Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 15, 2000, 359–368

CAUCHY PROBLEMS AND APPLICATIONS

CHIN-YUAN LIN

ABSTRACT. Of concern is the Cauchy problem

$$\frac{du}{dt} \in Au, \quad u(0) = u_0, \quad t > 0,$$

where $u: [0, \infty) \to X$, X is a real Banach space, and $A: D(A) \subset X \to X$ is nonlinear and multi-valued. It is showed by the method of lines, combined with the Crandall-Liggett theorem that this problem has a limit solution, and that the limit solution is a unique strong one if A is what is called embeddedly quasi-demi-closed. In the case of linear, single-valued A, further results are given. An application to nonlinear partial differential equations in non-reflexive X is given.

1. Introduction

Let $(X, \|\cdot\|)$ be a real Banach space with the norm $\|\cdot\|$. Let $A : D(A) \subset X \to X$ be a densely defined, linear operator. Consider the Cauchy problem

(1)
$$\frac{du}{dt} = Au, \quad u(0) = u_0, \quad t > 0$$

on X. The fundamental Hille–Yosida theorem ([5], [10], [11], [15]) says that if A is m-dissipative, that is, if A satisfies:

- (i) $||u|| \le ||u \lambda Au||$ for $u \in D(A)$ and $\lambda > 0$,
- (ii) the range of $(I \lambda A)$ equals X for $\lambda > 0$,

O2000Juliusz Schauder Center for Nonlinear Studies

359

²⁰⁰⁰ Mathematics Subject Classification. 47D03, 47H20, 47H06. Key words and phrases. Cauchy problems, operator semigroups.

C.-Y. Lin

then A generates a linear operator semigroup S(t), and $S(t)u_0$ for $u_0 \in D(A)$ is the unique solution of (1). To obtain S(t), Hille ([15]) proves that $\{(I - (t/n)A)^{-n}x\}_{n\in\mathbb{N}}$ is Cauchy for $x \in D(A^2)$, while Yosida ([11]) uses the so-called Yosida approximation $\lambda A(\lambda - A)^{-1}, \lambda > 0$.

Extend (1) to the nonlinear multi-valued case

(2)
$$\frac{du}{dt} \in Au, \quad u(0) = u_0, \ t > 0,$$

where $A : D(A) \subset X \to X$ is nonlinear and multi-valued. The fundamental Crandall–Liggett theorem (see [3], [1], [8], [9]) shows that if A satisfies the following conditions:

- (iii) $||u-v|| \le ||(u-v) \lambda(x-y)||$ for $\lambda > 0$, $u, v \in D(A)$, $x \in Au$, and $y \in Av$,
- (iv) the range of $(I \lambda A) \supset \overline{D(A)}$ for small enough $\lambda > 0$,

then A generates a nonlinear operator semigroup S(t). Due to Benilan (see [1], [2], [8], [9]), $S(t)u_0$ for $u_0 \in D(A)$ satisfies some integral inequalities, associated with (2), and is called the unique generalized solution to (2). Crandall and Liggett prove the existence of S(t) by showing that $\{(I - (t/n)A)^{-n}x\}_{n \in \mathbb{N}}$ is Cauchy for $x \in D(A)$.

For the existence of a strong solution in the nonlinear case, the known results include the cases where reflexive X (see [1], [3], [8], [9]) or demi-continuous A [9, p. 88] is assumed. In this paper, we will use the method of lines ([7], [12]), combined with the Crandall-Liggett theorem, to show that (2) has a limit solution, which is a unique strong one if A is what we call, embeddedly quasidemi-closed. Here note that our assumption of embeddedly quasi-demi-closed (see Section 4) is weaker than that of demi-continuous. An application to nonlinear partial differential equations in non-reflexive X is given in Section 5.

In the case of linear, single-valued closed A which satisfies (iii) and (iv), the Hille–Yosida theorem applied to the section of A in the Banach space $\overline{D(A)}$ shows that the section is an m-dissipative operator on the Banach space $\overline{D(A)}$ and that for $u_0 \in D(A)$ with $Au_0 \in \overline{D(A)}$, (1) has a unique solution u(t), and du/dt is differentiable in t for $u_0 \in D(A^2)$ with $A^2u_0 \in \overline{D(A)}$. In this paper, we will show, by making use of the Crandall–Liggett theorem that the same results hold true, together with the additional property that du/dt is Lipschitz continuous in t for $u_0 \in D(A^2)$.

In [6], the Crandall-Liggett theorem is applied to this nonlinear differential operator $B: D(B) \subset (C[0,1], \|\cdot\|_{\infty}) \to (C[0,1], \|\cdot\|_{\infty})$, where $Bu \equiv \psi(x, u')u''$ for $u \in D(B) \equiv \{v \in C^2[0,1] : v'(j) \in (-1)^j \beta_j(v(j)), j = 0,1\}$. It is showed that B satisfies (iii) and (iv) and then, there is a unique generalized solution to the nonlinear parabolic boundary value problem

$$\begin{split} \frac{\partial}{\partial} u(x,t) &= \psi(x,u_x)u_{xx}, \qquad (x,t) \in (0,1) \times (0,\infty), \\ u_x(j,t) &\in (-1)^j \beta_j(u(j,t)), \quad j = 0,1, \\ u(x,0) &= u_0(x). \end{split}$$

In this paper, we extend this result to a more general nonlinear differential operator and obtain a strong solution (Section 5), stronger than a generalized solution; precisely, we consider this nonlinear differential operator $G : D(G) \subset C[0,1] \rightarrow C[0,1]$, where $Gu \equiv \psi(x,u')u'' + g(x,u,u')$ for $u \in D(G) \equiv D(B)$. We show that G satisfies (iii) and (iv) and is embeddedly quasi-demi-closed. That gives a strong solution to the corresponding nonlinear parabolic boundary value problem.

The rest of the paper is planned as follows. Section 2 gives a preliminary result. Section 3 deals with a limit solution and the case of linear A. Section 4 is concerned with a strong solution and Section 5 is about an application to nonlinear partial differential equations in non-reflexive X.

2. A preliminary result

As before, let $(X, \|\cdot\|)$ be a real Banach space with the norm $\|\cdot\|$, $A : D(A) \subset X \to X$ be a multi-valued nonlinear operator, and A satisfy the conditions (iii) and (iv) in the Introduction.

Let $T > 0, u_0 \in D(A), n \in \mathbb{N}$ be large. Consider the discretization of (2)

(3)
$$u_i - \lambda A u_i \ni u_{i-1}, \quad u_i \in D(A)$$

where $\lambda = T/n$ and i = 1 to n. For the given $u_0 \in D(A) \subset X$, u_i exists for $i = 1, \ldots, n$ by the condition (iv). Uniqueness of u_i follows from (iii). For convenience, define u_{-1} to be an element in $(u_0 - \lambda A u_0)$, so that $u_{-1} = u_0 - \lambda v_0$ for some $v_0 \in A u_0$.

By the condition (iii), $||u_i - u_{i-1}|| \le ||u_{i-1} - u_{i-2}||$. It follows that $||u_i - u_{i-1}|| \le ||u_0 - u_{-1}|| \le \lambda ||v_0||$. Thus we have proved

PROPOSITION 1. The u_i in (3) satisfies $||u_i - u_{i-1}|| \le \lambda ||v_0||$ for $i = 1, \ldots, n$.

3. A limit solution

From here on, let k be a generic constant which can vary with different occasions.

Consider the u_i in (3) and put $t_i = i\lambda$ for i = 1, ..., n. Define $\chi^n(0) = u_0$, $\chi^n(t) = u_i$ for $t \in (t_{i-1}, t_i]$ and

(4)
$$u^{n}(t) = u_{i-1} + \frac{u_{i} - u_{i-1}}{\lambda}(t - t_{i-1})$$

for $t \in [t_{i-1}, t_i]$. By the definitions of $\chi^n(t)$ and $u^n(t)$, we have

$$\limsup_{n \to \infty} \|u^n(t) - \chi^n(t)\| = 0$$

and

(5)
$$\frac{du^n(t)}{dt} \in A\chi^n(t), \quad u^n(0) = u_0$$

for almost every t, where the last equation has values in B([0,T];X), the real Banach space of bounded functions from [0,T] to X.

PROPOSITION 2. For each $t \in [0,T]$, $u^n(t)$ has a convergent subsequence in X and so, $u^n(t)$ is relatively compact in X.

PROOF. Note that for each bounded $t \in (0,T)$, we have $t \in [t_{i-1}, t_i)$ for some *i* and so, $i-1 = [t/\lambda]$. Here for each $x \in \mathbb{R}$, [x] is the greatest integer that is less than or equal to *x*. Also note from the definition of u_t^n that pointwise convergence of u_t^n is the same as that of u_{i-1} since $||(u_u - u_{i-1})/\lambda|| \leq k$, by Proposition 1.

Since $u_{i-1} = (I - \lambda A)^{-(i-1)}u_0$ and the convergence of u_{i-1} as $\lambda \to 0$ is the same as the convergence of $(I - (t/n)A)^{-n}u_0$ for each bounded t as $n \to 0$, the proof is completed by applying the Crandall–Liggett theorem.

Applying Proposition 1 to (4) we have

(6)
$$||u^n(t) - u^n(\tau)|| \le k|t - \tau|$$

for $t, \tau \in [t_{i-1}, t_i]$, that is, $u^n(t)$ is equi-continuous in C([0, T]; X). Here the space C([0, T]; X) is the real Banach space of continuous functions from [0, T]to X. Proposition 2 says that for each $t \in [0, T]$, $u^n(t)$ is relatively compact in X. Therefore, $u^n(t)$ converges to some u(t) in C([0, T]; X) by the Ascoli– Arzela theorm [13]. Here we denote u(t) by $S(t)u_0$. Since $u^n(t)$ satisfies (5) and converges to u(t) in C([0, T]; X), we call u(t) a limit solution of (2) on [0, T] (and then on $[0, \infty)$ since T is arbitrary). Thus we have proved

PROPOSITION 3. The equation (2), where A is defined as in Section 2, has a limit solution for $u_0 \in D(A)$.

Note that since for each $t \in [t_{i-1}, t_i), [t/\lambda] = i - 1$ and from (3) we have that

$$u_{i-1} = (I - \lambda A)^{-(i-1)} u_0 = (I - \lambda A)^{-[t/\lambda]} u_0 \to S(t) u_0 = u(t)$$

for $u_0 \in D(A)$, as $\lambda \to 0^+$. Since u(t) is the uniform limit of $u^n(t)$, $S(t)u_0$ is continuous for $u_0 \in D(A)$. By (iii), $(I - \lambda A)^{-[t/\lambda]}$ are contractions and so, $S(t)u_0$ also exists for $u_0 \in \overline{D(A)}$ and is continuous in t. On the other hand, from (6), where k depends on $\{||v|| : v \in Au_0, u_0 \in D(A)\}$, we see that $u(t) = S(t)u_0$ for $u_0 \in D(A)$ is Lipschitz continuous in t. Now suppose additionally that A is linear, single-valued, and closed. Here by closedness of A, we mean that if $x_n \in D(A), y_n = Ax_n, x_n \to x$, and $y_n \to y$, then $x \in D(A)$ and y = Ax. Assume that $u_0 \in D(A)$ and $Au_0 \in \overline{D(A)}$.

From (3) we have

$$Au_{i} = \frac{u_{i} - u_{i-1}}{\lambda} = \frac{(I - \lambda A)^{-i}u_{0} - (I - \lambda A)^{-(i-1)}u_{0}}{\lambda}$$
$$= (I - \lambda A)^{-(i-1)} \left(\frac{(I - \lambda A)^{-1} - I}{\lambda}\right) u_{0}$$
$$= (I - \lambda A)^{-(i-1)} (I - \lambda A)^{-1} Au_{0} = (I - \lambda A)^{-i} (Au_{0})$$

since A is linear. Letting $\lambda \to 0^+$, we have Au_i or $A\chi^n(t) \to S(\tau)Au_0$ since $Au_0 \in \overline{D(A)}$ and so, $Au(\tau) = S(\tau)Au_0$ since A is closed; also $\int_0^t A\chi^n(\tau) d\tau \to \int_0^t Au(\tau) d\tau$ by the Lebesgue convergence theorem since $||A\chi^n(\tau)|| \leq k$. Thus the integrated (5)

$$u^{n}(t) - u_{0} = \int_{0}^{t} A\chi^{n}(\tau) \, d\tau$$

converges to

(7)
$$u(t) - u_0 = \int_0^t Au(\tau) \, d\tau.$$

Since $Au(\tau) = S(\tau)Au_0$ is continuous in τ for $Au_0 \in \overline{D(A)}$ and is Lipschitz continuous in τ for $Au_0 \in D(A)$, we have that so is $Au(\tau)$. Thus by the fundamental theorem of calculus, (7) gives that

(8)
$$\frac{du(t)}{dt} = Au = S(t)Au_0, \quad u(0) = u_0.$$

Thus du/dt is continuous in t for $u_0 \in D(A)$ with $Au_0 \in \overline{D(A)}$ and Lipschitz continuous in t for $u_0 \in D(A)$ with $Au_0 \in D(A)$. This, together with (7), in turn shows that du/dt is differentiable in t for $u_0 \in D(A^2)$ with $A^2u_0 \in \overline{D(A)}$. More regularity of du/dt in t can be obtained iteratedly.

Uniqueness of solution in (8) is standard and follows from e.g. [9, Lemma 4.9, p. 88]. Thus, we have proved

THEOREM 1. If the operator A in Section 2 is linear and closed, then (8) has a unique solution u(t) for $u_0 \in D(A)$ with $Au_0 \in \overline{D(A)}$, which has the property that du(t)/dt is continuous in t. Furthermore, du/dt is Lipschitz continuous in t for $u_0 \in D(A)$ with $Au_0 \in D(A)$ and differentiable in t for $u_0 \in D(A^2)$ with $A^2u_0 \in \overline{D(A)}$. More regularity of du/dt in t can be obtained iteratedly.

REMARK 1. The above result, except for the case for the Lipschitz continuity of du/dt in t, can be obtained by applying the Hille–Yosida theorem to the section of A in the Banach space $\overline{D(A)}$, in which case, the section becomes an *m*-dissipative operator in $\overline{D(A)}$.

4. A strong solution

Let $(Y, \|\cdot\|_Y)$ be a real Banach space with $(X, \|\cdot\|)$ continuously embedded into it. Assume additionally that A is embeddedly quasi-demi-closed, that is, assume that if $x_n \in D(A) \to x$ and $\|y_n\| \leq k$ for some $y_n \in Ax_n$, then $x \in D(\phi \circ A)$ (that is, $\phi(Ax)$ exists.) and $|\phi(y_{n_k}) - z)| \to 0$ for some subsequence y_{n_k} of y_n , for some $z \in \phi(Ax)$ and for each $\phi \in Y^* \subset X^*$, the real dual spaces of Y and X, respectively.

Let $v_n(t) \in A\chi^n(t)$ for $t \in (t_{i-1}, t_i]$ be such that (5) gives

$$\frac{du^n(t)}{dt} = v_n(t)$$

for $t \in (t_{i-1}, t_i]$. Integrating (5) gives that for each $\phi \in Y^* \subset X^*$, $\phi(u^n(t) - u_0) = \int \phi(v^n(\tau) d\tau$ and

$$\phi(u^n(t) - u_0) \in \phi\left(\int_0^t A\chi^n(\tau) \, d\tau\right) = \int_0^t \phi(A\chi^n(\tau)) \, d\tau,$$

where note that $\sup_{t \in [0,T]} ||v_n(t)|| \leq k$ by $v_n(t) \in A\chi^n(t)$ and $||(u_i-u_{i-1})/\lambda|| \leq k$ from Proposition 1. Since $u^n(t) \to u(t)$ uniformly for bounded t and A is embeddedly quasi-demi-closed, we have that $\phi(v_n(t))$ converges to $\phi(v(t))$ through some subsequence for some $v(t) \in Au(t)$ and then, by the Lebesgue convergence theorem, we have

$$\phi(u(t) - u_0) = \int \phi(v(\tau)) \, d\tau = \phi\bigg(\int v(\tau) \, d\tau\bigg).$$

Thus $u(t) - u_0 = \int v(\tau) d\tau$ in Y. Therefore we have by the Radon–Nikodym type theorem [9] that

$$\frac{du(t)}{dt} = v(t) \quad \text{in } Y \text{ for almost every } t,$$

and then

(9)
$$\frac{du(t)}{dt} \in Au(t) \quad \text{in } Y \text{ for almost every } t,$$
$$u(0) = u_0.$$

Again, uniqueness of solution for (9) in X is standard [9]. Thus we have proved

THEOREM 2. If the operator A in Section 2 is additionally embeddedly quasidemi-closed, then (9) has a strong solution in Y for $u_0 \in D(A)$, which is unique if $Y \equiv X$.

REMARK 2. Here note that X is not necessarily reflexive, and that the assumption of embeddedly quasi-demi-closedness is weaker than that of demicontinuity ([9, p. 88]).

5. An application

From here on, k denotes a generic constant, which can vary with different occasions. We make the following assumptions (5.1) to (5.3).

- (5.1) $\beta_0, \beta_1 : \mathbb{R} \to \mathbb{R}$ are multi-valued maximal monotone functions with $0 \in \beta_0(0) \cap \beta_1(0)$.
- (5.2) $\psi(x,p) \ge \delta_1 > 0$ holds for some constant δ_1 and is continuous.
- (5.3) g(x, z, p) is continuous and satisfies $zg(x, z, 0) \leq 0$, and

$$\left|\frac{g(x,z,p)}{\psi(x,p)}\right| \le N(x,z)(1+|p|),$$

where N is positive and continuous.

Define a nonlinear operator $E : D(E) \subset C[0,1] \to C[0,1]$ by Eu = u'' for $u \in D(E) \equiv \{u \in C^2[0,1] : u'(j) \in (-1)^j \beta_j(u(j)), \ j = 0,1\}.$

We have the following result in [6], and [14]:

PROPOSITION 4. For $h \in C[0,1]$, there is a unique solution $u \in C^2[0,1]$ to

$$u - u'' = h$$
, $u'(j) \in (-1)^j \beta_j(u(j))$, $j = 0, 1$

and the operator $(I-E)^{-1}: C[0,1] \to C^2[0,1] \subset C[0,1]$ exists and is nonexpansive.

Define a nonlinear operator $G: D(G) \subset C[0,1] \to C[0,1]$ by

$$Gu = \psi(x, u')u'' + g(x, u, u')$$

for $u \in D(G) \equiv \{v \in C^2[0,1] : v'(j) \in (-1)^j \beta_j(v(j)), \ j = 0,1\}.$

PROPOSITION 5. For each $h \in C[0,1]$, the equation

(10) $u - \lambda(\psi(x, u, u')u'' + g(x, u, u')) = h, \quad u'(j) \in (-1)^j \beta_j(u(j)), \quad j = 0, 1,$

has a solution for small enough $\lambda > 0$. And so G satisfies (iv).

PROOF. As in [6] and [14], consider the operator equation equation $u = (u - \lambda E)^{-1}Wu$, where

$$W: C^{1}[0,1] \to C[0,1], \quad Wu = u + \frac{h - u + \lambda g(x, u, u')}{\psi(x, u')}$$

and $(I - \lambda E)^{-1} : C[0, 1] \to C^2[0, 1]$ is from Proposition 4 and continuous. Solvability of this operator equation will complete the proof.

We truncate W by defining, for each $m \in \mathbb{N}$,

$$W_m u = \begin{cases} Wu & \text{if } \|u\|_{C^1[0,1]} \le m, \\ W\left(\frac{mu}{\|u\|_{C^1[0,1]}}\right) & \text{if } \|u\|_{C^1[0,1]} > m. \end{cases}$$

It follows that $(I - \lambda E)^{-1} W_m : C^1[0, 1] \to C^1[0, 1]$ is continuous, compact, and uniformly bounded for each m; the compactness follows from the Ascoli–Arzela theorem. By the Schauder fixed point theorem [4],

$$(I - \lambda E)^{-1} W_m u_m = u_m$$

holds for some u_m . We complete the proof by showing $||u_{m_0}||_{C^1} \leq u_{m_0}$ for some m_0 since $(I - \lambda E)^{-1} W u_{m_0} = u_{m_0}$ in this case.

Assume $||u_m||_{C^1} > m$ for all m and we seek a contradiction. By the definition of W_m , we have

(11)
$$u_m - \lambda u''_m = v_m + \frac{h - v_m + \lambda(g(x, v_m, v'_m))}{\psi(x, v'_m)},$$

where $u_m \in D(E)$ and $v_m = mu_m/||u_m||_{C^1}$. We have from the first and second derivative tests that

$$||u_m||_{\infty} = |u_m(x_0)|, \quad u'_m(x_0) = 0, \text{ and } u_m(x_0)u''_m(x_0) \le 0$$

for some $x_0 \in [0, 1]$. Multiplying (11) by u_m and evaluating it at x_0 , we have

$$0 \leq \left(\left(1 - \frac{m}{\|u_m\|_{C^1}}\right) u_m^2(x_0) - \lambda u_m(x_0) u_m''(x_0) \right) \psi(x_0, 0) \\ = (h - v_m)(x_0) u_m(x_0) + \lambda u_m(x_0)(g(x_0, v_m, 0)) \\ \leq (h - v_m)(x_0) u_m(x_0)$$

and so, $||v_m||_{\infty} \leq ||h||_{\infty}$. It follows from (11) and (5.3) that

$$\|v_m''\|_{\infty} \le \lambda^{-1}k + k(1 + \|v_m'\|_{\infty}).$$

Using the interpolation inequality [4]:

$$\|v'_m\|_{\infty} \le \varepsilon \|v''_m\|_{\infty} + \eta(\varepsilon)\|v_m\|_{\infty}$$

for all $\varepsilon > 0$, we have $\|v_m\|_{C^2[0,1]} \le k$, which is a contradiction to $m = \|v_m\|_{C^1} \le \|v_m\|_{C^2} \le k$ as $m \to \infty$.

PROPOSITION 6. G satisfies (iii).

PROOF. Let $u, v \in D(B)$. As in [6], applying the first and second derivative tests gives $||u-v||_{\infty} = |(u-v)(x_0)|, (u-v)'(x_0) = 0$, and $(u-v)(x_0)(u-v)''(x_0) \leq 0$ for some $x_0 \in [0, 1]$. Since

$$(u-v)(x_0)(Bu-Bv)(x_0) = \psi(x_0, u, u')(u-v)(x_0)(u-v)''(x_0) + (u-v)(x_0)(g(x_0, u, u') - g(x_0, v, u')) \le 0$$

we have

$$||u - v||_{\infty}^{2} = (u - v)^{2}(x_{0}) \le (u - v)(x_{0})((u - v)(x_{0}) - \lambda(Gu - Gv)(x_{0}))$$

for all $\lambda > 0$, and so

$$||u - v||_{\infty} \le ||(u - v) - \lambda(Gu - Gv)||_{\infty}.$$

Thus (iv) is proved.

We now show that G is embeddedly quasi-demi-closed, so that Theorem 2 applies.

Let $(Y, \|\cdot\|) = (L^2(0, 1), \|\cdot\|)$, which has $(C[0, 1], \|\cdot\|_{\infty})$ continuously embedded into it. Let $u_n \in D(G) \to u$ and $\|Gu_n\|_{\infty} \leq k$. As in prove of Proposition 5, we have $\|u_n\|_{C^2[0,1]} \leq k$. It follows from the Ascoli–Arzela theorem that $u_n \to u$ in $C^1[0, 1]$ through some subsequence. Apply this to the following.

Let $\eta \in L^2(0,1) = (L^2(0,1))^*$. We have to show that $u \in D(\eta \circ G)$, that is, $\eta(Gu)$ exists, and that $|\eta(Gu_n) - \eta(Gu)| \to 0$. Formally, we have

$$\begin{aligned} \eta(Gu_n) &= \int \eta(\psi(x, u'_n)u''_n + g(x, u_n, u'_n)) \, dx \\ &= \int \eta\psi(x, u')(u_n - u)'' \, dx + \int \eta(\psi(x, u'_n) - \psi(x, u'))u''_n \, dx \\ &+ \int \eta(g(x, u_n, u'_n) - g(x, u, u')) \, dx + \int \eta(Gu) \, dx \equiv \sum_i^4 I_i. \end{aligned}$$

Here the integration range [0, 1] is omitted.

It follows that I_1 converges to 0 since $||u_n||_{C^2} \leq k$, $W^{2,2}(0,1)$ is a Hilbert space, $\eta\psi(x,u') \in L^2(0,1)$, and u''_n converges weakly to u'' through some subsequence (this also shows $\eta(Gu)$ exists), that I_2 converges to 0 by $|I_2| \leq ||\psi(x,u'_n) - \psi(x,u')||_{\infty} ||\eta|| ||u''_n||$, and that I_3 converges to 0 by the uniform convergence theorem. Thus $\eta(Gu)$ exists and $\eta(Gu_n) \to \eta(Gu)$ and so, G is embeddedly quasidemi-closed. By Theorem 2, we have that

THEOREM 3. In $L^2(0,1)$, there is a strong solution u to the nonlinear parabolic boundary value problem

$$\begin{aligned} \frac{\partial}{\partial t} u(x,t) &= \psi(x,u,u_x)u_{xx} + g(x,u,u_x), \quad (x,t) \in (0,1) \times (0,\infty), \\ u_x(j,t) &\in (-1)^j \beta_j(u(j,t)), \quad j = 0,1, \\ u(x,0) &= u_0(x), \end{aligned}$$

for almost every t and for $u_0 \in D(G)$.

REMARK 3. Theorem 2 with a more general equation, obtains a strong solution and so, is stronger than [4], [14]. More applications to partial differential equations can be done through Theorem 2.

C.-Y. Lin

References

- V. BARBU, Semigroups and Differential Equations in Banach Spaces, Leyden, Noordhoff, 1976.
- PH. BENILAN, Equations d'evolutions dans un espace de Banach quelconque et applications, These, Orsay, 1972.
- [3] M. G. CRANDALL AND T. M. LIGGETT, Generation of semigroups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 256–298.
- [4] D. GILBARG AND N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1983.
- [5] J. A. GOLDSTEIN, Semigroups of Linear Operators and Applications, Oxford University Press, New York, 1985.
- J. A. GOLDSTEIN AND C.-Y. LIN, Singular nonlinear parabolic boundary value problems, J. Differential Equations 68 (1987), 429–443.
- [7] J. KACUR, Method of Rothe in Evolution Equations, Teubner Texte Zur Mathematik, Band bf80, BSB B. G. Teubner Verlagsgessellschaft, Leipzig, 1985.
- [8] V. LAKSHMIKANTHAM AND S. LEELA, Nonlinear Differential Equations in Abstract Spaces, Pergamon Press, New York, 1981.
- [9] I. MIYADERA, Nonlinear Semigroups, Transl. Math. Monogr., vol. 109, 1992.
- [10] R. NAGEL (ED.), One Parameter Semigroups of Positive Operators, Lecture Notes in Mathematics, vol. 1184, Springer-Verlag, New York, 1986.
- [11] A. PAZY, Springer-Verlag, New York (1983).
- [12] E. ROTHE, Zweidimensionale parabolische Randvertaufgaben als Grenfall eindimensionale Renvertaufgaben, Math. Ann. 102 (1930), 650–670.
- [13] H. L. ROYDEN, Real Analysis, Macmillan Publishing Company, New York, 1989.
- H. SERIZAWA, M-Browder-accretiveness of a quasilinear differential operator, Houston J. Math. 10 (1984), 147–152.
- [15] H. TANABE, Equations of Evolutions; English transl., Pitman, London, 1979.

Manuscript received April 27, 1999

CHIN-YUAN LIN Department of Mathematics National Central University Chung-Li, TAIWAN

 $E\text{-}mail\ address:\ cylin@wangwei.math.ncu.edu.tw$

368

TMNA : Volume 15 - 2000 - N° 2