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THE KNASTER–KURATOWSKI–MAZURKIEWICZ
THEOREM AND ALMOST FIXED POINTS

Sehie Park

Abstract. From the KKM theorem for the “closed” and “open” valued

cases, we deduce a generalization of the Alexandroff–Pasynkoff theorem,
existence theorems for almost fixed points of lower semicontinuous mul-

timaps, and a partial solution of the Ben-El-Mechaiekh conjecture.

1. Introduction

It is well-known that the three classical results – the Brouwer fixed point
theorem, the Sperner lemma, and the Knaster–Kuratowski–Mazurkiewicz (sim-
ply, KKM) theorem – are mutually equivalent in the sense that each one can be
deduced from another with or without aid of some minor results. Earlier appli-
cations of the Sperner lemma and the KKM theorem to various results closely
related to Euclidean spaces or n-simplexes or n-balls were presented in [1] and [2];
see also [13].

Especially, one of the earlier proofs of the Brouwer theorem was given by
the KKM theorem in [10]. Recently, the present author and Do Hong Tan [14]
gave a simple proof of a generalization of the Schauder–Tychonoff type fixed
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point theorem for compact maps in locally convex Hausdorff topological vector
spaces, by directly using the KKM theorem. Subsequently, in [15], elementary
proofs of generalizations of the Himmelberg–Idzik type fixed point theorem for
convex-valued upper semicontinuous multimaps were obtained from the “open”
valued version of the KKM theorem due to Kim [9] and Shih–Tan [16].

On the other hand, in 1957, Alexandroff–Pasynkoff [3] gave an elementary
proof of the essentiality of the identity map of the boundary of a simplex by using
a variant of the KKM theorem. Consequently, a simple proof of the Brouwer
theorem could be given by using their theorem; see [13]. Moreover, in 1990,
Lassonde [11] suggested an “open” version of the Alexandroff–Pasynkoff theorem.

In the present paper, we first deduce a generalization of the Alexandroff–
Pasynkoff theorem by using the KKM theorem for the “closed” and “open”
valued cases and note that these two theorems are actually equivalent. And
then, the KKM theorem is applied to our main result, which concerns with the
existence of almost fixed points of lower (respectively, upper) semicontinuous
multimaps. Our new result is general enough to include properly previous results
on almost fixed points due to Ky Fan [7] and Lassonde [11], and fixed point
theorems due to Park and Tan [14], [15], Himmelberg [8], and many others.
Finally, applying our main result, we give a partial solution to a conjecture
raised by Ben-El-Mechaiekh [4], [5].

2. The KKM and Alexandroff–Pasynkoff theorems

From the KKM theorem and its open version, we have immediately the
following form as by Fan in [6]:

Theorem 1. Let X be a subset of a topological vector space, D a nonempty
subset of X such that co D ⊂ X, and F : D ( X a multimap with closed
(respectively, open) values in X. If

(1) co A ⊂ F (A)

for every nonempty finite subset A of D, then the family {F (x)}x∈D has the
finite intersection property.

The open version of the KKM theorem was due to Kim [9] and Shih–Tan
[16], and later, Lassonde [11] showed that the closed and open versions of the
KKM theorem can be derived from each other.

From Theorem 1, we have the following generalization of the Alexandroff–
Pasynkoff theorem [3]:

Theorem 2. Let X be a subset of a topological vector space, {Ai}n
i=0 a family

of (n+1) closed (respectively, open) subsets covering X, and {xi}n
i=0 a family of
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(n + 1) points of X such that co {xi}n
i=0 ⊂ X and co {x0, . . . , x̂i, . . . , xn} ⊂ Ai

for each i = 0, . . . , n. Then
⋂n

i=0 Ai 6= ∅.

Proof. Let D := {xi}n
i=0 and let C0 := co {x0, . . . , xn−1} ⊂ An and Ci :=

co {x0, . . . , x̂i−1, . . . , xn} ⊂ Ai−1 for 1 ≤ i ≤ n. Let F : D ( X be a map
defined by F (x0) = An and F (xi) = Ai−1 for 1 ≤ i ≤ n. Now we show that F

satisfies the requirement of Theorem 1. Note that

co {x0, . . . , xn} ⊂ X =
n⋃

i=0

Ai = F (D).

Moreover, for any proper subset {xi0 , . . . , xik
}, (0 ≤ k < n, 0 ≤ i0 < . . . < ik ≤

n) of D, we immediately have co {xi0 , . . . , xik
} ⊂ Cij

⊂ Aij−1 = F (xij
) for some

j, 0 ≤ j ≤ k, (with the convention ij = 0 if and only if ij − 1 ≡ n) and hence

co {xi0 , . . . , xik
} ⊂

k⋃
j=0

F (xij
).

Consequently, condition (1) is satisfied. Now, the conclusion follows from Theo-
rem 1. �

It is well-known that the Alexandroff–Pasynkoff theorem implies the Brouwer
theorem (e.g. see [13]). Therefore, Theorem 2 is also equivalent to the KKM
theorem.

3. Almost fixed point theorems

From Theorem 1, in this section, we deduce a very general almost fixed point
theorem and some of its direct applications.

A nonempty subset Y of a topological vector space E is said to be almost
convex [8] if for any neighbourhood V of the origin 0 of E and for any finite
subset {y1, . . . , yn} of Y , there exists a finite subset {z1, . . . , zn} of Y , such that
zi − yi ∈ V for each i = 1, . . . , n, and co {z1, . . . , zn} ⊂ Y .

The following almost fixed point theorem is our main result in this paper:

Theorem 3. Let X be a subset of a Hausdorff topological vector space E

and Y an almost convex dense subset of X. Let T : X ( E be a lower
(respectively, upper) semicontinuous multimap such that T (y) is convex for all
y ∈ Y . If there is a precompact subset K of X such that T (y) ∩K 6= ∅ for each
y ∈ Y , then for any convex neighbourhood U of the origin 0 of E, there exists a
point xU ∈ Y such that T (xU ) ∩ (xU + U) 6= ∅.

Proof. There exists a symmetric open neighbourhood V of 0 such that V +
V ⊂ U . Since K is precompact in E, there exists a finite subset {x0, . . . , xn} ⊂
K such that K ⊂

⋃n
i=0(xi + V ). Moreover, since Y is almost convex and dense
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in X, there exists a finite subset D = {y0, . . . , yn} of Y such that yi − xi ∈ V

for each i = 0, . . . , n, and Z := co {y0, . . . , yn} ⊂ Y .
If T is lower semicontinuous, for each i, let

F (yi) := {z ∈ Z : T (z) ∩ (xi + V ) = ∅},

which is closed in Z. Moreover, we have
n⋂

i=0

F (yi) =
{

z ∈ Z : T (z) ∩
n⋃

i=0

(xi + V ) = ∅
}

= ∅

since ∅ 6= T (z) ∩K ⊂ T (z) ∩
⋃n

i=0(xi + V ) for each z ∈ Y .
If T is upper semicontinuous, for each i, let

F (yi) := {z ∈ Z : T (z) ∩ (xi + V ) = ∅},

which is open in Z. Moreover, we have
⋂n

i=0 F (yi) = ∅ as in the above.
Now we apply Theorem 1 replacing (X, D) by (Z, {yi}n

i=0). Since the conclu-
sion of Theorem 1 does not hold, in any case, condition (1) is violated. Hence,
there exist a subset N := {yi0 , . . . , yik

} ∈ 〈D〉 and an xU ∈ co N ⊂ Y such that
xU /∈ F (N) or T (xU ) ∩ (xij + V ) 6= ∅ for all j = 0, . . . , k. Note that

(2) xij + V = xij − yij + yij + V ⊂ yij + V + V ⊂ yij + U.

Let L be the subspace of E generated by D and

M := {y ∈ L : T (xU ) ∩ (y + U) 6= ∅}.

From (2) we get T (xU ) ∩ (yij
+ U) 6= ∅ and hence yij

∈ M for all j = 0, . . . , k.
Since L, T (xU ), and U are all convex, it is easily checked that M is convex.
Therefore, xU ∈ M and, by definition of M , we get T (xU ) ∩ (xU + U) 6= ∅. �

In case X = Y , Theorem 3 reduces to the following:

Corollary 4. Let X be a convex subset of a Hausdorff topological vec-
tor space E. Let T : X ( E be a lower (respectively, upper) semicontinuous
multimap such that T (x) is convex for each x ∈ X. If there is a precompact
subset K of X such that T (x) ∩ K 6= ∅ for each x ∈ X, then for every convex
neighbourhood U of the origin 0 of E, there exists a point xU ∈ X such that
T (xU ) ∩ (xU + U) 6= ∅.

Ky Fan [7, Theorem 7] obtained Corollary 4 for a locally convex Hausdorff
topological vector space E and for a lower semicontinuous multimap T : X ( E.
For a single-valued map f : X → X, Fan noted that Corollary 4 might be
regarded as a generalization of the Tychonoff fixed point theorem to noncompact
(or precompact) convex sets; see Corollary 5 below.

Lassonde [5, Théorème 4] obtained Corollary 4 for a compact upper semi-
continuous map T : X ( X having nonempty convex values.
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From Theorem 3, we have the following fixed point theorem:

Corollary 5. Let X be a subset of a locally convex Hausdorff topological
vector space E and Y an almost convex dense subset of X. Let T : X ( X

be a compact upper semicontinuous multimap with closed values such that T (y)
is nonempty convex for all y ∈ Y . Then T has a fixed point x0 ∈ X; that is,
x0 ∈ T (x0).

Proof. By Theorem 3, for each neighbourhood U of 0, there exist xU , yU ∈
X such that yU ∈ T (xU ) and yU ∈ xU + U . Since T (X) is relatively compact,
we may assume that the net {yU} converges to some x0 ∈ T (X) ⊂ X. Since E is
Hausdorff, the net {xU} also converges to x0. Because T is upper semicontinuous
with closed values, the graph of T is closed in X × T (X) and hence we have
x0 ∈ T (x0). �

Corollary 5 is recently due to the author and Do Hong Tan [15] and ex-
tends the Himmelberg-Idzik theorem and many other fixed point results in the
analytical fixed point theory.

From Theorem 3, we have the following almost fixed point result:

Corollary 6. Let X be a subset of a Hausdorff topological vector space E

and Y an almost convex dense subset of X. Let T : X ( E be a multimap such
that

(1) T−(z) is open for each z ∈ E; and
(2) T (y) is convex for for each y ∈ Y .

If there is a precompact subset K of X such that T (y) ∩K 6= ∅ for each y ∈ Y ,
then for any convex neighbourhood U of the origin 0 of E, there exists a point
xU ∈ Y such that T (xU ) ∩ (xU + U) 6= ∅.

Proof. Since T is lower semicontinuous, Corollary 6 follows immediately
from Theorem 3. �

In case X = Y , Corollary 6 reduces to the following:

Corollary 7. Let X be a convex subset of a Hausdorff topological vector
space E, and T : X ( X be a multimap such that

(1) T (x) is nonempty and convex for each x ∈ X,
(2) T−1(y) is open for each y ∈ X, and
(3) T (X) is contained in a compact subset K of X.

Then for any convex neighbourhood U of the origin 0 of E, there exists a point
xU ∈ X such that T (xU ) ∩ (xU + U) 6= ∅.

Ben-El-Mechaiekh [4], [5] obtained that, if E is further assumed to be locally
convex in Corollary 7, then T has a fixed point; and conjectured that, under the
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hypotheses of Corollary 7, T would have a fixed point. This conjecture is not
resolved yet; for partial solutions, see [12]. However, Corollary 7 is a new partial
solution.
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