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HETEROCLINIC SOLUTIONS BETWEEN STATIONARY
POINTS AT DIFFERENT ENERGY LEVELS

Vittorio Coti Zelati — Paul H. Rabinowitz

Abstract. Consider the system of equations

−q̈ = a(t)V ′(q).

The main goal of this paper is to present a simple minimization method

to find heteroclinic connections between isolated critical points of V , say 0

and ξ, which are local maxima but do not necessarily have the same value
of V . In particular we prove that there exist heteroclinic solutions from

0 to ξ and from ξ to 0 for a class of positive slowly oscillating periodic

functions a provided δ = |V (0) − V (ξ)| is sufficiently small (and another
technical condition is satisfied). Note that when V (0) 6= V (ξ), a cannot be

constant be conservation of energy. Existence of “multi-bump” solutions is

also proved.

1. Introduction

In the past ten years, there has been a considerable development of tools
and techniques in the calculus of variations to study homoclinic and heteroclinic
solutions of Hamiltonian systems. See e.g. [3], [6], [9]–[11]. A particular problem
that has received much attention is

(1.1) −ẍ = Wx(t, x)
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where x ∈ Rn, W is 1-periodic in t, and has at least two time independent global
maxima in x. An important special case arises in model problems of multiple
pendulum type where W is periodic in the components of x. A typical result for
(1.1) is the existence of a solution heteroclinic from ξ to η where ξ and η are a
pair of time independent global maxima of W .

Suppose that W (t, x) = a(t)V (x). The main goal of this paper is to present
a simple minimization method to find heteroclinic connections between isolated
critical points of V , say 0 and ξ, which are local maxima but do not necessarily
have the same value of V . In particular for a class of positive slowly oscillating
periodic functions a, it will be shown that if δ = |V (0)−V (ξ)| is sufficiently small
and another technical condition is satisfied, then there exist a pair of solutions
of (1.1), Q+ heteroclinic from 0 to ξ and Q− heteroclinic from ξ to 0. Note that
when V (0) 6= V (ξ), a cannot be constant. Indeed if a is constant, conservation
of energy then implies V (Q+(−∞)) = V (0) = V (Q+(∞)) = V (ξ).

Two major cases where the technical condition is satisfied are (i) when n = 1
and 0 and ξ are adjacent local maxima of V and (ii) when 0 is a global maximum
and ξ a local maximum of V .

Once the basic pair of heteroclinics has been found, the same minimization
ideas can be used to obtain further heteroclinics as well as homoclinic solutions
of (1.1). These are solutions which start at 0 or ξ at t = −∞, oscillate back
and forth between neighbourhoods of 0 and ξ a finite number of times before
terminating at 0 or ξ at t = ∞. Indeed there are infinitely many such solutions
characterized by the amount of time they spend near 0 and ξ between transition
states. Moreover by a limit process, there are solutions of (1.1) which perform
infinitely many such transitions.

More generally if V has several local maxima, ξi, 1 ≤ i ≤ N , and the appro-
priate technical condition is satisfied, then the above results yield heteroclinics
Q+

i from ξi to ξi+1, and Q−
i from ξi+1 to ξi, 1 ≤ i ≤ N − 1. Let (Pk) be

any finite formal chain constructed from {Q+
i , Q−

j | 1 ≤ i, j ≤ N − 1}, i.e.
Pk+1(−∞) = Pk(∞), 1 ≤ k ≤ K. Such a chain will be called an augmented
chain. E.g. in the previous paragraph, the augmented chain consists of Q± fol-
lowed by Q∓, etc. As an extension of the above results, there are infinitely many
actual heteroclinics Q of (1.1) with Q(−∞) = P1(−∞), Q(∞) = PK(∞) and Q

spends long time intervals near Pk(∞), 1 ≤ k ≤ K − 1.

When there are enough points ξi, e.g. of order δ−1, the difference |V (P1(−∞))
−V (Pk(∞))| can be of order 1. Indeed an example will be given for n = 1 where
there is a sequence (ξi)i∈Z with ξi → ±∞ as i → ±∞, and V (ξi) → ±∞
as i → ±∞. In that sense what is being done here is reminiscent of Arnold
diffusion and the variational approach to it by Bessi [1], the recent work of Mather
on orbits of infinite energy which shadow a family of periodics of increasing
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energy [7], and other recent work of Bolotin and Treschev [2] and of Delshams,
de la Llave, and Seara [5] that was inspired by [7]. See also [4] and [8], which
have some ideas in common with the current work.

The basic heteroclinic Q± will be obtained in Section 2. Then Section 3
treats the case when V has several local maxima. The results on homoclinics
and heteroclinics associated with the augmented chains will be given as a special
case of this setting. Lastly Section 4 gives some examples.

2. Basic heteroclinics

In this section, it will be shown how to construct a heteroclinic solution
of (HS) which joins a pair of equilibrium points for the system, the equilibria
corresponding to slightly different values of the potential.

Consider

(HS) q̈ + a(t)V ′
δ (q) = 0, V ′

δ (x) =
∂Vδ

∂x
(x)

where Vδ is a function having (at least) two isolated local maxima, one at 0 and
one at ξ, with 0 = V (0) > V (ξ) = −δ. More precisely, assume:

(V1) Vδ ∈ C1(Rn, R), δ ∈ [0, δ0] and Vδ continuous in δ,
(V2) there is an r0 > 0 such that 0 = Vδ(0) > Vδ(x) for all x ∈ Br0(0) \ {0},

δ ∈ [0, δ0].

Let R0 be the connected component of {x ∈ Rn | Vδ(x) ≤ 0} which con-
tains 0, and, for h < 0,

Rh = {x ∈ Rn | Vδ(x) ≤ h} ∩ R0.

Further assume

(V3) there is a ξ ∈ R0 \ {0} such that Vδ(ξ) = −δ > Vδ(x) for all x ∈
Br0(ξ) \ {ξ} and δ ∈ [0, δ0].

Fixing a, a > 0, the function a in (HS) is required to belong to the set

A = {a ∈ C(R, R) | 0 < a ≤ min a < max a ≤ a

and there is a minimal T = T (a) > 0 such that a(t + T ) = a(t)}.

More restrictions will be imposed on a later. The variational formulation of the
problem can now be introduced. Let E = W 1,2

loc (R, Rn), with

‖q‖2 = |q(0)|2 +
∫

R
|q̇(t)|2 dt.

Given m1 + 1 < m2, η1 ∈ Br0(0) and η2 ∈ Br0(ξ), set

γ(m1,m2, η1, η2) = {q ∈ E | q(m1) = η1,

q(t) ∈ R0 for all t ∈ [m1,m2], q(m2) = η2}.
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Let L(t, q, q̇) = |q̇|2/2− a(t)Vδ(q). For q ∈ γ(m1,m2, η1, η2), define

I0(q) =
∫ m2

m1

L(t, q(t), q̇(t)) dt.

Next an additional hypothesis (V4) will be made. It is a technical condition
needed to obtain the main existence result of this section, Theorem 2.15. In
Section 4, examples will be given of when (V4) is satisfied. E.g. an important
special case to keep in mind is when 0 is a global maximum for Vδ.

(V4) There is a h < 0 such that
(a) 0 and ξ are path-connected in Dh ≡ Br0(0) ∪Rh ∪Br0(ξ);
(b) for all m2−m1 > 1, δ ∈ [0, δ0], a ∈ A, η1 ∈ Br0(0) and η2 ∈ Br0(ξ),
whenever Q0 is a minimizer of I0 in γ(m1,m2, η1, η2), then Q0(t) ∈ Dh

for all t ∈ [m1,m2].

Remark 2.1. Note that Br0(0)∪Br0(ξ) ⊂ R0. It is straightforward to show
that the minimum in γ(m1,m2, η1, η2) always exists.

We now define

Γ(m1,m2) = {q ∈ E | q(−∞) = 0, |q(t)| ≤ r0 for all t ≤ m1,

q(t) ∈ R0 for all t ∈ [m1,m2],

|q(t)− ξ| ≤ r0 for all t ≥ m2, q(∞) = ξ}.

Observe that Γ(m1,m2) is not empty by assumption (V4). The heteroclinics we
seek will lie in Γ(m1,m2). For q ∈ Γ(m1,m2), let

Lδ(q) =

{
L(t, q(t), q̇(t)) for t < m2,

L(t, q(t), q̇(t))− δa(t) for t ≥ m2.

Define

I(q) =
∫

R
Lδ(q) dt

and

(2.2) c(m1,m2) = inf
Γ(m1,m2)

I(q).

The next lemma makes the first step towards the main existence theorem
of this section. In what follows, it will always be assumed that (V1)–(V4) are
satisfied.

Lemma 2.3. There is a c ∈ R such that 0 < c(m1,m2) ≤ c − 1 ≤ c for all
δ ∈ [0, δ0], a ∈ A and m2−m1 ≥ 1. Moreover there is a function Q ∈ Γ(m1,m2)
such that I(Q) = c(m1,m2) and Q(t) ∈ Dh for all t.

Proof. Since q ∈ Γ(m1,m2) implies that q(t) ∈ R0 for all t, it follows that
Vδ(q(t)) ≤ 0 for all t. On the other hand for all t ≥ m2, q(t) ∈ Br0(ξ) and thus
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the assumptions (V2) and (V4), imply that Vδ(q(t)) ≤ −δ for all t ≥ m2. Hence
Lδ(q) ≥ 0 for all t and therefore c(m1,m2) > 0.

The existence of c follows by taking a function q ∈ E such that q(t) = 0
for all t ≤ −1/2, q(t) = ξ for all t ≥ 1/2, and q(t) ∈ R0 for all t. Then
q̃(t) = q(t−m2 + 1/2) ∈ Γ(m1,m2). Note that, for such a q̃,

I(q̃) =
∫ m2

m2−1

[
1
2
| ˙̃q|2 − a(t)Vδ(q̃)

]
dt ≤

∫ 1/2

−1/2

[
1
2
|q̇|2 − aVδ(q)

]
dt.

Setting

c = 1 + sup
δ∈[0,δ0]

∫ 1/2

−1/2

[
1
2
|q̇|2 − aVδ(q)

]
dt ≥ 1 + I(q̃),

the bound on c(m1,m2) follows.
To show that c(m1,m2) is achieved, take a minimizing sequence (qk) for I.

Then, for all t ∈ [m1,m2], setting qk = q we have, for k large,

|q(t)| ≤ |q(m1)|+ |q(t)− q(m1)|

≤ r0 +
( ∫ t

m1

|q̇|2ds

)1/2

(t−m1)1/2 ≤ r0 +
√

2c(m2 −m1).

Hence, since q(t) ∈ Br0(0) for all t ≤ m1 and q(t) ∈ Br0(ξ) for all t ≥ m2,

(2.4) |q(t)| ≤ 3r0 +
√

2c(m2 −m1) for all t ∈ R.

Now by (2.4) and the form of I, we deduce that (qk) is bounded in H1
loc. Con-

sequently there exists a subsequence, still denoted (qk), which converges weakly
in W 1,2

loc and strongly in L∞loc to Q ∈ Γ(m1,m2). Standard arguments show that
such a Q is a minimizer of I in Γ(m1,m2).

To show that Q(t) ∈ Dh, it is enough to observe that:

(1) Q(t) ∈ Br0(0) ⊂ Dh for all t ≤ m1,
(2) Q

∣∣
[m1,m2]

minimizes I0 in γ(m1,m2, Q(m1), Q(m2)), and hence Q(t) ∈
Dh for all t ∈ [m1,m2] by assumption (V4),

(1) Q(t) ∈ Br0(ξ) ⊂ Dh for all t ≥ m2. �

Now the main result of this section can be stated. The proof of the theorem
will be carried out in a series of Lemmas.

Theorem 2.5. Let V satisfy (V1)–(V4). Then there is an A∗ ⊂ A such that
for each a ∈ A∗, there exists a δ2 = δ2(a) ≤ δ0 and a corresponding solution of
(HS) heteroclinic from 0 to ξ and a solution heteroclinic from ξ to 0.

Proof. A solution will be obtained in Γ(m1,m2) for appropriate choices of
m2 −m1. Recall that m2 −m1 ≥ 1. More assumptions will be made later on
m2−m1. Let Q be a minimizer for I over Γ(m1,m2). By Lemma 2.3, Q(t) ∈ Dh
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for all t ∈ [m1,m2]. Then Q(t) /∈ ∂R0 for t ∈ [m1,m2]. Consequently Q(t) is a
solution of (HS) for t ∈ [m1,m2].

The function Q is a solution of (HS) for all t < m1 whenever Q(t) /∈ ∂Br0(0),
and also for t > m2 whenever Q(t) /∈ ∂Br0(ξ). Hence, in order to prove the
theorem, it only need be shown that Q(t) /∈ ∂Br0(0) for t < m1 and that that
Q(t) /∈ ∂Br0(ξ) for t > m2. For 0 < ρ < r0, let

β1(ρ) = min
x∈Br0 (0)\Bρ(0)

0≤δ≤δ0

−Vδ(x), β2(ρ) = min
x∈Br0 (ξ)\Bρ(ξ)

0≤δ≤δ0

(−Vδ(x)− δ),

and take β(ρ) = min{β1(ρ), β2(ρ)} > 0. With h < 0 given by (V4), take ρ1 so
small that

(2.6) −h > β(ρ)

for all ρ < ρ1. Then, for all x ∈ Dh \ (Bρ(0) ∪ Bρ(ξ)), it follows that −Vδ(x) ≥
β(ρ).

Lemma 2.7. Let t∗ = 2c/aβ(ρ). Then there is a t ∈ [m2,m2 + t∗] such
that Q(t) ∈ Bρ(ξ) and a t ∈ [m2 − t∗,m2] such that Q(t) ∈ Bρ(ξ) ∪ Bρ(0).
Similarly there is an s ∈ [m1,m1 + t∗] such that Q(s) ∈ Bρ(0) ∪ Bρ(ξ), and an
s ∈ [m1 − t∗,m1] such that Q(s) ∈ Bρ(0).

Proof. To show the existence of t, note that if t does not exist, Q(t) ∈
Br0(ξ) \Bρ(ξ), t ∈ [m2,m2 + t∗] and therefore

c ≥ I(Q) ≥
∫ m2+t∗

m2

−a(t)(Vδ(Q(t)) + δ) dt ≥ at∗β(ρ) = 2c.

Similarly if t does not exist, Q(t) ∈ Dh \ (Bρ(0)∪Bρ(ξ)) for all t ∈ [m2− t∗,m2].
Then −Vδ(Q(t)) ≥ β(ρ) for all t ∈ [m2− t∗,m2], and a contradiction is obtained
by arguing as before. The existence of s, s follow in a similar way. �

Let

Ṽδ(x) =

{
Vδ(x) for x ∈ Br0(0),

Vδ(x) + δ for x ∈ Br0(ξ),
and define ϕ(ρ) in the following way:

(2.8) ϕ(ρ) = sup
{

1
2

∫ 1

0

|q̇(t)|2 dt− a

∫ 1

0

Ṽδ(q(t)) dt

∣∣∣∣ δ ∈ [0, δ0],

q(t) = η1 + t(η2 − η1), η1, η2 ∈ Bρ(0), or η1, η2 ∈ Bρ(ξ)
}

.

Henceforth assume that r0 is so small that ϕ(r0) < 1/2. One immediately sees
that ϕ(ρ) → 0, as ρ → 0, and arguing as in Lemma 2.3, one can show that

(2.9)
∣∣∣∣ ∫ s

−∞
Lδ(Q) dt

∣∣∣∣, ∣∣∣∣ ∫ ∞

t

Lδ(Q) dt

∣∣∣∣ ≤ ϕ(ρ).
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For what follows s � r0 means s is small compared to r0.

Lemma 2.10. For ρ ≤ ρ2 � r0, Q(t) ∈ Br0(ξ) for t ≥ t and Q(t) ∈ Br0(0)
for t ≤ s.

Proof. The first assertion is a consequence of Lemma 2.7, (2.9) and the
fact that the cost as measured by I of going from ∂Bρ(ξ) to ∂Br0(ξ) exceeds
γ � ϕ(ρ) for some constant γ depending on r0. The second statement follows
by the same reasoning. �

Lemma 2.11. There is a δ1 ≤ δ0 such that if δ ≤ δ1 and Q(t) ∈ Bρ(ξ), then
Q(t) ∈ Br0(ξ) for t ∈ [t, t] and if Q(s) ∈ Bρ(0), Q(t) ∈ Br0(0) for t ∈ [s, s].

Proof. It is already known that Q(t) ∈ Bρ(ξ). Assume Q(t) ∈ Bρ(ξ), and

Q(τ) /∈ Br0(ξ) for some τ ∈ (t, t). Then, as in Lemma 2.10,
∫ t

t
Lδ(Q) dt ≥ γ =

γ(r0). Let

Q(t) =


Q(t) for t ≤ t,

linear for t ≤ t ≤ t + 1,

ξ for t ≥ t + 1.

Then by the minimality of Q in Γr0(m1,m2),

γ ≤
∫ ∞

t

Lδ(Q) dt ≤
∫ ∞

t

Lδ(Q) dt =
∫ m2

t

Lδ(Q) dt +
∫ ∞

m2

Lδ(Q) dt

≤
∫ t+1

t

[
1
2
|Q̇(t)|2 − a(t)Vδ(Q)

]
dt−

∫ m2

t+1

a(t)Vδ(ξ) dt

+
∫ ∞

m2

[−a(t)Vδ(ξ)− δa(t)] dt

≤ϕ(ρ) + aδ(m2 − t) ≤ ϕ(ρ) + aδt∗ ≤ ϕ(ρ) +
2ac

aβ(ρ)
δ.

Taking δ = δ(ρ) sufficiently small and recalling that ϕ(ρ) � γ(r0) yields a
contradiction. Therefore Q(t) ∈ Br0(ξ) for t ∈ [t, t] and similarly for the s

case. �

Lemma 2.12. Suppose δ ≤ δ1. Assume Q(t̃) ∈ ∂Br0(ξ) for some t̃ ∈ [m2, t].
Then Q(t) ∈ Br0(0) for all t ≤ t. Similarly, if Q(s̃) ∈ ∂Br0(0) for some s̃ ∈
[s,m1], then Q(t) ∈ Br0(ξ) for all t ≥ s.

Proof. The first part of the lemma follows by observing that Q(t) ∈ Bρ(ξ)
is not possible via Lemma 2.11. Then, arguing as in Lemma 2.10, shows that
Q(t) ∈ Br0(0) for all t ≤ t. Again the s case is proved in the same way. �

So far a ∈ A and ρ ≤ min{ρ1, ρ2} are free. Further choose ρ so that

(2.13)
4a

a
ϕ(ρ) ≤ 1

4
(a− a)

d2

2c
|h|



8 V. Coti Zelati — P. H. Rabinowitz

where d = dist(Br0(0), Br0(ξ)), and h is given by (V4). With ρ now fixed, choose
a ∈ A∗ where

(2.14) A∗ =
{

a ∈ A
∣∣∣∣ min

[−t∗,t∗]
a− max

[−t∗−θ,t∗−θ]
a ≥ 1

2
(a−a) for some θ ∈ (0, T )

}
.

This condition will be satisfied for T sufficiently large and a which oscillates
slowly between its maximum and minimum. The simplest examples of a ∈ A∗

occur when a(t) = b(εt) for b ∈ A and 0 < ε sufficiently small.
The significance of A∗ is that if e.g. Q(t) ∈ ∂Br0(ξ) for some t ∈ [m2, t], by

the previous lemma, the transition of Q from Bρ(0) to Bρ(ξ) occurs in [m2 −
t∗,m2 + t∗], an interval in which a is relatively large. But heuristically, the
minimizer of I in Γ(m1,m2) should not undergo a transition when a is relatively
large; rather it should occur when a is relatively small. In the next lemma, a
comparison function argument exploits this idea.

Lemma 2.15. Let a ∈ A∗, m1,m2 ∈ TN, m2 − m1 ≥ T (a) + t∗. Then,
for δ > 0 small, Q(t) ∈ ∂Br0(ξ) for some t ∈ [m2, t] is not possible, and also
Q(t) ∈ ∂Br0(0) for some t ∈ [s,m1] is not possible.

Proof. Suppose Q(t) ∈ ∂Br0(ξ) for some t ∈ [m2, t]. Then, by Lemma 2.12,
Q(t) ∈ Br0(0) for all t ≤ t. Let θ ∈ (0, T ) be such that

(2.16) min
[−t∗,t∗]

a− max
[−t∗−θ,t∗−θ]

a ≥ 1
2
(a− a).

We claim that τ−θQ( · ) ≡ Q( · + θ) ∈ Γ(m1,m2). Indeed, for all t ≥ m2,
t + θ ≥ t ≥ m2 implies Q(t + θ) ∈ Br0(ξ) while t ≤ m1 implies that t + θ ≤
m1 + θ ≤ m2−T − t∗+ θ ≤ m2− t∗ ≤ t, so that Q(t+ θ) ∈ Br0(0) for all t ≤ m1

follows from Lemma 2.12. Hence, by the minimality of Q,

(2.17) 0 ≥ I(Q)− I(τ−θQ) =
∫ m2

−∞
(a(t)− a(t− θ))(−Vδ(Q)) dt

+
∫ ∞

m2

(a(t)− a(t− θ))(−Vδ(Q)− δ) dt− δ

∫ m2+θ

m2

a(t− θ) dt.

By Lemma 2.12, Q(t) ∈ Bρ(0). Therefore, as in (2.9),

(2.18)
∣∣∣∣ ∫ t

−∞
(a(t)− a(t− θ))(−Vδ(Q)) dt

∣∣∣∣ ≤ 2a

∫ t

−∞
−Vδ(Q) dt

≤ 2a

a

∫ t

−∞
L(Q) dt ≤ 2a

a
ϕ(ρ).

Similarly,

(2.19)
∣∣∣∣ ∫ ∞

t

(a(t)− a(t− θ))(−Vδ(Q)− δ)dt

∣∣∣∣ ≤ 2a

a
ϕ(ρ).
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The last term on the right in (2.17) can simply be estimated by

(2.20) δ

∫ m2+θ

m2

a(t− θ) dt ≤ δaT.

Since a ∈ A∗,

(2.21)
∫ m2

t

(a(t)− a(t− θ))(−Vδ(Q)) dt +
∫ t

m2

(a(t)− a(t− θ))(−Vδ(Q)− δ) dt

=
∫ t

t

(a(t)− a(t− θ))(−Vδ(Q)) dt− δ

∫ t

m2

(a(t)− a(t− θ)) dt

≥ 1
2
(a− a)

∫ t

t

(−Vδ(Q)) dt− 2δt∗a.

Now, if t1 = sup{t | Q(t) ∈ Br0(0)} and t1 = inf{t | Q(t) ∈ Br0(ξ)}, by (V4), it
follows that Q(t) ∈ Rh for all t ∈ [t1, t1] and

(2.22) d ≤
∣∣∣∣ ∫ t1

t1

Q̇ dt

∣∣∣∣ ≤ (t1 − t1)
1/2

( ∫ t1

t1

|Q̇|2 dt

)1/2

≤ (t1 − t1)
1/2(2c)1/2.

This last inequality implies

(2.23) t− t ≥ t1 − t1 ≥ d2/2c.

Therefore

(2.24) −
∫ t

t

Vδ(Q) dt ≥ −
∫ t1

t1

Vδ(Q) dt ≥ d2

2c
|h|.

Hence by (2.17)–(2.24), (2.6), (2.13) and the definition of t∗,

(2.25) δa

(
T +

4c

aβ(ρ)

)
≥ 4

a

a
ϕ(ρ).

Consequently, for δ = δ(ρ) suitably small, Q is not a minimizer of I, a contra-
diction.

Finally, to prove that Q(t) /∈ ∂Br0(0) for t ∈ [s,m1], note that if to the
contrary, Q(t) ∈ ∂Br0(0) for some such t, then Q(t) ∈ Br0(ξ) for t ≥ s. Consider
τT Q. For t ≤ m1, τT Q(t) ∈ Br0(0). For t ≥ m2, t− T ≥ m2 − T ≥ m1 + t∗ ≥ s

so τT Q(t) ∈ Br0(ξ). Also Q(t) ∈ R0 for all t implies the same for τT Q(t). Hence
τT Q ∈ Γ(m1,m2). Therefore, as in (2.17),

(2.26) 0 ≥ I(Q)− I(τT Q)

=
∫ m2

−∞
(a(t)− a(t + T )(−Vδ(Q)) dt

+
∫ ∞

m2

(a(t)− a(t + T )(−Vδ(Q)− δ) dt + δ

∫ m2

m2−T

a(t + T )dt > 0



10 V. Coti Zelati — P. H. Rabinowitz

since the first two terms vanish due to the periodicity of a. Thus (2.26) shows
this case is impossible. �

Lemma 2.27. Q is a solution of (HS) heteroclinic from 0 to ξ.

Proof. It has already been noted that Q is a solution of (HS) provided
Q(t) /∈ ∂Br0(0), for t ≤ m1 and Q(t) /∈ ∂Br0(ξ) for t ≥ m2. This is now an
immediate consequence of Lemma 2.10 and Lemma 2.15. Standard arguments
then show that Q is actually an heteroclinic solution of (HS). �

Remark 2.28. Similarly there is a solution of (HS) heteroclinic from ξ to 0.

The above observations end the proof of Theorem 2.5. �

3. Multi-bump solutions

Suppose that Vδ has several local maxima, e.g. at ξ0 = 0, ξ1, . . . , ξN and that
|Vδ(ξi−1)− Vδ(ξi)| is small, 1 ≤ i ≤ N . Then the arguments of Section 2 can be
extended to show that (HS) has solutions heteroclinic from 0 to ξN and which
spend at least prescribed amounts of time near the points ξi, 1 ≤ i ≤ N − 1. In
order to simplify the presentation, assume (V1), (V2), (V4) and

(V′
3) There is a ξ ∈ R0 \ {0} such that Vδ(x + ξ) = Vδ(x)− δ for all x ∈ Rn

and δ ∈ [0, δ0].

Note that (V′
3) implies (V3), so that all the results of Section 2 hold in this

setting. Moreover, we have that y ∈ R0 +jξ implies that y = x+jξ with x ∈ R0

so, using (V′
3),

Vδ(y) = Vδ(x + jξ) = Vδ(x)− jδ ≤ −jδ for all y ∈ R0 + jξ.

Given N ∈ N, and ~m ∈ R2N such that mj+1 −mj ≥ 2, let m0 = −∞, m2N+1 =
∞ and

Γ(~m) = {q ∈ E
∣∣ q(−∞) = 0,

q(t) ∈ R0 + `ξ for all t ≥ m2`+1, ` = 0, . . . , N − 1,

q(t) ∈ Br0(`ξ) for all t ∈ [m2`,m2`+1], ` = 0, . . . , N and q(∞) = Nξ}.

If q ∈ Γ(~m), define

Lδ(q) =

{
L(t, q(t), q̇(t))− `δa(t) for m2` ≤ t < m2`+2, ` = 0, . . . , N − 1,

L(t, q(t), q̇(t))−Nδa(t) for t ≥ m2N .

It is immediate to check that Lδ(q) ≥ 0 for all t ∈ R if q ∈ Γ(~m). Indeed, for
m2` ≤ t ≤ m2`+2, we have that q(t) ∈ Br0(`ξ)∪(R0+`ξ). Since our assumptions
imply that Br0(`ξ) ⊂ (R0 + `ξ), we deduce that Vδ(q(t)) ≤ −`δ for all m2` ≤
t ≤ m2`+2 so that

Lδ(q) =
1
2
|q̇(t)|2 − a(t)Vδ(q(t))− `δa(t) ≥ `δa(t)− `δa(t) ≥ 0
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for this range of values of t. Define

I(q) =
∫ ∞

−∞
Lδ(q) dt, and c~m = inf

Γ(~m)
I(q).

Lemma 3.1. Let c be given by Lemma 2.3. Then for all δ ∈ [0, δ0] and a ∈ A,
it follows that c~m ≤ Nc and there is Q ∈ Γ(~m) such that I(Q) = c~m. Moreover,
for ` = 0, . . . , N − 1,

(3.2)
∫ m2`+3

m2`

Lδ(Q) dt ≤ c.

Proof. The existence of a minimizer Q of I follows as in Section 2. To get
the estimates, let q be the function defined in the proof of Lemma 2.3. Set

p(t) =

{
q(t−m2`+2 + 1/2) + `ξ for m2` ≤ t ≤ m2`+2, 0 ≤ ` ≤ N − 1,

q(t) = Nξ, for t ≥ m2N .

Then p ∈ Γ(~m) and c~m ≤ I(p) ≤ Nc. To prove (3.2) consider the function
Q ∈ Γ(~m) defined as

Q(t) =



Q(t) for t ≤ m2`,

linear for m2` ≤ t ≤ m2` + 1,

p(t) for m2` + 1 ≤ t ≤ m2`+3 − 1,

linear for m2`+3 − 1 ≤ t ≤ m2`+3,

Q(t) for t ≥ m2`+3.

Then
0 ≤ I(Q)− I(Q) =

∫ m2`+3

m2`

[Lδ(Q)− Lδ(Q)] dt.

Hence, by Lemma 2.3, and recalling that ϕ(ρ0) < 1/2,∫ m2`+3

m2`

Lδ(Q) dt ≤
∫ m2`+3

m2`

Lδ(Q)

=
∫ m2`+1

m2`

Lδ(Q) dt +
∫ m2`+2

m2`+2−1

Lδ(Q) dt +
∫ m2`+3

m2`+3−1

Lδ(Q) dt

≤ c− 1 + 2ϕ(r0) ≤ c

and the result follows. �

Lemma 3.3. Let Q be a minimizer of I in Γ(~m) given by Lemma 3.1. Then,
for ` = 0, . . . , N − 1,

Q(t) ∈ Br0(`ξ) ∪ (Rh + `ξ) ∪Br0((` + 1)ξ) = Dh + `ξ

for all t ∈ [m2`+1,m2`+2].

Proof. Set q(t) = Q|[m2`+1,m2`+2](t)− `ξ and observe that

q(t) ∈ γ(m2`+1,m2`+2, q(m2`+1), q(m2`+2))
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and
Lδ(Q) = L(t,Q(t), Q̇(t))− `δa(t) = L(t, q(t), q̇(t)),

for all t ∈ [m2`+1,m2`+2]. Hence q minimizes I0 over γ(m2`+1,m2`+2, q(m2`+1),
q(m2`+2)). The lemma then follows from assumption (V4). �

Lemma 3.4. Let t∗ be as in Lemma 2.7. Suppose m2`+1−m2` ≥ 2t∗. Then,
for ` = 1, . . . , N , there is a t` ∈ [m2`,m2` + t∗], t` ∈ [m2` − t∗,m2`], s` ∈
[m2`−1,m2`−1 + t∗], and s` ∈ [m2`−1 − t∗,m2`−1] such that

Q(t`) ∈ Bρ(`ξ), Q(t`) ∈ Bρ((`− 1)ξ) ∪Bρ(`ξ),

Q(s`) ∈ Bρ((`− 1)ξ) ∪Bρ(`ξ), Q(s`) ∈ Bρ((`− 1)ξ).

Moreover, setting t0 = −∞, sN+1 = ∞, then, for ` = 0, . . . , N ,

0 ≤
∫ s`+1

t`

Lδ(Q) dt ≤ ϕ(ρ) → 0 as ρ → 0,(3.5)

Q(t) ∈ Br0(`ξ) for t ∈ [t`, s`+1].(3.6)

Proof. The proof of the first part is very similar to that of Lemma 2.7.
Indeed, suppose t` does not exist. Then Q(t) ∈ Br0(`ξ) \ Bρ(`ξ) for all t ∈
[m2`,m2` + t∗] and, using Lemma 3.1,

c ≥
∫ m2`+t∗

m2`

−a(t)(Vδ(Q(t)) + `δ) dt ≥ t∗aβ(ρ) = 2c.

The estimates (3.5) follow, as in Lemma 2.7, using the arguments of Lemma 2.3,
and q(t) ∈ Br0(`ξ) for t ∈ [t`, s`] since, as in Lemma 2.10, the cost of going from
∂Bρ(`ξ) to ∂Br0(`ξ) ≥ γ � ϕ(ρ). �

Now the main theorem of this section can be stated.

Theorem 3.7. Let ρ satisfy

(3.8) 8ϕ(ρ) ≤ 1
4
(a− a)

d2

2c
|h|.

and define t∗ = 2c/aβ(ρ) and A∗ as in (2.14). Then for all a ∈ A∗, there is a
δ3 ≤ δ0 such that for all 0 < δ ≤ δ3, and for all ~m ∈ R2N which satisfy

mj ∈ TZ for j = 1, . . . , 2N,(3.9)

m2`+1 −m2` ≥ 2t∗ + 2 for ` = 1, . . . , N − 1,(3.10)

m2` −m2`−1 ≥ 2t∗ + T (a) + 1 for ` = 1, . . . , N,(3.11)

(HS) has a heteroclinic solution Q ∈ Γ(~m).

Proof. Set m0 = −∞, m2N+1 = ∞. Let Q be the minimizer of I over
Γ(~m). It is immediate that such a function is a solution of (HS)

• for all t ∈ [m2`+1,m2`+2], ` = 0, . . . , N − 1, by Lemma 3.3,
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• for all t ∈ [m2`,m2`+1] such that Q(t) /∈ ∂Br0(`ξ), ` = 0, . . . , N .

So, to prove the theorem, it only need be shown that Q(t) /∈ ∂Br0(`ξ) for all
t ∈ [m2`,m2`+1] and ` = 0, . . . , N . This will be done for ` = 1, . . . , N − 1. The
cases of ` = 0 and ` = N are treated in a similar but simpler fashion and will be
omitted.

By (3.6) of Lemma 3.4, it is known that Q(t) ∈ Br0(`ξ) for all t ∈ [t`, s`+1] ⊂
[m2`,m2`+1]. Thus it remains to verify that Q(τ) ∈ ∂Br0(`ξ) for some τ ∈
[m2`, t`] or τ ∈ [s`+1,m2`+1] is not possible. Assume to the contrary that Q(τ) ∈
∂Br0(`ξ) for some τ ∈ [m2`, t`]. Then first of all, since Q(t`) ∈ Bρ(`ξ), Q(τ) ∈
∂Br0(`ξ) and Q(t`) ∈ Bρ((` − 1)ξ) ∪ Bρ(`ξ), the arguments of Lemmas 2.11
and 2.12 imply that Q(t`) ∈ Bρ((`− 1)ξ) and hence

(3.12) Q(t) ∈ Br0((`− 1)ξ) for all t ∈ [t`−1, t`].

Let θ ∈ (0, T (a)) be as in Section 2 and define Q̃(t) as follow:

Q̃(t) =



Q(t) for t ≤ t`−1,

(`− 1)ξ for t`−1 + 1 ≤ t ≤ t` − θ − 1,

Q(t + θ) for t` − θ ≤ t ≤ t` − θ,

`ξ for t` − θ + 1 ≤ t ≤ s`+1 − 1,

Q(t) for t ≥ s`+1,

linear otherwise.

To verify that Q̃ is well defined, note that

• t`−1+1 ≤ t`−θ−1 since, by (3.1)–(3.11), t`−t`−1 ≥ m2`−m2`−2−2t∗ =
(m2` −m2`−1) + (m2`−1 −m2`−2)− 2t∗ ≥ 2t∗ + T (a) + 3 ≥ θ + 2,

• t` − θ + 1 ≤ s`+1 − 1, since s`+1 − t` ≥ m2`+1 −m2` − 2t∗ ≥ 2.

We claim that Q̃ ∈ Γ(~m). Since Q ∈ Γ(~m), by the definition of Q̃, it must
be verified that

(a) Q̃ ∈ Br0((`− 1)ξ), for t ∈ [t`−1,m2`−1],
(b) Q̃ ∈ R0 + (`− 1)ξ, for t ∈ [m2`−1,m2`],
(c) Q̃ ∈ Br0(`ξ), for t ∈ [m2`, s`+1].

Using the definition of Q̃, (a) follows from (3.11), (b) from (V2)–(V′
3) and the

fact that if t ≥ m2`−1, then t + θ ≥ m2`−1, and (c) from (3.10) and the fact that
if t ≥ m2`, then t + θ ≥ m2`.

Since Q̃ ∈ Γ(~m), arguing as in Section 2,

(3.13) 0 ≤ I(Q̃)− I(Q) =
∫ t`−θ

t`−θ

Lδ(Q̃) dt−
∫ t`

t`

Lδ(Q)dt +R
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where

(3.14) R =
∫ t`−θ

t`−1

Lδ(Q̃) dt+
∫ s`+1

t`−θ

Lδ(Q̃) dt−
∫ t`

t`−1

Lδ(Q)dt−
∫ s`+1

t`

Lδ(Q) dt.

By earlier arguments

(3.15)
∣∣∣∣ ∫ t`−θ

t`−1

Lδ(Q̃) dt

∣∣∣∣ ≤ 2ϕ(ρ).

Since Q(t`−1) ∈ Bρ((`− 1)ξ) and Q(t`) ∈ Bρ((`− 1)ξ), the minimality of Q and
simple comparison arguments as e.g. in Lemma 3.1 imply

(3.16)
∣∣∣∣ ∫ t`

t`−1

Lδ(Q) dt

∣∣∣∣ ≤ 2ϕ(ρ)

and similarly

(3.17)
∣∣∣∣ ∫ s`+1

t`

Lδ(Q) dt

∣∣∣∣ ≤ 2ϕ(ρ).

The function Lδ( · ) has a jump discontinuity (by −δa) at t = m2` so some care
must be taken with this value of t. The jump in Lδ(Q) occurs in the integral
over [t`, t`]. If t` − θ ≥ m2`, the jump in Lδ(Q̃) occurs in the integral over
[t` − θ, t` − θ]. Hence

(3.18)
∫ s`+1

t`−θ

Lδ(Q̃) dt ≤ 2ϕ(ρ)

as for (3.15) and by (3.13)–(3.18),

(3.19) 0 ≤
∫ t`−θ

t`−θ

Lδ(Q̃) dt−
∫ t`

t`

Lδ(Q)dt + 8ϕ(ρ)

≤
∫ t`

t`

(a(t− θ)− a(t))(−Vδ(Q(t))− (`− 1)δ) dt + δaθ + 8ϕ(ρ).

On the other hand, if t` − θ ≤ m2`,

(3.20)
∫ s`+1

t`−θ

Lδ(Q̃) dt =
∫ s`+1

t`−θ

[
1
2
| ˙̃Q|2 − a(t)(Vδ(Q̃) + `δ)

]
dt +

∫ m2`

t`−θ

δa(t) dt

≤ 2ϕ(ρ) + a(m2` − t` + θ) ≤ 2ϕ(ρ) + aδθ

and

(3.21) 0 ≤ I(Q̃)− I(Q) ≤
∫ t`−θ

t`−θ

Lδ(Q̃) dt−
∫ t`

t`

Lδ(Q) dt + 8ϕ(ρ) + aδθ

≤
∫ t`

t`

(a(t− θ)− a(t))(−Vδ(Q(t))− (`− 1)δ) dt

−
∫ t`

m2`

δa(t) dt + δaθ + 8ϕ(ρ),
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and equation (3.19) holds also in this case. Then, by the same arguments used
in equations (2.21)–(2.24) we find that

0 ≤ I(Q̃)− I(Q) ≤ −1
2
(a− a)

d2

2c
|h|+ δaT (a) + 8ϕ(ρ),

a contradiction for δ small via (3.8).
To complete the proof of Theorem 3.7, it remains to show that Q(τ) ∈

∂Br0(`ξ) for some τ ∈ [s`+1,m2`+1] is impossible. This involves a comparison
function argument based on a combination of the case just carried out and the
last part of the proof of Lemma 2.15. Arguing as earlier,

(3.22) Q(t) ∈ Br0((` + 1)ξ) for t ∈ [s`+1, s`+2].

Suppose k ∈ N satisfies

(3.23) (k + 1)T + 2t∗ + 2 > m2`+2 −m2`+1 ≥ kT + 2t∗ + 2.

Let θ = kT − θ with θ ∈ (0, T ) as earlier. Define

Q̃(t) =



Q(t) for t ≤ t`,

`ξ for t`+1 ≤ t ≤ s`+1 + θ − 1,

Q(t− θ) for s`+1 + θ ≤ t ≤ s`+1 + θ,

(` + 1)ξ for s`+1 + θ + 1 ≤ t ≤ t`+1 − 1

Q(t) for t ≥ t`+1,

linear otherwise.

Then (3.23) and earlier arguments show Q̃ is well defined and Q̃ ∈ Γ(~m). As
in (3.13)

(3.24) 0 = I(Q̃)− I(Q) =
∫ s`+1+θ

s`+1+θ

Lδ(Q̃) dt−
∫ s`+1

s`+1

Lδ(Q) dt +R

where now

(3.25) R =
∫ s`+1+θ

t`

Lδ(Q̃) dt +
∫ t`+1

s`+1+θ

Lδ(Q̃) dt

−
∫ s`+1

t`

Lδ(Q) dt−
∫ t`+1

s`+1

Lδ(Q) dt.

No jumps of Lδ( · ) are involved here so a similar but simpler argument than in
(3.15)–(3.21), leads to∫ s`+1+θ

t`

Lδ(Q̃) dt ≤ 2ϕ(ρ),∫ t`+1

s`+1+θ

Lδ(Q̃) dt ≤ 2ϕ(ρ) + δ(t`+1 − s`+1 − θ),
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t`

Lδ(Q) dt ≥ 0,∫ t`+1

s`+1

Lδ(Q) dt ≥ δ(m2`+2 − s`+1),

so that

(3.26) 0 ≤
∫ s`+1

s`+1

(a(t + θ)− a(t))(−Vδ(Q(t))− `δ) dt + 4ϕ(ρ).

But a(t + θ) = a(t + kT − θ) = a(t− θ) so as earlier

(3.27) 0 ≤ I(Q̃)− I(Q) ≤ −1
2
(a− a)

d2

2c
|h|+ 8ϕ(ρ),

contrary to the choice of ρ. �

Remark 3.28. As was noted earlier, it is not necessary that (V ′
3) holds,

i.e. ξi = iξ and Vδ(ξi−1) − Vδ(ξi) = δ. The argument of Theorem 3.7 applies
whenever there are points ξ0, . . . , ξN such that |Vδ(ξi−1)− Vδ(ξi)| is sufficiently
small, 1 ≤ i ≤ N , and each ξi is a (strict) local maximum.

Remark 3.29. As a special case of Theorem 3.7, suppose the setting of
Theorem 2.5 obtains. Set ξ0 = 0, ξ1 = ξ, ξ2i = ξ0, and ξ2i+1 = ξ1, i > 0. Then,
by Theorem 3.7, there exist solutions of (HS) which are homoclinic to 0 if N is
odd and heteroclinic from 0 to ξ if N is even and which spend the time interval
[m2i,m2i+1] near ξi. These are the simplest examples of the augmented chains
mentioned in the Introduction.

Remark 3.30. By a limiting procedure, one can allow (ξi)i∈N or (ξi)i∈Z pro-
vided that δ is independent of the number of points. Indeed for the case of (ξi)i∈Z

and corresponding m ∈ (Z\{0})∞, set `k = (m−(2k+1),m−1,m1, . . . , m2k+1) ∈
Z4k+2. Then by Theorem 3.7, there exists a solution Q`k

of (HS) heteroclinic
from ξ−k to ξk. It is not difficult to get L∞ bounds for Q`k

in each interval
[mi,mi+1] as in Lemma 2.3 or Lemma 3.1. Then (HS) gives bounds for Q`k

in
C2

loc independently of k. These bounds imply the existence of the limit solution.

4. On the assumption (V4)

In this section some examples will be given for which (V4) is valid. The first
example is one-dimensional.

Assume Vδ(x) = V0(x) + δW (x), where

(W1) V0 ∈ C2(R, R) is 1-periodic,
(W2) V0(0) = V ′

0(0) = 0, V ′′
0 (0) < 0, V (x) < 0 for all x /∈ Z,

(W3) W ∈ C2(R, R), W (x + 1) = W (x)− 1, for all x ∈ R,
(W4) W (0) = W ′(0) = 0.
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Proposition 4.1. Suppose V0 satisfies (W1)–(W2) and W satisfies (W3)–
(W4). Then there is a δ0 > 0 such that

Vδ(x) = V0(x) + δW (x)

satisfies (V1), (V2), (V’3) and (V4) for all δ ∈ (0, δ0).

Proof. It is clear that (V1) and (V′
3) hold for all δ > 0 if we take ξ = 1.

Take r1 > 0 and C1, C2 > 0 such that, for all |x| ≤ r1,

V0(x) ≤ −C1|x|2, |W (x)| ≤ C2|x|2.

Then

Vδ(x) ≤ −(C1 − δC2)|x|2 for all |x| ≤ r1

so (V2) holds for any r0 < r1 if δ0 < C1/C2. Suppose further that

δ0 sup
[−1,1]

|W (x)| ≤ 1
2

inf
[r1,1−r1]

|V0(x)|.

Then one can check that Vδ(x) < 0 for all δ < δ0, and for all x ∈ [−1+ r1,−r1]∪
[r1, 1− r1]. Using assumption (W3), one deduces that [−1 + r1,∞] ⊂ R0.

Now choose r0 < r1 such that the cost of going from −r0 to −r1 is greater
then the cost of going from −r0 to 0. (This can be done as in the proof of
Lemma 2.10.) Let h < 0 be such that

(4.2) 0 > h > sup{Vδ(x) | x ∈ [−1 + r1,−r0] ∪ [r0, 1− r0], δ ∈ [0, δ0]}.

Then

(4.3) [−1 + r1, 2− r1] ⊂ Br0(0) ∪Rh ∪Br0(1) ≡ Dh,

so that 0 and 1 are path connected in Dh for all h0 < h < 0 and (V4)(a) follows.
Assume that such an h does not satisfy (V4)(b). Then there is −r0 < η1 < r0,

ξ − r0 < η2 < ξ + r0, Q0 ∈ γ(m1,m2), a minimizer for I0 and τ ∈ [m1,m2] such
that Q0(τ) ∈ ∂Dh. By (4.3) ∂Dh ⊂ (−∞,−1 + r1] ∪ [1 + r1,∞). Hence there is
a number m1 ≤ τ ≤ m2 such that Q0(τ) = −1 + r1 (or Q(τ) = 1 + r1). Since
Q(m1) = η1 > −r0 and Q(m2) = η2 > −r0, one has a contradiction with our
choice of r0. Thus (V4) has been established for all h satisfying (4.2). �

Next using Proposition 4.1, a somewhat artificial example of a potential in
higher dimensions which satisfies our assumptions can be given. Fix V0 : R → R
satisfying (W1)–(W2) and W : R → R satisfying (W3)–(W4). We know, from
Proposition 4.1 that there is δ0 such that V0 + δW satisfies (V1), (V2), (V′

3) and
(V4) for all δ ∈ [0, δ0]. Then take r1 and r0 as in the proof of Proposition 4.1.
We then know that (V1), (V2), (V′

3) and (V4) hold.
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Set

(4.4) µ1 = inf
{ ∫ τ

0

(
1
2
|q̇|2 − aVδ(q)

)
dt

∣∣∣∣ τ ≥ 0, δ ∈ [0, δ0],

q(0) ≥ −r0, q(τ) ≤ −1 + r1, q ∈ W 1,2(0, τ)
}

.

Let ϕ be as in (2.8). Take r0 eventually smaller so that ϕ(r0) + r2
0 ≤ r1. Then

take R: R× Rn−1 → R such that

(W5) R ∈ C2(R×Rn−1, R) and R(x+1, y) = R(x, y) for all (x, y) ∈ R×Rn−1,
(W6) R(0, 0) = ∇R(0, 0) = 0, R′′

yy(0, 0) < 0, R(x, y) < 0 for all y 6= 0,
(W7) R(x, y) ≥ −µ ≥ −µ1/2a for all x, |y| ≤ r0,
(W8) R(x, 0) ≥ R(x, y) for all x ∈ R, |y| ≥ r0 and sup|y|≥r0

R(x, y) < 0.

We will show that

Vδ(x, y) = V0(x) + δW (x) + R(x, y)

satisfies, (V1), (V2), (V′
3) and (V4) for all 0 < δ < δ0. Indeed (V1) and (V2)

follows as in Proposition 4.1, while (V′
3) (with ξ = (1, 0)) is a direct consequence

of (W1), (W3) and (W5).
To prove (V4), observe that for all h satisfying (4.2) and

0 > h > sup{R(x, y) | −r0 ≤ |x| ≤ r0, |y| ≥ r0}

it follows from (W6) that [−1 + r1, 2− r1]× Rn−1 ⊂ Dh, so that (V4)(a) holds.
In order to prove (V4)(b), assume it does not hold. Then there is a η1 ∈

Br0(0), η2 ∈ Br0(ξ), Q0 = (x(t), y(t)) ∈ γ(m1,m2, η1, η2), a minimizer for I0 and
τ ∈ [m1,m2] such that Q0(τ) ∈ ∂Dh. By (4.3)

∂Dh ⊂ ((−∞,−1 + r1] ∪ [2− r1,∞))× Rn−1.

Hence there is a number m1 ≤ t0 ≤ m2 such that x(t0) ≤ −1 + r1. (The case
x(t0) ≥ 2 − r1 can be dealt with similarly). Then there is t1 > t0 such that
x(t) ≥ 0 for all t ≥ t1 and t2 ≥ t1 such that |y(t)| ≥ ρ for all t1 < t ≤ t2.

Define a new function Q ∈ γ(m1,m2, η1, η2) as follow:

Q(t) = (x(t), y(t)) =



η1 t = m1,

linear m1 ≤ t ≤ m1 + 1,

(0, 0) m1 + 1 ≤ t ≤ t1,

(x(t), 0) t1 ≤ t ≤ t2 − 1,

(x(t), linear) t2 − 1 ≤ t ≤ t2,

(x(t), y(t)) t2 ≤ t ≤ m2.
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Note that we can assume t1 ≥ m1 +1, and that minor modifications are required
if t1 ≥ t2 − 1. Estimating I0(Q)− I0(Q):

0 ≥ I0(Q)− I0(Q)

=
∫ m2

m1

(
1
2
(|ẋ|2 + |ẏ|2)− a(t)(Vδ(x) + R(x, y))

)
dt

−
∫ m2

m1

(
1
2
(|ẋ|2 + |ẏ|2)− a(t)(Vδ(x) + R(x, y))

)
dt

=
∫ t2

m1

(
1
2
(|ẋ|2 + |ẏ|2)− a(t)(Vδ(x) + R(x, y))

)
dt

−
∫ t2

m1

(
1
2
(|ẋ|2 + |ẏ|2)− a(t)(Vδ(x) + R(x, y))

)
dt

=
∫ t2

m1

(
1
2
(|ẋ|2 − a(t)Vδ(x)

)
dt−

∫ t2

m1

(
1
2
(|ẋ|2 − a(t)Vδ(x)

)
dt

+
∫ t2

m1

(
1
2
(|ẏ|2 − a(t)R(x, y)

)
dt−

∫ t2

m1

(
1
2
(|ẏ|2 − a(t)R(x, y)

)
dt

=
∫ t1

m1

(
1
2
(|ẋ|2 − a(t)Vδ(x)

)
dt−

∫ t1

m1

(
1
2
(|ẋ|2 − a(t)Vδ(x)

)
dt

+
∫ t2

m1

(
1
2
(|ẏ|2 − a(t)R(x, y)

)
dt−

∫ t2

m1

(
1
2
(|ẏ|2 − a(t)R(x, y)

)
dt.

Let us now observe that∫ t1

m1

(
1
2
(|ẋ|2 − a(t)Vδ(x)

)
dt ≥ 2µ1

while, by the choice of ϕ,∫ t1

m1

(
1
2
(|ẋ|2 − a(t)Vδ(x)

)
dt =

∫ m1+1

m1

(
1
2
(|ẋ|2 − a(t)Vδ(x)

)
dt ≤ ϕ(r0).

We also have that∫ t2

m1

(
1
2
(|ẏ|2 − a(t)R(x, y)

)
dt ≥

∫ t2−1

m1+1

(
1
2
(|ẏ|2 − a(t)R(x, y)

)
dt

≥ −
∫ t2−1

m1+1

a(t)R(x, y) dt

and∫ m1+1

m1

(
1
2
(|ẏ|2 − a(t)R(x, y)

)
dt ≤

∫ m1+1

m1

(
1
2
(|ẏ|2 + aµ

)
dt ≤ 1

2
r2
0 + aµ∫ t2

t2−1

(
1
2
(|ẏ|2 + a(t)R(x, y)

)
dt ≤ 1

2
r2
0 + aµ.
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We deduce that∫ t2

m1

(
1
2
(|ẏ|2 − a(t)R(x, y)

)
dt−

∫ t2

m1

(
1
2
(|ẏ|2 − a(t)R(x, y)

)
dt

≥
∫ t2−1

m1+1

(
− a(t)R(x, y) + a(t)R(x, 0)

)
dt− r2

0 − 2aµ ≥ −r2
0 − 2aµ.

Combining these inequalities yields:

0 ≥ I0(Q)− I0(Q) ≥ 2µ1 − ϕ(r0)− r2
0 − 2aµ,

a contradiction which shows that (V4)(b) holds.

For our next example, suppose Vδ satisfies (V1)–(V3) and in addition:

(V5) Vδ(x) < 0 for all x ∈ Rn\{0, ξ}, δ ∈ [0, δ0].

By (V5), 0 is a global maximum for Vδ. Now R0 = Rn. The next proposition
shows that (V4) is valid for this setting.

Proposition 4.5. If Vδ satisfies (V1)–(V3) and (V5), then (V4) also holds.

By (V5), (V4)(a) is satisfied. To verify (V4)(b), observe that as in the proof
of Lemma 2.3, along a minimizing sequence for I0 in γ(m1,m2, η1, η2),

|q(t)| ≤ r0 +
√

2c(m2 −m1) ≡ R

as in Lemma 2.3. Choose h0 < 0 such that

Vδ(x) ≤ h0, x ∈ BR(0) \ (Br0/2(0) ∪Br0/2(ξ))

and δ ∈ [0, δ0]. Then if h = h0/2, (V4)(b) holds.

Remark 4.6. Note that there may be several values of ξ for which (V3) is
satisfied possibly with different (small) values of δ.

We conclude with a couple of examples to which Theorem 3.7 and Re-
mark 3.30 apply. Suppose n = 1, e.g. (W1)–(W4) hold. Then Proposition 4.1
and Theorem 2.5 show there is a solution, Q1 of (HS) heteroclinic from 0 to 1
for each small δ. Similarly there are solutions Qj , of (HS) heteroclinic from j−1
to j. By the argument of Proposition 4.1 again together with Theorem 3.7, there
are heteroclinic solutions of (HS) from j to k for any j, k ∈ Z as well as solutions
going from −∞ to ∞ via Remark 3.30. Moreover, there are augmented chain
type solutions in the spirit of the Introduction and Remark 3.29.

A variant of these arguments shows Vδ(x) = (1 + δ)(cos(x) − 1) + δx has
heteroclinics as in the previous paragraph. Let us note that in this example the
points were the local maxima are achieved depend continuously on δ for δ near 0.
It is not difficult to check that the whole theory works in this situation, too.
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