CAUCHY PROBLEMS AND APPLICATIONS

Chin-Yuan Lin

Abstract

Of concern is the Cauchy problem $$
\frac{d u}{d t} \in A u, \quad u(0)=u_{0}, \quad t>0
$$ where $u:[0, \infty) \rightarrow X, X$ is a real Banach space, and $A: D(A) \subset X \rightarrow$ X is nonlinear and multi-valued. It is showed by the method of lines, combined with the Crandall-Liggett theorem that this problem has a limit solution, and that the limit solution is a unique strong one if A is what is called embeddedly quasi-demi-closed. In the case of linear, single-valued A, further results are given. An application to nonlinear partial differential equations in non-reflexive X is given.

1. Introduction

Let $(X,\|\cdot\|)$ be a real Banach space with the norm $\|\cdot\|$. Let $A: D(A) \subset$ $X \rightarrow X$ be a densely defined, linear operator. Consider the Cauchy problem

$$
\begin{equation*}
\frac{d u}{d t}=A u, \quad u(0)=u_{0}, \quad t>0 \tag{1}
\end{equation*}
$$

on X. The fundamental Hille-Yosida theorem ([5], [10], [11], [15]) says that if A is m-dissipative, that is, if A satisfies:
(i) $\|u\| \leq\|u-\lambda A u\|$ for $u \in D(A)$ and $\lambda>0$,
(ii) the range of $(I-\lambda A)$ equals X for $\lambda>0$,

2000 Mathematics Subject Classification. 47D03, 47H20, 47H06.
Key words and phrases. Cauchy problems, operator semigroups.
then A generates a linear operator semigroup $S(t)$, and $S(t) u_{0}$ for $u_{0} \in D(A)$ is the unique solution of (1). To obtain $S(t)$, Hille ([15]) proves that $\{(I-$ $\left.(t / n) A)^{-n} x\right\}_{n \in \mathbb{N}}$ is Cauchy for $x \in D\left(A^{2}\right)$, while Yosida ([11]) uses the so-called Yosida approximation $\lambda A(\lambda-A)^{-1}, \lambda>0$.

Extend (1) to the nonlinear multi-valued case

$$
\begin{equation*}
\frac{d u}{d t} \in A u, \quad u(0)=u_{0}, t>0 \tag{2}
\end{equation*}
$$

where $A: D(A) \subset X \rightarrow X$ is nonlinear and multi-valued. The fundamental Crandall-Liggett theorem (see [3], [1], [8], [9]) shows that if A satisfies the following conditions:
(iii) $\|u-v\| \leq\|(u-v)-\lambda(x-y)\|$ for $\lambda>0, u, v \in D(A), x \in A u$, and $y \in A v$,
(iv) the range of $(I-\lambda A) \supset \overline{D(A)}$ for small enough $\lambda>0$,
then A generates a nonlinear operator semigroup $S(t)$. Due to Benilan (see [1], [2], [8], [9]), $S(t) u_{0}$ for $u_{0} \in D(A)$ satisfies some integral inequalities, associated with (2), and is called the unique generalized solution to (2). Crandall and Liggett prove the existence of $S(t)$ by showing that $\left\{(I-(t / n) A)^{-n} x\right\}_{n \in \mathbb{N}}$ is Cauchy for $x \in D(A)$.

For the existence of a strong solution in the nonlinear case, the known results include the cases where reflexive X (see [1], [3], [8], [9]) or demi-continuous $A[9, \mathrm{p} .88]$ is assumed. In this paper, we will use the method of lines ([7], [12]), combined with the Crandall-Liggett theorem, to show that (2) has a limit solution, which is a unique strong one if A is what we call, embeddedly quasi-demi-closed. Here note that our assumption of embeddedly quasi-demi-closed (see Section 4) is weaker than that of demi-continuous. An application to nonlinear partial differential equations in non-reflexive X is given in Section 5.

In the case of linear, single-valued closed A which satisfies (iii) and (iv), the Hille-Yosida theorem applied to the section of A in the Banach space $\overline{D(A)}$ shows that the section is an m-dissipative operator on the Banach space $\overline{D(A)}$ and that for $u_{0} \in D(A)$ with $A u_{0} \in \overline{D(A)}$, (1) has a unique solution $u(t)$, and $d u / d t$ is differentiable in t for $u_{0} \in D\left(A^{2}\right)$ with $A^{2} u_{0} \in \overline{D(A)}$. In this paper, we will show, by making use of the Crandall-Liggett theorem that the same results hold true, together with the additional property that $d u / d t$ is Lipschitz continuous in t for $u_{0} \in D\left(A^{2}\right)$.

In [6], the Crandall-Liggett theorem is applied to this nonlinear differential operator $B: D(B) \subset\left(C[0,1],\|\cdot\|_{\infty}\right) \rightarrow\left(C[0,1],\|\cdot\|_{\infty}\right)$, where $B u \equiv \psi\left(x, u^{\prime}\right) u^{\prime \prime}$ for $u \in D(B) \equiv\left\{v \in C^{2}[0,1]: v^{\prime}(j) \in(-1)^{j} \beta_{j}(v(j)), j=0,1\right\}$. It is showed that B satisfies (iii) and (iv) and then, there is a unique generalized solution to
the nonlinear parabolic boundary value problem

$$
\begin{aligned}
\frac{\partial}{\partial} u(x, t) & =\psi\left(x, u_{x}\right) u_{x x}, & & (x, t) \in(0,1) \times(0, \infty) \\
u_{x}(j, t) & \in(-1)^{j} \beta_{j}(u(j, t)), & & j=0,1 \\
u(x, 0) & =u_{0}(x) . & &
\end{aligned}
$$

In this paper, we extend this result to a more general nonlinear differential operator and obtain a strong solution (Section 5), stronger than a generalized solution; precisely, we consider this nonlinear differential operator $G: D(G) \subset$ $C[0,1] \rightarrow C[0,1]$, where $G u \equiv \psi\left(x, u^{\prime}\right) u^{\prime \prime}+g\left(x, u, u^{\prime}\right)$ for $u \in D(G) \equiv D(B)$. We show that G satisfies (iii) and (iv) and is embeddedly quasi-demi-closed. That gives a strong solution to the corresponding nonlinear parabolic boundary value problem.

The rest of the paper is planned as follows. Section 2 gives a preliminary result. Section 3 deals with a limit solution and the case of linear A. Section 4 is concerned with a strong solution and Section 5 is about an application to nonlinear partial differential equations in non-reflexive X.

2. A preliminary result

As before, let $(X,\|\cdot\|)$ be a real Banach space with the norm $\|\cdot\|, A: D(A) \subset$ $X \rightarrow X$ be a multi-valued nonlinear operator, and A satisfy the conditions (iii) and (iv) in the Introduction.

Let $T>0, u_{0} \in D(A), n \in \mathbb{N}$ be large. Consider the discretization of (2)

$$
\begin{equation*}
u_{i}-\lambda A u_{i} \ni u_{i-1}, \quad u_{i} \in D(A), \tag{3}
\end{equation*}
$$

where $\lambda=T / n$ and $i=1$ to n. For the given $u_{0} \in D(A) \subset X, u_{i}$ exists for $i=1, \ldots, n$ by the condition (iv). Uniqueness of u_{i} follows from (iii). For convenience, define u_{-1} to be an element in $\left(u_{0}-\lambda A u_{0}\right)$, so that $u_{-1}=u_{0}-\lambda v_{0}$ for some $v_{0} \in A u_{0}$.

By the condition (iii), $\left\|u_{i}-u_{i-1}\right\| \leq\left\|u_{i-1}-u_{i-2}\right\|$. It follows that $\| u_{i}-$ $u_{i-1}\|\leq\| u_{0}-u_{-1}\|\leq \lambda\| v_{0} \|$. Thus we have proved

Proposition 1. The u_{i} in (3) satisfies $\left\|u_{i}-u_{i-1}\right\| \leq \lambda\left\|v_{0}\right\|$ for $i=1, \ldots, n$.

3. A limit solution

From here on, let k be a generic constant which can vary with different occasions.

Consider the u_{i} in (3) and put $t_{i}=i \lambda$ for $i=1, \ldots, n$. Define $\chi^{n}(0)=u_{0}$, $\chi^{n}(t)=u_{i}$ for $t \in\left(t_{i-1}, t_{i}\right]$ and

$$
\begin{equation*}
u^{n}(t)=u_{i-1}+\frac{u_{i}-u_{i-1}}{\lambda}\left(t-t_{i-1}\right) \tag{4}
\end{equation*}
$$

for $t \in\left[t_{i-1}, t_{i}\right]$. By the definitions of $\chi^{n}(t)$ and $u^{n}(t)$, we have

$$
\limsup _{n \rightarrow \infty}\left\|u^{n}(t)-\chi^{n}(t)\right\|=0
$$

and

$$
\begin{equation*}
\frac{d u^{n}(t)}{d t} \in A \chi^{n}(t), \quad u^{n}(0)=u_{0} \tag{5}
\end{equation*}
$$

for almost every t, where the last equation has values in $B([0, T] ; X)$, the real Banach space of bounded functions from $[0, T]$ to X.

Proposition 2. For each $t \in[0, T], u^{n}(t)$ has a convergent subsequence in X and so, $u^{n}(t)$ is relatively compact in X.

Proof. Note that for each bounded $t \in(0, T)$, we have $t \in\left[t_{i-1}, t_{i}\right)$ for some i and so, $i-1=[t / \lambda]$. Here for each $x \in \mathbb{R},[x]$ is the greatest integer that is less than or equal to x. Also note from the definition of u_{t}^{n} that pointwise convergence of u_{t}^{n} is the same as that of u_{i-1} since $\left\|\left(u_{u}-u_{i-1}\right) / \lambda\right\| \leq k$, by Proposition 1.

Since $u_{i-1}=(I-\lambda A)^{-(i-1)} u_{0}$ and the convergence of u_{i-1} as $\lambda \rightarrow 0$ is the same as the convergence of $(I-(t / n) A)^{-n} u_{0}$ for each bounded t as $n \rightarrow 0$, the proof is completed by applying the Crandall-Liggett theorem.

Applying Proposition 1 to (4) we have

$$
\begin{equation*}
\left\|u^{n}(t)-u^{n}(\tau)\right\| \leq k|t-\tau| \tag{6}
\end{equation*}
$$

for $t, \tau \in\left[t_{i-1}, t_{i}\right]$, that is, $u^{n}(t)$ is equi-continuous in $C([0, T] ; X)$. Here the space $C([0, T] ; X)$ is the real Banach space of continuous functions from $[0, T]$ to X. Proposition 2 says that for each $t \in[0, T], u^{n}(t)$ is relatively compact in X. Therefore, $u^{n}(t)$ converges to some $u(t)$ in $C([0, T] ; X)$ by the AscoliArzela theorm [13]. Here we denote $u(t)$ by $S(t) u_{0}$. Since $u^{n}(t)$ satisfies (5) and converges to $u(t)$ in $C([0, T] ; X)$, we call $u(t)$ a limit solution of (2) on $[0, T]$ (and then on $[0, \infty)$ since T is arbitrary). Thus we have proved

Proposition 3. The equation (2), where A is defined as in Section 2, has a limit solution for $u_{0} \in D(A)$.

Note that since for each $t \in\left[t_{i-1}, t_{i}\right),[t / \lambda]=i-1$ and from (3) we have that

$$
u_{i-1}=(I-\lambda A)^{-(i-1)} u_{0}=(I-\lambda A)^{-[t / \lambda]} u_{0} \rightarrow S(t) u_{0}=u(t)
$$

for $u_{0} \in D(A)$, as $\lambda \rightarrow 0^{+}$. Since $u(t)$ is the uniform limit of $u^{n}(t), S(t) u_{0}$ is continuous for $u_{0} \in D(A)$. By (iii), $(I-\lambda A)^{-[t / \lambda]}$ are contractions and so, $S(t) u_{0}$ also exists for $u_{0} \in \overline{D(A)}$ and is continuous in t. On the other hand, from (6), where k depends on $\left\{\|v\|: v \in A u_{0}, u_{0} \in D(A)\right\}$, we see that $u(t)=S(t) u_{0}$ for $u_{0} \in D(A)$ is Lipschitz continuous in t.

Now suppose additionally that A is linear, single-valued, and closed. Here by closedness of A, we mean that if $x_{n} \in D(A), y_{n}=A x_{n}, x_{n} \rightarrow x$, and $y_{n} \rightarrow y$, then $x \in D(A)$ and $y=A x$. Assume that $u_{0} \in D(A)$ and $A u_{0} \in \overline{D(A)}$.

From (3) we have

$$
\begin{aligned}
A u_{i} & =\frac{u_{i}-u_{i-1}}{\lambda}=\frac{(I-\lambda A)^{-i} u_{0}-(I-\lambda A)^{-(i-1)} u_{0}}{\lambda} \\
& =(I-\lambda A)^{-(i-1)}\left(\frac{(I-\lambda A)^{-1}-I}{\lambda}\right) u_{0} \\
& =(I-\lambda A)^{-(i-1)}(I-\lambda A)^{-1} A u_{0}=(I-\lambda A)^{-i}\left(A u_{0}\right)
\end{aligned}
$$

since A is linear. Letting $\lambda \rightarrow 0^{+}$, we have $A u_{i}$ or $A \chi^{n}(t) \rightarrow S(\tau) A u_{0}$ since $A u_{0} \in \overline{D(A)}$ and so, $A u(\tau)=S(\tau) A u_{0}$ since A is closed; also $\int_{0}^{t} A \chi^{n}(\tau) d \tau \rightarrow$ $\int_{0}^{t} A u(\tau) d \tau$ by the Lebesgue convergence theorem since $\left\|A \chi^{n}(\tau)\right\| \leq k$. Thus the integrated (5)

$$
u^{n}(t)-u_{0}=\int_{0}^{t} A \chi^{n}(\tau) d \tau
$$

converges to

$$
\begin{equation*}
u(t)-u_{0}=\int_{0}^{t} A u(\tau) d \tau \tag{7}
\end{equation*}
$$

Since $A u(\tau)=S(\tau) A u_{0}$ is continuous in τ for $A u_{0} \in \overline{D(A)}$ and is Lipschitz continuous in τ for $A u_{0} \in D(A)$, we have that so is $A u(\tau)$. Thus by the fundamental theorem of calculus, (7) gives that

$$
\begin{equation*}
\frac{d u(t)}{d t}=A u=S(t) A u_{0}, \quad u(0)=u_{0} \tag{8}
\end{equation*}
$$

Thus $d u / d t$ is continuous in t for $u_{0} \in D(A)$ with $A u_{0} \in \overline{D(A)}$ and Lipschitz continuous in t for $u_{0} \in D(A)$ with $A u_{0} \in D(A)$. This, together with (7), in turn shows that $d u / d t$ is differentiable in t for $u_{0} \in D\left(A^{2}\right)$ with $A^{2} u_{0} \in \overline{D(A)}$. More regularity of $d u / d t$ in t can be obtained iteratedly.

Uniqueness of solution in (8) is standard and follows from e.g. [9, Lemma 4.9, p. 88]. Thus, we have proved

Theorem 1. If the operator A in Section 2 is linear and closed, then (8) has a unique solution $u(t)$ for $u_{0} \in D(A)$ with $A u_{0} \in \overline{D(A)}$, which has the property that $d u(t) / d t$ is continuous in t. Furthermore, $d u / d t$ is Lipschitz continuous in t for $u_{0} \in D(A)$ with $A u_{0} \in D(A)$ and differentiable in t for $u_{0} \in D\left(A^{2}\right)$ with $A^{2} u_{0} \in \overline{D(A)}$. More regularity of du/dt in t can be obtained iteratedly.

Remark 1. The above result, except for the case for the Lipschitz continuity of $d u / d t$ in t, can be obtained by applying the Hille-Yosida theorem to the section of A in the Banach space $\overline{D(A)}$, in which case, the section becomes an m-dissipative operator in $\overline{D(A)}$.

4. A strong solution

Let $\left(Y,\|\cdot\|_{Y}\right)$ be a real Banach space with $(X,\|\cdot\|)$ continuously embedded into it. Assume additionally that A is embeddedly quasi-demi-closed, that is, assume that if $x_{n} \in D(A) \rightarrow x$ and $\left\|y_{n}\right\| \leq k$ for some $y_{n} \in A x_{n}$, then $x \in$ $D(\phi \circ A)$ (that is, $\phi(A x)$ exists.) and $\left.\mid \phi\left(y_{n_{k}}\right)-z\right) \mid \rightarrow 0$ for some subsequence $y_{n_{k}}$ of y_{n}, for some $z \in \phi(A x)$ and for each $\phi \in Y^{*} \subset X^{*}$, the real dual spaces of Y and X, respectively.

Let $v_{n}(t) \in A \chi^{n}(t)$ for $t \in\left(t_{i-1}, t_{i}\right]$ be such that (5) gives

$$
\frac{d u^{n}(t)}{d t}=v_{n}(t)
$$

for $t \in\left(t_{i-1}, t_{i}\right]$. Integrating (5) gives that for each $\phi \in Y^{*} \subset X^{*}, \phi\left(u^{n}(t)-u_{0}\right)=$ $\int \phi\left(v^{n}(\tau) d \tau\right.$ and

$$
\phi\left(u^{n}(t)-u_{0}\right) \in \phi\left(\int_{0}^{t} A \chi^{n}(\tau) d \tau\right)=\int_{0}^{t} \phi\left(A \chi^{n}(\tau)\right) d \tau
$$

where note that $\sup _{t \in[0, T]}\left\|v_{n}(t)\right\| \leq k$ by $v_{n}(t) \in A \chi^{n}(t)$ and $\left\|\left(u_{i}-u_{i-1}\right) / \lambda\right\| \leq k$ from Proposition 1. Since $u^{n}(t) \rightarrow u(t)$ uniformly for bounded t and A is embeddedly quasi-demi-closed, we have that $\phi\left(v_{n}(t)\right)$ converges to $\phi(v(t))$ through some subsequence for some $v(t) \in A u(t)$ and then, by the Lebesgue convergence theorem, we have

$$
\phi\left(u(t)-u_{0}\right)=\int \phi(v(\tau)) d \tau=\phi\left(\int v(\tau) d \tau\right) .
$$

Thus $u(t)-u_{0}=\int v(\tau) d \tau$ in Y. Therefore we have by the Radon-Nikodym type theorem [9] that

$$
\frac{d u(t)}{d t}=v(t) \quad \text { in } Y \text { for almost every } t
$$

and then

$$
\begin{align*}
& \frac{d u(t)}{d t} \in A u(t) \quad \text { in } Y \text { for almost every } t, \tag{9}\\
& u(0)=u_{0} .
\end{align*}
$$

Again, uniqueness of solution for (9) in X is standard [9]. Thus we have proved
Theorem 2. If the operator A in Section 2 is additionally embeddedly quasi-demi-closed, then (9) has a strong solution in Y for $u_{0} \in D(A)$, which is unique if $Y \equiv X$.

Remark 2. Here note that X is not necessarily reflexive, and that the assumption of embeddedly quasi-demi-closedness is weaker than that of demicontinuity ([9, p. 88]).

5. An application

From here on, k denotes a generic constant, which can vary with different occasions. We make the following assumptions (5.1) to (5.3).
(5.1) $\beta_{0}, \beta_{1}: \mathbb{R} \rightarrow \mathbb{R}$ are multi-valued maximal monotone functions with $0 \in \beta_{0}(0) \cap \beta_{1}(0)$.
(5.2) $\psi(x, p) \geq \delta_{1}>0$ holds for some constant δ_{1} and is continuous.
(5.3) $g(x, z, p)$ is continuous and satisfies $z g(x, z, 0) \leq 0$, and

$$
\left|\frac{g(x, z, p)}{\psi(x, p)}\right| \leq N(x, z)(1+|p|)
$$

where N is positive and continuous.
Define a nonlinear operator $E: D(E) \subset C[0,1] \rightarrow C[0,1]$ by $E u=u^{\prime \prime}$ for $u \in D(E) \equiv\left\{u \in C^{2}[0,1]: u^{\prime}(j) \in(-1)^{j} \beta_{j}(u(j)), j=0,1\right\}$.

We have the following result in [6], and [14]:
Proposition 4. For $h \in C[0,1]$, there is a unique solution $u \in C^{2}[0,1]$ to

$$
u-u^{\prime \prime}=h, \quad u^{\prime}(j) \in(-1)^{j} \beta_{j}(u(j)), \quad j=0,1,
$$

and the operator $(I-E)^{-1}: C[0,1] \rightarrow C^{2}[0,1] \subset C[0,1]$ exists and is nonexpansive.

Define a nonlinear operator $G: D(G) \subset C[0,1] \rightarrow C[0,1]$ by

$$
G u=\psi\left(x, u^{\prime}\right) u^{\prime \prime}+g\left(x, u, u^{\prime}\right)
$$

for $u \in D(G) \equiv\left\{v \in C^{2}[0,1]: v^{\prime}(j) \in(-1)^{j} \beta_{j}(v(j)), j=0,1\right\}$.
Proposition 5. For each $h \in C[0,1]$, the equation
(10) $u-\lambda\left(\psi\left(x, u, u^{\prime}\right) u^{\prime \prime}+g\left(x, u, u^{\prime}\right)\right)=h, \quad u^{\prime}(j) \in(-1)^{j} \beta_{j}(u(j)), \quad j=0,1$,
has a solution for small enough $\lambda>0$. And so G satisfies (iv).
Proof. As in [6] and [14], consider the operator equation equation $u=$ $(u-\lambda E)^{-1} W u$, where

$$
W: C^{1}[0,1] \rightarrow C[0,1], \quad W u=u+\frac{h-u+\lambda g\left(x, u, u^{\prime}\right)}{\psi\left(x, u^{\prime}\right)}
$$

and $(I-\lambda E)^{-1}: C[0,1] \rightarrow C^{2}[0,1]$ is from Proposition 4 and continuous. Solvability of this operator equation will complete the proof.

We truncate W by defining, for each $m \in \mathbb{N}$,

$$
W_{m} u= \begin{cases}W u & \text { if }\|u\|_{C^{1}[0,1]} \leq m \\ W\left(\frac{m u}{\|u\|_{C^{1}[0,1]}}\right) & \text { if }\|u\|_{C^{1}[0,1]}>m\end{cases}
$$

It follows that $(I-\lambda E)^{-1} W_{m}: C^{1}[0,1] \rightarrow C^{1}[0,1]$ is continuous, compact, and uniformly bounded for each m; the compactness follows from the Ascoli-Arzela theorem. By the Schauder fixed point theorem [4],

$$
(I-\lambda E)^{-1} W_{m} u_{m}=u_{m}
$$

holds for some u_{m}. We complete the proof by showing $\left\|u_{m_{0}}\right\|_{C^{1}} \leq u_{m_{0}}$ for some m_{0} since $(I-\lambda E)^{-1} W u_{m_{0}}=u_{m_{0}}$ in this case.

Assume $\left\|u_{m}\right\|_{C^{1}}>m$ for all m and we seek a contradiction. By the definition of W_{m}, we have

$$
\begin{equation*}
u_{m}-\lambda u_{m}^{\prime \prime}=v_{m}+\frac{h-v_{m}+\lambda\left(g\left(x, v_{m}, v_{m}^{\prime}\right)\right)}{\psi\left(x, v_{m}^{\prime}\right)}, \tag{11}
\end{equation*}
$$

where $u_{m} \in D(E)$ and $v_{m}=m u_{m} /\left\|u_{m}\right\|_{C^{1}}$. We have from the first and second derivative tests that

$$
\left\|u_{m}\right\|_{\infty}=\left|u_{m}\left(x_{0}\right)\right|, \quad u_{m}^{\prime}\left(x_{0}\right)=0, \quad \text { and } \quad u_{m}\left(x_{0}\right) u_{m}^{\prime \prime}\left(x_{0}\right) \leq 0
$$

for some $x_{0} \in[0,1]$. Multiplying (11) by u_{m} and evaluating it at x_{0}, we have

$$
\begin{aligned}
0 & \leq\left(\left(1-\frac{m}{\left\|u_{m}\right\|_{C^{1}}}\right) u_{m}^{2}\left(x_{0}\right)-\lambda u_{m}\left(x_{0}\right) u_{m}^{\prime \prime}\left(x_{0}\right)\right) \psi\left(x_{0}, 0\right) \\
& =\left(h-v_{m}\right)\left(x_{0}\right) u_{m}\left(x_{0}\right)+\lambda u_{m}\left(x_{0}\right)\left(g\left(x_{0}, v_{m}, 0\right)\right) \\
& \leq\left(h-v_{m}\right)\left(x_{0}\right) u_{m}\left(x_{0}\right)
\end{aligned}
$$

and so, $\left\|v_{m}\right\|_{\infty} \leq\|h\|_{\infty}$. It follows from (11) and (5.3) that

$$
\left\|v_{m}^{\prime \prime}\right\|_{\infty} \leq \lambda^{-1} k+k\left(1+\left\|v_{m}^{\prime}\right\|_{\infty}\right)
$$

Using the interpolation inequality [4]:

$$
\left\|v_{m}^{\prime}\right\|_{\infty} \leq \varepsilon\left\|v_{m}^{\prime \prime}\right\|_{\infty}+\eta(\varepsilon)\left\|v_{m}\right\|_{\infty}
$$

for all $\varepsilon>0$, we have $\left\|v_{m}\right\|_{C^{2}[0,1]} \leq k$, which is a contradiction to $m=\left\|v_{m}\right\|_{C^{1}} \leq$ $\left\|v_{m}\right\|_{C^{2}} \leq k$ as $m \rightarrow \infty$.

Proposition 6. G satisfies (iii).
Proof. Let $u, v \in D(B)$. As in [6], applying the first and second derivative tests gives $\|u-v\|_{\infty}=\left|(u-v)\left(x_{0}\right)\right|,(u-v)^{\prime}\left(x_{0}\right)=0$, and $(u-v)\left(x_{0}\right)(u-v)^{\prime \prime}\left(x_{0}\right) \leq$ 0 for some $x_{0} \in[0,1]$. Since

$$
\begin{aligned}
& (u-v)\left(x_{0}\right)(B u-B v)\left(x_{0}\right) \\
= & \psi\left(x_{0}, u, u^{\prime}\right)(u-v)\left(x_{0}\right)(u-v)^{\prime \prime}\left(x_{0}\right)+(u-v)\left(x_{0}\right)\left(g\left(x_{0}, u, u^{\prime}\right)-g\left(x_{0}, v, u^{\prime}\right)\right) \leq 0,
\end{aligned}
$$

we have

$$
\|u-v\|_{\infty}^{2}=(u-v)^{2}\left(x_{0}\right) \leq(u-v)\left(x_{0}\right)\left((u-v)\left(x_{0}\right)-\lambda(G u-G v)\left(x_{0}\right)\right)
$$

for all $\lambda>0$, and so

$$
\|u-v\|_{\infty} \leq\|(u-v)-\lambda(G u-G v)\|_{\infty}
$$

Thus (iv) is proved.
We now show that G is embeddedly quasi-demi-closed, so that Theorem 2 applies.

Let $(Y,\|\cdot\|)=\left(L^{2}(0,1),\|\cdot\|\right)$, which has $\left(C[0,1],\|\cdot\|_{\infty}\right)$ continuously embedded into it. Let $u_{n} \in D(G) \rightarrow u$ and $\left\|G u_{n}\right\|_{\infty} \leq k$. As in prove of Proposition 5, we have $\left\|u_{n}\right\|_{C^{2}[0,1]} \leq k$. It follows from the Ascoli-Arzela theorem that $u_{n} \rightarrow u$ in $C^{1}[0,1]$ through some subsequence. Apply this to the following.

Let $\eta \in L^{2}(0,1)=\left(L^{2}(0,1)\right)^{*}$. We have to show that $u \in D(\eta \circ G)$, that is, $\eta(G u)$ exists, and that $\left|\eta\left(G u_{n}\right)-\eta(G u)\right| \rightarrow 0$. Formally, we have

$$
\begin{aligned}
\eta\left(G u_{n}\right)= & \int \eta\left(\psi\left(x, u_{n}^{\prime}\right) u_{n}^{\prime \prime}+g\left(x, u_{n}, u_{n}^{\prime}\right)\right) d x \\
= & \int \eta \psi\left(x, u^{\prime}\right)\left(u_{n}-u\right)^{\prime \prime} d x+\int \eta\left(\psi\left(x, u_{n}^{\prime}\right)-\psi\left(x, u^{\prime}\right)\right) u_{n}^{\prime \prime} d x \\
& +\int \eta\left(g\left(x, u_{n}, u_{n}^{\prime}\right)-g\left(x, u, u^{\prime}\right)\right) d x+\int \eta(G u) d x \equiv \sum_{i}^{4} I_{i}
\end{aligned}
$$

Here the integration range $[0,1]$ is omitted.
It follows that I_{1} converges to 0 since $\left\|u_{n}\right\|_{C^{2}} \leq k, W^{2,2}(0,1)$ is a Hilbert space, $\eta \psi\left(x, u^{\prime}\right) \in L^{2}(0,1)$, and $u_{n}^{\prime \prime}$ converges weakly to $u^{\prime \prime}$ through some subsequence (this also shows $\eta(G u)$ exists), that I_{2} converges to 0 by $\left|I_{2}\right| \leq \| \psi\left(x, u_{n}^{\prime}\right)-$ $\psi\left(x, u^{\prime}\right)\left\|_{\infty}\right\| \eta\left\|\left\|u_{n}^{\prime \prime}\right\|\right.$, and that I_{3} converges to 0 by the uniform convergence theorem. Thus $\eta(G u)$ exists and $\eta\left(G u_{n}\right) \rightarrow \eta(G u)$ and so, G is embeddedly quasi-demi-closed. By Theorem 2, we have that

Theorem 3. In $L^{2}(0,1)$, there is a strong solution u to the nonlinear parabolic boundary value problem

$$
\begin{aligned}
& \frac{\partial}{\partial t} u(x, t)=\psi\left(x, u, u_{x}\right) u_{x x}+g\left(x, u, u_{x}\right),(x, t) \in(0,1) \times(0, \infty) \\
& u_{x}(j, t) \in(-1)^{j} \beta_{j}(u(j, t)), j=0,1 \\
& u(x, 0)=u_{0}(x)
\end{aligned}
$$

for almost every t and for $u_{0} \in D(G)$.
Remark 3. Theorem 2 with a more general equation, obtains a strong solution and so, is stronger than [4], [14]. More applications to partial differential equations can be done through Theorem 2.

References

[1] V. Barbu, Semigroups and Differential Equations in Banach Spaces, Leyden, Noordhoff, 1976.
[2] Ph. Benilan, Equations d'evolutions dans un espace de Banach quelconque et applications, These, Orsay, 1972.
[3] M. G. Crandall and T. M. Liggett, Generation of semigroups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 256-298.
[4] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1983.
[5] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, New York, 1985.
[6] J. A. Goldstein and C.-Y. Lin, Singular nonlinear parabolic boundary value problems, J. Differential Equations 68 (1987), 429-443.
[7] J. Kacur, Method of Rothe in Evolution Equations, Teubner Texte Zur Mathematik, Band bf80, BSB B. G. Teubner Verlagsgessellschaft, Leipzig, 1985.
[8] V. Lakshmikantham and S. Leela, Nonlinear Differential Equations in Abstract Spaces, Pergamon Press, New York, 1981.
[9] I. Miyadera, Nonlinear Semigroups, Transl. Math. Monogr., vol. 109, 1992.
[10] R. Nagel (Ed.), One Parameter Semigroups of Positive Operators, Lecture Notes in Mathematics, vol. 1184, Springer-Verlag, New York, 1986.
[11] A. Pazy, Springer-Verlag, New York (1983).
[12] E. Rothe, Zweidimensionale parabolische Randvertaufgaben als Grenfall eindimensionale Renvertaufgaben, Math. Ann. 102 (1930), 650-670.
[13] H. L. Royden, Real Analysis, Macmillan Publishing Company, New York, 1989.
[14] H. Serizawa, M-Browder-accretiveness of a quasilinear differential operator, Houston J. Math. 10 (1984), 147-152.
[15] H. Tanabe, Equations of Evolutions; English transl., Pitman, London, 1979.

Chin-Yuan Lin

Department of Mathematics
National Central University
Chung-Li, TAIWAN
E-mail address: cylin@wangwei.math.ncu.edu.tw

