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EXISTENCE OF PURE EQUILIBRIA IN GAMES
WITH NONATOMIC SPACE OF PLAYERS

Agnieszka Wiszniewska–Matyszkiel

Abstract. In this paper known results on the existence of pure Nash
equilibria in games with nonatomic measure space of players are general-

ized and also a simple proof is offered. The relaxed assumptions include

metrizability of the space of actions, measurability of payoff functions and
available strategy correspondences.

1. Introduction

Schmeidler in [20] defined a notion of nonatomic game as a game with a set
of players endowed with nonatomic measure, and defined what is understood as
equilibrium. He showed (Theorem 1) that in a game with players constituting
interval [0, 1] with Lebesgue measure and finite set of strategies there exists
a mixed equilibrium. The proof of existence of a pure equilibrium when each
player’s payoff depends only on his own strategy and the mean of the profile was
based on this result.

Rath in [17] proved Schmeidler’s theorem without using the existence of
mixed equilibrium. His proof was based on properties of the integral of a cor-
respondence and Kakutani fixed point theorem. This approach turned out to
be fruitful – the same routine could be used to prove a more general result:
existence of a pure equilibrium in a game with compact set of strategies.
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Mas–Colell in [16] reformulated the model and the definition of the equilib-
rium: instead of measurable functions from the space of players into the space
of strategies, strategy profiles were represented as distributions on the product
of the space of characteristics (i.e. continuous utility functions) endowed with
the supremum norm, and the space of actions. He gave a simple proof of the
existence of an equilibrium (what he defined was a pure equilibrium).

There were many generalizations of the models of Schmeidler and Mas–Colell,
e.g. Khan [9] and [10], Khan and Sun [11], Khan and Rustichini [12], Balder [5]
and [6]. Extensions included weakening the assumptions on the continuity of
payoff functions and the compactness of a strategy space, the completeness of
a space of players and using preference relations instead of payoff functions.

From the point of view of the present paper, especially interesting is Balder [6],
since the existence theorem of this paper is a straightforward generalization of
one presented in [6]. Balder proved as a main result (Theorem 2.1) a general
theorem on existence of a mixed equilibrium in games with a measure space of
players. It is the most general result for the case with payoff functions. Existence
of a pure equilibrium in games with a nonatomic space of players (Theorem 3.4.1)
was shown as a consequence of Theorem 2.1 and a Lemma from his earlier paper
([4, Lemma III]) concerning optimal control theory. The proof of the latter one
was long and complicated.

The author’s work on the existence theorem was started by the thesis [21],
which contains various results on games with infinitely many players and a certain
economic application of them. The results contained in this paper are used in
[22]–[26].

The theorem presented in this paper not only generalizes the result of Balder
([6, Theorem 3.4.1]), but also gives a completely different, more direct and sim-
pler proof of it. For comparison, Balder’s result will be presented in Section 3.3.

Although the main theorem of this paper may appear very abstract (the mea-
surability seems to be a very natural assumption), replacing the measurability
with analyticity is natural. If we consider sets being projections or measurable
(or even continuous) images of measurable sets, we cannot expect more than
analyticity. Moreover, for a function with a measurable graph, the only thing we
can assume about the inverse images of measurable sets is that they are analytic.

Therefore in the models, which are in fact only projections of a measurable
but very complex real world into a simpler reality of the model, or measurable
images of the world, with functions represented by their graphs – measurable
sets of pairs, a theorem assuming analyticity may often turn out to be useful.
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2. General model

A game with measure space of players is a system

((Ω,=, µ), (S,S), S, {Πω}ω∈Ω)

a space of players, a correspondence S of (pure) strategies available to the players
(acting into the space S) and players’ payoff functions. All of them are defined
below.

A measure space (Ω,=, µ) with a finite measure µ will be our space of players.
A measurable space (S,S) is a space of (pure) strategies.
The set S is topologized with a Hausdorff topology. All the topological as-

sumptions about objects defined on S refer to this topology. The σ-field S is not
assumed to coincide with B(S) – the Borel σ-field of S.

A correspondence S : Ω ( S is called correspondence of players’ available
strategies; Sω denotes the set of strategies available to player ω; any strategy
d ∈ Sω is called player ω’s individual strategy.

Pure profiles are measurable functions δ : Ω → S such that for almost every ω

we have δ(ω) ∈ Sω. The set of all pure profiles is denoted by R.
Generally, the payoff functions Πω are assumed to act from R into [−∞,∞).

However, we assume that there is a specific internal-external representation of
the payoffs consisting of a topological space Y (called space of profile statistics),
functions Pω : Sω × Y → [−∞,∞) (reduced payoff functions) and a mapping
e : R → Y (externality mapping) such that the payoff functions Πω have the
form

Πω(δ) = Pω(δ(ω), e(δ)).

In this paper the externality mapping is assumed to have the form

e(δ) =
[ ∫

Ω

gi(ω, δ(ω)) dµ(ω)
]r

i=1

where the function g : Gr(S) → Rr is measurable and the family of functions
{g( · , d)}d∈S is integrably bounded.

A pure Nash equilibrium is a pure profile δ such that

δ(ω) ∈ Argmaxd∈SωPω(d, e(δ)) for a.e. ω.

3. Existence of pure equilibria in games
with nonatomic space of players

We will use the symbol U for the image e(R) and (Ω,=, µ) for the completion
of (Ω,=, µ).

As usual we understand =-analytic sets as obtained by the Souslin A-ope-
ration (e.g. [13] or [19]) performed on the sets belonging to =. Besides, as we
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noted in Section 1, =-analytic sets appear as projections or measurable images
of measurable sets, or inverse images of measurable sets by a function with
a measurable graph.

We denote the diagonal {(s, s) : s ∈ S} by diag(S).
The following assumptions will be used in the existence Theorem:

(A1) The space S is such that diag(S) is S ⊗ S-measurable and there exists
a measurable space (Z,Z) and a measurable function F : Zonto−→S such
that Z is an analytic subset of a measurable a space (W,W) (with
Z = {W ∩ Z : W ∈ W}) such that W is generated (in the sense
of taking countable unions and intersections) by a compact countable
family of sets (compact means that for every sequence of sets {Fn}n∈N

with finite intersection property,
⋂

n∈N Fn is nonempty).
(A1’) The space S is such that diag(S) is S ⊗ S-measurable and there exists

a measurable space (Z,Z) and a measurable function F : Zonto−→S such
that Z is an analytic subset of a separable compact metrizable topolog-
ical space W (with Z = {W ∩ Z : W ∈ B(W)}).

Let us note that (A1) implies (A1’).

(A2) For a.e. ω, the set Sω is nonempty and compact.
(A3) The function Pω is upper semicontinuous on Sω × U for a.e. ω.
(A4) The graph of S is =⊗ S-analytic.
(A5) The function Pω(d, · ) is continuous on U for a.e. ω and every d ∈ Sω.
(A6) For every u ∈ U, the function P · ( · , u) : Gr(S) → [−∞,∞) is such that

inverse images of Borel sets are =⊗ S-analytic.
(A7) The functions gi are measurable, integrably bounded and such that

gi(ω, · ) is continuous on Sω for every i and a.e. ω.

Now it is time to formulate the main result:

Theorem 3.1.

(a) If (Ω,=, µ) is nonatomic complete and assumptions (A1), (A2)–(A7)
are fulfilled then there exists a pure strategy Nash equilibrium profile.

(b) If (Ω,=, µ) is nonatomic, assumptions (A1’), (A2)–(A7) are fulfilled
then there exists a pure strategy Nash equilibrium profile.

3.1. Useful facts concerning measurability. Let (S,S) be any mea-
surable space. If S is any measurable space such that the σ-field S contains
a countable, separating points family of sets, then diag(S) is S ⊗ S-measurable:
let {Ai}i∈N be a family separating points, then

diag(S) = (S× S) \
⋃

i,j∈N
((Ai ×Aj) \ ((Ai ×Ai) ∪ (Aj ×Aj))).
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To prove Theorem 3.1 we will work with (=, µ) – the completion of (=, µ). The
following facts explain why such a procedure will lead to satisfactory results.

It is obvious, that for an arbitrary σ-finite measure space (Ω,=, µ) and for
every =-measurable function f : Ω→R, integrably bounded from above or below,
we have

∫
Ω
f(ω) dµ(ω) =

∫
Ω
f(ω) dµ(ω).

The remaining facts are not so immediate:

Proposition 3.2. Let (Ω,=, µ) be any σ-finite measure space and let (A1’)
be fulfilled. If f : Ω→S is an =-measurable function, then there exists an =-
measurable function f : Ω→S almost everywhere equal to f .

Proof. We shall start from checking measurability of the graph of the cor-
respondence F−1 ◦f (where F is the function appearing in assumption A1’). We
have

Gr(F−1 ◦ f) = {(ω, x) : x ∈ F
−1

(f(ω))} = (IdΩ, F )−1(Gr(f))

= ((IdΩ, F ) ◦ (f, IdS))−1(diag(S)).

The diagonal is measurable, both functions (IdΩ, F ) and (f, IdS) are measurable
(with respect to the corresponding σ-fields), so their composition is measurable,
therefore the graph of (F−1 ◦ f), as the inverse image of a measurable set is
=⊗ Z-measurable, therefore it is =⊗ B(W)-analytic.

By a generalization of Aumann’s measurable selection Theorem ([14, Theo-
rem 5.5], see also [2]) there exists h – an =-measurable a.e. selection from the
correspondence (F−1 ◦ f). Let {Ai}i∈N be a countable family of generators of
B(W), x any element of W and Ci = h−1(Ai). Since Ci ∈ =, there exist sets
Ci− ⊂ Ci ⊂ Ci+ such that Ci+, Ci− ∈ = and µ(Ci+ \ Ci−) = 0. Let C denote⋃

i∈N(Ci+ \ Ci−). Note that µ(C) = 0. We define a function h as follows:

h(ω) =

{
x if ω ∈ C,

h(ω) if ω /∈ C.

The function h is measurable, since

h−1(Ai) =

{
Ci− if x /∈ Ai,

Ci− ∪ C if x ∈ Ai.

Therefore f = F ◦ h is =-measurable and f |Ω\C = (F ◦ F−1)f |Ω\C = f |Ω\C ,
which completes the proof. �

Lemma 3.3. If (Ω,=, µ) is any σ-finite measure space, (S,S) – any mea-
surable space fulfilling assumption (A1), a correspondence S : Ω ( S has an
= ⊗ S-analytic graph and a function f : Ω × S → R is such that the inverse
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images of Borel subsets of R are = ⊗ S-analytic, then the function H : Ω → R
defined by H(ω) = maxd∈Sω f(ω, d) is =-measurable.

Proof. Let us note that H(ω) = maxx∈F−1(Sω) f(ω, F (x)). It is enough to
show that sets Aa being inverse images of intervals [a,∞) are =-measurable for
every a ∈ R. We have

Aa = ProjΩ{(ω, x, t) : t = f(ω, F (x)), t ≥ a, x ∈ F−1(Sω)}
= ProjΩ({(ω, x, t) : t = f(ω, F (x))}
∩ {(ω, x, t) : t ≥ a} ∩ {(ω, x, t) : x ∈ F−1(Sω)}).

We have Gr(F−1 ◦ S) = (IdΩ, F )−1(Gr(S)), therefore Gr(F−1 ◦ S) is = ⊗ Z-
analytic.

By assumptions about (S,S) and f , the inverse images of measurable sets
by the function ((f ◦ (IdΩ, F )), IdR) are = ⊗ Z ⊗ B(R)-analytic. Moreover, the
diagonal diag(R) is measurable, therefore

Gr(f ◦ (IdΩ, F )) = ((f ◦ (IdΩ, F )), IdR)−1(diag(R))

is = ⊗ Z ⊗ B(R)-analytic. The sets {(ω, x, t) : t = f(ω, F (x))}, {(ω, x, t) : t ≥
a} and {(ω, x, t) : x ∈ F−1(Sω)} are = ⊗ Z ⊗ B(R)-analytic, therefore their
intersection is =⊗Z⊗B(R)-analytic, too. This implies that it is =⊗W⊗B(R)-
analytic.

Since the σ-field W is generated by a compact family of sets, which im-
plies the same for B(R) ⊗ W, by the projection theorem of Marczewski and
Ryll–Nardzewski ([15]), the sets Aa are =-analytic. By a theorem of Saks (The-
orem 5.5, p. 50 in [19]), analytic sets are universally measurable (i.e. measurable
with respect to the completion of every measure on =), therefore they belong to
=, which completes the proof of =-measurability of H. �

3.2. Proof of the main result. We introduce some notation and defini-
tions:

Bω(u) = Argmaxd∈SωPω(d, u)

(Bω is called the best response correspondence of player ω) and

B(u) =
[ ∫

Ω

gi(ω, Bω(u))dµ(ω)
]r

i=1

(statistic of the best response).

Proposition 3.4. If (Ω,=, µ) is any measure space and (A1’) is fulfilled,
then the existence of a pure equilibrium is equivalent to the existence of a fixed
point of the statistic of the best response correspondence B.
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Proof. Let u ∈ B. By the definition of Aumann’s integral, there exists an
=-measurable function f : Ω → S such that

[ ∫
Ω

gi(ω, f(ω)) dµ(ω)
]r

i=1
= u and

for almost every ω, f(ω) ∈ Bω(u).
By Proposition 3.2, there exists an =-measurable function f such that[ ∫

Ω

gi(ω, f(ω))dµ(ω)
]r

i=1

= u

and for a.e. ω f(ω) ∈ Bω(u). By definition of B, the profile f is a Nash equilib-
rium. �

Before the proof of Theorem 3.1, we shall formulate a sequence of necessary
lemmata.

Lemma 3.5. If (Ω,=, µ) is a measure space with nonatomic, finite measure
and assumptions (A2) and (A7) are fulfilled, then U is convex and compact.

Proof. Since µ is nonatomic, the integral of every correspondence, in par-
ticular of S, is convex (see e.g. Richter [18]).

The values of S are closed and gi are integrably bounded, so U is compact (by
a known theorem, see Aumann [1], Theorem 4 or Hildenbrand [8, Proposition 7,
p. 73]). �

Lemma 3.6. If S is a Hausdorff topological space, assumption (A2) is ful-
filled, for a.e. ω, g(ω, · ) is continuous on Sω and for a.e. ω and every u, Pω( · , u)
is upper semicontinuous on Sω, then for a.e. ω the values of g(ω, Bω( · )) are
nonempty and compact.

Proof. Let us take any u ∈ U and any ω for which the required properties
of Pω and Sω hold.

Since Sω is compact and Pω( · , u) is upper semicontinuous on Sω, the supre-
mum M := supd∈Sω

Pω(d, u) is attained, therefore g(ω, Bω( · )) is nonempty.
The function Pω( · , u) is upper semicontinuous on Sω, which is compact, so

for every r ∈ R ∪ {−∞}, the set {d ∈ Sω : Pω( · , u) ≥ r} is compact; so is the
set

Bω(u) = {d ∈ Sω : Pω( · , u) ≥ M}.

The function g is continuous in the latter variable, therefore the set g(ω, Bω(u))
is compact. �

Lemma 3.7. If (Ω,=, µ) is any σ-finite measure space, assumptions (A1)),
(A4), (A6) and the functions gi are =⊗S-measurable are fulfilled, then for every
u, the correspondence g ◦ (IdΩ ×B·(u)) has an =⊗ B(Rr)-analytic graph.
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Proof. Let us take an arbitrary u. The graph of g◦(IdΩ×B·(u)) is described
by the equation

Gr(g ◦ (IdΩ ×B·(u))) = {(ω, y) ∈ Ω× Rr : ∃d ∈ Sω such that

Pω(d, u) = max
d∈Sω

Pω(d, u) and g(ω, d) = y}.

We can put it another way:

Gr(g ◦ (IdΩ ×B·(u))) = {(ω, y) ∈ Ω× Rr : ∃x ∈ F−1(Sω)

such that Pω(F (x), u) = maxx∈F−1(Sω) Pω(F (x), u) and g(ω, F (x)) = y}.
By Lemma 3.3, the function H defined by H(ω) = maxd∈Sω

Pω(d, u), is
=-measurable.

We have

Gr(g◦(IdΩ ×B·(u)))

= ProjΩ×Rr{(ω, x, y) ∈ Ω× Z× Rr : Pω(F (x), u)−H(ω) = 0,

x ∈ F−1(Sω), y = g(ω, F (x))}
= ProjΩ×Rr ({(ω, x, y) ∈ Ω× Z× Rr : Pω(F (x), u)−H(ω) = 0}
∩ {(ω, x, y) ∈ Ω× Z× Rr : x ∈ F−1(Sω)}
∩ {(ω, x, y) ∈ Ω× Z× Rr : y = g(ω, F (x))})

= ProjΩ×Rr (G−1(0)× Rr ∩Gr((IdΩ, F )−1(Gr(S)))× Rr

∩Gr(g ◦ (IdΩ × F ))),

where the function G is defined by G(ω, x) = Pω(F (x), u)−H(ω).
Inverse images of intervals by G are = ⊗ Z-analytic, so the set G−1({0}) is

=⊗Z-analytic. The sets Gr((IdΩ, F )−1(Gr(S)))×Rr and Gr(g ◦ (IdΩ×F )) are
=⊗Z⊗B(Rr)-analytic, therefore they are =⊗W⊗B(Rr)-analytic. Hence the set
G−1(0)×Rr ∩Gr((IdΩ, F )−1(Gr(S)))×Rr ∩Gr(g ◦ (IdΩ×F ) is =⊗W⊗B(Rr)-
analytic. Since the σ-field W is generated by a compact family of sets, by
the projection Theorem of Marczewski and Ryll–Nardzewski, the projection is
=⊗ B(Rr)-analytic.

So we have proved that the graph of g◦(IdΩ×B·(u)) is =⊗B(Rr)-analytic.�

Lemma 3.8. If S is a topological Hausdorff space, assumptions (A2), (A3)
and (A5) are fulfilled, and for a.e. ω, g(ω, · ) is continuous on Sω then for a.e. ω,
the graph of the correspondence g(ω, Bω( · )) is compact.

Proof. We fix some ω for which the assumed properties hold.
At first let us prove that the graph of Bω( · ) is compact. Since it is a subset

of a compact set, it is enough to show closedness.
Let us suppose, contrary to our claim, that for this ω the correspondence Bω

is not closed. Let (un, dn) ∈ Gr(Bω) and (un, dn) → (u, d).
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Let m = Pω(d, u), M = maxd∈Sω
Pω(d, u) = Pω(d̃, u) (such d̃ exists because

Bω(u) is nonempty) and ε = M −m > 0.
We first assume that m > −∞. Since Pω is upper semicontinuous and for

d in Sω, the function Pω(d, · ) is continuous, for n large enough the following
inequalities are simultaneously fulfilled:

Pω(dn, un)−m <
ε

2
and |M − Pω(d̃, un)| < ε

2
.

So M − ε/2 < Pω(d̃, un) ≤ Pω(dn, un) < m + ε/2, which is a contradiction.
Now let m = −∞ and M ∈ R. There exists η ∈ R such that for n

large enough, Pω(d̃, un) > M − η. Therefore we have M − η < Pω(d̃, un) ≤
Pω(dn, un) → −∞, which is a contradiction in this case.

The graph of g(ω, Bω( · )) is compact, since it is equal to (IdU × g)(Gr(Bω))
(an image of a compact set by a continuous map). �

Proof of the Theorem. The set U is compact and convex by Lemma 3.5.
The family of correspondences {g◦(IdΩ×B·(u))}u∈U is integrably bounded. The
values of B are convex (see Richter [18]).

By Lemmata 3.6 and 3.7, for every u and i, the correspondence

gi ◦ (IdΩ ×B·(u))

is integrably bounded, it has nonempty values a.e. and an = ⊗ B(Rr)-analytic
graph. Therefore by a measurable selection Theorem (Leese [14, Theorem 5.5])
for a correspondence with an analytic graph, there exists an =-measurable a.e.
selection from gi ◦ (IdΩ ×B·(u)). Therefore the values of B are nonempty.

By Lemma 3.6, for every u and i, the correspondence g ◦ (IdΩ × B·(u)) is
integrably bounded and it has closed values a.e., so the values of B are compact
(the same reasoning as in the proof of Lemma 3.5).

By Lemma 3.8, the correspondences g(ω, Bω( · )) are closed and bounded by
the same integrable function, so B is a closed correspondence (Aumann [3]).

Therefore B is a closed correspondence of a compact, convex set into itself
with nonempty, compact, convex values. By the Kakutani theorem, there exists
a fixed point u ∈ B(u).

This completes the proof of (a). If case (b) the existence of an equilibrium
follows from (a) and Proposition 3.4. �

3.3. Balder’s results. As announced, we recall, for comparison, the men-
tioned result of Balder [6] concerning the existence of pure equilibria in large
games rephrased to fit our framework.

Assumptions:

(B1) The strategy space S is a Souslin metric space.
(B2) The set Sω is nonempty and compact for every ω.
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(B3) The function Pω is upper semicontinuous on Sω × Y for every ω.
(B4) The correspondence S has an =⊗ B(S)-measurable graph.
(B5) The function Pω(d, · ) is continuous on Y for every ω and every d ∈ Sω.
(B6) The function P · ( · , u) : Gr(S) → [−∞,∞) is measurable for every

u ∈ Y.
(B7) The functions gi are measurable, integrably bounded and such that

gi(ω, · ) is continuous on Sω for every ω, i.

Theorem 3.9 (Balder [6]). If (Ω,=, µ) is nonatomic and assumptions (B1)–
(B7) are fulfilled, then there exists a pure strategy Nash equilibrium profile.

Let us note that Theorem 3.1 is a generalization of Theorem 3.9, since Polish
spaces from topological point of view coincide with Gδ subsets of the Hilbert
cube [0, 1]N (see e.g. [13, p. 430]), which is compact, and in the Borel σ-field of
a Souslin metric space there exists a countable family of sets separating points
(see e.g. [7, p. 81]), therefore the diagonal is in the product σ-field.

Certainly, the assumptions (A1) and (A1’) are essentially weaker than (B1)
while (A4) and (A6) than, respectively, (B4) and (B6).

The original proof of Balder was based on a Theorem on existence of mixed
equilibria (the main result of [6], using properties of Young measures), a simple
rule for purification and a Lemma (an adjusted version of a very complicated
Lemma III from a paper on optimal control [4]).
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