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ON STABILITY OF FIXED POINTS OF MULTIVALUED MAPS

Valeri Obukhovskĭı — Tatiana Starova

Abstract. The criterion for the stability of a fixed point of a compact or

condensing multimap in a Banach space with respect to a small perturba-

tion is expressed in terms of its topological index.

1. Introduction

In this paper we consider necessary and sufficient conditions for the stability
of an isolated fixed point of a convex-valued multivalued map in a Banach space.
The coresponding results of B. O‘Nill (see [4]) and G. Gabor (see [3]) are gen-
eralized. Section 2 contains definitions used in the paper. Section 3 is devoted
to the research of the criterion for the stability of an isolated singular point for
a completely continuous multivalued vector field in a Banach space. In Section 4
we extend the result to the case of a multivalued vector field condensing with
respect to the Hausdorff measure of noncompactness.

2. Definitions

Let E be a Banach space; Kv(E) denote a collection of all nonempty convex
compact subsets of E; G ⊂ E be an open set.
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We will consider an upper semicontinuous (u.s.c.) multimap F : G → Kv(E)
and a corresponding multifield Φ = i− F : G → Kv(E), Φ(x) = x− F (x).

Let χ be a Hausdorff measure of noncompactness (MNC) in E:

χ(Ω) = inf{ε > 0 : Ω has a finite ε-net}.

Definition 1. An u.s.c. multimap F : G → Kv(E) is said to be (k, χ)-
condensing, 0 ≤ k < 1, provided χ(F (Ω)) ≤ kχ(Ω) for every bounded Ω ⊂ G

(see, e.g. [1], [2]).

Definition 2. For ε > 0, a (k′, χ)-condensing multifield Φε = i− Fε : G →
Kv(E), Φε(x) = x− Fε(x) is said to be ε-close to a (k, χ)-condensing multifield
Φ : G → Kv(E) provided

ρ(Φε(x),Φ(x)) = sup
y∈Φε(x)

dist (y, Φ(x)) < ε

for all x ∈ G.

Definition 3. (cf. [3], [4]). An isolated singular point x∗ ∈ G, 0 ∈ Φ(x∗) of
a (k, χ)-condensing multifield Φ is said to be stable provided for every sufficiently
small neighbourhood U = U(x) there exists such ε > 0 that every ε-close to Φ
on U (k′, χ)-condensing multifield Φε has a singular point in U .

In particular, an isolated singular point x∗ ∈ G, 0 ∈ Φ(x∗) of a completely
continuous (i.e. corresponding to an u.s.c. and compact multimap) multifield Φ is
said to be stable provided for every sufficiently small neighbourhood U = U(x)
there exists such ε > 0 that every ε-close to Φ on Ū completely continuous
multifield Φε has a singular point in U .

3. Criterion of stability of an isolated singular point
of a completely continuous multifield in a Banach space

Theorem 1. Let x∗ ∈ G be an isolated singular point of a completely con-
tinuous multifield Φ = i− F : G → Kv(E). The condition of nontriviality of its
topological index

ind (x∗,Φ) 6= 0

is sufficient, and in case Φ(x∗) = {0}, also necessary condition for the stability
of x∗.

Proof. (1) Sufficiency. A sufficiency follows from properties of a topological
degree for a completely continuous multifields. (see [1], [2])

(2) Necessity. Let x∗ ∈ G be an isolated singular point of a multifield Φ such
that Φ(x∗) = {0} and ind (x∗,Φ) = 0. Let us show that the point x∗ is unstable.
For simplicity we are considering the case when x∗ = 0. Let us fix arbitrary
ε > 0 and take any ε1 > 0 such that 0 ≤ ε1 ≤ ε/3.
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We will choose a ball BR ⊂ E with the center at zero and the radius R > 0
such that

1) R ≤ (ε− 3ε1)/2;
2) x∗ is the only singular point of Φ in BR;
3) for all x ∈ BR we have that

‖Φ(x)‖ := sup{‖φ‖ : φ ∈ Φ(x)} ≤ ε1.

We will construct multifield Φε on a BR ε-close to Φ and such that Φε is fixed
point free.

Since multifield Φ is fixed point free on the boundary SR there exists ν > 0
such that ‖Φ(x)‖ ≥ ν for all x ∈ SR.

Now we will choose a δ-approximation fδ of a multimap F (x), where 0 <

δ < min{ν/2, ε1} such that coresponding field φδ = i− fδ is fixed point free on
sphere SR and its degree deg(φδ, SR) is equal to zero (see [1], [2]).

According to the definition of a δ-approximation for any x ∈ SR there exists
x′ ∈ SR : ‖x− x′‖ < δ such that

(1) fδ(x) ∪ F (x) ⊂ Wδ(F (x′)).

It means that

dist (x, co (fδ(x) ∪ F (x)) ≥ dist (x′, F (x′))− 2δ ≥ ν − 2δ = ξ > 0.

Lemma 1. There exist β > 0 and α > 0 such that for all λ ∈ [1− α; 1] and
x ∈ SR ‖x− λfδ(x)‖ < β.

Proof. Let us assume a contrary. Then we can choose sequences βi → 0,
αi → 0 and λi ∈ [1− αi; 1], xi ∈ SR such that ‖xi − λifδ(xi)‖ < βi.

Since map fδ is completely continuous we my assume w.l.o.g. that fδ(xi) → y

and since λi → 1 then λifδ(xi) → y. Then xi = λifδ(xi) + hi, where ‖hi‖ < βi.
Therefore hi → 0, xi → y ∈ SR and fδ(y) = y since fδ is continuous. But

this contraclicts to the fact that fδ is fixed point free. �

Now we will choose R1 > 0 such that:

1) R−R1 < min{ξ, β},
2) R1/R > 1− α.

Let us define the extension of F : SR → Kv(E) on a ball layer P = {x ∈ E :
R1 ≤ ‖x‖ ≤ R} as a complitely continuous multimap F̃ε : P → Kv(E),

F̃ε(x) =
1

R−R1

[
(‖x‖ −R1)F

(
Rx

‖x‖

)
+ (R− ‖x‖)fδ

(
Rx

‖x‖

)]
.
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Lemma 2. Multifield Φ̃ε = i− F̃ε is fixed point free on P .

Proof. Notice that, for all x ∈ P ,

F̃ε(x) ⊂ co
(

fδ

(
Rx

‖x‖

)
∪ F

(
Rx

‖x‖

)
⇒ dist

(
Rx

‖x‖

)
, F̃ε(x)

)
≥ ξ.

Then for all x ∈ P and y ∈ F̃ε(x) we have that

‖x− y‖ =
∥∥∥∥ Rx

‖x‖
− y −

(
Rx

‖x‖
− x

)∥∥∥∥ ≥ ∥∥∥∥(
Rx

‖x‖
− y

)∥∥∥∥− ∥∥∥∥(
Rx

‖x‖
− x

)∥∥∥∥
≥ ξ − (R− ‖x‖) ≥ ξ − (R−R1) > 0.

Therefore Φ̃ε is fixed point free on P . �

Notice that ‖F (x)‖ = ‖x − Φ(x)‖ ≤ ‖x‖ + ‖Φ(x)‖ ≤ R + ε1 = M1. Since
F̃ε(x) ⊂ co (fδ(Rx/‖x‖) ∪ F (Rx/‖x‖) we obtain from the inclusion (1) that

‖F̃ε(x)‖ ≤ M1 + δ = M2 for all x ∈ P.

Notice thatmultimap F̃ε(x) onSR1 is a completely continuousmap fδ(R/R1x),
and from Lemma 2 it follows that it is fixed point free.

We will show that coresponding field

x− fδ

(
R

R1
x

)
has a zero degree on a sphere SR1 . For this we will show that fields

(2) x− fδ

(
R

R1
x

)
and

(3) x− R1

R
fδ

(
R

R1
x

)
are homotopic on SR1 .

In fact, we will consider a map h : SR1 × [0, 1] → E

h(x, µ) = (1− µ)
R1

R
fδ

(
R

R1
x

)
+ µfδ

(
R

R1
x

)
= fδ

(
R

R1
x

)[
(1− µ)

R1

R
+ µ

]
.

Since 1−α < R1/R < 1 we obtain that ‖x− h(x, µ)‖ ≥ β. Therefore h(x, µ)
realizes a homotopy of fields (2) and (3) on SR1 and therefore these fields have
the same degree. It is easy to see that field (3) on SR1 is obtained from field
x− fδ(x) on SR by homotetic transformation and then

deg
(

x− R1

R
fδ

(
R

R1
x

)
, SR1

)
= 0,

and therefore

deg
(

x− fδ

(
R

R1
x

)
, SR1

)
= 0.
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From Theorem 20.9 [5] it follows that the map fδ(Rx/R1) can be extended
from SR1 to a completely continuous map f1 : BR1 → E whithout fixed points.
Let us take a retraction ρ : E → BM2 and consider a continuous map f̃(x) on
a ball BR1 defined as

f̃(x) = ρ ◦ f1(x).

Since ‖f1(x)‖ ≤ M2 for x ∈ SR1 the map f̃(x) coincides with f1(x) =
fδ(Rx/R1) on SR1 . So f̃(x) is the extension of a multimap F̃ε(x) on BR1 and

‖f̃(x)‖ ≤ M2, for all x ∈ BR1 .

Lemma 3. The map f̃(x) is fixed point free on BR1 .

Proof. Let us assume the contrary. Then there exists a point x ∈ BR1 such
that x = f̃(x). Then x = ρ ◦ f1(x). Let us consider following cases:

(i) ‖f1(x)‖ ≤ M2, then ρ ◦ f1(x) = f1(x) and hence x = f1(x). But f1 is
fixed point free.

(ii) ‖f1(x)‖ > M2, then ‖x‖ = ‖ρ ◦ f1(x)‖ = M2 > R. But ‖x‖ ≤ R1 < R.

�

So we have an extension Φε = i − Fε of a multifield Φ = i − F from SR on
all ball BR, where

Fε(x) =

{
F̃ε(x) for x ∈ P,

f̃(x) for x ∈ BR1 .

This extension is fixed point free and satisfy the following estimate

‖Φε(x)‖ ≤ ‖x‖+ ‖Fε(x)‖ ≤ R + M2 = 2R + ε1 + δ < 2R + 2ε1 ≤ ε− ε1 = ε.

So we have

ρ(Φε(x),Φ(x)) ≤ sup{‖Φε(x)‖+ ‖Φ(x)‖ ≤ ε− ε1 + ε1 = ε,

proving the theorem. �

4. Stability of singular points of condensing multifields

Now we can extend the above result to the case of χ-condensing multifield
in a Banach space.

Theorem 2. Let x∗ ∈ G be an isolated singular point of a (k, χ)-condensing
multifield Φ. The condition of nontriviality of its topological index

ind (x∗,Φ) 6= 0
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is sufficient, and in case Φ(x∗) = {0}, also necessary condition for the stability
of x∗.

Proof. (1) Sufficiency. Let U is a neighbourhood of x∗ such that Φ has no
other singular point in U . Then deg(Φ, ∂U) 6= 0. Let us show that we can find
ε > 0 such that every ε-close (k′, χ)-condensing multifield Φε is homotopic on
∂U to a multifield Φ and moreover, this homotopy Gε : [0, 1]×∂U → Kv(E) the
form

Gε(λ, x) = λFε(x) + (1− λ)F (x).

Indeed, it is easy to see that the family Gε is (k′′, χ)-condensing, where k′′ =
max{k, k′}. Moreover, it is fixed point free if ε > 0 is sufficently small. If we
assume the contrary then we will have sequences {εn}∞n=1, εn > 0, εn → 0;
{λn}∞n=1 ⊂ [0, 1] and {xn}∞n=1 ⊂ ∂U such that xn ∈ Gεn(λn, xn), n ≥ 1. But
then

(4) xn ∈ λnFεn(xn) + (1− λn)F (xn) ∈ F (xn) + Bεn

where Bεn
is a ball with a center at the origin and radius εn. Therefore for any

m > 1 we have that

{xn}∞n=m ⊂ F ({xn}∞n=m) + Bεm

and by virtue of properties of nonsingularity, monotonicity and algebraical semi-
additivity of the Hausdorff MNC (see, for example, [1], [2]) we have

χ({xn}∞n=m) = χ({xn}∞n=m) ≤ χ(F ({xn}∞n=m) + Bεm
)

≤ χ(F ({xn}∞n=m)) + χ(Bεm
) ≤ kχ({xn}∞n=m) + εm

= kχ({xn}∞n=m) + εm.

Since k < 1, m is arbitrary we obtain χ({xn}∞n=1) = 0, that is the sequence
{xn}∞n=1 is relatively compact and so we may consider w.l.o.g. that xn → x0 ∈
∂U . Since a multimap F is closed ([1], [2]) from the inclusion (4) it follows that
x0 ∈ F (x0) contrary to the fact that F is a fixed point free on ∂U .

From the homotopy of Φ and Φε we have deg(Φε, ∂U) = deg(Φ, ∂U) 6= 0.
Hence Φε has at least one singular point in U .

(2) Necessity. Let x∗ ∈ G be an isolated singular point of a multifield Φ such
that Φ(x∗) = {0}. We will show that if

ind (x∗,Φ) = 0

then x∗ is unstable. For simplicity we are considering the case when x∗ = 0.
Let us fix arbitrary ε > 0 and take any ε∗ > 0 such that 0 < ε∗ ≤ ε/7.
We will choose a ball BR ⊂ E with the center at zero and sufficiently small

radius R > 0 such that

(1) R ≤ ε/112,
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(2) x∗ is the only singular point of Φ in BR,
(3) for all x ∈ BR we have that ‖Φ(x)‖ ≤ ε∗.

We will construct a χ-condensing multifield Φε ε-close to Φ on BR and such
that Φε is fixed point free.

It is known that we may take an essential fundamental set T ⊂ E of a mul-
timap F on S = ∂BR (see [1], [2]), i.e. T is a convex closed set satisfying the
following conditions:

(a) S ∩ T 6= ∅,
(b) set F (S ∩ T ) ⊆ T is relatively compact,
(c) if x ∈ S, x ∈ co (F (x) ∪ T )) then x ∈ T .

It is known that there exists a completely continuous multimap F̃ : S →
Kv(E) such that F̃ (S) ⊆ T and F̃ |S∩T = F |S∩T . In fact, if ρ : E → co F (S∩T ) is
an arbitrary retraction then F my be defined as F̃ (x) = co ρ(F (x)). Furthermore

deg(Φ̃, S) = deg(Φ, S) = 0.

Let R1, 0 < R1 < R be such that l = R/R1 < 1/k. Consider the retraction
r : BRR1 → S of a ball layer BRR1 = {x : R1 ≤ x ≤ R} on sphere S, r(x) =
Rx/‖x‖.

Let us define the extension G : BR1,R → Kv(E) of F from S to BRR1 by the
following formula:

G(x) =
1

R−R1
[(‖x‖ −R1)F (r(x)) + (R− ‖x‖)F̃ (r(x))].

Lemma 4. Multimap G is (kl, χ)-condensing.

Proof. It is easy to see that the retraction r is a l-Lipschitz map: ‖r(x)−
r(y)‖ ≤ l‖x − y‖. But then a multimap F ◦ r is a (kl, χ)-condensing. Now for
any set Ω ⊆ BR1R we have that

χ(G(Ω) ≤ χ(co F (r(Ω)) ∪ F̃ (r(Ω))) = χ(F (r(Ω))) ≤ klχ(Ω). �

Lemma 5. If R − R1 > 0 is sufficiently small then a multimap G is fixed
point free.

Proof. Let us assume the contrary. Then we will have a sequence {xn} ⊂
BR1R, ‖xn‖ → R such that

xn ∈ λnF

(
Rxn

‖x‖

)
+ (1− λn)F̃

(
Rxn

‖x‖

)
,

where 0 ≤ λn ≤ 1. Then we obtain

χ({xn}) ≤ χ(co (F (r({xn})) ∪ F̃ (r({xn}))) = χ(F (r({xn}))) < klχ({xn}).
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Therefore χ({xn} = 0 and so the sequence {xn} is relatively compact and
we may assume w.l.o.g. that xn → x0 ∈ S. Since we may suppose also that
λn → λ0, we obtain:

x0 ∈ λ0F (x0) + (1− λ0)F̃ (x0) ⊂ co (F (x0) ∪ T ).

Hence x0 ∈ S ∩T and therefore x0 ∈ F (x0), contrary to the assumption that
F is fixed point free on S. �

Notice now that the restriction G|S1 on S1 = ∂BR1 is a comletely continuous
multimap F̃ ′(x) = F̃ (r(x)). Let us show that the topological degree deg(Φ̃′, S1)
is equal to zero for R1 sufficiently close to R.

Indeed, a completely continuous multifield Φ̃′′, given on S1 as Φ̃′′(x) = x −
(R1/R)F̃ ′(x) can be obtained from the multifield Φ̃ on S by the “homotetic”
transformation, and therefore deg(Φ̃′′, S1) = 0.

But if R1 is sufficiently close to R then multifields Φ̃′ and Φ̃′′ have no op-
positely directed vectors on S1. In fact, if we assume the contrary then we will
have sequences

{xn}, ‖xn‖ = Rn → R, {yn}, {zn} ⊂ F̃

(
Rxn

Rn

)
and µn > 0 such that

xn − yn = −µn

(
x− Rn

R
zn

)
.

Then

(5) xn =
1

1 + µn
yn +

µn

1 + µn

Rn

R
zn.

Since a multimap F̃ is completely continuous then we may consider sequences
{yn}, {zn} and {xn} as tending to points y0, z0 and x0 ∈ S respectively and
moreover y0, z0 ∈ F̃ (x0), but from (5) we obtain that x0 ∈ F̃ (x0), contrary to
the fact that F̃ is fixed point free on S.

Since multifields Φ̃′ and Φ̃′′ are not oppositely directed on S1 then they are
homotopic and therefore deg(Φ̃′, S1) = deg(Φ̃′′, S1) = 0.

For a multimap F on BR we have the following estimate:

‖F (x)‖ ≤ ‖x‖+ ‖Φ(x)‖ ≤ R + ε∗ ≤
ε

112
+

ε

7
=

17ε

112
.

Since for a multimap G we have that G(BR1 ,R ) ⊂ co F (S) then for G we
have the same estimate ‖G(x)‖ ≤ 17ε/112 for all x ∈ BR1,R. Hence

‖Φ̃′(x)‖ ≤ ‖x‖+ ‖F̃ ′(x)‖ ≤ R + ‖F̃ ′(x)‖ ≤ ε

112
+

17ε

112
=

9ε

56
= ε1

for all x ∈ S1 = ∂BR1 .
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Now, applying the results of the Section 3 we may extend a completely
continuous multifield Φ̃′ from S1 on BR1 as completely cintinuous multifield
Φ̃ε : BR1 → Kv(E) without singular points satisfying the estimate: ‖Φ̃ε(x)‖ ≤
ε− ε1 = 47/56ε.

Now define a multifield Φε : BR → Kv(E) as

Φε(x) =

{
x−G(x) for x ∈ BR1,R,

Φ̃ε(x) for x ∈ BR1 .

The multifield Φε is a desirable one. Indeed, it is easy to see that Φε is
a χ-condensing. Further, let us evaluate the deviation ρ(Φε(x),Φ(x)).

If x ∈ BR1,R then

ρ(Φε(x)),Φ(x)) ≤ ‖Φε(x)‖+ ‖Φ(x)‖ ≤ ‖x‖+ ‖G(x)‖+ ‖Φ(x)‖

≤ ε

112
+

17ε

112
+

ε

7
=

17
56

ε < ε.

If x ∈ BR1 then

ρ(Φε(x),Φ(x)) ≤ ‖Φ̃ε(x)‖+ ‖Φ(x)‖ ≤ 47ε

56
+

ε

7
=

55
56

ε < ε.

Since Φε has no singular point we proved that x∗ is unstable. �
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