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THE TOPOLOGICAL PROOF OF ABEL–RUFFINI THEOREM

Henryk Żo�lądek

Abstract. We present a proof of the non-solvability in radicals of a gen-
eral algebraic equation of degree greater than four. This proof relies on the
non-solvability of the monodromy group of a general algebraic function.

1. Introduction

In high school young people are learned how to solve the quadratic equation
x2 + ax+ b = 0. Everybody knows the formula

x = −a
2
+

√
a2

4
− b.

A general equation of third degree x3 + ax2 + bx + c = 0 is firstly reduced
to the form y3 + py + q = 0 (using the substitution x = y − a/3). The next
substitution y = z− p/3z leads to the equation (z3)2+ q(z3)− p3/27. From this
we get z = 3

√
−q/2 +√q2/4 + p3/27, what gives the Cardano formula
y =

3

√
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27
+

3

√
− q
2
−
√
q2

4
+
p3

27
.

A general equation of fourth degree, which can be taken in the form x4 +
px2+ qx+ r = 0, is treated by means of the so called Ferrari method. Firstly we

2000 Mathematics Subject Classification. 14H30, 14H55, 12I10, 30F10.
Key words and phrases. Radicals, monodromy group, solvable group.
This work was supported by Polish KBN Grant No. 2 P03A 041 15.

c©2000 Juliusz Schauder Center for Nonlinear Studies

253



254 H. Żo�lądek

rewrite it in the form

(1) (x2 + α)2 − [(2α− p)x2 − qx+ α2 − r] = 0,

where α is an additional parameter. We choose α such that the polynomial in
the square brackets becomes a full square; we require that

(2) q2 − 4(2α− p)(α2 − r) = 0.

Then the equation (1) is reduced to two quadratic equations. On the other
hand, we already know how to solve the cubic equation (2). In this way one can
solve the initial equation of fourth degree; (however the complete formula is so
complicated than nobody tries to write it down).
We have proven that the roots of a general algebraic equation of degree ≤ 4

are expressed via the coefficients of the equation by means of the operations of
addition, extraction, multiplication, division and extraction of root of natural
degree. We say that the solution of an equation is expressed in radicals.
For long time mathematicians tried to find a method for solving a general

equation of fifth degree in radicals. In 1799 P. Ruffini had presented a proof of
non-existence of such solution. Unfortunately, the proof was too complicated to
be accepted by the actual mathematical community. Social approval received
a proof of the analogous statement done in 1824 by N. H. Abel.

Theorem (Abel and Ruffini). A general algebraic equation of degree ≥ 5
cannot be solved in radicals. This means that there does not exist any formula
which would express the roots of such equation as functions of the coefficients by
means of the algebraic operations and roots of natural degrees.

The Abel–Ruffini theorem constituted an essential step in the development
of mathematics. Such notions like abelian group and solvable group take their
origin just here.
Later E. Galois had started a general theory which associates with any alge-

braic equation certain invariant, known now under the name the Galois group.
It is the group of those permutations of the roots of the equation which preserve
all algebraic relations satisfied by these roots. Some properties of the equation
(e.g. solvability in radicals) are translated to properties of its Galois group.
In such approach the main accent was shifted from analytic properties of solu-

tions (dependence on the coefficients) to their algebraic character. One assumes
that the coefficients belong to a given number field (e.g. of rational numbers)
and investigates the extension of this field by means of the roots of the equation.
But when one has to assume that the coefficients are variable, what is quite
natural when solving general equations, then the algebraic theory ceases to be
completely clear. In particular, in the proof of the Abel–Ruffini theorem people
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use some rather sophisticated tricks (transcendental extensions, algebraic inde-
pendence of coefficients) in order to be compatible with the acquainted algebraic
scheme.
Below we present another proof of the theorem of Abel and Ruffini. It relies

upon topological properties of Riemann surfaces defined by algebraic equations
with varying coefficients. The reader will see that it is natural and correct
approach to the problem.
Unfortunately, none of the known to me books on number theory and al-

gebra mentions about existence of such a proof. While working on this article
I was using a short book of V. B. Alekseev [1]. The author attended a course
of lectured on this subject delivered by V. I. Arnold for talented high-school
pupils (in a school associated with Moscow University) and the book is based on
these lectures. The lecturer had to begin with introduction of complex numbers,
analytic functions and the notion of group.
B. A. Dubrovin, S. P. Novikov and A. T. Fomenko also write about the

topological proof of Abel–Ruffini theorem in their monograph [3]. They even
sketch the proof; unfortunately, most of the details are left to the readers.
Several people (from east and west) asked me where such a complete proof

of this theorem can be found. I hope that this paper will serve as such a source.

2. Algebraic functions and their Riemann surfaces

A naive approach to algebraic functions may lead to misunderstandings. For
example, it is known what is

√
x (it takes two values). But how many values

the function
√
x +
√
x takes; two, four, or maybe three? The proper definition

is following.
An algebraic function y = f(x) is defined by the algebraic equation

(3) gn(x)yn + gn−1(x)yn−1 + . . .+ g0(x) = 0

(or shortly F (x, y) = 0), where gj are polynomials. In what follows for simplicity
we will assume that gn(x) ≡ 1 (then the roots will not escape to infinity).
Let a point a ∈ C be such that the equation F (a, y) = 0 has n different roots

y = z1, . . . , zn. Then F ′y(a, zi) �= 0 and Implicit Function Theorem asserts that
for any x from some neighbourhood Ua of the point a the equation F (x, y) = 0
(with respect to y) also has n different solutions. They define single-valued func-
tions fa,1(x), . . . , fa,n(x) on the domain Ua. The functions fa,i(x) are expanded
into convergent Taylor series in the point a; therefore we can choose Ua as a disc
(with center at a) contained in the common convergence disc of these series.
The pairs (fa,i, Ua) constitute analytic elements of the function f . A general

analytic element is denoted by (fa, Ua), where Ua is a disc with center at a at
which the Taylor series of the function fa (at the point a) is convergent.
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An analytic element can be prolonged. If the equation (3) has single-valued
solutions, then they would be prolonged to the whole complex plane. For ex-
ample, for the equation F (x, y) = (y − x)(y − 1) we have two analytic elements
which are prolonged to the functions y = x and y = 1 on C. It may turn out that
several solutions (i.e. analytic elements) glue themselves and this constitutes an
obstacle to prolongation. In the above example we have an illusory gluing at the
point x = 1 (because each of the solutions is analytically prolonged there), but
for the equation y3 − x = 0 the singularity at x = 0 cannot be removed in this
way.
Let x1, . . . , xm be the singular points of the function f . Beginning with the

analytic element (fa, Ua), a ∈ C \ {x1, . . . , xm} we will construct the Riemann
surface M of the function f . We prolong the element (fa, Ua) along paths γ ⊂
C \ {x1, . . . , xm} with beginning at a (and end at b). We cover γ by means
of finite number of neighbourhoods Uai , ai ∈ γ, which are domains of analytic
elements (fai , Uai) compatible at the intersections, fai ≡ fai−1 in Uai ∩Uai−1 ; we
assume Ua0 = Ua. The final analytic element (fb, Ub) constitutes a prolongation
of the analytic element (fa, Ua) along the path γ (see Figure 1).

�x1 a

Ua

Ua1

x2
b

Ub

x3

◦
◦

◦

•

•

Figure 1

There arises the question about uniqueness of the analytic prolongation. It
turns out that if two paths γ(1) and γ(2) (in C \ {x1, . . . , xm}, with beginning
at a and end at b) can be deformed one to the other, with fixed ends and not
touching the singularities, then the results of prolongations along these paths are
the same, f (1)b = f

(2)
b . This is the theorem about monodromy. One can easily

prove it by covering the domain swept by the deformed paths using domains Uc
of analytic elements.
The union of all analytic elements obtained from the element (fa, Ua) along

all possible paths forms certain surface which we call the Riemann surface M of
the algebraic function f . The surfaceM is equipped with the natural projection
π :M → C \ {x1, . . . , xm} which associates to a value fc(x) (of a branch fc) its
argument x.
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In fact, it is not yet the full Riemann surface. To be correct one should
compactify it (in the topology induced by the analytic elements) and then smooth
the cusps. This would give us a compact smooth analytic surface without self-
intersections. Because we do not need it in this article, we will omit this part of
the theory.

Example 1. f(x) =
√
x. The Riemann surface of this function is well

known. We begin with the point a = 1 and the branch fa(x) =
√
x which is

positive on the right real half-line. Prolonging this branch along the unit circle we
arrive at the branch−fa(x). In order to imagine the Riemann surface of this root,
we take two copies of the plane C cut along the negative real half-line, put one
above another and glue the ridges of the cut of the upper sheet with the opposite
ridges of the cut of the lower sheet. We cannot draw it in a planar picture without
self-intersections (see Figure 2(a)). But when we turn the above sheet, then we
can realize the gluings without self-intersections (Figure 2(b)). This is just the
Riemann surface (over C

∗ = C \ 0). We see that it is homeomorphic with C
∗.

This homeomorphism can be realized analytically: t→ (x, y) = (t2, t), t ∈ C∗.

(a) (b) (c)

Figure 2

Example 2. f(x) =
√
x3 − x. The subroot function has three zeroes 0,±1.

We take two copies of the plane cut along the intervals (−∞,−1] and [0, 1].
We turn the upper sheet and glue. One can see that M is homeomorphic with
the torus T 2 deprived of four points. One of these deleted points corresponds
x = y =∞ (Figure 2(c)).
The reader can prove himself that the Riemann surface of the function√
x2 − 1 is homeomorphic to C \ {2 points}.

Example 3. y3 − y = x. Here the Riemann surface is isomorphic with
C \ {2 points} (Figure 3).
The general construction of the Riemann surface of an algebraic function

y = f(x) defined by an algebraic equation of degree n is following. Let x1, . . . , xm
be the singular points. We cut the plane along straight radii starting at the
points xi, running to infinity and mutually disjoint; (one can do it). We take
n copies of the plane cut in this way. Next we glue he ridges of cuts in a way
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determined by the variations of values of the function f(x) as the argument x
varies around the singular points. It can be difficult to do it in some concrete
(nontrivial) examples.

3. The monodromy group of an algebraic function

Consider the algebraic function y = f(x) defined by the equation F (x, y) =
yn + . . . + g0(x) = 0, with the singular points x1, . . . , xm. Let us choose the
base point a ∈ C \ {x1, . . . , xm}. We have n analytic elements (fa,i, Ua), i =
1, . . . , n and the set Ma = {z1, . . . , zn} (identified with {1, . . . , n}) of values of
the function f in a). The monodromy group of the function f is a subgroup of
the group S(Ma) = S(n) of permutations of the set Ma defined as follows.

If γ is a loop in C \ {x1, . . . , xm} with beginning and end at a, then the
analytic prolongation of any analytic element (fa,i, Ua) along γ leads to a new
element which coincides with one of the (fa,j, Ua). In particular, the point zi is
transformed to some point of the setMa; we denote it by ∆γ(zi). On the surface
M there exists a path δi with beginning at (a, zi) and end at (a,∆γ(zi)) which is
a lift of the path γ to M , π(δi) = γ. The map ∆γ :Ma →Ma is the monodromy
transformation defined by the loop γ.

The group generated by the maps ∆γ , γ-loop, is called the monodromy group
and is denoted by Mon = Mon(f).

By the monodromy theorem the map ∆γ is locally constant on the loop
space; it does not change during a deformation of the loop. The equivalence
classes of loops with respect to deformations forms the fundamental group of the
set C \ {x1, . . . , xm} with the base point a, π1(C \ {x1, . . . , xm}, a). The group
operations rely on composition of loops and taking the inverse loop. We have
then a homomorphism from π1(C \ {x1, . . . , xm}, a) to S(Ma) whose image is
Mon(f).

Examples. In Examples 1 and 2 we have Ma = {z1, z2) and the group
S(Ma) � Z/2Z is generated by the transposition (1, 2). If a loop γ surrounds
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even number of singular points (multiplicity counting), then ∆γ = id = e. Oth-
erwise ∆γ = (1, 2). We have then Mon(f) = Z/2Z.
Let us put a = 0 in Example 3; then Ma = {0,±1}. With the loop γ1

around x1 = −2 the transposition of the values z1 = 0 and z2 = 1 is associated,
i.e. ∆γ1 = (1, 2). With the loop γ2 around x2 = 2 the transposition of the values
z1 = 0 and z3 = −1 is associated, i.e. ∆γ2 = (1, 3). Now it is easy to see that
Mon(f) = S(3).
(We assume that the reader is acquainted with the description of a per-

mutation by means of its decomposition into cycles. For example, the expres-
sion (142)(36) denotes the permutation 1 → 4, 4 → 2, 2 → 1, 3 → 6, 6 → 3,
5→ 5 in S(6). We recall also that σ · (i1, . . . , ik) · σ−1 = (σ(i1), . . . , σ(ik)).)

Remark 1. The monodromy group Mon = Mon(f) can be identified with
the Galois group of certain extension of algebraic fields. As an initial field K we
take the field C(x) of rational function of a variable x. Here we treat elements
of K as functions on Ua. Next, we define an extension L as K(fa,1, . . . , fa,n),
adjoining branches of the algebraic function. It turns out that the group of
automorphisms of the extension K ⊂ L, i.e. its Galois group GalKL, coincides
with Mon. Indeed, because Mon permutes the branches, it induces an automor-
phism of the field L, and because functions from C(x) are single-valued, they are
invariant with respect to the monodromy. This means that Mon ⊂ GalKL. Sup-
pose that Mon �= GalKL. By the fundamental theorem from the Galois theory
(see [2]) the subgroup Mon is associated to a intermediary field K ⊂ L1 ⊂ L,
L1 �= K such that GalL1L = Mon and L1 = LMon = {ϕ ∈ L : Monϕ = {ϕ}}.
The field L1 consists of those functions which are invariant with respect to the
monodromy. Therefore, they are single-valued functions. Their singularities are
regular (of power type), also at infinity. From this it is easy to deduce that they
are rational (we multiply them by (x − xi)k and apply the Riemann’s theorem
about removable singularities) This means that L1 = K (a contradiction).
In some classical books on Riemann surfaces (like the Forster’s book [4]) the

Galois theory is used in a different way. Assume that a Riemann surface M is
smooth, compact and equipped with a holomorphic map π : M → N = CP 1

(prolongation of the projection (x, y)→ x) called the ramified covering. One can
achieve it after completing the construction from the point 2. The initial field
is the field of rational functions on N , K = C(N) which coincides with C(x).
However, the extension field L is the field of rational functions on M ; here K is
embedded into L by means of the induction π∗ : ϕ → ϕ ◦ π. Essential for this
theory is the group Deck = DeckNM of automorphisms of the covering M → N
and consisting of homeomorphisms ofM which preserve the fibers of the covering.
In order that the group Deck be the Galois group of the extensionK ⊂M one has
to assume that it acts transitively on a typical fiber. The coverings which have
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this property are called the Galois coverings. The coverings from Examples 1
and 2 are Galois coverings, but Deck is trivial n Example 3. It is not observed
in [4] that the class of such coverings is very thin in the class of finite coverings
above the Riemann sphere.

4. The monodromy group of a typical algebraic function

By a typical algebraic function we shall mean a function given by an equation
F (x, y) = yn + gn−1(x)yn−1 + . . . = 0 which satisfies the following conditions:

(i) The complex algebraic curve Γ = {F (x, y) = 0} ⊂ C2 is smooth and
restriction π of the projection (x, y)→ x to the curve Γ has only the sim-
plest singularities: non-degenerate critical points with different critical
values.

(ii) The curve Γ is irreducible, i.e. the function F cannot be written in the
form of product F (1)F (2) of two polynomials.

The smoothness condition means that the (complex) gradient of the func-
tion F does not vanish; either F ′x �= 0 or F ′y �= 0. The critical points (xi, yi)
of the projection π are the points where Γ is vertical, i.e. F ′y = 0. Because
Γ is nonsingular, we have F ′x �= 0 and locally Γ is defined by the equation
x − xi = ψ(y); moreover, ψ(yi) = ψ′(yi) = 0. The non-degeneracy condition
means that ψ′′(yi) = −F ′′yy/F ′x �= 0; only two branches of the algebraic function
are glued. The critical values of the projection are equal to the numbers xi; it is
assumed that they are different.
Under the condition (i) the Riemann surface M can be identified with Γ \

{critical points} and the singular points of the algebraic function are the critical
values of the projection π.
Irreducibility of the complex algebraic curve Γ guarantees is topological con-

nectivity, and also the connectivity of the Riemann surface M = Γ\{critical
points}. Indeed, suppose that Γ is not connected and that the assumption
(i) holds. Then Γ consists of two disjoint curves Γ(1) and Γ(2). Let fi(x),
i = 1, . . . , k be the branches (suitably numerated) of the function y = f(x)
which lie in Γ(1) and let fi(x), i = k + 1, . . . , n be the branches from the other
curve. We define the functions F (1)(x, y) = (y− f1(x))(y− f2(x)) . . . (y− fk(x))
and F (1)(x, y) = (y− fk+1(x)) . . . (y− fn(x)). Of course, we have F = F (1)F (2).
On the other hand, the curves Γ(j) are connected near the branching points, so
permutations of branches from one group do not lead away of this group. This
means that the coefficients (before powers of y) of the functions F (j) are ana-
lytic and single-valued functions of polynomial growth at infinity. Hence they
are polynomials, then F (j) are also polynomials.
The irreducibility can be checked sometimes directly. For example, when Γ is

an image of an irreducible algebraic curve under an algebraic mapping, then it
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is irreducible. If the algebraic closure of Γ in the complex projective plane CP 2

is a smooth curve, then Γ is also connected. The latter property means that the
highest degree homogeneous part of the polynomial F is factorized into different
linear factors.
The above assumptions imply the following important properties of the mon-

odromy group.

Lemma 1. Let the algebraic function satisfies the conditions (i) and (ii).
Then:

(a) Mon is generated by the transpositions (k, l), corresponding to exchanges
of the branches fk(x), fl(x) which glue themselves at critical points
(xi, yi).

(b) Mon acts transitively on the set Ma = {z1, . . . , zn}. This means that
for any two different values zk, zl there exists a σ ∈ Mon such that
σ(zk) = zl.

Proof. The property (a) is obvious, because such transpositions are induced
by the loops around xi. The property (b) follows from the connectivity of Γ \
{critical points}. The points (a, zk) and (a, zl)) can be joined by means of a
(real) curve δ in Γ. Moreover, we can assume that the projection γ = π(δ) does
not pass through any of the points xi = π(xi, yi). γ is a loop and ∆γ(zk) = zl.
We put σ = ∆γ . �

Lemma 2. If a subgroup G ⊂ S(n) is transitive and generated by transposi-
tions, then it coincides with S(n).

Proof. We say that a subset A ⊂ {1, . . . , n} is complete if any permutation
from S(A) can be prolonged to a permutation of the set {1, . . . , n} which belongs
to G. Any transposition (k, l) among the generators of G defines the complete
subset {k, l}. Let A0 be a maximal complete subset (with respect to the inclusion
order). We claim that A0 = {1, . . . , n}.
Suppose that A0 is a proper subset. There exists a transposition τ = (k, l) ∈

G with k ∈ A0 and l /∈ A0. Then the group generated by S(A0) and τ would be
equal S(A0 ∪ {l}) and the set A0 ∪ {l} would be complete. �

Corollary. The monodromy group of a typical algebraic function is equal
S(n).

Example 4 ([1]). The monodromy group of the algebraic function defined
by the equation F = 3y5 − 25y3 + 60y − x = 0 equals S(5).
Indeed, the condition for critical points of the projection π, F = F ′y =

15(y2 − 4)(y2 − 1) = 0, gives the four points (xi, yi) = ±(16, 2),±(38, 1) with
different critical values. At these points the curve F = 0 is smooth (F ′x �= 0) and
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the projection is non-degenerate (F ′′yy �= 0). On the other hand, the curve F = 0
is the image of the complex plane under an algebraic mapping (because x can
be expressed by means of y). Therefore the typicality conditions (i) and (ii) are
satisfied.

Remark 2. In the multidimensional case, when the coefficients of the al-
gebraic equation depend on many parameters, we are dealing with multidimen-
sional Riemann surfaces. Particular such case provides the so called universal
algebraic equation yn+xn−1yn−1+. . .+x0 = 0. The corresponding Riemann sur-
face is n-dimensional and constitutes an n-fold covering above the discriminant
locus Σ = {∆(x0, . . . , xn−1) = 0}. The fundamental group of this complement
π1(Cn \Σ) is the same as the braid group B(n) and the monodromy homomor-
phism turns out to be the same as the natural homomorphism of the braid group
to the symmetric group S(n). Of course, we also have Mon = S(n).

5. Solvable and nonsolvable groups

The commutator of a group G is its subgroup G(1) = [G,G] generated by the
elements [a, b] = aba−1b−1, a, b ∈ G. In particular, if G is abelian (i.e. is commu-
tative, ab = ba) then G(1) = {e}. The group G(1) is a normal subgroup; if a ∈ G,
b ∈ G(1), then aba−1 ∈ G(1). The set of cosets G/G(1) is an abelian group.
We define by induction the subgroups (derivative groups) G(k+1) = (G(k))(1).
Therefore we have a sequence of normal subgroups (central derivative series)
. . . ⊂ G(2) ⊂ G(1) ⊂ G(0) = G with abelian quotient subgroups G(k)/G(k+1).
We say that G is solvable if its central derivative series is finite, i.e. G(r) = {e}

for some r. The equivalent definition says that there is a finite series of groups
{e} = Gr ⊂ Gr−1 ⊂ . . . ⊂ G0 = G such that the subgroups Gk+1 ⊂ Gk are
normal and the quotients groups Gk/Gk+1 are abelian.
It is useful to imagine the notion of a normal subgroup and the quotient

group in the situation when the group G acts on some set A, in a way that some
subset B ⊂ A is invariant with respect to this action (images of elements from B
do not leave B). Then the set of those maps which are identity on B constitutes
a subgroup H ⊂ G. It is normal subgroup and the quotient group is treated as
the restriction of the action of G to the subset B.
We shall use the following simple lemma.

Lemma 3.

(a) A subgroup of a solvable group is solvable.
(b) The product G×H of solvable groups is a solvable group.
(c) If a group H is solvable and there exists a surjective homomorphism
G→ H with abelian kernel, then the group G is solvable.

(d) If G is solvable and a homomorphism G→ H is onto, then H is solvable.
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Proof. Only the points (c) and (d) need explanation. In the point (c) we
have the submersion of the derivative groups G(1) → H(1) with trivial kernel.
Hence G(1) = H(1) and G(r) = H(r) = {e} for some r. In the case (d) we have
the surjective homomorphisms G(r) → H(r). �

Example 5. The group S(2) is abelian and hence solvable.

Example 6. The group S(3) can be identified with the group of symmetries
of a regular triangle (permutation of its vertices). It contains the alternating
subgroup A(3) consisting of permutations which are compositions of even num-
ber of transpositions (reflections of the triangle). The latter group consists of
rotations of the triangle; it is normal subgroup with two-element quotient and is
cyclic. This shows the solvability of S(3).

Example 7. The group S(4) has the following central derivative series

{e} ⊂ V ⊂ A(4) ⊂ S(4)
where the so-called Vierergruppe V = {e; (1, 2)(3, 4); (1, 3)(2, 4); (1, 4)(2, 3)}.
The group S(4) is isomorphic with the group of rotations of a cube (by permu-
tations of the diagonals).

The next property is not as obvious as the previous ones.

Theorem 1. The groups S(n), n ≥ 5, are not solvable.
Proof (We follow the book of J. Browkin [2]). Because the alternating

group A(n) is normal subgroup of S(n) with two-element quotient group, it is
enough to show that A(n) is not solvable. But this follows from the following
observation.
If the cycles σ = (123) and τ = (345) (with one common element) belong

to a subgroup H ⊂ A(n), then the elements [σ, τ ] = (σ(3)σ(4)σ(5)) · τ−1 =
(145) · (354) = (143) and [σ−1, τ−1] = (253) belong to the commutator H(1).
The latter are also cycles with one common element.
Repeating this argument we see that all the derivative groups A(n)(j) contain

two cycles with one common element. Therefore none of them can be trivial. �

6. The monodromy groups of functions expressed in radicals

If f(x) and g(x) are algebraic functions with the branches f1, . . . , fn, g1, . . . ,
gk, then the sum h(x) = f(x) + g(x) is also an algebraic function. Its Riemann
surface is constructed as follows. We take n · k copies of the complex plane, cut
along radii running from all singular points of the functions f and g. We label
these sheets by hi,j . Next we glue the ridges of cuts using the schemes of gluings
for the functions f and g; it means that if after overrunning a singular point
a sheet fi1 passes to fi2 and a sheet gj1 passes to gj2 , then the sheet hi1,j1 passes
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to the sheet hi2,j2 . Finally we have to identify (glue) those sheets for which the
values of the functions hi,j = fi + gj are the same. For example, the function
y =
√
x+
√
x takes three values and satisfies the equation y(y2 − 4x) = 0.

Analogously we define the algebraic functions and the Riemann surfaces for
f(x)− g(x), f(x) · g(x), f(x)/g(x).
The function h(x) = k

√
f(x) has kn branches hj,l(x) = e2πij/kh0,l(x) for

j = 0, . . . , k−1, l = 1, . . . , n, where h0,l(x) is a distinguished branch of the root
k
√
fl(x). In the construction of its Riemann surface, besides the singular points
of the initial function, we get additional branching points of the root, the zeroes
and the poles of fl(x). So, we take n files, each with k copies of cut planes. The
gluings of the ridges of cuts are analogous as in the case of the sum: if after
overrunning a singularity xi, fl1 passes to fl2 , then the cuts of sheets from the
l1th file are glued with cuts of sheets from the l2th file, moreover the numbers of
sheets in the files undergo a cyclic shift (which is trivial when fl1(xi) �= 0,∞).
We say that an algebraic function of one variable is represented in radicals if

it can be obtained from the constant functions x→ c and the identity function x
by means of the above operations.

Theorem 2. The monodromy group of an algebraic function represented in
radicals is solvable.

This completes the proof of the Abel–Ruffini theorem. Therefore there exist
algebraic equations which cannot be solved by means of the radicals.

Example. The equation F = 3y5 − 25y3 + 60y − x = 0 (from Example 4)
cannot be solved in radicals.

Proof of Theorem 2. It is enough to show that if the groups Mon(f) and
G = Mon(g) are solvable, then the groups Mon(f ± g), Mon(fg), Mon(f/g) and
Mon( k

√
f) are also solvable. We consider only the cases f + g and k

√
f .

Recall the construction of the Riemann surface of the function f + g. Firstly
we have taken nk copies of the cut plane and glued the ridges of cuts and next we
have glued the whole sheets with the same values of the branches hi,j = fi + gj.
Therefore, in the first step we have got certain surface M ′ whose monodromy
group is isomorphic with a subgroup I of the group F ×G. (It can be a proper
subgroup when some singularities of f and g coincide; e.g. Mon(

√
x) = Z/2Z,

Mon( 4
√
x) = Z/4Z, but Mon(

√
x+ 4
√
x) is cyclic of order 4).

When we glue some sheets in the second step, some elements of the group I,
those which permute the glued sheets, are sent to trivial transformations from
the monodromy group H . However, any element from H (induced by a loop in
the x−plane) is an image of an element from I, it is image of the permutation
of the fiber M ′a induced by the same loop. Therefore, we have a surjective
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homomorphism I → H . Now it is enough to use the points (a), (b), (d) of
Lemma 3.
In the case of the function h =

√
[k]f we are dealing with a process reverse

to the process of gluings of sheets. We multiply sheets into files (of sheets).
Therefore we have a surjective homomorphismH → G. In order to be able to use
the point (c) of Lemma 3, we have to show that the kernel of this homomorphism
is an abelian group. But from the construction it follows that it is a subgroup
of the cyclic group Z/kZ. �
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