this collection is nonempty
since it contains `. Now the set

T∞ =
⋂
σ

Tσ

is the desirable one. In fact, from the minimality of T∞ it follows that

T∞ = co (F(U ∩ T∞)) ∪ p)

and therefore
ψ(U ∩ T∞) ≤ ψ(T∞) = ψ(F(U ∩ T∞)),

due to the monotonicity and nonsingularity properties of the MNC ψ. Applying
Lemma 3 we obtain that the set U ∩ T∞ is compact and thus ν(U ∩ T∞) = 0.
This implies that (by the argument following the estimate (5) in the proof of
Lemma 3) the set F(U ∩ T∞) is relatively compact. Thus T∞ is compact, too.�
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From Corollary 1 it follows that there exists a continuous selection γ : U ∩
T∞ → Lp([0, d];E) of a superposition multioperator PF . Consider a compact
continuous map S ◦ γ : U ∩ T∞ → T∞. It is clear that it is fixed point free on
the relative boundary ∂UT∞ .

Definition. The topological degree Deg(F , U) of a multimap F = S ◦ PF
is defined as

Deg(F , U) := degT∞(S ◦ γ, ∂UT∞)
where degT∞ denotes the relative topological degree of a compact continuous
map (see e.g. [3]).

Let us justify the correctness of the above definition.

Lemma 6. The degree Deg(F , U) does not depend on the choice of a selec-
tion γ.

Proof. In fact, let γ and δ be two continuous selections of a superposition
multioperator PF . Then the maps S ◦ γ and S ◦ δ are homotopic on the relative
boundary ∂UT∞ : the family h : ∂UT∞ × [0, 1]→ T∞,

h(x, λ) = S ◦ (κ[0,λd] · γ(x) + κ[λd,d] · δ(x)),

where κ denotes the characteristic function of the set, is obviously continuous,
x 6= h(x, λ) for all (x, λ) ∈ ∂UT∞ × [0, 1] and h(·, 0) = S ◦ δ, h(·, 1) = S ◦ γ.
Therefore

degT∞(S ◦ δ, ∂UT∞) = degT∞(S ◦ γ, ∂UT∞). �

Lemma 7. The degree Deg(F , U) does not depend on the choice of the fun-
damental set T∞.

Proof. Let T ′∞, T
′′
∞ be two compact fundamental sets of F . Notice that in

case T ′∞ ∩ T ′′∞ = ∅ the multimap F is fixed point free, and therefore

degT ′∞(S ◦ γ
′, ∂UT ′∞) = degT ′′∞(S ◦ γ

′′, ∂UT ′′∞) = 0.

Otherwise consider a compact fundamental set T̃ = T ′∞ ∩ T ′′∞. Let ρ : `→ T̃ be
any retraction. The family g : ∂UT ′∞ × [0, 1]→ T ′∞,

g(x, λ) = (1− λ) · S ◦ γ′(x) + λ · ρ ◦ S ◦ γ′(x)

is fixed point free: if x = g(x, λ) then

x ∈ co (S ◦ γ′(x) ∪ T̃ ) ⊆ co (F(x) ∪ T̃ )

and hence x ∈ T̃ but then also S ◦ γ′(x) ∈ T̃ and ρ ◦ S ◦ γ′(x) = S ◦ γ′(x) and
so x = S ◦ γ′(x) giving a contradiction.
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Now applying the homotopy invariance property of the relative topological
degree and the principle of the map restriction (see [3]) we obtain that

degT ′∞(S ◦ γ
′, ∂UT ′∞) = degT ′∞(ρ ◦ S ◦ γ

′, ∂UT ′∞) = degeT (S ◦ γ
′, ∂U

eT ).

Analogously,

degT ′′∞(S ◦ γ
′′, ∂UT ′′∞) = degeT (S ◦ γ

′′, ∂U
eT )

and an aplication of Lemma 6 gives

deg
eT (S ◦ γ

′, ∂U
eT ) = degeT (S ◦ γ

′′, ∂U
eT ). �

From the definition we may deduce usual properties of the topological degree
of the multimap S ◦ PF .

Property 1 (Normalization). If S ◦ PF (x) ≡ A, then

Deg(S ◦ PF , U) =

{
1 if A ⊂ U,
0 if A ⊂ ` \ U.

Property 2 (Additive dependence on the domain). Let {Uj}j∈J be a dis-
joint system of open sets, Uj ⊆ U such that

Fix (S ◦ PF ) ∩
(
U \
⋃
j

Uj

)
= ∅.

Then the degrees Deg(S ◦ PF , U j) nonvanish only for a finite number of indexes
j and

Deg(S ◦ PF , U) =
∑
j

Deg(S ◦ PF , U j).

Property 3 (Homotopy invariance). Let the family G : [0, d]×E× [0, 1]→
K(E) satisfy the following assumptions.

(G1) G is a.l.s.c. in the sense that for given ε > 0 and ∅ 6= C ⊂ E compact,
there exists a compact Iε ⊂ [0, d] with meas([0, d] \ Iε) < ε such that
restriction of G on Iε ×C × [0, 1] is l.s.c. and spanG(Iε ×C × [0, 1]) is
separable,

(G2) there exists I ⊂ [0, d] of full measure such that for each D ∈ B(E) the
set G(I ×D × [0, 1]) is bounded,

(G3) there exists a function k( · ) ∈ L1+[0, d] such that for every bounded set
D ⊂ E we have that

χ(G(t,D, [0, 1])) ≤ k(t) · χ(D) for a.e. t ∈ [0, d].
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For a continuous family R : Lp([0, d];E) × [0, 1] → C([0, d];E) we assume the
following hypothesis:

(R1) there is a constant N > 0 such that for every f, g ∈ Lp([0, d];E) and
λ ∈ [0, 1]

‖R(f, λ)(t)−R(g, λ)(t)‖ ≤ N
∫ t
0
‖f(s)− g(s)‖ ds for every t ∈ [0, d],

(R2) for every compact set K ⊂ E the set R(MK×[0, 1]) is relatively compact
in C([0, d];E).

If x 6∈ R( · , λ) ◦ PG( · , · ,λ)(x) for all x ∈ ∂U and λ ∈ [0, 1] then

Deg(R( · , 0) ◦ PG( · , · ,0), U) = Deg(R( · , 1) ◦ PG( · , · ,1), U).

We obtain also the following fixed point property.

Proposition 4. If Deg(S ◦ PF , U) 6= 0 then FixS ◦ PF 6= ∅.

From the above general fixed point principle one can derive other fixed point
theorems for the maps under consideration. As an example we prove the Non-
linear Alternative and Leray–Schauder type fixed point theorem.

Theorem 1. Let Br ⊂ ` be a closed ball with the center at the origin. Then
for a multimap S ◦ PF : BR → P (`) under assumptions (F1)–(F3) and (S1),
(S2) either there exists x0, ‖x0‖ = r and λ, 0 < λ < 1, such that

(6) x0 ∈ λ · S ◦ PF (x0)

or
FixS ◦ PF 6= ∅.

Proof. Assume that S ◦ PF is fixed point free on ∂Br (otherwise we are
done). Then the degree Deg(S ◦ PF , Br) is defined. It is easy to see that the
family R : Lp([0, d];E)× [0, 1]→ C([0, d];E),

R(f, λ) = λ · S(f)

satisfies the properties (R1), (R2). Supposing that the assumption (6) is not
valid and applying homotopy and normalization properties we obtain that

Deg(S ◦ PF , Br) = Deg(R( · , 1) ◦ PF , Br) = Deg(R( · , 0) ◦ PF , Br) = 1. �

Corollary 2. For a multimap S ◦ PF : `→ P (`) either the set

{x : x ∈ λ · S ◦ PF (x) for some λ ∈ (0, 1)}

is unbounded or FixS ◦ PF 6= ∅.

We may prove now the following abstract existence result.
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Theorem 2. Suppose that a multimap F : [0, d] × E → K(E) satisfy hy-
pothesis (F1), (F3) and

(F2’) ‖F (t, x)‖ := sup{‖y‖ : y ∈ F (t, x)} ≤ K(1 + ‖x‖) for a.e. t ∈ [0, d] and
x ∈ E

holds (where K > 0). Let S : Lp([0, d];E) → ` satisfy (S1), (S2). Then FixS ◦
PF 6= ∅.

Proof. For some λ ∈ (0, 1), let x ∈ `, x ∈ λ · S ◦ PF (x). Take f ∈ PF (x)
such that x = λ ·S(f). Define y = λ ·S(0). Then, for every t ∈ [0, d], we see that

‖x(t)− y(t)‖ ≤ λN ·
∫ t
0
‖f(s)‖ ds ≤ λNK

∫ t
0
(1 + ‖x(s)‖) ds

≤ λNKd+ λNK
∫ t
0
‖x(s)‖ ds

and hence

‖x(t)‖ ≤ ‖y‖+ λNKd+ λNK
∫ t
0
‖x(s)‖ ds.

Applying the Gronwall’s inequality we get

‖x(t)‖ ≤ (λ · ‖S(0)‖+ λNKd)eλNKt ≤ (‖S(0)‖+NKd)eNKd

and Corollary 2 may be applied to conclude the proof. �

3. Applications

As application of the above developed abstract theory we will consider the
Cauchy problem for differential inclusions of the form

(7)

{
x′(t) ∈ A(t, x(t)) + F (t, x(t)), t ∈ [0, d],
x(0) = x0,

where multivalued nonlinearity F satisfies conditions (F1), (F2’), (F3). As an
operator S : Lp([0, d], E) → C([0, d], E) we take the solution operator of the
quasi-linear problem

(8)

{
x′(t) ∈ A(t, x(t)) + f(t), t ∈ [0, d],
x(0) = x0,

Then it is clear that the solutions to (7) coincide with the fixed point set FixS ◦
PF of the multimap S ◦ PF .
Describe some concrete situations.
(a) Semilinear inclusions. A(t, x(t)) = Ax(t) where A : D(A) ⊆ E → E is

a densely defined linear operator generating a (noncompact) semigroup exp{At}.
In this case the (mild) solution operator (p=1) can be written in the explicit form:

S(f)(t) = exp{At}x0 +
∫ t
0
exp{A(t− s)}f(s) ds.
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The condition (S1) can be easily verified and the condition (S2) follows from the
property of the Cauchy operator proved in [9] (see also [13]). Applying Theorem 2
we obtain the existence of a mild solution for the Cauchy problem (7) (see [12]).
(b) Multivalued Volterra problems. The previous example is a particular case

of more general problems of existence of solutions to the following inclusion:

x(t) ∈ L(t) +
∫ t
0
k(t, s, F (s, x(s))ds for t ∈ [0, d].

Here L : [0, d]→ E is a continuous function and the kernel k : ∆×E → E, where
∆ = {(t, s) ∈ [0, d]× [0, d], s ≤ t} satisfies the following conditions (comp. [9]):

(V1) k is continuous in the first variable,
(V2) the function s 7→ k(t, s, g(s)) is integrable for each g ∈ L1([0, d], E),
(V3) ‖k(t, s, y)− k(t, s, z)‖ ≤M‖y − z‖ for (t, s) ∈ ∆, x, y ∈ E,
(V4) for every compact K ⊂ E there is a function µ ∈ L1([0, d]) such that

for t ∈ [0, d] and z ∈ K we have ‖k(t, s, z)‖ ≤ µ(s) for a.e. s ∈ [0, d].

Here we take

S(f)(t) = L(t) +
∫ t
0
k(t, s, f(s)) ds.

Then the assumptions (V1)–(V4) imply that the map

S : L1([0, d];E)→ C([0, d], E)

satisfies the assumptions (S1) and (S2). Thus Theorem 2 shows the existence of
a solution to the inclusion

x(t) ∈ L(t) +
∫ t
0
k(t, s, F (s, x(s))) ds.

(c) Inclusions with m-accretive operators. A(t, x(t)) = Ax(t) where A :
D(A) ⊆ E → E is an m-accretive operator. Assume that the topological dual
E∗ is uniformly convex and that A generates a (noncompact) equicontinuous
semigroup. For the mild solution operator S (with p = 1) of the problem (8),
we obtain in this case condition (S1) as a weak form of the Benilan integral
inequalities; condition (S2) is proven in [17, p. 60]. Thus an application of
Theorem 2 shows the existence of a solution to (7).
(d) Inclusions with time-dependent subdifferentials. Let E = H be a Hilbert

space and let ϕ : [0, d] × H → R ∪ {∞} be a function such that for each
t ∈ [0, d], ϕ(t, · ) is proper, convex and lower semicontinuous. We suppose that
A(t, x(t)) = ∂ϕ(t, x(t)) for a.e. t ∈ [0, d] and t = 0, where ∂ϕ denotes the sub-
differential of a function. Assume also that ϕ satisfies the Yotsutani conditions
(see [18]), but we do not suppose that ϕ(t, · ) is of a compact type. Then it
was shown in [18] that for each x0 ∈ Domϕ(0, · ) and for each f ∈ L1([0, d],H)
problem (8) has a unique strong solution S(f). Finally, the assumptions (S1)
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and (S2) can be justified for the solution mapping S by estimates given in [18]
(see also [9]).
(e) Nonlinear evolution inclusions. Let (E,H,E∗) be an evolution triple of

spaces. Assume that A : [0, d] × E → E∗ is an operator measurable in t and
monotone and hemicontinuous in x satisfying the assumptions given in Zeidler
[19, p. 770]. Let F : [0, d] × H → K(H) satisfy the assumptions (F1), (F2’),
(F3) and let x0 ∈ H. Then for each f ∈ Lq([0, d],H), q > 1, there exists
a unique solution S(f) ∈ W 1p ([0, d];E,H), 1/p + 1/q = 1 of problem (8). Since
W 1p ([0, d];E,H) can be embedded continuously into C([0, d],H) we thus obtain a
mapping S : Lq([0, d],H)→ C([0, d],H) and it can be shown that this mapping
satisfies the assumptions (S1) and (S2). Notice that the estimation in (S1) is
based upon the integration by parts formula for maps in W 1p ([0, d];E,H), see
[19], whereas (S2) can be proven by arguments similar to those givem in [17,
p. 60]. Thus we see that the Cauchy problem (7) for the evolution inclusion has
a solution in this case.
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[1] R. R. Akhmerov, M. I. Kamenskĭı, A. S. Potapov, A. E. Rodkina and B. N. Sa-
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tion, Thèse, Orsay (1972).

[3] Yu. G. Borisovich, The relative rotation of compact vector fields in linear spaces,
Trudy Sem. Funktsion. Anal. Voronezh Gos. Univ. 12 (1969), 3–27. (Russian)

[4] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis and V. V. Obukhovskĭı, Topo-
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