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MULTIPLE INTERIOR LAYERS OF SOLUTIONS
TO PERTURBED ELLIPTIC SINE–GORDON EQUATION

ON AN INTERVAL

Tetsutaro Shibata

Abstract. We consider the perturbed elliptic Sine–Gordon ODE with two

positive parameters µ and λ, and show the existence of solutions which have

2n multiple interior layers for λ � 1. We also determine the location of
multiple interior layers as λ→∞.

1. Introduction and results

We consider the perturbed elliptic Sine–Gordon equation on an interval

(1.1)
−u′′(t) + λ sinu(t) = µf(u(t)), u(t) > 0, t ∈ I := (−T, T ),

u(±T ) = 0,

where λ, µ > 0 are parameters and T > 0 is a constant. We assume the following
conditions (A.1)–(A.4):

(A.1) f is locally Lipschitz continuous, odd in u. Furthermore, f(u) > 0 for
u > 0.

(A.2) There exist constants C > 0 and p > 1 such that |f(u)| ≤ C(1 + |u|p)
for u ∈ R.

(A.3) f(u) ≤ Cu for 0 < u � 1, where C > 0 is a constant.
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330 T. Shibata

(A.4) There exists a constant m > 1 such that for u ∈ R

f(u)u ≥ mF (u) := m

∫ u

0

f(s) ds.

The typical examples of f(u) are as follows:

f(u) = |u|p−1u for p > 1,

f(u) = |u|p−1u + |u|q−1u for p, q > 1.

The purpose of this paper is to study the layer structure of the solutions to (1.1)
for λ � 1 by using variational method. More precisely, we show the existence of
the solutions uλ which have 2n multiple interior layers in I for λ � 1. We also
determine the location of multiple interior layers of uλ as λ →∞. Furthermore,
we show the existence of solutions uλ with boundary layers.

The equation (1.1) is motivated by the perturbed Sine–Gordon equation

(1.2) utt = uxx − sinu + f(u) for 0 < x < π,

which was recently studied by Bobenko and Kuksin [1]. They studied small
amplitude solutions of nonlinear Klein–Gordon equation which was regarded as
a perturbation of (1.2). We note that the solutions uλ considered here are not
small amplitude solutions.

For one-parameter singular perturbation problems, the possible layer struc-
ture of the solutions was brought out in O’Malley [3]. For nonlinear two-
parameter problems, it is known that in some cases layers (spike and bound-
ary) appear (cf. [4], [6]). However, the problems of interior transition layers for
nonlinear two-parameter problems do not seem to have been studied. Recently,
Shibata [5] considered the equation (1.1) by means of a constrained minimiza-
tion method, and obtained the existence of solutions uλ which has exactly two
interior layers in I as λ →∞. The result obtained in [5] is regarded as the first
step to clarify the rich layer structure of the equation (1.1).

We explain the variational framework. We consider the variational prob-
lem (M) subject to the constraint depending on λ:

(M) Minimize

(1.3) Lλ(u) :=
1
2

∫
I

|u′(t)|2 dt + λ

∫
I

(1− cos u(t)) dt

under the constraint

(1.4) u ∈ Mα :=
{

u ∈ H1
0 (I) : K(u) :=

∫
I

F (u(t)) dt = 2TF (α)
}

,

where α > 0 is a fixed constant, H1
0 (I) is the usual real Sobolev space.
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Then by the Lagrange multiplier theorem, we obtain solution trios (λ, µ(λ), uλ) ∈
R2

+×Mα of (1.1) (and consequently uλ ∈ C2(I) by a standard regularity theorem)
corresponding to the problem (M).

In Shibata [5], the following result was proved.

Theorem 0 ([5, Theorem]). Assume (A.1)–(A.4). Let 0 < α < 2π satisfy
F (α) < F (2π)/2. Then:

(i) uλ → 2π locally uniformly on (−Tα,0, Tα,0) as λ → ∞, where Tα,0 :=
F (α)T/F (2π).

(ii) uλ → 0 locally uniformly on I \ [−Tα,0, Tα,0] as λ →∞.
(iii) µ(λ) → 0 as λ →∞.

Theorem 0 implies that if F (α) < F (2π)/2, then the location of the interior
layers of uλ tends to ±Tα,0 as λ →∞.

We first remove the restriction F (α) < F (2π)/2 in Theorem 0. To do this,
we introduce the condition (A.5.n) for a given n ∈ N:

(A.5.n) H(n) := F (2(n + 1)π)− 2nF (2nπ) + 2
n−1∑
k=0

F (2kπ) > 0.

Note that “Assume (A.5.n)” implies that the assumption (A.5.n) holds only for
a given n. The example of f which satisfies (A.1)–(A.5.n) for a fixed n ∈ N is
f(u) = |u|p−1u for p > pn, where pn > 1 is a constant depending on a given n.

Theorem 1. Assume (A.1)–(A.4) and (A.5.1). Let 0 < α < 2π satisfy
F (α) ≥ F (2π)/2. Then the assertions (i)–(iii) in Theorem 0 hold.

Secondly, we show the existence of the solutions uλ which have 2(n+1) multi-
ple interior transition layers at t = ±Tα,n,±(T −Tα,n),±(T −3Tα,n), . . . ,±(T −
(2n− 1)Tα,n) as λ →∞, where

Tα,n := (F (α)− F (2nπ))T/H(n).

For D ⊂ R, let −D := {−t : t ∈ D} ⊂ R and |D| be the Lebesgue measure of D.

Theorem 2. Let n ∈ R be given. Assume (A.1)–(A.4) and (A.5.n). If α

satisfies 2nπ < α < 2(n + 1)π and

(1.5) F (2nπ) < F (α) <
1

2(n + 1)
F (2(n + 1)π) +

1
(n + 1)

n∑
k=0

F (2kπ),

then as λ →∞:

(i) ‖uλ‖∞ < 2(n + 1)π.
(ii) uλ → 2(n + 1)π locally uniformly on (−Tα,n, Tα,n).
(iii) uλ → 2nπ locally uniformly on ±(Tα,n, T − (2n− 1)Tα,n).
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(iv) uλ → 2kπ locally uniformly on ±(T − (2k + 1)Tα,n, T − (2k − 1)Tα,n)
for k = 1, . . . , n− 1.

(v) uλ → 0 locally uniformly on ±(T − Tα,n, T ].
(vi) There exist constants C1, C2 > 0 such that

(1.6) µ(λ) ≤ C1λe−C2
√

λ.

Note that if (A.5.n) is satisfied, then there exists α > 0 which satisfies
2nπ < α < 2(n + 1)π and (1.5) for n.

The rough idea of the proof of Theorems 2 is as follows. By using the
variational characterization of uλ, we find that the shape of uλ for λ � 1 is like
step function, each height of the steps are 2π. We first establish an estimate
‖uλ‖∞ < 2(n + 1)π for λ � 1 by using (A.5.n). Then uλ must cross the line
u = 2π, . . . , 2nπ. By using this fact, we secondly establish that |Iλ,k| ∼ 2|Iλ,0| for
λ � 1, where Iλ,k ⊂ (0, T ) (k = 1, . . . , n−1) are the intervals on which uλ → 2kπ

locally uniformly as λ →∞. Finally, by using an estimate ‖uλ‖∞ < 2(n + 1)π,
we prove that |Iλ,2(n+1)| ∼ |Iλ,0| for λ � 1.

We next consider the case where the condition (1.5) does not hold. Namely,
we consider α > 0 which satisfies 2nπ < α < 2(n + 1)π and

(1.7)
1

2(n + 1)
F (2(n + 1)π) +

1
(n + 1)

n∑
k=0

F (2kπ) ≤ F (α).

In this case, uλ has multiple interior layers at t = ±(T − (2k − 1)Sα,n) for
k = 1, . . . , n + 1, as λ →∞, where

Sα,n :=
(F (2(n + 1)π)− F (α))T

(2n + 1)F (2(n + 1)π)− 2
∑n

k=0 F (2kπ)
.

Theorem 3. Let n ∈ R be given. Assume (A.1)–(A.4), (A.5.n) and (A.5.n+
1). Let 2nπ < α < 2(n + 1)π satisfy (1.7). Then as λ →∞:

(i) ‖uλ‖∞ → 2(n + 1)π.
(ii) uλ → 2(n + 1)π locally uniformly on (−(T − (2n + 1)Sα,n), T − (2n +

1)Sα,n).
(iii) uλ → 2kπ locally uniformly on ±(T − (2k + 1)Sα,n, T − (2k − 1)Sα,n)

for k = 1, . . . , n.
(iv) uλ → 0 locally uniformly on ±(T − Sα,n, T ].
(v) The formula (1.6) holds.

To prove Theorem 3, we show that |Iλ,k| ∼ 2|Iλ,0| for k = 1, . . . , n and
λ � 1. We also see from Theorems 2 and 3 that when 2nπ < α < 2(n + 1)π,
there are two types of interior transition layers according to the range of α.

Finally, we show the existence of solutions which have boundary layers.



Multiple Interior Layers 333

Theorem 4. Let n ∈ N be given. Assume (A.1)–(A.4) and (A.5.n). If
α = 2nπ, then ‖uλ‖∞ < 2(n + 1)π for λ � 1 and uλ → 2nπ locally uniformly
on (−T, 0) ∪ (0, T ) as λ →∞.

The remainder of this paper is organized as follows. In Section 2, we intro-
duce the useful Lemmas which were obtained in Shibata [5] under the assump-
tions (A.1)–(A.4). In Section 3, we prove Theorem 2. The proof of the case n = 1
is the main part of this section. In Section 4 through 6, we prove Theorems 1, 3
and 4, respectively. In Section 7, we prove some Lemmas introduced in Section 2
for completeness.

2. Preliminaries

In this section, we assume (A.1)–(A.4). For simplicity, we denote by C the
various positive constants independent of λ. A subsequence of a sequence is often
denoted by the same notation as that of original sequence. We know by [2] that
a solution u of (1.1) satisfies the following properties:

u(t) = u(−t) for t ∈ [0, T ],(2.1)

u′(t) < 0 for ∈ (0, T ],(2.2)

u′(0) = 0, u(0) = ‖u‖∞.(2.3)

For 0 ≤ r ≤ ‖uλ‖∞, let tr,λ ∈ [0, T ] satisfy uλ(tr,λ) = r, which exists uniquely
by (2.2). The following notation will be used repeatedly. For a fixed 0 < ε � 1,
let

lλ,ε := t2π,λ − t2π+ε,λ, mλ,ε := t2π−ε,λ − t2π,λ, δλ,ε := T − tε,λ.

In what follows, we always fix 0 < ε � 1 first. Then let λ → ∞. Therefore,
the standard notation o(1) will be used for λ � 1. Furthermore, the notation
lλ,ε = δλ,ε + O(ε) + o(1) (for instance) means that |lλ,ε − δλ,ε| ≤ Cε + o(1) for
0 < ε � 1 fixed and λ � 1.

Lemma 2.1. Assume that (λ, µ, u) ∈ R+ × R × C2(I) satisfies (1.1). Then
µ > 0. Further, for t ∈ I,

(2.4)
1
2
u′(t)2 +µF (u(t))+λ cos u(t) =

1
2
u′(T )2 +λ = µF (‖u‖∞)+λ cos ‖u‖∞.

Proof. Multiply the equation in (1.1) by u′(t). Then we have

{u′′(t) + µf(u(t))− λ sinu(t)}u′(t) = 0, t ∈ I.

This implies

d

dt

{
1
2
u′(t)2 + µF (u(t)) + λ cos u(t)

}
= 0, t ∈ I.
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Hence, for t ∈ I,

(2.5)
1
2
u′(t)2 + µF (u(t)) + λ cos u(t) ≡ constant.

By putting t = 0, T in (2.5), we obtain (2.4) by (2.3). Then by (2.4), we obtain

(2.6) µF (‖u‖∞) =
1
2
u′(T )2 + λ(1− cos ‖u‖∞) > 0.

Since F (‖u‖∞) > 0 by (A.1), µ > 0 follows from (2.6). �

Lemma 2.2. Let α > 0 and λ > 0 be fixed. Then there exists (µ(λ), uλ) ∈
R+ × (Mα ∩ C2(I)) which satisfies (1.1) and Lλ(uλ) = β(λ) := infu∈Mα

Lλ(u).

Lemma 2.3. Let α > 0 be fixed. Then Lλ(uλ) ≤ Cλ(m+2)/2(m+1) for λ � 1.

Lemma 2.4. Let α > 0 be fixed. Then µ(λ) = o(λ) for λ � 1.

Since Lemma 2.2 can be proved easily by choosing a minimizing sequence,
we omit the proof. For the proof of Lemmas 2.3–2.4, see appendix (Section 7).

By Lemma 2.3, we obtain the following (2.7), which will be used later. Put
Jλ,k,δ := {t ∈ I : 2(k− 1)π + δ < uλ(t) < 2kπ− δ} for 0 < δ � 1 and k ∈ N. By
Lemma 2.3, as λ →∞,

|Jλ,k,δ| ≤
1

1− cos δ

∫
Jλ,k,δ

(1− cos uλ(t)) dt(2.7)

≤ λ−1

1− cos δ
Lλ(uλ) ≤ Cλ−m/(2(m+1)) → 0.

Lemma 2.5. Let α > 0 be fixed. Then |u′λ(T )|2/λ → 0 as λ →∞.

Proof. Integrate (2.4) over I. Then

(2.8)
1
2
‖u′λ‖22 + 2Tµ(λ)F (α) = Tu′λ(T )2 + λ

∫
I

(1− cos uλ(t)) dt.

This along with Lemmas 2.3 and 2.4 implies that for λ � 1

Tu′λ(T )2 ≤ 1
2
‖u′λ‖22 + 2Tµ(λ)F (α) = o(λ).

Thus the proof is complete. �

Lemma 2.6. Let α > 0 and 0 < ε � 1 be fixed. Then, for λ � 1,

(2.9) u′λ(T )2 ≤ Cλe−2δλ,ε

√
(1−2ε)λ.

Proof. Since uλ ∈ Mα, we see that uλ(0) = ‖uλ‖∞ ≥ α. Therefore, there
exists a unique tε,λ ∈ [0, T ] for 0 < ε � 1. Since sin θ ≥ (1− ε)θ for 0 ≤ θ ≤ ε,
by (1.1), we obtain

(2.10) u′′λ(t) + µ(λ)f(uλ(t)) = λ sinuλ(t) ≥ (1− ε)λuλ(t) for t ∈ [tε,λ, T ].
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Since u′λ(t) ≤ 0 in [0, T ] by (2.2), it follows from (2.10) that

{u′′λ(t) + µ(λ)f(uλ(t))− (1− ε)λuλ(t)}u′λ(t) ≤ 0 for t ∈ [tε,λ, T ].

That is,

(2.11)
dSλ,1(t)

dt
:=

d

dt

{
1
2
u′λ(t)2 + µ(λ)F (uλ(t))− (1− ε)λuλ(t)2

2

}
≤ 0

for t ∈ [tε,λ, T ].

This implies that Sλ,1(t) is non-increasing on [tε,λ, T ]. Hence,

(2.12)
1
2
u′λ(t)2 + µ(λ)F (uλ(t))− (1− ε)λuλ(t)2

2
≥ 1

2
u′λ(T )2 for t ∈ [tε,λ, T ].

By (A.3) and Lemma 2.4, we have

(2.13) ελuλ(t)2 ≥ 2µ(λ)F (uλ(t))

for t ∈ [tε,λ, T ] and λ � 1. Then, by (2.12) and (2.13), we obtain

(2.14) −u′λ(t) ≥
√

u′λ(T )2 + (1− 2ε)λuλ(t)2 for t ∈ [tε,λ, T ].

Therefore, by (2.14),

δλ,ε = T − tε,λ =
∫ T

tε,λ

1 dt(2.15)

≤
∫ T

tε,λ

−u′λ(t)√
u′λ(T )2 + (1− 2ε)λuλ(t)2

dt

=
∫ ε

0

ds√
u′λ(T )2 + (1− 2ε)λs2

=
1√

(1− 2ε)λ
log

( |ε +
√

ε2 + X2
λ,1|

Xλ,1

)
,

where Xλ,1 := |u′λ(T )|/
√

(1− 2ε)λ. Since Xλ,1 → 0 as λ → ∞ by Lemma 2.5,

(2.15) implies that Xλ,1e
δλ,ε

√
(1−2ε)λ ≤ 3ε for λ � 1. By this, we obtain (2.9).�

Lemma 2.7. Let α > 0 and 0 < ε � 1 be fixed. Assume that there exists
a subsequence {λj} of {λ} (λj →∞ as j →∞) such that ‖uλj

‖∞ ≥ 2π. Then

(2.16) mλj ,ε = t2π−ε,λj
− t2π,λj

≥
√

1− 2εδλj ,ε − o(1) for λj � 1.

Proof. Since ‖uλj
‖∞ ≥ 2π, we see that t2π,λj

∈ [0, T ] exists. Let Jj,ε :=
[t2π,λj

, t2π−ε,λj
]. Since 1 − cos θ ≤ θ2/2 for θ ≥ 0 and cos(2π − uλj

(t)) =
cos uλj (t), we obtain by (2.4) that for t ∈ Jj,ε,

1
2
u′λj

(t)2 =
1
2
u′λj

(T )2 + λj(1− cos uλj (t))− µ(λj)F (uλj (t))

≤ 1
2
u′λj

(T )2 +
1
2
λj(2π − uλj

(t))2.
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This implies

−u′λj
(t) ≤

√
u′λj

(T )2 + λj(2π − uλj (t))2

for t ∈ Jj,ε. By this and (2.9), we obtain

(2.17) mλj ,ε = t2π−ε,λj − t2π,λj

≥
∫

Jj,ε

−u′λj
(t)√

u′λj
(T )2 + λj(2π − uλj

(t))2
dt

=
∫ ε

0

1√
u′λj

(T )2 + λjs2
ds =

1√
λj

log
(ε +

√
u′λj

(T )2/λj + ε2

|u′λj
(T )|/

√
λj

)

≥ 1√
λj

log
(

2ε

|u′λj
(T )|/

√
λj

)
≥

√
(1− 2ε)δλj ,ε − o(1).

Thus the proof is complete. �

3. Proof of Theorem 2

The first aim of this section is to prove Theorem 2(i) for n = 1 in Lemma 3.8.
To do this, we compare |t4π−ε,λ − t4π,λ| with lλ,ε, mλ,ε, δλ,ε in Lemmas 3.3, 3.5
and 3.7.

Lemma 3.1. Assume (A.1)–(A.4). Let α > 0 and 0 < ε � 1 be fixed. Then,
for λ � 1,

(3.1) u′λ(T )2 ≥ Cελe−2δλ,ε

√
λ.

Proof. By (1.1), we obtain

u′′λ(t) + µ(λ)f(uλ(t)) = λ sinuλ(t) ≤ λuλ(t) for t ∈ [tλ,ε, T ].

By this and (2.2), we obtain

{u′′λ(t) + µ(λ)f(uλ(t))− λuλ(t)}u′λ(t) ≥ 0 for t ∈ [tλ,ε, T ].

That is,

dSλ,2(t)
dt

:=
d

dt

{
1
2
u′λ(t)2 + µ(λ)F (uλ(t))− λuλ(t)2

2

}
≥ 0 for t ∈ [tλ,ε, T ].

This implies that Sλ,2(t) is increasing on [tλ,ε, T ]. Hence,

1
2
u′λ(t)2 + µ(λ)F (uλ(t))− λuλ(t)2

2
≤ 1

2
u′λ(T )2 for t ∈ [tλ,ε, T ].

Then, for t ∈ [tλ,ε, T ],

(3.2) −u′λ(t) ≤
√

u′λ(T )2 + λuλ(t)2 − 2µ(λ)F (uλ(t)) ≤
√

u′λ(T )2 + λuλ(t)2.
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Therefore, by (3.2),

δλ,ε = T − tε,λ =
∫ T

tε,λ

1 dt ≥
∫ T

tε,λ

−u′λ(t)√
u′λ(T )2 + λuλ(t)2

dt

=
∫ ε

0

ds√
u′λ(T )2 + λs2

=
1√
λ

log
( |ε +

√
ε2 + X2

λ,2|

Xλ,2

)
≥ 1√

λ
log

(
2ε

Xλ,2

)
,

where Xλ,2 := |u′λ(T )|/
√

λ. This implies (3.1). �

Lemma 3.2. Assume (A.1)–(A.4). Let α > 0 and 0 < ε � 1 be fixed.
Suppose that there exists a subsequence {λj}∞j=1 such that λj → ∞ as j → ∞
and ‖uλj

‖∞ ≥ 4π. Then

(3.3) u′λj
(t2π,λj

)2 ≤ Cλje
−2lλj,ε

√
(1−ε)λj .

Proof. For convenience, we write λ = λj . Put t = T, t2π,λ, t4π,λ in (2.4).
Then we obtain

(3.4)
1
2
u′λ(t)2 + µ(λ)F (uλ(t)) + λ cos uλ(t) =

1
2
u′λ(t4π,λ)2 + µ(λ)F (4π) + λ

=
1
2
u′λ(t2π,λ)2 + µ(λ)F (2π) + λ =

1
2
u′λ(T )2 + λ.

This implies

(3.5) µ(λ)(F (4π)− F (2π)) ≤ 1
2
u′λ(t2π,λ)2.

In particular, by this and Lemma 2.4, for λ � 1, we obtain

(3.6)
µ(λ)2

λ
= o(1)µ(λ) � u′λ(t2π,λ)2.

For t ∈ [t2π+ε,λ, t2π,λ], we have, by (1.1),

u′′λ(t) + µ(λ)f(uλ(t)) = λ sinuλ(t) = λ sin(uλ(t)− 2π) ≥ λ(1− ε)(uλ(t)− 2π).

Therefore, by (2.2), for t ∈ [t2π+ε,λ, t2π,λ], we have

{u′′λ(t) + µ(λ)f(uλ(t))− λ(1− ε)(uλ(t)− 2π)}u′λ(t) ≤ 0.

That is,

dSλ,3(t)
dt

:=
d

dt

{
1
2
u′λ(t)2 + µ(λ)F (uλ(t))− 1− ε

2
λ(uλ − 2π)2

}
≤ 0.

Hence, Sλ,3(t) is decreasing in [t2π+ε,λ, t2π,λ]. Then we obtain

1
2
u′λ(t)2 + µ(λ)F (uλ(t))− 1− ε

2
λ(uλ − 2π)2 ≥ 1

2
u′λ(t2π,λ)2 + µ(λ)F (2π)

for [t2π+ε,λ, t2π,λ]. Then by this, (3.6) and the inequality

(3.7) F (u)− F (2π) ≤ C(1− ε)(u− 2π) for 2π ≤ u ≤ 2π + ε,
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for [t2π+ε,λ, t2π,λ], we obtain

1
2
u′λ(t)2 ≥ 1

2
u′λ(t2π,λ)2 +

1− ε

2
λ(uλ(t)− 2π)2 − µ(λ)(F (uλ(t))− F (2π))

≥ 1
2
u′λ(t2π,λ)2 +

1− ε

2
λ

{
(uλ(t)− 2π)2 − 2C

µ(λ)
λ

(uλ(t)− 2π)
}

=
1
2
u′λ(t2π,λ)2 +

1− ε

2
λ

{
(uλ(t)− 2π)− Cµ(λ)

λ

}2

− 1− ε

2
C2 µ(λ)2

λ

≥ Cu′λ(t2π,λ)2 +
1− ε

2
λ

{
(uλ(t)− 2π)− Cµ(λ)

λ

}2

.

This implies

(3.8) lλ,ε =
∫ t2π,λ

t2π+ε,λ

1 dt

≤
∫ t2π,λ

t2π+ε,λ

−u′λ(t)√
2Cu′λ(t2π,λ)2 + (1− ε)λ{(uλ(t)− 2π)− Cµ(λ)/λ}2

dt

=
∫ ε−Cµ(λ)/λ

−Cµ(λ)/λ

1√
2Cu′λ(t2π,λ)2 + (1− ε)λs2

ds

= Kλ :=
1√

(1− ε)λ

∫ ε−Cµ(λ)/λ

−Cµ(λ)/λ

1√
s2 + X2

λ,3

ds,

where Xλ,3 =
√

2C|u′λ(t2π,λ)|/
√

(1− ε)λ. By (3.4), we have

(3.9)
1
2
u′λ(t2π,λ)2 ≤ 1

2
u′λ(t2π,λ)2 + µ(λ)F (2π) =

1
2
u′λ(T )2.

By this and Lemma 2.5, we see that X2
λ,3 → 0 as λ → ∞. By (3.6), for λ � 1,

we have

−Cµ(λ)
λ

+

√
C2µ(λ)2

λ2
+ X2

λ,3 ≥
Xλ,3

2
.

By this and (3.8), we obtain

lλ,ε ≤ Kλ =
1√

(1− ε)λ

[
log

∣∣∣∣s +
√

s2 + X2
λ,4

∣∣∣∣]ε−Cµ(λ)/λ

−Cµ(λ)/λ

(3.10)

≤ 1√
(1− ε)λ

{
log 3ε− log

∣∣∣∣− Cµ(λ)
λ

+

√
C2µ(λ)2

λ2
+ X2

λ,3

∣∣∣∣}
≤ 1√

(1− ε)λ
{log 3ε− log |Xλ,3|/2}

≤ 1√
(1− ε)λ

log

√
(1− ε)λ

|
√

C/2u′λ(t2π,λ)|
.

By this, we obtain (3.3). �
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Lemma 3.3. Assume (A.1)–(A.4). Let α > 0 and 0 < ε � 1 be fixed.
Suppose that there exists a subsequence {λj}∞j=1 such that λj → ∞ as j → ∞
and ‖uλj

‖∞ ≥ 4π. Then

(3.11) t4π−ε,λj − t4π,λj ≥
√

(1− ε)lλj ,ε − o(1).

Lemma 3.3 follows from Lemma 3.2 and the same calculation as those used
in Lemma 2.7. Hence we omit the proof.

Lemma 3.4. Assume (A.1)–(A.4). Let α > 0 and 0 < ε � 1 be fixed.
Suppose that there exists a subsequence {λj} such that λj →∞ as j →∞, and
‖uλj‖∞ ≥ 2π. Then

(3.12) u′λj
(t2π,λ)2 ≤ Cλje

−2mλj,ε

√
(1−ε)λ.

Proof. We write λ = λj , for short. For t ∈ [t2π,λ, t2π−ε,λ], by (1.1), we
have

(3.13) u′′λ(t) + µ(λ)f(uλ(t)) = λ sinuλ(t) = −λ sin(2π − uλ(t))

≤ −λ(1− ε)(2π − uλ(t)) = λ(1− ε)(uλ(t)− 2π).

Then for t ∈ [t2π,λ, t2π−ε,λ], by (2.2) and (3.13), we obtain

{u′′λ(t) + µ(λ)f(uλ(t))− λ(1− ε)(uλ(t)− 2π)}u′λ(t) ≥ 0.

This implies that for t ∈ [t2π,λ, t2π−ε,λ],

dSλ,4(t)
dt

:=
d

dt

{
1
2
u′λ(t) + µ(λ)F (uλ(t))− 1− ε

2
(uλ(t)− 2π)2

}
≥ 0.

So Sλ,4(t) is non-decreasing in [t2π,λ, t2π−ε,λ]. Therefore, for t ∈ [t2π,λ, t2π−ε,λ],
we obtain

1
2
u′λ(t)2 + µ(λ)F (uλ(t))− 1− ε

2
(uλ(t)− 2π)2 ≥ 1

2
u′λ(t2π,λ)2 + µ(λ)F (2π).

This implies

(3.14)
1
2
u′λ(t)2 ≥ 1

2
uλ(t2π,λ)2 +

1− ε

2
(uλ(t)− 2π)2.

By (3.14) and the same calculation as those used in the proof of Lemma 2.6, we
obtain our conclusion. �

Lemma 3.5. Assume (A.1)–(A.4). Let α > 0 and 0 < ε � 1 be fixed.
Suppose that there exists a subsequence {λj} such that λj →∞ as j →∞, and
‖uλj‖∞ ≥ 4π. Then

(3.15) t4π−ε,λj − t4π,λj ≥
√

1− εmλj ,ε − o(1) for λj � 1.

Lemma 3.5 can be proved by using Lemma 3.4 and the same arguments as
those in the proof of Lemma 2.7. Therefore, we omit the proof.
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Lemma 3.6. Assume (A.1)–(A.4). Let α > 0 and 0 < ε � 1 be fixed.
Assume that there exists a subsequence {λj} such that λj → ∞ as j → ∞, and
‖uλj

‖∞ ≥ 2π + ε. Then

(3.16) lλj ,ε = t2π,λj − t2π+ε,λj ≥
√

1− 2εδλj ,ε − o(1) for λj � 1.

Proof. We abreviate λj as λ. For t ∈ [t2π+ε,λ, t2π,λ], by (2.4), we obtain

1
2
u′λ(t)2 ≤ 1

2
u′λ(T )2 + λ(1− cos uλ(t)) =

1
2
u′λ(T )2 + λ(1− cos(uλ(t)− 2π))

≤ 1
2
u′λ(T )2 +

1
2
λ(uλ(t)− 2π)2.

This implies

−u′λ(t) ≤
√

λ(uλ(t)− 2π)2 + u′λ(T )2

for t ∈ [t2π+ε,λ, t2π,λ]. This yields

lλ,ε = t2π,λ − t2π+ε,λ

≥
∫ t2π,λ

t2π+ε,λ

−u′λ(t)√
λ(uλ(t)− 2π)2 + u′λ(T )2

dt =
∫ ε

0

1√
λs2 + u′λ(T )2

dt.

By using this and the same calculation as that in the proof of Lemma 2.7, we
obtain (3.16). �

Lemma 3.7. Assume (A.1)–(A.4). Let α > 0 and 0 < ε � 1 be fixed.
Assume that there exists a subsequence {λj} such that λj → ∞ as j → ∞, and
‖uλj

‖∞ ≥ 4π. Then

(3.17) t4π−ε,λj − t4π,λj ≥
√

1− 2εδλj ,ε − o(1) for λj � 1.

Lemma 3.7 can be proved by exactly the same arguments as those used in
the proof of Lemma 2.7. Hence we omit the proof.

Now we prove Theorem 2(i) for n = 1 in the following Lemma 3.8.

Lemma 3.8. Assume (A.1)–(A.4) and (A.5.1). Let 2π < α < 4π which
satisfies (1.5) for n = 1 be fixed. Then ‖uλ‖∞ < 4π for λ � 1.

Proof. We assume that there exists a subsequence of {λ}, denoted by {λ}
again, such that λ → ∞ and ‖uλ‖∞ ≥ 4π, and derive a contradiction. Let
0 < ε � 1 be fixed. By (2.7), we see that as λ →∞

(3.18) |tε,λ − t2π−ε,λ|, |t2π+ε,λ − t4π−ε,λ| → 0.
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Then by (3.18), we obtain

T =T − tε,λ + (tε,λ − t2π−ε,λ) + (t2π−ε,λ − t2π,λ)(3.19)

+ (t2π,λ − t2π+ε,λ) + (t2π+ε,λ − t4π−ε,λ) + t4π−ε,λ

= δλ,ε + lλ,ε + mλ,ε + t4π−ε,λ + (tε,λ − t2π−ε,λ)

+ (t2π+ε,λ − t4π−ε,λ)

= δλ,ε + lλ,ε + mλ,ε + t4π−ε,λ + o(1).

Therefore, by (3.19), Lemmas 3.3, 3.5 and 3.7, we have

T ≤ 3(t4π−ε,λ − t4π,λ) + t4π−ε,λ + O(ε) + o(1) ≤ 4t4π−ε,λ + O(ε) + o(1).

This implies that for λ � 1

(3.20) T/4 ≤ t4π−ε,λ + O(ε) + o(1).

On the other hand, by Lemmas 2.7, 3.6, (3.19) and (3.20), we have

3δλ,ε ≤ δλ,ε + mλ,ε + lλ,ε + O(ε) + o(1)

= T − t4π−ε,λ + O(ε) + o(1) ≤ 3T/4 + O(ε) + o(1).

This implies that for λ � 1

(3.21) δλ,ε ≤ T/4 + O(ε) + o(1).

We know

(3.22) TF (α) =
4∑

k=1

Bk,λ,ε :=
∫ T/4−Cε

0

F (uλ(t)) dt +
∫ t2π−ε,λ

T/4−Cε

F (uλ(t)) dt

+
∫ tε,λ

t2π−ε,λ

F (uλ(t)) dt +
∫ T

tε,λ

F (uλ(t)) dt.

By (3.18), we obtain that B3,λ,ε → 0 as λ → ∞. It is clear that B4,λ,ε ≤ Cε.
By (3.20), we see that T/4− Cε ≤ t4π−ε,λ for λ � 1. Then by this, we obtain

B1,λ,ε ≥ F (4π − ε)
(

T

4
− Cε

)
≥ TF (4π)

4
− Cε.

By (3.18) and (3.21), we obtain

B2,λ,ε ≥ F (2π − ε)(t2π−ε,λ − T/4 + Cε)

= F (2π − ε)((t2π−ε,λ − tε,λ) + T − δλ,ε − T/4 + Cε)

≥ TF (2π)
2

− Cε− o(1).

By these inequalities and (3.22), we obtain

(3.23) F (α) ≥ F (4π)
4

+
F (2π)

2
− Cε− o(1).
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Choose ε sufficiently small. Then this contradicts (1.5) for n = 1. Thus the
proof is complete. �

In the following Lemmas 3.9–3.10, we estimate lλ,ε and mλ,ε by δλ,ε from
above. To do this, the following inequality (3.24) plays an important role:

(3.24) Cµ(λ) ≤ u′λ(t2π,λ)2.

Lemma 3.9. Assume (A.1)–(A.4). Let 2π < α < 4π and 0 < ε � 1 be
fixed. Assume that 2π < ‖uλ‖∞ < 4π for λ � 1. Suppose that there exists
a subsequence {λj}∞j=1 such that λj → ∞ as j → ∞ and satisfies (3.24). Then
for j � 1

(3.25) mλj ,ε = t2π−ε,λj − t2π,λj ≤ δλj ,ε + O(ε) + o(1).

Proof. We write λ = λj for short. By (2.4), for t ∈ [t2π,λ, t2π−ε,λ], we have

(3.26)
1
2
u′λ(t)2 =

1
2
u′λ(t2π)2 + λ(1− cos uλ(t)) + µ(λ)(F (2π)− F (uλ))

≥ 1
2
u′λ(t2π)2 +

(1− Cε)
2

λ(2π − uλ(t))2.

This implies

(3.27) mλ,ε =
∫ t2π−ε,λ

t2π,λ

1 dt

≤
∫ t2π−ε,λ

t2π,λ

−u′λ(t)√
u′λ(t2π,λ)2 + λ(1− Cε)(2π − uλ(t))2

dt

=
∫ ε

0

1√
λ(1− Cε)s2 + u′λ(t2π,ε)2

ds

= Kλ :=
1√

(1− Cε)λ

∫ ε

0

1√
s2 + X2

λ,4

ds,

where Xλ,4 := |u′λ(t2π,λ)|/
√

(1− Cε)λ. Then by Lemma 2.5 and (3.9), we see
that X2

λ,4 → 0 as λ →∞. Then by direct calculation, we have

Kλ =
1√

(1− Cε)λ
log

∣∣∣∣ε +
√

ε2 + X2
λ,4

Xλ,4

∣∣∣∣(3.28)

≤ 1√
(1− Cε)λ

(C − log |u′λ(t2π,λ)|+ log
√

λ).



Multiple Interior Layers 343

By (2.4), (3.24), Lemma 3.1 and Lemma 3.8, we obtain

Cu′λ(t2π,λ)2 ≥ µ(λ)F (4π) ≥ µ(λ)F (‖uλ‖∞)(3.29)

=
1
2
u′λ(T )2 + λ(1− cos ‖uλ‖∞)

≥ 1
2
u′λ(T )2 ≥ Cελe−2δλ,ε

√
λ.

Consequently, by (3.27)–(3.29), we obtain (3.25). Thus the proof is complete.�

Lemma 3.10. Assume (A.1)–(A.4). Let 2π < α < 4π and 0 < ε � 1 be
fixed. Assume that 2π + ε ≤ ‖uλ‖∞ < 4π for λ � 1. Suppose that there exists
a subsequence of {λj}∞j=1 such that λj → ∞ as j → ∞ and satisfies (3.24) for
j ∈ N. Then for j � 1

(3.30) lλj ,ε = t2π,λj
− t2π+ε,λj

≤ δλj ,ε + O(ε) + o(1).

Proof. Since (3.24) is assumed, we have (3.10) and (3.29). By (3.10)
and (3.29), we obtain (3.30). �

Next, we estimate t4π−ε,λ by δλ,ε from below in Lemma 3.12. To do this, we
use the following Lemma 3.11.

Lemma 3.11. Assume (A.1)–(A.4). Let α > 0 be fixed. Suppose that σλ :=
4π − ‖uλ‖∞ → 0 as λ →∞. Then

(3.31) σ2
λ ≤ C

µ(λ)
λ

for λ � 1.

In particular, for 2π < α < 4π, if (A.1)–(A.4), (A.5.1) and (1.5) for n = 1
are assumed, then ‖uλ‖∞ → 4π as λ → ∞, namely, σλ → 0 as λ → ∞.
Furthermore, (3.31) holds.

Proof. Since σλ → 0 as λ → ∞, we see that ‖uλ‖∞ ≤ C. Then by (2.4),
for λ � 1, we obtain

(3.32) µ(λ)F (C) ≥ µF (‖uλ‖∞) =
1
2
u′λ(T )2 + λ(1− cos σλ) ≥ λσ2

λ

4
.

This implies (3.31). If we assume (A.1)–(A.4), (A.5.1) and (1.5) for n = 1, then
by Lemma 3.8, we have σλ > 0 for λ � 1. Further, σλ → 0 as λ →∞. Indeed,
if there exists a subsequence of {λ}, denoted by {λ} again, such that σλ ≥ C,
then by (2.7), we see that uλ → 2π or uλ → 0 a.e. in I as λ →∞. Then

(3.33) 2TF (α) =
∫

I

F (uλ(t)) dt ≤ 2TF (2π) + o(1) for λ � 1.

This contradicts α > 2π. Hence, we also obtain (3.31) in this case. �
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Lemma 3.12. Assume (A.1)–(A.4). Let α > 0 and 0 < ε � 1 be fixed.
Assume that ‖u‖∞ < 4π and ‖u‖∞ → 4π as λ →∞. Then for λ � 1

(3.34) t4π−ε,λ ≥
√

1− 2εδλ,ε − o(1).

Proof. Since ‖uλ‖∞ → 4π, we see that t4π−ε,λ exists for λ � 1. By (2.4),
for t ∈ [0, t4π−ε,λ],

1
2
u′λ(t)2 =

1
2
u′λ(T )2 + λ(1− cos uλ(t))− µ(λ)F (uλ(t))

≤ 1
2
u′λ(T )2 + λ(1− cos(4π − uλ(t)))

≤ 1
2
u′λ(T )2 +

1
2
(4π − uλ(t))2.

By this, we obtain

(3.35) t4π−ε,λ =
∫ t4π−ε,λ

0

1 dt ≥
∫ t4π−ε,λ

0

−u′λ(t)√
u′λ(T )2 + λ(4π − uλ(t))2

dt

=
∫ ε

σλ

1√
u′λ(T )2 + λs2

ds

=
1√
λ

[
log

(
ε +

√
ε2 + u′λ(T )2/λ

)
− log

(
σλ +

√
σ2

λ + u′λ(T )2/λ

)]
.

By (2.4), we have

(3.36)
u′λ(T )2

λ
≤ u′λ(T )2

λ
+2(1−cos ‖uλ‖∞) =

2F (‖uλ‖∞)µ(λ)
λ

≤ 2F (4π)µ(λ)
λ

.

By this, Lemma 3.11 and (3.35), we have

(3.37) t4π−ε,λ ≥
1√
λ

(
log 2ε + log

(
λ

µ(λ)

)1/2

− log C

)
.

Since µ(λ)F (2π) ≤ u′λ(T )2/2 by (3.4), by this and Lemma 2.6, we obtain

(3.38) Ce2δλ,ε

√
(1−2ε)λ ≤ λ

µ(λ)
.

By this and (3.37), we obtain (3.34). �

Now we estimate t4π−ε,λ by δλ,ε from above. To do this, we define Qλ by

(3.39) Qλ :=
1
2
‖u′λ‖22 − λ

∫
I

(1− cos uλ(t)) dt.
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Lemma 3.13. Assume (A.1)–(A.4), (A.5.1). Let 2π < α < 4π satisfy (1.5)
for n = 1. Then Qλ ≤ 0 for λ � 1.

Proof. Assume that there exists a subsequence of {λ}, which is denoted
by {λ} again, such that λ →∞ and Qλ > 0. Integrate (3.4) over I to obtain

(3.40) Qλ = Tu′λ(t2π,λ)2 − 2Tµ(λ)(F (α)− F (2π)) = Tu′λ(T )2 − 2Tµ(λ)F (α).

Since we assume Qλ > 0 for λ � 1, we see from this that for λ � 1

(3.41) Tu′λ(t2π,λ)2 > 2Tµ(λ)(F (α)− F (2π)).

This implies (3.24). Then by Lemmas 2.7, 3.6, 3.9 and 3.10, for λ � 1, we have

(3.42) mλ,ε = δλ,ε + O(ε) + o(1), lλ,ε = δλ,ε + O(ε) + o(1).

This along with (3.19) and Lemma 3.12 implies that

T = t4π−ε,λ + 3δλ,ε + O(ε) + o(1) ≥ 4δλ,ε − Cε− o(1).

Then by this, (3.42) and Lemma 3.12, for λ � 1, we obtain

TF (α) = F (4π)t4π−ε,λ + 2F (2π)δλ,ε + O(ε) + o(1)

≥ F (4π)(T − 3δλ,ε) + 2F (2π)δλ,ε − Cε− o(1)

= TF (4π) + (2F (2π)− 3F (4π))δλ,ε − Cε− o(1)

≥ TF (4π) + (2F (2π)− 3F (4π))T/4− Cε− o(1)

=
T

4
F (4π) +

T

2
F (2π)− Cε− o(1).

This contradicts (1.5) for n = 1. Thus the proof is complete. �

Lemma 3.14. Assume (A.1)–(A.4). Let 2π < α < 4π be fixed. If ‖uλ‖∞ →
4π as λ → ∞ and Qλ ≤ 0 for λ � 1, then there exists a constant C > 0 such
that for λ � 1

(3.43)
µ(λ)

λ
≤ Cσ2

λ.

In particular, if (A.1)–(A.4) and (A.5.1) are fulfilled and 2π < α < 4π satis-
fies (1.5) for n = 1, then (3.43) holds.

Proof. Since Qλ ≤ 0, by (3.40), we have

(3.44)
1
2
u′λ(T )2 ≤ µ(λ)F (α).

Then by this and (2.4), we obtain

1
2
λσ2

λ ≥ λ(1− cos ‖uλ‖∞) = µ(λ)F (‖uλ‖∞)− 1
2
u′λ(T )2(3.45)

≥ µ(λ)(F (‖uλ‖∞)− F (α)).
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This implies (3.43). If 2π < α < 4π satisfies (1.5) for n = 1, then by Lem-
mas 3.8, 3.11 and 3.13, the assumptions in this lemma are satisfied. Hence we
obtain (3.43). �

Lemma 3.15. Assume (A.1)–(A.4). Let 2π < α < 4π and 0 < ε � 1
be fixed. If ‖uλ‖∞ < 4π, ‖uλ‖∞ → 4π as λ → ∞ and Qλ ≤ 0 for λ � 1, then
for λ � 1

(3.46) t4π−ε,λ ≤ δλ,ε + O(ε) + o(1).

In particular, if (A.1)–(A.4) and (A.5.1) are fulfilled and 2π < α < 4π satis-
fies (1.5) for n = 1, then (3.46) holds.

Proof. We see that for 4π − ε ≤ u ≤ 4π − σλ

(3.47) (‖uλ‖∞ − u) sinσλ +
1− Cε

2
(u− ‖uλ‖∞)2 ≤ cos ‖uλ‖∞ − cos u.

Indeed, (3.47) is equvalent to

g(θ) = cos σλ − cos(θ + σλ)− θ sinσλ − (1− Cε)θ2/2 ≥ 0

for 0 ≤ θ ≤ ε − σλ. Then it is easy to see that g(0) = g′(0) = 0 and g′′(θ) > 0
for 0 ≤ θ ≤ ε − σλ. Hence g(θ) ≥ 0 for 0 ≤ θ ≤ ε − σλ, and we obtain (3.47).
Then by (2.4) and the inequality sinσλ ≥ (1− Cε)σλ/2, for t ∈ [0, t4π−ε,λ] and
λ � 1, we obtain

1
2
u′λ(t)2 = λ(cos ‖uλ‖∞ − cos uλ(t)) + µ(λ)(F (‖uλ‖∞)− F (uλ(t))

≥ λ sinσλ(‖uλ‖∞ − uλ(t)) +
1− Cε

2
λ(‖uλ‖∞ − uλ(t))2

≥ (1− Cε)
2

λσλ(‖uλ‖∞ − uλ(t)) +
1− Cε

2
λ(‖uλ‖∞ − uλ(t))2.

This implies

(3.48) t4π−ε,λ ≤
∫ t4π−ε,λ

0

1 dt =
1√

(1− Cε)λ

·
∫ t4π−ε,λ

0

−u′λ(t)√
(‖uλ‖∞ − uλ(t))2 + σλ(‖uλ‖∞ − uλ(t))

dt

=
1√

(1− Cε)λ

∫ ε−σλ

0

1√
s2 + σλs

ds

<
1√

(1− Cε)λ
lim
ζ→0

∫ ε

ζ

1√
s2 + σλs

ds
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= lim
ζ→0

1√
(1− Cε)λ

[
log

∣∣∣∣ t + 1
t− 1

∣∣∣∣]
√

(ε+σλ)/ε

√
(ζ+σλ)/ζ

=
1√

(1− Cε)λ
log

∣∣∣∣
√

(ε + σλ)/ε + 1√
(ε + σλ)/ε− 1

∣∣∣∣.
We easily see that

√
(ε + σλ)/ε ≥ 1 + Cεσλ for some constant Cε > 0. Conse-

quently, by (3.48) and Lemma 3.14, we have

t4π−ε,λ ≤ 1√
(1− Cε)λ

(log σ−1
λ + C)(3.49)

≤ 1√
(1− Cε)λ

{
log

(
λ

µ(λ)

)1/2

+ C

}
.

By Lemma 3.1 and (3.44), we have λ/µ(λ) ≤ Ce2δλ,ε

√
λ. By this and (3.49),

we obtain (3.46). Finally, if 2π < α < 4π satisfies (1.5) for n = 1, then by
Lemmas 3.8, 3.11 and 3.13, we see that the assumptions in this lemma are
satisfied. Therefore, we obtain (3.46). Thus the proof is complete. �

Proof of Theorem 2(ii)–(vi) for n = 1. Let an arbitrary 0 < ε � 1 be
fixed. Then by Lemmas 3.12 and 3.15, we see that for λ � 1

(3.50) t4π−ε,λ = δλ,ε + O(ε) + o(1).

By (3.19) and (3.50), for λ � 1, we obtain

TF (α) = F (4π)t4π−ε,λ + (T − t4π−ε,λ − δλ,ε)F (2π) + O(ε) + o(1)

= TF (2π) + δλ,ε(F (4π)− 2F (2π)) + O(ε) + o(1).

This implies that for λ � 1,

(3.51) δλ,ε =
F (α)− F (2π)

F (4π)− 2F (2π)
T + O(ε) + o(1) = Tα,1 + O(ε) + o(1).

Now Theorem 2(ii)–(v) for n = 1 are direct consequence of (3.50) and (3.51).
Finally, (1.6) follows from (3.38) and (3.51). �

Proof of Theorem 2 for n ≥ 2. For n ≥ 2, we can prove Theorem 2 as
follows. Since 2nπ < α < 2(n + 1)π, we have ‖uλ‖∞ > 2nπ. By using (A.5.n)
and the same argument as that in Lemma 3.8, we first obtain ‖uλ‖∞ < 2(n+1)π.
Secondly, let an arbitrary 0 < ε � 1 be fixed. For 1 ≤ k ≤ n, we put

(3.52) lλ,ε,k := t2kπ,λ − t2kπ+ε,λ, mλ,ε,k := t2kπ−ε,λ − t2kπ,λ.

Then by replacing 2π with 2kπ, we repeat the same calculation as those of
Lemmas 2.7 and 3.6. Then for 1 ≤ k ≤ n− 1 and λ � 1, we obtain

(3.53) lλ,ε,k, mλ,ε,k ≥ δλ,ε − Cε− o(1).
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Since ‖uλ‖∞ > 2nπ, there exists t2kπ,λ for 1 ≤ k ≤ n. Then by putting t = 2kπ

in (2.4), we obtain that for 1 ≤ k ≤ n− 1

1
2
u′λ(t2nπ,λ)2+µ(λ)F (2nπ)+λ =

1
2
u′λ(t2kπ,λ)2+µ(λ)F (2kπ)+λ =

1
2
u′λ(T )2+λ.

This implies that for 1 ≤ k ≤ n− 1

(3.54)
1
2
u′λ(T )2 ≥ 1

2
u′λ(t2kπ,λ)2 ≥ µ(λ)(F (2nπ)− F (2kπ)).

(3.54) corresponds with (3.24) for 1 ≤ k ≤ n − 1. Then by repeating the same
arguments as those of Lemmas 3.9 and 3.10, for 1 ≤ k ≤ n − 1 and λ � 1,
we obtain

lλ,ε,k, mλ,ε,k ≤ δλ,ε + O(ε) + o(1).

This along with (3.53) implies that for 1 ≤ k ≤ n− 1 and λ � 1

(3.55) lλ,ε,k, mλ,ε,k = δλ,ε + O(ε) + o(1).

Now by using the same arguments as those in Lemmas 3.11–3.15, for λ � 1,
we obtain

(3.56) t2(n+1)π−ε,λ = δλ,ε + O(ε) + o(1).

By (2.7), we have

(3.57) T = t2(n+1)π−ε,λ +
n∑

k=2

(lλ,ε,k + mλ,ε,k) + (lλ,ε + mλ,ε) + δλ,ε + o(1).

Then by (3.55)–(3.57), we obtain

TF (α) = t2(n+1)π−ε,λF (2(n + 1)π) + (T − t2(n+1)π−ε,λ − (2n− 1)δλ,ε)F (2nπ)

+
n−1∑
k=0

2F (2kπ)δλ,ε + O(ε) + o(1)

=TF (2nπ) +
{

F (2(n + 1)π)− 2nF (2nπ) + 2
n−1∑
k=0

F (2kπ)
}

δλ,ε

+ O(ε) + o(1)

=TF (2nπ) + H(n)δλ,ε + O(ε) + o(1).

This implies that for λ � 1

(3.58) δλ,ε = Tα,n + O(ε) + o(1).

Now Theorem 2(ii)–(v) are direct consequence of (3.55), (3.56) and (3.58). Fi-
nally, (1.6) follows from (3.54), (3.58) and Lemma 2.6. Thus the proof is
complete. �
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4. Proof of Theorem 1

Proof of Theorem 1 is a variant of the proof of Theorem 2.

Lemma 4.1. Assume (A.1)–(A.4) and (A.5.1). Assume that 0 < α < 2π

satisfies 2F (α) ≥ F (2π). Then ‖uλ‖∞ < 4π for λ � 1.

Proof. Assume that there exists a subsequence of {λ}, which is denoted
by {λ} again, such that λ →∞ and ‖uλ‖∞ ≥ 4π. Then by the same arguments
as those in Lemmas 3.2–3.8, we obtain (3.23) for 0 < ε � 1. This implies

F (2π) > F (α) ≥ 1
4
F (4π) +

1
2
F (2π)− Cε− o(1).

Since 0 < ε � 1 is arbitrary, this implies that 2F (2π) ≥ F (4π). This contra-
dicts (A.5.1). �

By (2.4) and Lemma 4.1, we have

λ(1− cos ‖uλ‖∞) ≤ λ(1− cos ‖uλ‖∞) +
1
2
u′λ(T )2(4.1)

= µ(λ)F (‖uλ‖∞) < µ(λ)F (4π).

By (4.1) and Lemmas 2.4 and 4.1, we have two possibilities: ‖uλ‖∞ → 4π or
‖uλ‖∞ → 2π as λ →∞.

Lemma 4.2. Assume (A.1)–(A.4) and (A.5.1). Assume that 0 < α < 2π

satisfies 2F (α) ≥ F (2π). Then ‖uλ‖∞ → 2π as λ →∞.

Proof. Assume that there exists a subsequence of {λ}, which is denoted
by {λ} again, such that ‖uλ‖∞ → 4π as λ → ∞. Let 0 < ε � 1 be fixed. By
Lemma 3.12 and (3.19), we see that for λ � 1

TF (α) ≥ t4π−ε,λF (4π − ε) + (T − t4π−ε,λ − δλ,ε − o(1))F (2π − ε)

≥ TF (2π) + t4π−ε,λ(F (4π)− 2F (2π))− Cε− o(1).

This together with (A.5.1) contradicts the assumption α < 2π. Thus the proof
is complete. �

By Lemma 4.2, we obtain

TF (α) = F (2π)t2π−ε,λ + O(ε) + o(1)

for λ � 1 and 0 < ε � 1. This implies t2π−ε,λ = Tα,0 + O(ε) + o(1). This
implies the assertion (i) and (ii). The assertion (iii) is exactly the same as
that of Theorem 0(iii). However, for completeness, the proof will be given in
appendix. Thus the proof is complete. �
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5. Proof of Theorem 3

We begin with the proof of Theorem 3(i) for n = 1.

Proof of Theorem 3(i) for n = 1. We assume that there exists a sub-
sequence of {λ}, denoted by {λ} again, such that λ → ∞ and ‖uλ‖∞ ≥ 6π

and derive a contradiction. We have the inequality (3.5), namely, (3.24) in this
case. Therefore, for a fixed 0 < ε � 1, Lemma 3.9 and Lemma 3.10 are valid
in this case. So these lemmas together with Lemmas 2.7 and 3.6 imply (3.42).
Furthermore, by the same argument as that used in Lemma 2.7, we obtain that
for λ � 1,

(5.1) t6π−ε,λ ≥ t6π−ε,λ − t6π,λ ≥
√

(1− 2ε)δλ,ε − o(1).

Then by (A.5.2), (3.42) and (5.1),

(5.2) TF (α) ≥ t6π−ε,λF (6π − ε) + (T − t6π−ε,λ −mλ,ε − lλ,ε − δλ,ε)F (4π − ε)

+ (mλ,ε + lλ,ε)F (2π − ε)− o(1)

≥TF (4π) + t6π−ε,λ(F (6π)− F (4π))− 3δλ,εF (4π)

+ 2δλ,εF (2π)− Cε− o(1)

≥TF (4π) + δλ,ε(F (6π)− 4F (4π) + 2F (2π))− Cε− o(1)

>TF (4π)− Cε− o(1).

Since 0 < ε � 1 is arbitrary, this contradicts the assumption α < 4π. Thus we
obtain ‖uλ‖∞ < 6π. If there exists a subsequence of {λ}, denoted by {λ} again,
such that ‖uλ‖∞ → 6π, then by the same calculation as that of Lemma 3.12, for
λ � 1, we obtain t6π−ε,λ ≥

√
(1− 2ε)δλ,ε − o(1). By using this and the same

argument as that of (5.2), we can also derive a contradiction in this case. Thus
we obtain that ‖uλ‖∞ → 4π as λ →∞. �

Now we are ready to prove Theorem 3(ii)–(v) for n = 1.

Proof of Theorem 3(ii)–(v) for n = 1. We first consider the case where
F (α) > F (4π)/4 + F (2π)/2. Then there are two cases to consider.

Case 1. Assume that there exists a subsequence of {λ}, denoted by {λ}
again, such that λ → ∞ and ‖uλ‖∞ < 4π. We first prove that Qλ > 0 for
λ � 1, where Qλ is defined in (3.39). Assume, on the contrary, that there exists
a subsequence of {λ} such that λ → ∞ and Qλ ≤ 0. Let 0 < ε � 1 be fixed.
Then by Lemmas 3.12 and 3.15, for λ � 1, we obtain (3.50). Then by (3.19),
(3.50), Lemmas 2.7 and 3.6, for λ � 1, we obtain

(5.3) T = t4π−ε,λ + mλ,ε + lλ,ε + δλ,ε + o(1) ≥ 4δλ,ε − Cε− o(1).
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Then by (3.50) and (5.3)

(5.4) TF (α) = F (4π)t4π−ε,λ + F (2π)(T − t4π−ε,λ − δλ,ε) + O(ε) + o(1)

= TF (2π) + δλ,ε(F (4π)− 2F (2π)) + O(ε) + o(1)

≤ TF (2π) +
T

4
(F (4π)− 2F (2π)) + O(ε) + o(1)

=
T

4
F (4π) +

T

2
F (2π) + O(ε) + o(1).

This is a contradiction. Thus we obtain that Qλ > 0 for λ � 1, which implies
(3.24) by (3.41). Then by (3.24), Lemmas 2.7, 3.6, 3.9 and 3.10, we obtain (3.42).
This implies that

(5.5) TF (α) = (T − 3δλ,ε)F (4π) + 2δλ,εF (2π) + O(ε) + o(1).

Hence we see that δλ,ε = Sα,1 + O(ε) + o(1) for λ � 1. This along with (3.42)
implies Theorem 3(ii)–(iv). Theorem 3(v) follows from (3.38), Lemma 2.6 and
the fact that δλ,ε = Sα,1 + O(ε) + o(1) for λ � 1. Thus the proof of Case 1
is complete.

Case 2. Assume that there exists a subsequence of {λ}, denoted by {λ}
again, such that λ → ∞ and ‖uλ‖∞ ≥ 4π. Then by (3.4), we obtain (3.5),
which implies (3.24). Hence, we find that Lemma 3.9 and Lemma 3.10 are
valid in this case. Namely, we have (3.42). Then by the same argument as
that in Case 1, we also obtain (5.5), which implies Theorem 3(ii)–(iv) in this
case. Finally, Theorem 3(v) follows from (3.38), Lemma 2.6, and the fact that
δλ,ε = Sα,1+O(ε)+o(1) for λ � 1. Thus the proof of the case n = 1 is complete.

Now, we consider the case where F (α) = F (4π)/4+F (2π)/2. There are two
cases to consider.

Case 3. Assume that there exists a subsequence of {λ}, denoted by {λ}
again, such that λ → ∞ and ‖uλ‖∞ ≥ 4π. Let 0 < ε � 1 be fixed. Then
by (3.5), we see that Lemma 3.9 and Lemma 3.10 are valid. By these facts and
Lemmas 2.7 and 3.6, we obtain (3.42), which implies

TF (α) =
T

4
F (4π) +

T

2
F (2π) = (T − 3δλ,ε)F (4π) + 2δλ,εF (2π) + O(ε) + o(1).

Hence for λ � 1, we obtain

(5.6) δλ,ε = T/4 + O(ε) + o(1).

This implies Theorem 3(iv). The assertions (ii) and (iii) follow from (3.42)
and (5.6). The assertion (v) follows from (3.38), (5.6) and Lemma 2.6.

Case 4. Assume that there exists a subsequence of {λ}, denoted by {λ}
again, such that λ → ∞ and ‖uλ‖∞ < 4π. If there exists a subsequence of {λ}
such that Qλ > 0, then our conclusion follows exactly from the same argument
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as that of Case 3. If there exists a subsequence of {λ} such that Qλ ≤ 0, then
by Lemmas 3.12 and 3.15, we have (3.50). Then

TF (α) =
T

4
F (4π) +

T

2
F (2π) = δλ,εF (4π) + (T − 2δλ,ε)F (2π) + O(ε) + o(1).

This implies (5.6). Then by the same argument as that in Case 3, we obtain our
conclusion. Thus the proof for the case n = 1 is complete. �

Proof of Theorem 3 for n ≥ 2. Let 0 < ε � 1 be fixed. We recall
lλ,ε,k, mλ,ε,k defined in (3.52) for 1 ≤ k ≤ n. Then by the same arguments as
those in the proof of Theorem 2 for n ≥ 2, for 1 ≤ k ≤ n− 1, we obtain (3.55).
Then by the same argument as that of the proof of Theorem 3 for n = 1, we
obtain ‖uλ‖∞ → 2(n + 1)π as λ →∞. This implies Theorem 3(i). By the same
calculation as those for the case n = 1, we obtain

(5.7) lλ,ε,n,mλ,ε,n = δλ,ε + O(ε) + o(1).

Therefore, by (3.55) and (5.7), we obtain

TF (α) = (T − (2n + 1)δλ,ε)F (2(n + 1)π) + 2δλ,ε

n∑
k=0

F (2kπ) + O(ε) + o(1).

This implies that for λ � 1

(5.8) δλ,ε = Sα,n + O(ε) + o(1).

This implies Theorem 3(ii)–(iv). Finally, Theorem 3(v) follows from (3.38), (5.8)
and Lemma 2.6. �

6. Proof of Theorem 4

We first prove Theorem 4 for n = 1.

Lemma 6.1. Assume (A.1)–(A.4) and (A.5.1). Let α = 2π. Then ‖uλ‖∞ <

4π for λ � 1.

Proof. We note that ‖uλ‖∞ ≥ 2π, since uλ ∈ M2π. Assume that there
exists a subsequence of {λ}, denoted by {λ} again, such that λ → ∞ and
‖uλ‖∞ ≥ 4π. Let 0 < ε � 1 be fixed. Then by Lemmas 2.7, 3.3, 3.5, 3.6,
we have

t4π−ε,λ > t4π−ε,λ − t4π,λ ≥ mλ,ε + lλ,ε

2
− Cε− o(1),(6.1)

mλ,ε + lλ,ε

2
≥ δλ,ε − Cε− o(1).(6.2)

By (6.1) and (6.2), we obtain

TF (2π) ≥ t4π−ε,λF (4π − ε) + (T − t4π−ε,λ − δλ,ε)F (2π − ε)

≥ TF (2π) + t4π−ε,λ(F (4π)− 2F (2π))− Cε− o(1).
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This along with (A.5.1), (6.1) and (6.2) implies that for λ � 1

(6.3) t4π−ε,λ ≤ Cε + o(1), δλ,ε ≤ Cε + o(1).

By (3.19) and (6.3), for λ � 1, we obtain

(6.4) lλ,ε + mλ,ε ≥ T − Cε− o(1).

This along with (6.1) implies that for λ � 1

(6.5) t4π−ε,λ ≥ T/2− Cε− o(1).

This contradicts (6.3). Thus, we obtain ‖uλ‖∞ < 4π for λ � 1. �

By Lemma 6.1, we have (4.1) in this case. So there are only two possibilities:
‖uλ‖∞ → 4π or ‖uλ‖∞ → 2π as λ →∞. If ‖uλ‖∞ → 2π as λ →∞, then uλ →
2π as λ → ∞ locally uniformly on (0, T ), since uλ ∈ M2π. Hence Theorem 4 is
obtained immediately in this case.

Lemma 6.2. Assume (A.1)–(A.4) and (A.5.1) and α = 2π. Suppose that
‖uλ‖∞ → 4π as λ →∞. Let 0 < ε � 1 be fixed. Then (6.4) holds for λ � 1.

Proof. By Lemma 3.12 and (3.19), we obtain

TF (2π) ≥ t4π−ε,λF (4π) + (T − t4π−ε,λ − δλ,ε)F (2π)− Cε− o(1)

= TF (2π) + t4π−ε,λ(F (4π)− 2F (2π))− Cε− o(1).

This along with (A.5.1) and Lemma 3.12 implies (6.3). Then by (3.19) and (6.3),
we obtain (6.4). Thus the proof is complete. �

(6.4) implies that uλ → 2π on any compact subset in (0, T ). Now we obtain
Theorem 4 for n = 1 by Lemmas 6.1–6.2.

Proof of Theorem 4 for n ≥ 2. Let α = 2nπ for n ≥ 2. We first
prove ‖uλ‖∞ < 2(n + 1)π for λ � 1. To this end, we assume that there exists
a subsequence of {λ}, denoted by {λ} again, such that ‖uλ‖∞ ≥ 2(n + 1)π for
λ � 1 and derive a contradiction. Let 0 < ε � 1 be fixed. By the same argument
as that of Lemma 2.7, for λ � 1, we obtain

(6.6) t2(n+1)π−ε,λ ≥ t2(n+1)π−ε,λ − t2(n+1)π,λ ≥ δλ,ε − Cε− o(1).

Then by (3.55) and (6.6), we obtain

(6.7) TF (2nπ) = t2(n+1)π−ε,λF (2(n + 1)π)

+ {T − t2(n+1)π−ε,λ − (2n− 1)δλ,ε}F (2nπ)

+ 2δλ,ε

n−1∑
k=0

F (2kπ) + O(ε) + o(1)

≥TF (2nπ) + t2(n+1)π−ε,λ{F (2(n + 1)π)− F (2nπ)}
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− δλ,εF (2nπ)− 2δλ,ε

n−1∑
k=1

(F (2nπ)− F (2kπ))− Cε− o(1)

≥TF (2nπ) + t2(n+1)π−ε,λH(n)− Cε− o(1).

By (A.5.n), (6.6) and (6.7), for λ � 1, we obtain

(6.8) t2(n+1)π−ε,λ ≤ Cε + o(1), δλ,ε ≤ Cε + o(1).

Since we assume ‖uλ‖∞ ≥ 2(n+1)π for λ � 1, by the argument of Lemmas 2.7,
3.6, 3.9 and 3.10, we have (5.7). Then it follows from (3.55) for 1 ≤ k ≤ n, (3.57)
and (6.8) that

t2(n+1)π−ε,λ = T − (2n + 1)δλ,ε −O(ε)− o(1) ≥ T − Cε− o(1).

This implies that

TF (2nπ) ≥ t2(n+1)π−ε,λF (2(n + 1)π − ε) ≥ TF (2(n + 1)π)− Cε− o(1).

This is a contradiction. Hence we obtain ‖uλ‖∞ < 2(n + 1)π for λ � 1. Then
by this and (4.1), we have

λ(1− cos ‖uλ‖∞) ≤ µ(λ)F (2(n + 1)π).

Since uλ ∈ M2nπ, by this and Lemma 2.4, we have only two possibilities:
‖uλ‖∞ → 2(n + 1)π or ‖uλ‖∞ → 2nπ as λ → ∞. Firstly, if ‖uλ‖∞ → 2nπ as
λ →∞, then uλ → 2nπ locally uniformly on (0, T ) as λ →∞, since uλ ∈ M2nπ.
So we obtain Theorem 4. Secondly, consider the case where ‖uλ‖∞ → 2(n + 1)π
as λ →∞. Then by the same argument as those of Lemma 3.12, we have (6.6)
for λ � 1. By this and (3.55) for 1 ≤ k ≤ n − 1, we also obtain (6.7), which
implies (6.8). Then by (3.55) for 1 ≤ k ≤ n− 1, (3.57) and (6.8), we obtain

(6.9) lλ,ε,n + mλ,ε,n ≥ T − Cε− o(1).

This implies that uλ → 2nπ locally uniformly on (0, T ) as λ → ∞. Thus the
proof is complete. �

7. Appendix

In this section we prove Lemmas 2.3, 2.4 and Theorem 1(iii) for completeness.

Proof of Lemma 2.3. We put

wλ(t) =

{
−λ1/2|t|+ λ1/(2(m+1)) 0 ≤ |t| ≤ λ−m/(2(m+1)),

0 λ−m/(2(m+1)) < |t| ≤ T.

For a fixed λ > 0, we put g(γ) := K(γwλ) for γ ≥ 0. Then clearly, g(0) = 0
and g(γ) →∞ as γ →∞. Hence there exists cλ > 0 such that g(cλ) = 2TF (α).
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This implies Vλ := cλwλ ∈ Mα. By (A.4), there exist constants C3, C4 > 0 such
that for s ≥ 0

(7.1) F (s) ≥ C3s
m − C4.

By this, we have

2TF (α) = K(Vλ) =
∫

I

F (Vλ(t)) dt ≥
∫

I

(C3Vλ(t)m−C4) ds =
2C3

m + 1
cm
λ − 2C4T.

This implies that cλ ≤ C for λ � 1. Then by direct calculation, we obtain

‖V ′λ‖22 = 2c2
λλ(m+2)/2(m+1), λ

∫
I

(1− cos Vλ(t)) dt ≤ 4λ(m+2)/2(m+1).

By this, we obtain our conclusion, since β(λ) = Lλ(uλ) ≤ Lλ(Vλ). �

Proof of Lemma 2.4. By Lemma 2.3, we have

‖u′λ‖22 ≤ Cλ(m+2)/(2(m+1)),(7.2) ∫
I

(1− cos uλ(t)) dt ≤ Cλ−m/(2(m+1)).(7.3)

Multiply (1.1) by uλ and integrate it over I. Then integration by parts along
with (A.4) yields

(7.4) 2mTF (α)µ(λ) = µ(λ)
∫

I

mF (uλ(t)) dt ≤ µ(λ)
∫

I

f(uλ(t))uλ(t) dt

= ‖u′λ‖22 + λ

∫
I

uλ(t) sinuλ(t) dt.

To obtain our conclusion, we estimate
∫

I
uλ(t) sinuλ(t) dt. By (7.1), we have∫

I

uλ(t)m dt ≤ 1
C3

{ ∫
I

F (uλ(t)) dt + 2C4T

}
= Cm

5 :=
1
C3

(2TF (α) + 2C4T ).

By this and Hölder’s inequality, we obtain

ξλ :=
∣∣∣∣ ∫

I

uλ(t) sinuλ(t) dt

∣∣∣∣(7.5)

≤
( ∫

I

| sinuλ(t)|q dt

)1/q( ∫
I

uλ(t)m dt

)1/m

=C

( ∫
I

| sinuλ(t)|q dt

)1/q

,

where 1/q + 1/m = 1. Let 0 < ε � 1 be fixed. Then

(7.6) 2TF (α) = 2
∫ T

0

F (uλ(t)) dt ≥ 2
∫ ε/2

0

F (uλ(t)) dt ≥ εF (uλ(ε/2)).

By (7.1) and (7.6), we see that uλ(ε/2) ≤ Cε for λ � 1. We choose kε ∈ N
such that Cε < 2kεπ. For 0 < δ � 1 and k ∈ N, we put Jλ,k,δ := {t ∈ I :
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2(k−1)π+δ < uλ(t) < 2kπ−δ}. We choose δ > 0 so small that | sinuλ(t)| < ε/2
for t ∈ (ε/2, T ) \ (

∑kε

k=1 Jλ,k,δ). Then for λ � 1, by (2.7), we obtain∫
I

| sinuλ(t)|q dt ≤ 2
∫ T

0

| sinuλ(t)| dt = 2
∫ ε/2

0

| sinuλ(t)| dt

+ 2
∫

(ε/2,T )\(Pkε
k=1 Jλ,k,δ)

| sinuλ(t)| dt

+ 2
∫

(ε/2,T )∩(Pkε
k=1 Jλ,k,δ)

| sinuλ(t)| dt

≤ ε + Tε +
∣∣∣∣ kε∑

k=1

Jλ,k,δ

∣∣∣∣ < Cε.

This along with (7.5) implies that ξλ → 0 as λ →∞. From this, (7.2) and (7.4),
our conclusion follows. �

Proof of Theorem 1(iii). If ‖uλ‖∞ ≥ 2π for λ � 1, then the assertion
follows from (3.38) and Theorem 1(ii). Assume that there exists a subsequence of
{uλ}, denoted by {uλ} again, such that ‖uλ‖∞ < 2π. Let J := [t1, t2] ⊂ (0, Tα,0)
be fixed (t1 < t2). We choose 0 < ε � 1 sufficiently small. Then t2 < t2π−ε,λ

for λ � 1. Note that sinuλ(t) < 0 for t ∈ [0, t2]. By the equation in (1.1) and
Lemma 2.1, we see that −u′′λ(t) = µ(λ)f(uλ(t))− λ sinuλ(t) > 0. Hence −u′λ(t)
is increasing on J . Then

ε ≥ uλ(t1)− uλ(t2) =
∫ t2

t1

(−u′λ(t)) dt ≥ (t2 − t1)|u′λ(t1)|.

This implies that |u′λ(t1)| ≤ Cε for λ � 1. Now, by this and the equation (1.1),
for λ � 1, we obtain

Cε ≥ |u′λ(t1)| = −u′λ(t1) =
∫ t1

0

−u′′λ(s) ds

= µ(λ)
∫ t1

0

f(uλ(t)) dt− λ

∫ t1

0

sinuλ(t) dt ≥ µ(λ)( min
2π−ε≤u≤2π

f(u))t1.

Thus the proof is complete. �
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