A FIXED POINT THEOREM FOR MULTIVALUED MAPPINGS WITH NONACYCLIC VALUES

Dariusz Miklaszewski

Dedicated to Professor Lech Górniewicz on his 60th birthday

Abstract

The aim of this paper is to prove that every Borsuk continuous set-valued map of the closed ball in the 3-dimensional Euclidean space, taking values which are one point sets or knots, has a fixed point. This result is a special case of the Górniewicz Conjecture.

1. Introduction

We first recall some results which generalize the Brouwer Fixed Point Theorem for set-valued mappings. Let B^{n} denote the closed unit ball in $\mathbb{R}^{n}, C\left(B^{n}\right)$ - the family of all nonempty compact subsets of $B^{n}, *$ - the one point space, $f: B^{n} \rightarrow C\left(B^{n}\right)$ - a map. A point x is called a fixed point of f if $x \in f(x)$. A set $X \in C\left(B^{n}\right)$ is called acyclic if $\check{H}^{*}(X ; Q)=\check{H}^{*}(* ; Q)$. Here $\check{H}^{*}(; Q)$ denotes the Čech cohomology functor with rational coefficients. The following assumptions on the type of continuity of f and on $f(x)$ for all $x \in B^{n}$ guarantee that f has a fixed point:

1. (S. Eilenberg, D. Montgomery) f-upper semicontinuous, $f(x)$ - acyclic ([5]).
2. (B. O'Neill) f - Hausdorff continuous, $f(x)$ has 1 or m acyclic components ([13]).

[^0]3. (L. Górniewicz) f - Borsuk continuous ${ }^{1}, f(x)-\operatorname{acyclic}$ or $\check{H}^{*}(f(x) ; Q)=$ $\check{H}^{*}\left(S^{n-1} ; Q\right)([7],[6])$.
4. (A. Dawidowicz) f - Borsuk continuous, $f(x)-$ connected, $n=2$ ([2], [3]).
The basic idea of the proof of (3) and (4) is to apply (1) to a map \widetilde{f} with acyclic values: $\widetilde{f}(x)=f(x) \cup$ (bounded components of $\mathbb{R}^{n} \backslash f(x)$).

The Górniewicz Conjecture is the extension of (4) for all $n \geq 2$. The following special case was studied in [10].

Conjecture 1. Every Borsuk continuous map $f: B^{n} \rightarrow C\left(B^{n}\right)$ with values homeomorphic to $*$ or S^{k} has a fixed point (k is fixed, $1 \leq k \leq n-1$).

Note that the class of set-valued mappings, which is considered in the Conjecture 1, generalizes the class of bimaps studied by H. Schirmer in [14] and [15]. By [10, Theorem 1] the Conjecture 1 for $k \neq 4$ is a consequence of the following

Conjecture 2. Let $M \subset \mathbb{R}^{n}$ be a closed connected PL-manifold, $\operatorname{dim} M=$ $n-1$. Let $p: E \rightarrow M$ be a locally trivial bundle ξ with the fiber $S^{k} ; 1 \leq k \leq n-1$. If $E \subset M \times \mathbb{R}^{n}$ and the square

commutes then $\operatorname{dim} H_{k}\left(E ; Z_{2}\right)>\operatorname{dim} H_{k}\left(M ; Z_{2}\right)$.
Our purpose is to prove both conjectures for $(k, n)=(1,3)$.
Added in the proof: The Conjecture 2 does not hold for $(k, n)=(1,4)$. Consider the Hopf fibration $h: S^{3} \rightarrow S^{2}$, the map $g: S^{1} \times S^{2} \rightarrow C\left(S^{3}\right)$, $g(x, y)=h^{-1}(y), E=\left\{(x, y, z) \in S^{1} \times S^{2} \times S^{3}: z \in g(x, y)\right\} \cong S^{1} \times S^{3}$, $M=S^{1} \times S^{2}, p(x, y, z)=(x, y)$. Then $\operatorname{dim} H_{1}\left(E ; Z_{2}\right)=\operatorname{dim} H_{1}\left(M ; Z_{2}\right)=1$.

2. Preliminaries

The Borsuk distance of continuity [1] in $C\left(B^{n}\right)$ is defined by the formula

$$
d_{B}(X, Y)=\max \{\rho(X, Y), \rho(Y, X)\}
$$

where $\rho(X, Y)=\inf \{\max \{d(x, h(x)): x \in X\}: h \in C(X ; Y)\}$ and $C(X ; Y)$ is the set of all continuous maps from X to Y. Set-valued maps continuous with respect to d_{B} are called Borsuk continuous mappings. In the sequel the metric d_{B} will not appear explicite.

We shall apply the following Borsuk-Ulam type result.

[^1]Theorem 1 (Nakaoka [12]). Let N be a closed n-dimensional manifold with a free involution T and let $g: N \rightarrow P$ be a continuous map to an m-dimensional manifold P. Let $c \in H^{1}\left(N / T ; Z_{2}\right)$ be the first Stiefel-Whitney class of the bundle $\pi: N \rightarrow N / T$. Assume that $c^{m} \neq 0$ and $g_{*}: \widetilde{H}_{*}\left(N ; Z_{2}\right) \rightarrow \widetilde{H}_{*}\left(P ; Z_{2}\right)$ is trivial. Then the covering dimension of $A(g)=\{y \in N: g(y)=g(T y)\}$ is at least $n-m$.

Let us recall some facts on Stiefel-Whitney classes. The general references here are [8], [11]. Let $p: E \rightarrow M$ be a locally trivial bundle ξ with the fiber S^{k} and the structural group $O(k+1)$. The antipodal map of S^{k} induces a fiber preserving fixed point free involution $T: E \rightarrow E,(p \circ T=p ; T \circ T=i d)$. We will denote by $c \in H^{1}\left(E / T ; Z_{2}\right)$ the first Stiefel-Whitney class of the bundle $\pi: E \rightarrow E / T$. A projection $q: E / T \rightarrow M$ is defined by $q \circ \pi=p$.

FACT $1([8,16.2 .5])$. The group $H^{*}\left(E / T ; Z_{2}\right)$ is an $H^{*}\left(M ; Z_{2}\right)$-module freely generated by $\left\{1, c, c^{2}, \ldots, c^{k}\right\}$. The multiplication is defined by the formula:

$$
H^{*}\left(M ; Z_{2}\right) \times H^{*}\left(E / T ; Z_{2}\right) \ni(\alpha, \beta) \rightarrow \alpha \beta=q^{*}(\alpha) \cup \beta .
$$

Moreover,

$$
c^{k+1}=\sum_{j=1}^{k+1} w_{j}(\xi) c^{k+1-j}
$$

where $w_{j}(\xi) \in H^{j}\left(M ; Z_{2}\right)$ is the j-th Stiefel-Whitney class of ξ.
FACT 2. If $\vec{\xi}$ is a vector bundle corresponding ${ }^{2}$ to ξ then 3

- $w(\vec{\xi}) \stackrel{\text { def }}{=} w(\xi)=1+\sum_{j=1}^{k+1} w_{j}(\xi)$,
- $w(\vec{\xi} \oplus \vec{\eta})=w(\vec{\xi}) \cup w(\vec{\eta})([11, \S 4])$,
- if θ is a trivial bundle then $w(\theta)=1,([11, \S 4])$.

FACT $3([11, \S 8])$. If $\bar{p}: \bar{E} \rightarrow M$ is a disc bundle (with the fiber B^{k+1}) corresponding to ξ and $u \in H^{k+1}\left(\bar{E}, E ; Z_{2}\right)$ is the Thom class of ξ then

$$
\left.u \rightarrow u\right|_{\bar{E}} \rightarrow w_{k+1}(\xi)
$$

under the homomorphism

$$
H^{k+1}\left(\bar{E}, E ; Z_{2}\right) \xrightarrow{i^{*}} H^{k+1}\left(\bar{E} ; Z_{2}\right) \xrightarrow{\left(\bar{p}^{*}\right)^{-1}} H^{k+1}\left(M ; Z_{2}\right) .
$$

Moreover, $H^{k+1}\left(\bar{E}, E ; Z_{2}\right)=Z_{2}=\{0, u\}$.
Fact 3 is well known. We here include a proof of it for the convenience of the reader. If $\Phi: H^{*}\left(M ; Z_{2}\right) \rightarrow H^{*+k+1}\left(\bar{E}, E ; Z_{2}\right)$ is the Thom isomorphism $[11,8.2], \Phi(x)=\bar{p}^{*}(x) \cup u$, then $w_{k+1}(\xi)=\Phi^{-1} S q^{k+1} \Phi(1)=\Phi^{-1} S q^{k+1}(u)=$

[^2]$\Phi^{-1}(u \cup u)=\Phi^{-1}\left(\left.u\right|_{\bar{E}} \cup u\right)=\left.\left(\bar{p}^{*}\right)^{-1} u\right|_{\bar{E}}$. Here $S q^{k+1}$ denotes the $(k+1)-$ Steenrod square [11, §8]. The second assertion of the Fact 3 follows from the Thom isomorphism and the connectedness of M.

3. Two lemmas

In order to apply the Stiefel-Whitney classes, it is now necessary to require that $O(k+1)$ is the structural group of the bundle ξ. This assumption compared with the setting of the Conjecture 2 is more restrictive. Since the group $\operatorname{Homeo}\left(S^{1}\right)$ of all homeomorphisms $S^{1} \rightarrow S^{1}$ reduces to $O(2)$ (see [10, Fact 2] and the proof of $[16,11.45]$), we shall overcome this difficulty for $k=1$.

Lemma 1. $\operatorname{dim} H_{k}\left(E ; Z_{2}\right)>\operatorname{dim} H_{k}\left(M ; Z_{2}\right)$ if and only if $w_{k+1}(\xi)=0$.
Proof. The homomorphism $p_{* k}: H_{k}\left(E ; Z_{2}\right) \rightarrow H_{k}\left(M ; Z_{2}\right)$ is an epimorphism, (see [10, Fact 1]). This clearly forces that the inequality $\operatorname{dim} H_{k}\left(E ; Z_{2}\right)$ $>\operatorname{dim} H_{k}\left(M ; Z_{2}\right)$ does not hold if and only if $p_{* k}$ is a monomorphism. Since we deal with finite-dimensional vector spaces and the functor Hom is exact on this category, $p_{* k}$ is a monomorphism if and only if

$$
\operatorname{Hom}\left(p_{* k} ; \mathrm{id}\right): \operatorname{Hom}\left(H_{k}\left(M ; Z_{2}\right) ; Z_{2}\right) \rightarrow \operatorname{Hom}\left(H_{k}\left(E ; Z_{2}\right) ; Z_{2}\right)
$$

is an epimorphism, which is equivalent to the statement that

$$
p^{*}: H^{k}\left(M ; Z_{2}\right) \rightarrow H^{k}\left(E ; Z_{2}\right)
$$

is an epimorphism too. The commutative diagram

with the 1st row exact (and Z_{2}-cohomology coefficients) yields that p^{*}-epimorphism $\Leftrightarrow j^{*}$-epimorphism $\Leftrightarrow \delta=0 \Leftrightarrow i^{*}$-monomorphism. Fact 3 now shows that i^{*}-monomorphism $\left.\Leftrightarrow u\right|_{\bar{E}} \neq 0 \Leftrightarrow w_{k+1}(\xi) \neq 0$, which completes the proof.

Let \widetilde{K} denote the reduced topological K-theory functor.
Lemma 2. If M_{g} is a closed orientable surface of genus g then

$$
\widetilde{K}\left(M_{g}\right)=\left(Z_{2}\right)^{2 g+1}
$$

Proof. (All results of K-theory which will be needed here, can be found in [8] and [9].)

We begin by recalling that $\widetilde{K}\left(S^{1}\right)=Z_{2}$ and $\widetilde{K}\left(S^{2}\right)=Z_{2}$. Now suppose that $g \geq 1$. Let $S X$ denote the reduced suspension of the space X and $\widetilde{K}^{-1}(X)=$
$\widetilde{K}(S X)$. Let Y be a closed subset of X. Consider the following exact sequence of abelian groups (see [8, 9.2.8], [9, II.3.29]):

$$
\widetilde{K}^{-1}(X) \xrightarrow{\gamma} \widetilde{K}^{-1}(Y) \xrightarrow{\delta} \widetilde{K}(X / Y) \xrightarrow{\alpha} \widetilde{K}(X) \xrightarrow{\beta} \widetilde{K}(Y) .
$$

Take $X=M_{g}$ and $Y=\bigvee_{i=1}^{2 g} Y_{i}, Y_{i} \cong S^{1}$ for $i=1, \ldots, 2 g$. If the surface M_{g} is represented as a polygon (with $4 g$ angles and standard identifications) then Y is represented as its boundary. Of course, $X / Y \cong S^{2}$. Homomorphisms γ and β have their right inverses. Indeed, let $r_{i}: X \rightarrow Y_{i}$ be a retraction such that $r_{i}\left(Y_{j}\right)=*$ for $j \neq i$. Then

$$
\widetilde{K}(Y) \cong \bigoplus_{i=1}^{2 g} \widetilde{K}\left(Y_{i}\right) \xrightarrow{\left(r_{i}^{\prime}\right)} \widetilde{K}(X)
$$

is a right inverse of β, (fortunately, $\widetilde{K}(*)=0$). Replacing \widetilde{K} by \widetilde{K}^{-1} we obtain a right inverse of γ. Consequently, γ and β are epimorphisms. We obtain an exact sequence

$$
0 \rightarrow \widetilde{K}\left(S^{2}\right) \xrightarrow{\alpha} \widetilde{K}\left(M_{g}\right) \xrightarrow{\beta} \bigoplus_{i=1}^{2 g} \widetilde{K}\left(S^{1}\right) \rightarrow 0
$$

which splits. Thus

$$
\widetilde{K}\left(M_{g}\right) \cong \widetilde{K}\left(S^{2}\right) \oplus \bigoplus_{i=1}^{2 g} \widetilde{K}\left(S^{1}\right)=\left(Z_{2}\right)^{2 g+1}
$$

4. The main result

Theorem 2. Every Borsuk continuous map $f: B^{3} \rightarrow C\left(B^{3}\right)$ with values homeomorphic to $*$ or S^{1} has a fixed point.

Proof. It suffices to prove the Conjecture 2 for $(k, n)=(1,3)$. Let $M \subset \mathbb{R}^{3}$ be a closed 2-dimensional PL-manifold. Then M is orientable (see [4, VIII.3.9]). By the classification of closed surfaces, $M=M_{g}$ for some $g \geq 0$. Let $p: E \rightarrow M$ be a locally trivial bundle ξ with the fiber S^{1}. Since the group Homeo $\left(S^{1}\right)$ reduces to $O(2)$, we can find a bundle ξ_{1} equivalent to ξ with the structural group $O(2)$. In fact, it suffices to consider the case $\xi_{1}=\xi$. (This sufficiency can be easily verified after reading this proof). Of course M has a differential structure of $C^{\infty}{ }_{-}$ manifold, which makes E, T and E / T smooth. Note that $\operatorname{dim} E=3$. To obtain a contradiction, suppose that $\operatorname{dim} H_{1}\left(E ; Z_{2}\right) \leq \operatorname{dim} H_{1}\left(M ; Z_{2}\right)$. By Lemma 1, $w_{2} \neq 0$. According to the assumption of the Conjecture 2, the following diagram

commutes. Now we assume that $c^{3} \neq 0$. From the Nakaoka Theorem (Theorem 1) with $N=E, P=\mathbb{R}^{3}, g=\pi_{2} \circ i$, we obtain at least one point $x \in E$ such that $\pi_{2} \circ i(x)=\pi_{2} \circ i(T x)$. Since $\pi_{1} \circ i(x)=p(x)=p(T x)=\pi_{1} \circ i(T x)$, it follows that $i(x)=i(T x)$ and $x=T x$, which contradicts fact that T is fixed point free. It remains to verify that $c^{3} \neq 0$.

By Fact $1, c^{2}=w_{1} c+w_{2}$. Hence $c^{3}=\left(w_{1} c+w_{2}\right) c=w_{1} c^{2}+w_{2} c=$ $w_{1}\left(w_{1} c+w_{2}\right)+w_{2} c=\left(\left[w_{1}\right]^{2}+w_{2}\right) c+w_{1} w_{2}$.

Since $\operatorname{dim} M=2, H^{3}\left(M ; Z_{2}\right)=0$ and $w_{1} w_{2}=0$. By Lemma $2,2 \widetilde{K}(M)=0$, so $\vec{\xi} \oplus \vec{\xi}$ represents zero in $\widetilde{K}(M)$. This gives $\vec{\xi} \oplus \vec{\xi} \oplus \vec{\theta}=\vec{\Theta}$ for some trivial vector bundles $\vec{\theta}, \vec{\Theta}$. It follows that $1=w(\xi) \cup w(\xi)=\left(1+w_{1}+w_{2}\right)^{2}=$ $1+\left[w_{1}\right]^{2}+\left[w_{2}\right]^{2}=1+\left[w_{1}\right]^{2}$. Therefore $\left[w_{1}\right]^{2}=0$ and $c^{3}=w_{2} c \neq 0$, (recall that $w_{2} \neq 0$ and apply Fact 1). This finishes the proof.

Corollary 1. Let $f: B^{3} \rightarrow C\left(B^{3}\right)$ be a Borsuk continuous map with values homeomorphic to $*$ or S^{1}. Let $F_{i}: B^{3} \rightarrow C\left(B^{3}\right)$ be an upper semicontinuous map with Z_{2}-acyclic values for $i=1, \ldots, n$. Then the mapping $F_{n} \circ \ldots \circ F_{1} \circ f$ has a fixed point, $[10$, Statements 5, 6].

References

[1] K. Borsuk, On some metrization of the hyperspace of compact sets, Fund. Math. 41 (1954), 168-202.
[2] A. Dawidowicz, Méthodes homologiques dans la théorie des applications et des champs de vecteurs sphériques dans les espaces de Banach, Dissertationes Math. 326 (1993), $1-50$.
[3] , Spherical maps, Fund. Math. 127 (1987), 187-196.
[4] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, 1972.
[5] S. Eilenberg and D. Montgomery, Fixed point theorems for multivalued transformations, Amer. J. Math. 58 (1946), 214-222.
[6] L. Górniewicz, Fixed point theorems for multivalued maps of subsets of Euclidean spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 111-115.
[7] , Present state of the Brouwer fixed point theorem for multivalued mappings, Ann. Sci. Math. Québec 22 (1998), 169-179.
[8] D. Husemoller, Fibre Bundles, Mc Graw-Hill Book Co., 1960.
[9] M. Karoubi, K-Theory, Springer-Verlag, 1978.
[10] D. Miklaszewski, On the Brouwer fixed point theorem, Topology Appl. (to appear).
[11] J. Milnor and J. D. Stasheff, Characteristic Classes, Princeton Univ. Press and Univ. Tokyo Press, 1974.
[12] M. Nakaoka, Continuous maps of manifolds with involution II, Osaka. J. Math. 11 (1974), 147-162.
[13] B. O'Neill, Induced homology homomorphism for set maps, Pacific J. Math. 7 (1957), 1179-1184.
[14] H. Schirmer, A fixed point index for bimaps, Fund. Math. 134 (1990), 91-102.
[15] \qquad , The least number of fixed points of bimaps, Fund. Math. 137 (1990), 1-8.
[16] R. M. Switzer, Algebraic Topology - Homotopy and Homology, Springer-Verlag, 1975.

Manuscript received November 14, 2000

Dariusz Miklaszewski
Mathematics and Informatics Department
Nicholas Copernicus University
Chopina 12/18
87-100 Toruń, POLAND
E-mail address: miklasze@mat.uni.torun.pl

[^0]: 2000 Mathematics Subject Classification. 54C60, 55M20, 55R25, 57N65.
 Key words and phrases. Fixed points, sphere bundles, homology of manifolds, set valued maps.

[^1]: ${ }^{1}$ See Preliminaries.

[^2]: ${ }^{2}$ In the sense that the bundle of unit spheres of the vector bundle (with respect to some norm in each fiber) is equivalent to the given sphere bundle.
 ${ }^{3}$ Another (axiomatic) definition of Stiefel-Whitney classes of vector bundles is given in [11].

