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ON SOME CLASSES OF OPERATOR INCLUSIONS
WITH LOWER SEMICONTINUOUS NONLINEARITIES

RALF BADER — MIKHAIL KAMENSKIT — VALERI OBUKHOVSKII

ABSTRACT. We consider a class of multimaps which are the composition of
a superposition multioperator Pr generated by a nonconvex-valued almost
lower semicontinuous nonlinearity F' and an abstract solution operator S.
We prove that under some suitable conditions such multimaps are con-
densing with respect to a special vector-valued measure of noncompactness
and construct a topological degree theory for this class of multimaps yield-
ing some fixed point principles. It is shown how abstract results can be
applied to semilinear inclusions, inclusions with m-accretive operators and
time-dependent subdifferentials, nonlinear evolution inclusions and integral
inclusions in Banach spaces.

1. Introduction

Differential inclusions with lower semicontinuous right-hand sides are the
object of the constant interest of many researchers in the recent years (see, for
example [12]-[16], [10], [7] and others). Much of the importance of this class
stems from the fact that in this case convexity of the values of the multival-
ued nonlinearity is redundant that allows to cover a large number of important
applications.
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In the case of inclusions with convex-valued multis the methods based on the
topological degree theory proved their high efficiency. The non-convexity does
not allow to apply the machinery of the classical degree theory directly. From
the other side, while study semilinear differential inclusions in Banach spaces,
in many cases which are important for applications, the semigroup generated
by linear part is neither compact nor analytic. This leads to the case when the
corresponding solution operator is non-compact and this circumstance also does
not permit the application of topological degree for compact maps.

It is known that mild solution of semilinear type differential inclusion may
be interpreted as a fixed point:

(*) z €8 oPp(x)

where Pr is a superposition multioperator generated by multivalued nonlinearity
F and S is a solution operator of inclusion. In a pure semilinear case operator
S may be written explicitly in terms of a semigroup generated by a linear part
of the differential inclusion (see, for example [12], [13], [17]). In a nonlinear case
the solution operator S was studied by many authors (see [2], [17], [18] and other
works).

In a recent paper [12] it was mentioned that the regularity condition for the
nonlinearity F' with respect to the Hausdorff measure of noncompactness implies
that the multioperator S o Pp is condensing with respect to a special measure
of noncompactness in a functional space. In a present work we consider the
case of an abstract solution operator satisfying conditions (S1) and (S2) below
and assume that multivalued nonlinearity F' is almost lower semicontinuous and
nonconvex-valued. We prove that the multioperator S o Pr is condensing with
respect to the vector-valued measure of noncompactness ¥ and this allows to
construct a special topological degree theory allowing to study not only the
semilinear version of the inclusion (%) but to consider also significantly more
wide classes of differential and integral inclusions in a Banach space.

The paper is organized in the following way. After preliminaries, we construct
the topological degree theory for a special class of condensing multioperators. We
describe the main properties of the degree including the general fixed point prin-
ciple and derive from it the nonlinear alternative and Leray—Schauder type fixed
point theorem. As application of the developed abstract theory we consider the
solvability problems for semilinear inclusions, inclusions with m-accretive op-
erators and time-dependent subdifferentials, nonlinear evolution inclusions and
Volterra type problems for integral inclusions in a Banach space.

Preliminaries. Let (X, px) and (Y, py) be metric spaces, P(Y) denote the
collection of all nonempty subsets of Y. A multivalued map (multimap)

F:X—PY)
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is said to be lower semicontinuous at a point x € X provided for every open set
V C Y such that F(z) NV # ) there exists such § > 0 that F(z') NV # @ for
all 2’ € X, px(x,a’) < 4. If this property is fulfilled for every point € X then
F is called lower semicontinuous (l.s.c.) (see, e.g. [4]-[6] for further details).
Let E be a Banach space; K(E) denote the collection of all nonempty com-
pact subsets of E. A multifunction G : [0,d] — K(FE) is said to be
(i) measurable if G=*(V) = {t € [0,d] : G(t) C V} is Lebesgue measurable
for every open set V' C E (see e.g. [8], [5], [6] for equivalent definitions
and details),
(ii) p-integrable (p > 1) provided it has a Bochner p-summable selection
g € LP([0,d]; E), i.e. g(t) € G(t) for a.e. t € [0,a]; (see e.g. [8], [4] for
equivalent defintions and details). For p-integrable multifunction G the
set of all p-summable selections of G will be denoted as Sg.

Recall also the following notions (see, e.g. [1]). Let E be a Banach space,
B(E) denote the collection of all bounded subsets of E and (A4, >) be a partially
ordered set. A map

08:B(E)— A
is called a measure of noncompactness (MNC) in E if, for every Q € B(E),

B0 Q) = B(Q).

A MNC g is called:

(i) monotone if Qo, Q1 € B(E), Qo C O implies 5(Q) < B(£21),
(ii) nonsingular if f({a} U Q) = B(Q) for every a € E,Q € B(E),
(iii) regular if B(Q2) = 0 is equivalent to the relative compactness of .

As the example of MNC possessing all these properties we may consider the
Hausdorff MNC
x(©) =inf {e > 0: Q has a finite e-net} .

At last, let us consider the following notion. The nonempty subset M C
LY([0,d]; E) is said to be decomposable provided for every f,g € M and each
Lebesgue measurable subset m in [0, d],

IXm + 9X[0,a7\m € M,
where Y, is the characteristic function of the set m.

LEMMA 1 (see [11]). Let X be a compact metric space, E a Banach space,
Z = L'([0,d]; E). Then every l.s.c. multimap F : X — P(Z) with closed de-
composable values has a continuous selection, i.e. there exists a continuous map
f:X — Z such that f(z) € F(x) forallz € X.
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2. Topological degree for a class of condensing multimaps

Let E be a Banach space. We will consider a multimap F : [0,d]x E — K(E)
satisfying the following assumptions.

(F1) F is almost lower semicontinuous (a.l.s.c.) in the sense that for given
e >0 and () # C C E compact, there exists a compact I. C [0,d] with
meas([0,d] \ I.) < e such that restriction of F' on I. x C' is Ls.c. and
span F'(I. x C) is separable,

(F2) there exisits I C [0,d] of full measure such that for each D € B(F) the
set F(I x D) is bounded,

(F3) there exists a function k(-) € L1 [0, d] such that for every bounded set
D C E we have that

X(F(t,D)) < k(t)-x(D) fora.e. t€]0,d].

From (F1) it follows easily (cf. e.g. [10]) that for every function z(-) €
C([0,d]; E') the multifunction F(¢,x(t)) is measurable with range in a separable
Banach space and thus p-integrable for any p, 1 < p < oo, as it follows from
the property (F2). Hence, we may define the superposition multioperator Pg :
C([0,d]; E) — P(L*([0,d]; E)) in the following way:

Pr(z) = Sg( ()
Also it is clear that, for every z € C([0,d]; E), the set Pp(z) is closed and
decomposable. Further, following [16], [10] and [12], we may prove the next
statement.

LEMMA 2. The multimap Pr is l.s.c.
As an easy consequence of Lemmas 1 and 2 we have the following statement:

COROLLARY 1. Let X C C([0,d]; E) compact. Then, for every p > 1, the
superposition multioperator Pr : X — P(LP([0,d]; E)) has a continuous selec-

tion.

Consider now a continuous map S : LP([0,d]; E) — C([0, d]; E)) satisfying the
following assumptions:

(S1) there is a constant N > 0 such that, for every f,g € LP([0,d]; E),

1S(H)(E) = S(g) @) < N/O 1£(s) —g(s)llds  for every ¢ € [0, d],
(S2) for every compact set K C E the set S(Mf), where
Mg ={f € LP([0,d]; E) : f(t) € K for a.e. t €]0,d]},

is relatively compact in C([0,d]; E).
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Denote ¢ = C([0,d]; E) and let U C ¢ be an open bounded subset. Under
above assumptions consider a composition

(1) F=8o0Pr:U— P{)
and assume that it is fixed point tree on the boudary OU:
x & F(x) forall z € OU.

Our aim is to present the topological degree for the multimap F. The fact
that this multimap is condensing with respect to a special MNC in ¢ will be
crucial in our constructions.

Consider the partially ordered set (R x R, >) with the order > induced by
the cone R? of nonnegative pairs and define the following MNC 1 : B(f) —
(R xR, >):

(€)= (v(92), mode(2))
where

v(Q) = max sup {e “ix(A®}))},
(@)= g s (7 X(AD)

D(Q) denotes the collection of all denumerable subsets of 2; A(t) = {y(t): y €
A}, L >0 and
mode(2) = lim sup max ||z(t;) — z(t2)]|
0—0 e It1—t2I<8
t1,t9€[0,d]
is the modulo of equicontinuity of the set ). It is easy to see that the MNC v
is monotone and nonsingular.

LEMMA 3. For L large enough, the multioperator F s i)-condensing, i.e. the
relation

(2) P(F(Q) = ¥(Q)
for any bounded Q2 C U implies the relative compactness of ).

For the proof we need the following result proved in [9], [13] which is given
in the form convenient for the sequel.

LEMMA 4. Let {f,} C LP([0,d]; E) be an p-integrably bounded sequence such
that
AU} < ult) for ace. t € [0,d]
where p(-) € LY[0,d]. Then for every e > 0 there exist a compact K. C E, a
measurable set e. C [0,d], and a sequence of functions {g5} C LP([0,d]; E) such
that:

(i) mease. < ¢,
(i) {g5(t)} C K. for a.e. t € [0,d],
(i) [Lfu(t) — 65,00 < 2(t) + for ace. t € [0,d]\ ex.
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PrOOF OF LEMMA 3. Choose L > 0 large enough to provide

t

q=2N - sup e*Lt/ k(s)et*ds < 1
te[0,d] 0

where N is a constant from the condition (S1) and k(- ) is the function from the

condition (F3). Let us demonstrate that the multimap F is (g, v)-condensing,

3) v(F()) < qv(Q)

for every bounded Q C U. In fact, let {2,} be any sequence of elements from
F(). Then there exists a sequence {x, } in {2, a sequence of elements {f,,} such
that f, € Pr(x,),n > 1, and

(4) zn = S(fn) foralln >1.

Notice that from the condition (F2) it follows that the sequence {f,} is bounded
and we have also that, for a.e. ¢t € [0,d],

XU 0} < x(F(t Aza(®)}) < k() - x{za(®)}) < k(1) - " v(9).

By virtue of Lemma 4, for the sequence {f,,(t)} there exist a a compact set K. C
E, a measurable set e. C [0,d], and a sequence of functions {g5} C LP([0,d]; E)
satisfying the properties (i)-(iii) for p(t) = k(t) - el'v(Q). Further, from the
hypothesis (S2) it follows that the set {SgZ} is relatively compact in ¢. But
applying the properties (S1) and (iii) we obtain that

(5) e S fult) — Sgc(t)]] < Ne ™ / 1(s) — g5(5)]] ds

t
< 2Ne_LtV(Q)/ k(s)-el*ds+ Ce < q-v(Q) + Ce,
0

where C'is a certain constant. Now the estimate (3) follows from the arbitrariness
of e.

Further, let us mention that the equality v(2) = 0 implies the relative com-
pactness of the set F(Q) (notice that the MNC v is not regular). In fact, from
the estimate (5) it follows that in this case for any sequence {z,} defined by
the equality (4) we may construct a compact net consisting of functions {Sg¢Z }
which would be arbitrary close to {z,}.

Now from relations (2) and (3) it follows that

v(Q) <v(F(Q)) <q-v(Q)

and hence v(2) = 0 and so F(€2) is relatively compact. But then modea(F(Q2)) =
0 and the relation (2) implies that also mods(€Q2) = 0, and so () = 0. From
the known Arzela—Ascoli criterion it follows that the MNC 4 is regular and hence
Q is relatively compact. O
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Now let X be a closed subset of a Banach space E and G : X — P(F) be a
multimap. Recall (see e.g. [4], [5]) that a closed convex set T' C E is said to be
fundamental for G if:

(a) G(XNT)CT,
(b) xo € €0 (G(xo) UT) implies zp € T.

We emphasize that this definition does not exclude the case T'= () or XNT =
(), which necessarily implies that the fixed points set FixG := {x € X : 2 € G(2)}
is empty.

Let us note that the whole space E and €0 G(X) are examples of fundamental
sets.

The following properties of fundamental sets can be easily verified.

PROPOSITION 1. The fized points set Fix G is included in every fundamental

set of G.

ProrosiTION 2. If T is a fundamental set for a multimap G and P C T,
then the set
T=¢(GXNT)UP)

s also fundamental.

PROPOSITION 3. If {T;} is an arbitrary system of fundamental sets of G

then the set
T =1

is also fundamental.

LEMMA 5. The multimap F given in (1) has a compact fundamental set Ty
such that U N Ta # 0.

PROOF. Take an arbitrary point p € U and consider the collection {T,} of
all fundamental sets of F containing p. Notice that this collection is nonempty
since it contains £. Now the set

T =()T>
is the desirable one. In fact, from the minimality of T, it follows that
To =0 (F(UNTx))Up)

and therefore

w(ﬁﬂ TOO) < w(TOO) = ¢(.7:(Uﬂ TOO))7
due to the monotonicity and nonsingularity properties of the MNC . Applying
Lemma 3 we obtain that the set U N T, is compact and thus v(U N Ty ) = 0.
This implies that (by the argument following the estimate (5) in the proof of
Lemma 3) the set F(U NTy) is relatively compact. Thus Ty, is compact, t0o.0]
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From Corollary 1 it follows that there exists a continuous selection v : U N
Ts — LP([0,d]; E) of a superposition multioperator Pr. Consider a compact
continuous map S o7 : UN Ty — Tao. It is clear that it is fixed point free on
the relative boundary oUr__.

DEFINITION. The topological degree Deg(F,U) of a multimap F = S o Pp
is defined as

Deg(F,U) := degr_ (S o~,0Ur.)
where degr_ denotes the relative topological degree of a compact continuous
map (see e.g. [3]).

Let us justify the correctness of the above definition.

LEMMA 6. The degree Deg(F,U) does not depend on the choice of a selec-
tion .

PROOF. In fact, let v and § be two continuous selections of a superposition
multioperator Pr. Then the maps S o and S o are homotopic on the relative
boundary Ur_: the family h: Uz x [0,1] — T,

h(z,\) = S o (kpag - V(@) + Kpa,qg - 0(x)),

where x denotes the characteristic function of the set, is obviously continuous,
x # h(xz,\) for all (x,\) € OUr_ x [0,1] and h(-,0) = Sod, h(,1) = Son.
Therefore

degr (S 06,0Ur_) =degr._(So~v,0Ur.). O

LEMMA 7. The degree Deg(F,U) does not depend on the choice of the fun-
damental set Ty .

PRrROOF. Let T/ ,T’. be two compact fundamental sets of F. Notice that in
case T, NT! = () the multimap F is fixed point free, and therefore

degTéc (S o ’y/, 8UT(;Q) = degTéé (S o ’y”, 6UT&) =0.

Otherwise consider a compact fundamental set T' = T NTYL. Let p: £ — T be
any retraction. The family g : 0Ur,_ x [0,1] — T7,

gz, A) = (1=X)-Sov(z) + A poSor(z)
is fixed point free: if x = g(x, \) then
zeco(Sory(x)UT) Ceo(F(x)uT)

and hence = € T but then also So~/(z) € T and po So+/(z) = So~'(z) and
so x = S o+/(x) giving a contradiction.
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Now applying the homotopy invariance property of the relative topological
degree and the principle of the map restriction (see [3]) we obtain that

degrs (S o+',0Ur: ) =degr_ (po Sor,0Ur, ) =degz(S o', 0Us).

Analogously,
degry (S 04", 0Ury) = degz (S 02", 0UF)

and an aplication of Lemma 6 gives
degf(S o ’)//, an) = degf(S o '7”, 6Uf) O

From the definition we may deduce usual properties of the topological degree
of the multimap S o Pp.

PROPERTY 1 (Normalization). If S o Pp(x) = A, then

_ 1 ifACU,
Deg(S o Pp,U) = —
0 ifAce\T.
PROPERTY 2 (Additive dependence on the domain). Let {U,},;cs be a dis-
joint system of open sets, U; C U such that

Fix (S o Pp) N (U\UUj) =0.

Then the degrees Deg(S o Pr,U;) nonvanish only for a finite number of indexes
j and
Deg(S o Pp,U) =Y _Deg(S o Pr,U;).
J

PROPERTY 3 (Homotopy invariance). Let the family G : [0,d] x E x [0,1] —
K(E) satisfy the following assumptions.

(G1) G is a.l.s.c. in the sense that for given e > 0 and ) # C C E compact,
there exists a compact I. C [0,d] with meas([0,d] \ I.) < € such that
restriction of G on I. x C' x [0,1] is l.s.c. and span G(I. x C x [0,1]) is
separable,

(G2) there exists I C [0,d] of full measure such that for each D € B(E) the
set G(I x D x [0,1]) is bounded,

(G3) there exists a function k(-) € L1[0,d] such that for every bounded set
D C E we have that

x(G(t,D,[0,1])) < k(t) - x(D)  for a.e. t €[0,d].
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For a continuous family R : LP([0,d]; E) x [0,1] — C([0,d]; E) we assume the
following hypothesis:

(R1) there is a constant N > 0 such that for every f,g € LP([0,d]; E) and
A€ [0,1]

IR(f, A)(E) — R(g, M (B < N/O 1 (s) —g(s)ll ds  for every t € [0,d],

(R2) for every compact set K C E the set R(Mg x [0, 1)) is relatively compact
in C([0,d]; E).

Ifx & R(-,\)oPg(.,. n(x) for all z € OU and X € [0,1] then
Deg(R(-,0) o ’Pg(_’_’o),U) = Deg(R(-,1) 0 PG(-,-,1),U)-
We obtain also the following fixed point property.
PROPOSITION 4. If Deg(S o Pp,U) # 0 then Fix S o Pp # .
From the above general fixed point principle one can derive other fixed point

theorems for the maps under consideration. As an example we prove the Non-
linear Alternative and Leray—Schauder type fixed point theorem.

THEOREM 1. Let B, C £ be a closed ball with the center at the origin. Then
for a multimap S o Pr : Br — P({) under assumptions (F1)—(F3) and (S1),
(S2) either there exists xg, ||xol| =1 and A\, 0 < A < 1, such that

(6) g EAX-So PF(xo)

or

Fix S o Pr # 0.

PROOF. Assume that S o P is fixed point free on 9B, (otherwise we are
done). Then the degree Deg(S o Pr, B,.) is defined. It is easy to see that the
family R : LP([0,d]; E) x [0,1] — C(]0,d]; E),

R(f,A) =X 5(f)

satisfies the properties (R1), (R2). Supposing that the assumption (6) is not
valid and applying homotopy and normalization properties we obtain that

Deg(S o Pr, B,) = Deg(R(-,1) o Pr, B,) = Deg(R(-,0) o Pp,B,) =1. O

COROLLARY 2. For a multimap S o Pp : £ — P({) either the set
{z:2z€ X SoPp(x) for some A € (0,1)}
is unbounded or Fix S o Pr # ().

We may prove now the following abstract existence result.
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THEOREM 2. Suppose that a multimap F : [0,d] x E — K(E) satisfy hy-
pothesis (F1), (F3) and

(F2) ||F(t,2)| :==sup{|lyll : v € F(t,z)} < K(1+ | z|) for a.e. t €[0,d] and
rekl
holds (where K > 0). Let S : LP([0,d]; E) — ¢ satisfy (S1), (S2). Then Fix S o
Pr # 0.

PRrROOF. For some A € (0,1), let x € £, x € A- S o Pp(z). Take f € Pp(x)
such that = A-S(f). Define y = A-S(0). Then, for every ¢ € [0, d], we see that

() — y(B)]] < AN - / 1£(s)]lds < ANK / (1+ [J(s)])) ds

t
< ANKd + )\NK/ lz(s)|] ds
0

and hence .
@) < llyll + ANKdJrANK/O |z(s)|| ds.

Applying the Gronwall’s inequality we get
2@l < A~ [SO)[| + ANKd)e*EE < (S (0)]| + NEd)eN e

and Corollary 2 may be applied to conclude the proof. O

3. Applications

As application of the above developed abstract theory we will consider the
Cauchy problem for differential inclusions of the form

z'(t) € A(t,z(t)) + F(t,z(t)), te€]0,d],
(7)
2(0) = xo,

where multivalued nonlinearity F' satisfies conditions (F1), (F2’), (F3). As an
operator S : LP([0,d],E) — C([0,d], E) we take the solution operator of the
quasi-linear problem

- {x’(t) € A(t,x(t)) + f(t), te][0,d],

z(0) = zo,
Then it is clear that the solutions to (7) coincide with the fixed point set Fix .S o
Pr of the multimap S o Pp.
Describe some concrete situations.
(a) Semilinear inclusions. A(t,x(t)) = Axz(t) where A: D(A) C E — FE is
a densely defined linear operator generating a (noncompact) semigroup exp{ At}.
In this case the (mild) solution operator (p=1) can be written in the explicit form:

S(f)(t) = exp{At}zo + / exp{A(t — 5)}£(s) ds.
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The condition (S1) can be easily verified and the condition (S2) follows from the
property of the Cauchy operator proved in [9] (see also [13]). Applying Theorem 2
we obtain the existence of a mild solution for the Cauchy problem (7) (see [12]).

(b) Multivalued Volterra problems. The previous example is a particular case
of more general problems of existence of solutions to the following inclusion:

x(t) € L(t) + /Olt k(t,s, F(s,z(s))ds fort € [0,d].

Here L : [0,d] — FE is a continuous function and the kernel k : Ax E — E, where
A ={(t,s) €[0,d] x [0,d],s <t} satisfies the following conditions (comp. [9]):
(V1) k is continuous in the first variable,
(V2) the function s — k(t, s, g(s)) is integrable for each g € L'([0,d], E),
(V3) ||k(t,s,y) — k(t,s,2)|| < M|y — 2| for (t,s) € A,z,y € E,
(V4) for every compact K C E there is a function u € L'([0,d]) such that
for t € [0,d] and z € K we have ||k(t, s, z)|| < u(s) for a.e. s € [0,d].

Here we take .
SO =L+ [ ks f)ds
Then the assumptions (Vl)*(V4) imply ’Shat the map
S:L'([0,d]; E) — C([0,d], E)

satisfies the assumptions (S1) and (S2). Thus Theorem 2 shows the existence of
a solution to the inclusion

x(t) € L(t) +/0 k(t, s, F(s,x(s)))ds.

(¢) Inclusions with m-accretive operators. A(t,xz(t)) = Ax(t) where A :
D(A) C E — F is an m-accretive operator. Assume that the topological dual
E* is uniformly convex and that A generates a (noncompact) equicontinuous
semigroup. For the mild solution operator S (with p = 1) of the problem (8),
we obtain in this case condition (S1) as a weak form of the Benilan integral
inequalities; condition (S2) is proven in [17, p. 60]. Thus an application of
Theorem 2 shows the existence of a solution to (7).

(d) Inclusions with time-dependent subdifferentials. Let E = H be a Hilbert
space and let ¢ : [0,d] x H — R U {occ} be a function such that for each
t € 10,d], ¢(t, -) is proper, convex and lower semicontinuous. We suppose that
A(t,z(t)) = Op(t,x(t)) for a.e. t € [0,d] and ¢ = 0, where Jp denotes the sub-
differential of a function. Assume also that ¢ satisfies the Yotsutani conditions
(see [18]), but we do not suppose that ¢(¢, -) is of a compact type. Then it
was shown in [18] that for each zg € Dom¢(0, -) and for each f € L*([0,d], H)
problem (8) has a unique strong solution S(f). Finally, the assumptions (S1)
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and (S2) can be justified for the solution mapping S by estimates given in [18]
(see also [9]).

(e) Nonlinear evolution inclusions. Let (E, H, E*) be an evolution triple of
spaces. Assume that A : [0,d] x E — E* is an operator measurable in ¢ and
monotone and hemicontinuous in x satisfying the assumptions given in Zeidler
[19, p. 770]. Let F : [0,d] x H — K(H) satisfy the assumptions (F1), (F2’),
(F3) and let @y € H. Then for each f € L%([0,d],H), ¢ > 1, there exists
a unique solution S(f) € W, ([0,d]; E,H), 1/p+1/q = 1 of problem (8). Since
W, ([0,d]; E, H) can be embedded continuously into C([0, d], H) we thus obtain a
mapping S : L1([0,d], H) — C([0,d], H) and it can be shown that this mapping
satisfies the assumptions (S1) and (S2). Notice that the estimation in (S1) is
based upon the integration by parts formula for maps in WI}([O,d]; E H), see
[19], whereas (S2) can be proven by arguments similar to those givem in [17,
p. 60]. Thus we see that the Cauchy problem (7) for the evolution inclusion has
a solution in this case.
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