ON WEAK SOLUTIONS FOR SOME MODEL OF MOTION OF NONLINEAR VISCOUS-ELASTIC FLUID

Viktor G. Zvyagin - Vladimir T. Dmitrienko

Dedicated to the memory of Juliusz P. Schauder

Abstract

We consider the statement of an initial boundary value problem for a generalized Oldroyd model describing both laminar and turbulent flows of a nonlinear visco-elastic fluid. The operator interpretation of a posed problem is presented. The properties of operators forming the corresponding equation are investigated. We introduce approximating operator equations and prove their solvability. On that base the existence theorem for the operator equation equivalent to the stated initial boundary value problem is proved.

Introduction

The system of equations of fluid motion in Cauchy form is well known [1] in hydrodynamics. Formally speaking, it describes the motion of all kinds of fluids. However this system contains the tensor of tangent pressure that is not explicitly expressed in terms of variables of the system. To get such an expression, as a rule, one involves various hypotheses on the relation between the tensor of tangent pressure and the tensor of velocities of deformation assuming that for specific fluids and specific motions those hypotheses should be verified in experiments. Such a hypothesis, describing both laminar and turbulent motions of a nonlinear

[^0]viscous fluid, was suggested by O. A. Ladyzhenskaya in [2], [3]. Another one, taking into account the results of certain experiments, is contained in [4].

A lot of models for describing the motion of fluids are based on the so called constitutive Oldroyd equations [5] (see e.g. [6]-[8] where these equations were studied and modified). The models, based on those equations take into account effects of relaxation of pressure after stop and of the delay of deformations.

In this paper we present a certain modification of Oldroyd equations that unifies the approaches of [4] and [9]. The initial-boundary value problem with mixed boundary conditions, the most natural from physical viewpoint, is investigated. On a part of the boundary the velocities, and on the other one the surface forces are given. The similar problems for various versions of Navier-Stokes equations were investigated in [7] and [10].

Following Ladyshenskaya, we consider the problem of weak solutions. The existence theorem for a weak solution of the above mentioned initial-boundary value problem is established. The method of this paper is analogous to that of [9]. The problem is formulated in terms of a special operator equation, whose solvability is proved on the basis of a priori estimates and degree theory.

The paper consists of four sections. In the first one we introduce the main notations and concepts. We describe the formulations of the problem of weak solutions and of our initial-boundary value problem and consider the constitutive equation for our model. The functional spaces and operators, used in the paper, as well as operator equations, equivalent to the problem under consideration, are also introduced. In the second section the properties of operators involved in the above operator equation are investigated. In the third section we introduce some approximating operator equations. The existence results for solutions of those are obtained. In the last section the existence theorem for a solution of the operator equation, equivalent to the above-mentioned initial-boundary value problem, is formulated and proved.

1. Formulation of the evolution problem, equivalent operator equations

Let Ω be a bounded domain in $\mathbb{R}^{n}, n=2,3$. In this paper we consider the motion of fluid filling the domain Ω, on the time interval $(0, T), T>0$.
1.1. Constitutive equation and formulation of the initial-boundary value problem. Let $v(t, x)$ be the velocity vector of a particle at the point x of the space at the time moment t and v_{1}, \ldots, v_{n} be components of v. Denote by \mathcal{E} the tensor of velocities of deformations with components

$$
\mathcal{E}_{i j}=\mathcal{E}_{i j}(v)=\frac{1}{2}\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right),
$$

and by $\sigma=\left(\sigma_{i j}\right)$ denote the tensor of tangent pressures (deviator of pressure tensor).

The character of motion of a fluid is determined by the choice of connection between \mathcal{E} and σ. In [4] W. G. Litvinov considers the following constitutive relation:

$$
\begin{equation*}
\sigma_{i j}=2\left[\varphi_{1}(U(v))+\varphi_{2}(I(v), U(A v))\right] \mathcal{E}_{i j}(v) \tag{1.1}
\end{equation*}
$$

where $I(v)=\sum_{i, j=1}^{n}\left(\mathcal{E}_{i j}(v)\right)^{2}$. This relation contains the function $U(v)$ characterising the motion in domain Ω. If $U(v)<a$ for some positive constant a, then the motion is laminar. If $U(v)>a$, then the motion is turbulent. The level a determines the boundary, where motion becomes turbulent.

In the middle of the fifties Oldroyd [5] suggested a model of a fluid with constitutive equation

$$
\left(1+\lambda \frac{\partial}{\partial t}\right) \sigma=2 \nu\left(1+æ \nu^{-1} \frac{\partial}{\partial t}\right) \mathcal{E}, \quad \lambda, \nu, æ>0
$$

λ is called the time of relaxation, $æ$ is the time of delay.
More general, nonlinear relations between σ and \mathcal{E} are introduced in [6]:

$$
\left(1+\lambda \frac{\partial}{\partial t}\right) \sigma=\varphi\left(I_{2}(v)\right) \mathcal{E}+æ \frac{\partial}{\partial t}\left(\psi\left(I_{2}(v)\right) \mathcal{E}\right)
$$

where $I_{2}(v)=(I(v))^{1 / 2}$. Expressing σ from this equation and using natural initial conditions, we obtain

$$
\sigma=\frac{æ}{\lambda} \psi\left(I_{2}(v)\right) \mathcal{E}+\int_{0}^{t} e^{-(t-\tau) / \lambda}\left(\frac{1}{\lambda} \varphi\left(I_{2}(v)\right)-\frac{æ}{\lambda^{2}} \psi\left(I_{2}(v)\right)\right) \mathcal{E} d \tau
$$

If one denotes

$$
\mu\left(I_{2}(v)\right)=\frac{1}{\lambda} \varphi\left(I_{2}(v)\right)-\frac{æ}{\lambda^{2}} \psi\left(I_{2}(v)\right),
$$

the relation gets the following form

$$
\sigma=\frac{æ}{\lambda} \psi\left(I_{2}(v)\right) \mathcal{E}+\int_{0}^{t} e^{-(t-\tau) / \lambda} \mu\left(I_{2}(v)\right) \mathcal{E} d \tau
$$

The first term corresponds to direct dependence of σ on \mathcal{E}, while the second one to indirect dependence via the effect of "memory" of a fluid. Taking into account such a form of dependence of σ on \mathcal{E}, the constitutive equation is naturally presented as follows

$$
\left(1+\lambda \frac{\partial}{\partial t}\right) \sigma=\frac{æ}{\lambda}\left(1+\lambda \frac{\partial}{\partial t}\right)\left(\psi\left(I_{2}(v)\right) \mathcal{E}\right)+\lambda \mu\left(I_{2}(v)\right) \mathcal{E} .
$$

Combining the above approach with relations (1.1), consider constitutive equation in the form

$$
\left(1+\lambda \frac{\partial}{\partial t}\right) \sigma=\left(1+\lambda \frac{\partial}{\partial t}\right)\left(2\left(\varphi_{1}(U(v))+\varphi_{2}\left(I(v), U_{A}(v)\right)\right) \mathcal{E}(v)\right)-\lambda \widetilde{a}\left(t, x, v, D^{1} v\right) .
$$

Assuming that at the initial moment the fluid satisfies relations (1.1), one can derive σ from this equation:

$$
\sigma=2\left(\varphi_{1}(U(v))+\varphi_{2}\left(I(v), U_{A}(v)\right)\right) \mathcal{E}(v)-\int_{0}^{t} e^{-(t-\tau) / \lambda} \widetilde{a}\left(\tau, x, v(\tau), D^{1} v(\tau)\right) d \tau
$$

Introduce the notation

$$
a\left(t, \tau, x, v(\tau), D^{1} v(\tau)\right)=e^{-(t-\tau) / \lambda} \widetilde{a}\left(\tau, x, v(\tau), D^{1} v(\tau)\right),
$$

and rewrite the constitutive relation as follows

$$
\begin{equation*}
\sigma=2\left(\varphi_{1}(U(v))+\varphi_{2}\left(I(v), U_{A}(v)\right)\right) \mathcal{E}(v)-\int_{0}^{t} a\left(t, \tau, x, v(\tau), D^{1} v(\tau)\right) d \tau \tag{1.2}
\end{equation*}
$$

The properties of functions, included in this equality, will be described below.
If the components $\sigma_{i j}(x)$ are differentiable in x, then by symbol $\operatorname{Div} \sigma$ we shall denote the vector

$$
\left(\sum_{j=1}^{n} \frac{\partial \sigma_{1 j}}{\partial x_{j}}, \sum_{j=1}^{n} \frac{\partial \sigma_{2 j}}{\partial x_{j}}, \ldots, \sum_{j=1}^{n} \frac{\partial \sigma_{n j}}{\partial x_{j}}\right)
$$

whose coordinates are the divergences of rows of matrix $\sigma=\left(\sigma_{i j}(x)\right)$.
Taking into account the constitutive relation (1.2), the fluid motion can be defined by means of the equation

$$
\rho\left(\frac{\partial v}{\partial t}+v_{i} \frac{\partial v}{\partial x_{i}}\right)=-\operatorname{grad} p+\operatorname{Div} \sigma+\varphi, \quad(t, x) \in(0, T) \times \Omega
$$

Here ρ is the fluid density, $p=p(t, x)$ is the pressure at the point x and time moment t, φ is the vector-function of volume force, acting on the fluid. Besides, here and further on we shall use the convention of summation on repeating indices.

The fluid is incompressible, therefore $\operatorname{div} v=0$ for $(t, x) \in(0, T) \times \Omega$.
We suppose that the domain Ω is decomposed into open non-intersected subdomains $\Omega_{i}, i=1, \ldots, m$, such that $\bar{\Omega}=\bigcup_{i=1}^{m} \bar{\Omega}_{i}, \Omega_{i} \cap \Omega_{j}=\emptyset$ for $i \neq j$. Let the boundary Γ of domain Ω be Lipschitz continuous and Γ_{1}, Γ_{2} be nonempty subsets of Γ such that $\Gamma=\bar{\Gamma}_{1} \cup \bar{\Gamma}_{2}, \Gamma_{1} \cap \Gamma_{2}=\emptyset$. Let also for each $i=1, \ldots, m$ ($n-1$)-dimensional measure of intersection $\bar{\Omega}_{i} \cap \Gamma_{1}$ be positive.

The following example of domain Ω and its decomposition

satisfies all the above-mentioned conditions (see [4]). We suppose that on Γ_{1} adhesion condition is valid

$$
\left.v\right|_{(0, T) \times \Gamma_{1}}=0,
$$

and on Γ_{2} a force, acting on a fluid surface is given

$$
\left.(-p E+\sigma) \nu\right|_{(0, T) \times \Gamma_{2}}=\Phi,
$$

where ν is a unit external normal to Γ_{2}.
The functions $U(v)$ and $U_{A}(v)$ are defined as follows. Let

$$
U(v)(x)=k_{i} \int_{\Omega_{i}} I(v) d y
$$

for $x \in \Omega_{i}$ with positive constants $k_{i}, i=1, \ldots, m$. Denote by P the operator of continuous prolongation on $(-\delta, T) \times \Omega$ of functions defined on $(0, T) \times \Omega$, where $\delta>0$. Choose a function $\omega \in C^{\infty}\left(\mathbb{R}_{+}\right)$such that $\omega(y) \geq 0$ for $y \in \mathbb{R}_{+}, \omega(y)=0$ for $y \in[\delta, \infty)$. Let $h=\left(\int_{0}^{\delta} \omega(\tau) d \tau\right)^{-1}$ and

$$
\rho_{\delta}(\tau)= \begin{cases}h \omega(\tau) & \text { for } \tau \geq 0 \\ 0 & \text { for } \tau<0\end{cases}
$$

Consider the averaging operator with rerspect to variable t

$$
Y(v)(t, x)=\int_{-\delta}^{T} \rho_{\delta}(t-\tau) P v(\tau, x) d \tau
$$

and introduce the operator $U_{A}(v)=U(Y(v))$. The motion of a fluid in domain Ω is completely determined by the following initial-boundary value problem: the equation of motion

$$
\begin{equation*}
\rho\left(\frac{\partial v}{\partial t}+v_{i} \frac{\partial v}{\partial x_{i}}\right)=-\operatorname{grad} p+\operatorname{Div} \sigma+\varphi, \quad(t, x) \in(0, T) \times \Omega \tag{1.3}
\end{equation*}
$$

the constitutive relation
(1.4) $\quad \sigma=2\left(\varphi_{1}(U(v))+\varphi_{2}\left(I(v), U_{A}(v)\right)\right) \mathcal{E}(v)-\int_{0}^{t} a\left(t, \tau, x, v(\tau), D^{1} v(\tau)\right) d \tau$,
the incompressibility equation

$$
\begin{equation*}
\operatorname{div} v=0, \quad(t, x) \in(0, T) \times \Omega \tag{1.5}
\end{equation*}
$$

the boundary condition on Γ_{1}

$$
\begin{equation*}
\left.v\right|_{(0, T) \times \Gamma_{1}}=0, \tag{1.6}
\end{equation*}
$$

the boundary condition on Γ_{2}

$$
\begin{equation*}
\left.(-p E+\sigma) \nu\right|_{(0, T) \times \Gamma_{2}}=\Phi \tag{1.7}
\end{equation*}
$$

and the initial condition

$$
\begin{equation*}
v(0, x)=v^{0}(x), \quad x \in \Omega \tag{1.8}
\end{equation*}
$$

Solution of problem (1.3)-(1.8) is a vector-function v and a scalar function p defined on $[0, T] \times \bar{\Omega}$ and satisfying (1.3)-(1.8).

We suppose, that
(1) the function $\varphi_{1}(y)$ satisfies the conditions

$$
\begin{gather*}
\varphi_{1}(y) \text { is continuous on } \mathbb{R}_{+} \text {and } \varphi_{1}(y) \geq 0 \text { for all } y \in \mathbb{R}_{+}, \tag{1.9}\\
\varphi_{1}\left(y_{1}\right) \geq \varphi_{1}\left(y_{2}\right) \quad \text { if } y_{1} \geq y_{2} \tag{1.10}\\
a_{2} y \geq \varphi_{1}(y) \geq a_{1} y \quad \text { for } y \tag{1.11}
\end{gather*}
$$

where a, a_{1}, a_{2} are positive constants and $y_{1}, y_{2} \in \mathbb{R}_{+}$;
(2) the function $\varphi_{2}\left(y_{1}, y_{2}\right)$ satisfies the conditions

$$
\begin{gather*}
\varphi_{2}\left(y_{1}, y_{2}\right) \text { is continuous on } \mathbb{R}_{+}^{2}, \tag{1.12}\\
a_{5} y_{2}+a_{4} \geq \varphi_{2}\left(y_{1}, y_{2}\right) \geq a_{3} \quad \text { for all }\left(y_{1}, y_{2}\right) \in \mathbb{R}_{+}^{2}, \tag{1.13}\\
\varphi_{2}\left(y_{1}, y\right) \geq \varphi_{2}\left(y_{2}, y\right) \quad \text { if } y_{1} \geq y_{2} \tag{1.14}
\end{gather*}
$$

where a_{3}, a_{4}, a_{5} are positive constants and $y_{1}, y_{2} \in \mathbb{R}_{+}$;
(3) the matrix-function $a(t, \tau, x, v, w)$ is defined for all $x \in \Omega, v \in \mathbb{R}^{n}$, $w \in \mathbb{R}^{n^{2}}$ and $(t, \tau) \in T_{d}$, where

$$
T_{d}=\{(t, \tau): t \in[0, T], t \geq \tau \geq 0\}
$$

$$
\begin{gather*}
\left\{\begin{array}{l}
a \text { is measurable in } t, \tau, x \text { for all } v, w \\
\text { and is continuous in } v, w \text { for almost all } t, \tau, x
\end{array}\right. \tag{1.15}\\
\quad|a(t, \tau, x, v, 0)| \leq \mathcal{L}_{1}(t, \tau, x)+\mathcal{L}_{2}(t, \tau, x)|v| \tag{1.16}
\end{gather*}
$$

where \mathcal{L}_{2} is an essentially bounded function and \mathcal{L}_{1} belongs to class L_{4} on $Q_{d}=T_{d} \times \Omega$;

$$
\begin{equation*}
|a(t, \tau, x, v, w)-a(t, \tau, x, v, \bar{w})| \leq \mathcal{L}_{2}(t, s, x)|w-\bar{w}| \tag{1.17}
\end{equation*}
$$

for any $(t, s, x) \in Q_{d}, v \in \mathbb{R}^{n}, w, \bar{w} \in \mathbb{R}^{n^{2}}$.
Note, that condition (1.14) differs from the monotonicity condition of [4]

$$
\begin{equation*}
\left[\varphi_{2}\left(y_{1}^{2}, y_{2}\right) y_{1}-\varphi_{2}\left(y_{3}^{2}, y_{2}\right) y_{3}\right]\left(y_{1}-y_{3}\right) \geq a_{2}\left(y_{1}-y_{3}\right)^{2} \tag{1.18}
\end{equation*}
$$

for all $y_{1}, y_{2}, y_{3} \in \mathbb{R}_{+}$.
1.2. Principal notations and functional spaces. First we describe the spaces of functions on Ω used hereinafter:

- $L_{2}(\Omega)$ is the set of square integrable functions $w: \Omega \rightarrow \mathbb{R}$; the scalar product for $w, v \in L_{2}(\Omega)$ will be denoted by $(w, v)_{L_{2}(\Omega)}$,
- $W_{2}^{1}(\Omega)$ consists of functions from $L_{2}(\Omega)$ with partial derivative of the first order, belonging to $L_{2}(\Omega)$.
Introduce spaces of functions on Ω with values in space \mathbb{R}^{n}. Let now v, w be functions on Ω with values in \mathbb{R}^{n}.
- $L_{2}(\Omega)^{n}$ is the set of functions $w: \Omega \rightarrow \mathbb{R}^{n}$ with coordinates from $L_{2}(\Omega)$,
- $\|w\|_{L_{2}(\Omega)^{n}}=\left(\sum_{i=1}^{n} \int_{\Omega} w_{i}^{2}(x) d x\right)^{1 / 2}$ is the norm for $w \in L_{2}(\Omega)^{n}$,
- $W_{2}^{1}(\Omega)^{n}$ is the set of functions $w: \Omega \rightarrow \mathbb{R}^{n}$ with coordinates from $W_{2}^{1}(\Omega)$.

Following [4], introduce $V=\left\{v \in W_{2}^{1}(\Omega)^{n}:\left.v\right|_{\Gamma_{1}}=0, \operatorname{div} v=0\right\} . V$ is a Hilbert space with scalar product

$$
(v, u)_{V}=\int_{\Omega} \mathcal{E}_{i j}(v) \mathcal{E}_{i j}(u) d x
$$

The corresponding norm is defined by equality

$$
\|v\|=\left(\int_{\Omega} I(v) d x\right)^{1 / 2}
$$

From Korn's inequality and the fact, that ($n-1$)-dimensional measure of intersection $\bar{\Omega}_{i} \cap \Gamma_{1}$ is positive, it follows that this norm in the space V is equivalent to the norm induced from the space $W_{2}^{1}(\Omega)^{n}$.

Restrictions of functions from V on Ω_{i} form a space which will be denoted by V_{i}. The norm in V_{i} is defined by the equality

$$
\|\mid v\|_{i}=\left(\int_{\Omega_{i}} I(v) d x\right)^{1 / 2}
$$

Let H be the closure of V in the norm of space $L_{2}(\Omega)^{n}, S$ be the set of step functions with constant values on each $\Omega_{i}, i=1, \ldots, m$ and V^{*} be the space conjugate to V. Denote by (f, v) the action of functional f from V^{*} on a function v from V.

Introduce spaces of functions $v:[a, b] \rightarrow E$ with values in Banach space E :

- $L_{p}((a, b), E)$ is the space of functions integrable with degree $p \geq 1$, with the norm

$$
\|v\|_{L_{p}((a, b), E)}=\left(\int_{a}^{b}\|v(t)\|_{E}^{p} d t\right)^{1 / p}
$$

- $L_{\infty}((a, b), E)$ is the space of essentially bounded functions with the norm

$$
\|v\|_{L_{\infty}((a, b), E)}=\operatorname{vrai} \max _{(a, b)}\|v(t)\|_{E}
$$

- $C([a, b], E)$ is the space of continuous functions with the norm

$$
\|v\|_{C([a, b], E)}=\max _{[a . b]}\|v(t)\|_{E} .
$$

All spaces, mentioned above, are Banach ones. If the interval (a, b) is clear from context, then the symbols (a, b) in notations of spaces are omitted: $L_{p}(E), L_{\infty}(E)$, $C(E)$. It is known, that the space $L_{q}\left((a, b), E^{*}\right)$ is conjugate to $L_{p}((a, b), E), p>1$, where $1 / p+1 / q=1$.

For a vector-function v from $L_{p}((a, b), V)$ denote by v_{i} the coordinate functions, by $\partial v / \partial t, \partial v / \partial x_{i}$ the first order partial derivatives and by $D^{1} v$ the set of all derivatives $\partial v_{i} / \partial x_{j}$.

Now we can introduce the principal functional spaces used below.

$$
\begin{aligned}
E_{2} & =L_{2}((0, T), V) \text { with the norm }\|v\|_{E_{2}}=\|v\|_{L_{2}((0, T), V)} \text { for } v \in E_{2}, \\
E_{2}^{*} & =L_{2}\left((0, T), V^{*}\right) \text { with the norm }\|f\|_{E_{2}^{*}}=\|f\|_{L_{2}\left((0, T), V^{*}\right)} \text { for } f \in E_{2}^{*}, \\
E & =L_{4}((0, T), V) \text { with the norm }\|v\|_{E}=\|v\|_{L_{4}((0, T), V)} \text { for } v \in E, \\
E^{*} & =L_{4 / 3}\left((0, T), V^{*}\right) \text { with the norm }\|f\|_{E^{*}}=\|f\|_{L_{4 / 3}\left((0, T), V^{*}\right)} \text { for } f \in E^{*}, \\
W & =\left\{v: v \in E, v^{\prime} \in E^{*}\right\} \text { with the norm }\|v\|_{W}=\|v\|_{E}+\left\|v^{\prime}\right\|_{E^{*}} \text { for } v \in W .
\end{aligned}
$$

The space W is Banach one and it is known (see [11, Theorem 1.17, p. 177]), that $W \subset C([0, T], H)$.

Denote by $\langle f, v\rangle$ the coupling of a functional f from E^{*} with a function v from E, and by $\langle f, v\rangle_{2}$ the coupling of a functional f from E_{2}^{*} with a function v from E_{2}.
1.3. Statement of the problem of weak solutions and equivalent operator equations. Let us introduce operators in functional spaces using the following equalities:

- $N_{1}: V \rightarrow V^{*},\left(N_{1}(u), h\right)=2 \int_{\Omega} \varphi_{1}(U(u)) \mathcal{E}_{i j}(u) \mathcal{E}_{i j}(h) d x ;$
- $N_{2}: V \times S \rightarrow V^{*},\left(N_{2}(u, s), h\right)=2 \int_{\Omega} \varphi_{2}(I(u), s) \mathcal{E}_{i j}(u) \mathcal{E}_{i j}(h) d x$;
- $K: V \rightarrow V^{*}$,

$$
(K(u), h)=\rho \int_{\Omega} u_{j} \frac{\partial u_{i}}{\partial x_{j}} h_{i} d x
$$

where $u, h \in V, s \in S$;

- $B: T_{d} \times L_{2}(\Omega)^{n} \times V \rightarrow V^{*}$,

$$
(B(t, \tau, u, v), h)=\int_{\Omega} a_{i j}\left(t, \tau, x, u(x), D^{1} v(x)\right) \frac{\partial h_{i}}{\partial x_{j}}(x) d x
$$

where $u \in L_{2}(\Omega)^{n}, u, h \in V$.
Let $Q_{T}=(0, T) \times \Omega$ and $L_{2}\left(Q_{T}\right)^{n}=L_{2}\left(Q_{T}, \mathbb{R}^{n}\right)$:

- $C: L_{2}\left(Q_{T}\right)^{n} \times E_{2} \rightarrow E_{2}^{*}, C(u, v)=\int_{0}^{t} B(t, \tau, u(\tau), v(\tau)) d \tau$.

Note that $E \subset E_{2}$ and $E_{2}^{*} \subset E^{*}$ imply $C: L_{2}\left(Q_{T}\right)^{n} \times E \rightarrow E^{*}$.
Suppose that $n=2$ or $n=3$ and

$$
\Phi \in L_{4 / 3}\left((0, T) \times \Gamma_{2}, \mathbb{R}^{n}\right), \quad \varphi \in L_{4 / 3}\left((0, T) \times \Omega, \mathbb{R}^{n}\right)
$$

These functions define functionals $f, F \in L_{4 / 3}\left((0, T), V^{*}\right)$ on V by the equalities:

$$
(F, h)=\int_{\Gamma_{2}} \Phi h d x, \quad(f, h)=\int_{\Omega} \varphi h d x
$$

for $h \in V$. The definitions are well-posed since $h \in W_{2}^{1}(\Omega)^{n} \subset L_{4}\left(\Gamma_{2}\right)^{n}$ and $h \in L_{4}(\Omega)^{n}$ for $n=2,3$.

The weak solution of problem (1.3)-(1.8) is a vector-function v such that

$$
\begin{gather*}
v \in L_{4}((0, T), V), \quad v^{\prime} \in L_{4 / 3}\left((0, T), V^{*}\right) \tag{1.19}\\
\rho\left(v^{\prime}, h\right)+\left(N_{1}(v)+N_{2}\left(v, U_{A}(v)\right), h\right)+(K(v), h) \tag{1.20}\\
-\left(\int_{0}^{t} B(t, \tau, v(\tau), v(\tau)) d \tau, h\right)=(F+f, h), \quad \text { for all } h \in V \\
v(0)=v^{0} \tag{1.21}
\end{gather*}
$$

Condition (1.19) provides $v \in W \subset C([0, T], H)$. Therefore condition (1.21) is valid for $v^{0} \in H$.

Using the Green formula it is possible to check that if v, p is a solution of problem (1.3)-(1.8), v satisfies conditions (1.19)-(1.21).

Equality (1.20) is equivalent to the operator equation
(1.22) $\rho v^{\prime}+N_{1}(v)+N_{2}\left(v, U_{A}(v)\right)+K(v)-\int_{0}^{t} B(t, \tau, v(\tau), v(\tau)) d \tau=F+f$.

Let k be a positive number whose value will be defined in further arguments. Substitute $v(t)=e^{k t} \bar{v}(t)$ and multiple the equation by $e^{-k t}$. We obtain the equivalent operator equation

$$
\begin{aligned}
& \rho \bar{v}^{\prime}+\rho k \bar{v}+\left(N_{1}\left(e^{k t} \bar{v}\right)+N_{2}\left(e^{k t} \bar{v}, U_{A}\left(e^{k t} \bar{v}\right)\right)+K\left(e^{k t} \bar{v}\right)\right) e^{-k t} \\
&-\int_{0}^{t} e^{-k t} B\left(t, \tau, e^{k \tau} v(\tau), e^{k \tau} v(\tau)\right) d \tau=\bar{F}+\bar{f},
\end{aligned}
$$

where $\bar{F}=e^{-k t} F, \bar{f}=e^{-k t} f$.
To simplify the formulae we introduce the notations:

$$
\begin{align*}
\bar{N}_{1}(\bar{u}) & =e^{-k t} N_{1}\left(e^{k t} \bar{u}\right), \\
\bar{N}_{2}(\bar{u}, s) & =e^{-k t} N_{2}\left(e^{k t} \bar{u}, s\right), \quad \text { where } s \in S, \\
\bar{B}(t, \tau, \bar{u}, \bar{v}) & =e^{-k \tau} B\left(t, \tau, e^{k \tau} \bar{u}(\tau), e^{k \tau} \bar{v}(\tau)\right), \\
\bar{K}(\bar{u}) & =e^{-k t} K\left(e^{k t} \bar{u}\right), \tag{1.23}\\
\bar{C}(\bar{u}, \bar{v}) & =\int_{0}^{t} e^{-k(t-\tau)} \bar{B}\left(t, \tau, e^{k \tau} \bar{v}(\tau), e^{k \tau} \bar{v}(\tau)\right) d \tau
\end{align*}
$$

Rewrite the operator equation as follows:

$$
\begin{equation*}
\rho \bar{v}^{\prime}+\rho k \bar{v}+\bar{N}_{1}(\bar{v})+\bar{N}_{2}\left(\bar{v}, U_{A}\left(e^{k t} \bar{v}\right)\right)+\bar{K}(\bar{v})-\bar{C}(\bar{v}, \bar{v})=\bar{F}+\bar{f} \tag{1.24}
\end{equation*}
$$

Then the problem of weak solution is equivalent to the existence problem for a solution $\bar{v} \in W$ of operator equation (1.24), and the solution should satisfy the initial conditions

$$
\begin{equation*}
\bar{v}(0)=v^{0} . \tag{1.25}
\end{equation*}
$$

2. Studying the properties of operators

In this section the properties of operators from operator equation (1.24) are investigated.

2.1. Properties of operators \bar{N}_{1} and \bar{N}_{2}.

Lemma 2.1. If the function φ_{1} satisfies conditions (1.9)-(1.11), for any function \bar{u} from E the function $\bar{N}_{1}(\bar{u})$ belongs to E^{*}. The map $\bar{N}_{1}: E \rightarrow E^{*}$ is bounded, continuous, monotone and the following inequality holds:

$$
\begin{equation*}
\left\langle\bar{N}_{1}(\bar{u}), \bar{u}\right\rangle \geq C_{1}\|\bar{u}\|_{E}^{4}-C_{0} \tag{2.1}
\end{equation*}
$$

with constants C_{0}, C_{1}, independent of \bar{u}.
Proof. To prove continuity and boundedness of the map \bar{N}_{1} it is sufficient to establish the continuity and boundedness of $N_{1}: E \rightarrow E^{*}$. By definition

$$
\left\langle N_{1}(u), h\right\rangle=\int_{0}^{T}\left(N_{1}(u(t)), h(t)\right) d t=2 \int_{0}^{T} \int_{\Omega} \varphi_{1}(U(u(t))) \mathcal{E}_{i j}(u(t)) \mathcal{E}_{i j}(h(t)) d x d t
$$

for $u, h \in E$. As $\mathcal{E}(h) \in L_{4}\left((0, T), L_{2}(\Omega)^{n^{2}}\right)$ and $\|\mathcal{E}(h)\|_{L_{4}\left((0, T), L_{2}(\Omega)^{n^{2}}\right)}=\|h\|_{E}$,

$$
\left\|N_{1}(u)\right\|_{E^{*}} \leq\left\|\varphi_{1}(U(u)) \mathcal{E}(u)\right\|_{L_{4 / 3}\left((0, T), L_{2}(\Omega)^{n^{2}}\right)}
$$

Therefore it is sufficient to show the continuity and boundedness of each map

$$
\Phi_{i j}: u \mapsto \varphi_{1}(U(u)) \mathcal{E}_{i j}(u) \quad \text { from } E \text { to } \quad L_{4 / 3}\left((0, T), L_{2}(\Omega)\right) .
$$

For $u \in E U(u) \in L_{2}((0, T), S)$. Then, from conditions (1.10) and (1.11), it follows that $\varphi_{1}(U(u)) \in L_{2}((0, T), S)$ and the map $U \mapsto \varphi_{1}(U(u))$ from E to $L_{2}((0, T), S)$ is continuous as a superposition operator by the M. A. Krasnosel'skiin's theorem [12]. As $\mathcal{E}_{i j}(u) \in L_{4}\left((0, T), L_{2}(\Omega)\right)$, by the Hölder inequality $\varphi_{1}(U(u)) \mathcal{E}_{i j}(u) \in L_{4 / 3}\left((0, T), L_{2}(\Omega)\right)$ and the map $\Phi_{i j}$ is continuous as a product of continuous maps.

Conditions (1.10), (1.11) imply that

$$
\left\|\varphi_{1}(U(u(t))) \mathcal{E}(u(t))\right\|_{L_{2}(\Omega)^{n^{2}}} \leq\left(a_{2} \max _{i} k_{i}\|u(t)\|_{V}^{2}+\varphi(a)\right)\|\mathcal{E}(u(t))\|_{L_{2}(\Omega)^{n^{2}}} .
$$

Therefore $\left\|\varphi_{1}(U(u)) \mathcal{E}(u)\right\|_{L_{4 / 3}\left((0, T), L_{2}(\Omega)^{n^{2}}\right)} \leq C_{0}\|u\|_{E}^{3}+C_{1}$, and the map N_{1} is continuous and bounded.

The monotonicity of map \bar{N}_{1} follows from representation

$$
\begin{aligned}
\left\langle\bar{N}_{1}(\bar{u})-\bar{N}_{1}(\bar{v}), \bar{u}-\bar{v}\right\rangle & =\int_{0}^{T} e^{-k t}\left(N_{1}\left(e^{k t} \bar{u}(t)\right)-N_{1}\left(e^{k t} \bar{v}(t)\right), \bar{u}(t)-\bar{v}(t) d t\right. \\
& =\int_{0}^{T} e^{-2 k t}\left(N_{1}(u(t))-N_{1}(v(t)), u(t)-v(t)\right) d t
\end{aligned}
$$

where $u(t)=e^{k t} \bar{u}(t), v(t)=e^{k t} \bar{v}(t)$, and from the monotonicity of map N_{1} : $V \rightarrow V^{*}$, established in Lemma 4.1 [4].

Let us prove estimate (2.1). For $\bar{u} \in E$ and $u(t)=e^{k t} \bar{u}(t)$

$$
\left\langle\bar{N}_{1}(\bar{u}), \bar{u}\right\rangle=\int_{0}^{T} e^{-2 k t}\left(N_{1}\left(e^{k t} \bar{u}(t)\right), e^{k t} \bar{u}(t)\right) d t=\int_{0}^{T} e^{-2 k t}\left(N_{1}(u(t)), u(t)\right) d t
$$

By definition

$$
\begin{aligned}
\left(N_{1}(u(t)), u(t)\right) & =2 \int_{\Omega} \varphi_{1}(U(u(t))) \mathcal{E}_{i j}(u(t)) \mathcal{E}_{i j}(u(t)) d x \\
& =2 \varphi_{1}\left(k_{i}\| \| u(t)\| \|_{i}^{2}\right)\| \| u(t)\| \|_{i}^{2}
\end{aligned}
$$

Due to conditions (1.10), (1.11)

$$
\varphi_{1}\left(k_{i}\| \| u(t)\| \|_{i}^{2}\right)\| \| u\| \|_{i}^{2} \geq \begin{cases}0 & \text { if }\|\mid u(t)\|_{i}^{2} \leq a / k_{i} \\ a_{1} k_{i}\| \| u(t) \|_{i}^{4} & \text { if }\left\||u(t) \||_{i}^{2}>a / k_{i}\right.\end{cases}
$$

and so

$$
\varphi_{1}\left(k_{i}\|\mid u(t)\| \|_{i}^{2}\right)\left\|\left|\|(t)\|\left\|_{i}^{2} \geq a_{1} k_{i}\right\|\right| u(t)\right\| \|_{i}^{4}-\frac{a_{1} a^{2}}{k_{i}}
$$

for each $i=1, \ldots, m$. As $\|u(t)\| \leq \sum_{i=1}^{m}\| \| u(t)\| \|_{i}$, we get

$$
\left(N_{1}(u(t)), u(t)\right) \geq 2 a_{1} æ\|u(t)\|^{4}-C
$$

with $C=2 a_{1} a^{2} \max _{i} k_{i}^{-1}$ and $æ=\min _{i} k_{i}$.
Coming back to estimate for $\left\langle\bar{N}_{1}(\bar{u}), \bar{u}\right\rangle$, we obtain

$$
\begin{aligned}
\left\langle\bar{N}_{1}(\bar{u}), \bar{u}\right\rangle & \geq \int_{0}^{T} e^{-2 k t}\left(2 a_{1} æ\|u(t)\|^{4}-C\right) d t \\
& =\int_{0}^{T} 2 a_{1} æ e^{2 k t}\|\bar{u}(t)\|^{4} d t-C \int_{0}^{T} e^{-2 k t} d t \geq 2 a_{1} æ\|\bar{u}\|_{E}^{4}-C \frac{1-e^{-2 k T}}{2 k} .
\end{aligned}
$$

The lemma follows.
Lemma 2.2. If the function φ_{2} satisfies conditions (1.12)-(1.14), the map $\bar{N}_{2}: E_{2} \times C([0, T], S) \rightarrow E_{2}^{*}$ is continuous and bounded. Besides, for any function $s \in C([0, T], S)$ the map $\bar{N}_{2}(\cdot, s): E_{2} \rightarrow E_{2}^{*}$ is monotone, coercive and the following inequality holds

$$
\begin{equation*}
\left\langle\bar{N}_{2}(\bar{u}, s)-\bar{N}_{2}(\bar{v}, s), \bar{u}-\bar{v}\right\rangle_{2} \geq 2 a_{3}\|\bar{u}-\bar{v}\|_{E_{2}}^{2} \tag{2.2}
\end{equation*}
$$

for any $\bar{u}, \bar{v} \in E_{2}$.
Proof. Consider map $N_{2}: E_{2} \times C([0, T], S) \rightarrow E_{2}^{*}$. By definition

$$
\left\langle N_{2}(u, s), h\right\rangle_{2}=2 \int_{0}^{T} \int_{\Omega} \varphi_{2}(I(u), s) \mathcal{E}_{i j}(u) \mathcal{E}_{i j}(h) d x d t
$$

for $u, h \in E_{2}, s \in C([0, T], S)$, therefore in order to prove the continuity and boundedness of N_{2} it is necessary to show continuity and boundedness of the maps $(u, s) \mapsto \varphi_{2}(I(u), s) \mathcal{E}_{i j}(u)$ from $E_{2} \times C([0, T], S)$ into $L_{2}\left((0, T), L_{2}(\Omega)\right)$.

To prove the continuity we shall consider the map as the composition of continuous maps $u \mapsto I(u)$ from E_{2} into $L_{1}\left(Q_{T}\right), u \mapsto \mathcal{E}_{i j}(u)$ from E_{2} into $L_{2}\left(Q_{T}\right)$, and continuous superposition operator $\Phi_{s}:(w, s, \overline{\mathcal{E}}) \mapsto \varphi_{2}(w, s) \overline{\mathcal{E}}$ from $L_{1}\left(Q_{T}\right) \times C([0, T], S) \times L_{2}\left(Q_{T}\right)$ into $L_{2}\left((0, T), L_{2}(\Omega)\right)$. From (1.13) we derive the estimate:

$$
\left|\varphi_{2}(w, s) \overline{\mathcal{E}}\right| \leq\left(a_{5} R+a_{4}\right)|\overline{\mathcal{E}}| \quad \text { for }|s|<R .
$$

From this estimate and M. A. Krasnosel'skiu's theorem [12] we obtain that the superposition operator Φ_{s} is continuous. The boundedness of Φ_{s} also follows from this estimate.

Thus, we have established the continuity and boundedness of the map N_{2} and so of the map \bar{N}_{2}.

Now establish estimate (2.2). Let $\bar{u}, \bar{v} \in E_{2}$ and $u(t)=e^{k t} \bar{u}(t), v(t)=$ $e^{k t} \bar{v}(t)$. By definition

$$
\begin{aligned}
\left\langle\bar{N}_{2}(\bar{u}, s)\right. & \left.-\bar{N}_{2}(\bar{v}, s), \bar{u}-\bar{v}\right\rangle_{2} \\
= & \left\langle e^{-2 k t}\left(N_{2}(u(t), s(t))-N_{2}(v(t), s(t))\right), u(t)-v(t)\right\rangle_{2} \\
= & 2 \int_{Q_{T}} \int e^{-2 k t}\left(\varphi_{2}(I(u(t)), s(t)) \mathcal{E}_{i j}(u(t))\right. \\
& \left.-\varphi_{2}(I(v(t)), s(t)) \mathcal{E}_{i j}(v(t))\right)\left(\mathcal{E}_{i j}(u(t))-\mathcal{E}_{i j}(v(t))\right) d x d t \\
= & \int_{Q_{T}} \int\left[e^{-2 k t}\left(\varphi_{2}(I(u(t)), s(t))+\varphi_{2}(I(v(t)), s(t))\right)(\mathcal{E}(u(t))-\mathcal{E}(v(t)))^{2}\right. \\
& +e^{-2 k t}\left(\varphi_{2}(I(u(t)), s(t))-\varphi_{2}(I(v(t)), s(t))\right)\left(\mathcal{E}_{i j}(u(t))+\mathcal{E}_{i j}(v(t))\right) \\
& \left.\cdot\left(\mathcal{E}_{i j}(u(t))-\mathcal{E}_{i j}(v(t))\right)\right] d x d t
\end{aligned}
$$

As $\left(\mathcal{E}_{i j}(u(t))+\mathcal{E}_{i j}(v(t))\right)\left(\mathcal{E}_{i j}(u(t))-\mathcal{E}_{i j}(v(t))\right)=I(u(t))-I(v(t))$, by condition (1.18), the second term is nonnegative. Besides, by condition (1.13),

$$
\varphi_{2}(I(u(t)), s(t))+\varphi_{2}(I(v(t)), s(t)) \geq 2 a_{3}
$$

therefore

$$
\begin{aligned}
\left\langle\bar{N}_{2}(\bar{u}, s)-\bar{N}_{2}(\bar{v}, s), \bar{u}-\bar{v}\right\rangle_{2} & \geq 2 a_{3} \iint_{Q_{T}} e^{-2 k t}(\mathcal{E}(u(t))-\mathcal{E}(v(t)))^{2} d x d t \\
& =2 a_{3} \int_{Q_{T}} \int(\mathcal{E}(\bar{u}(t)-\bar{v}(t)))^{2} d x d t=2 a_{3}\|\bar{u}-\bar{v}\|_{E_{2}}^{2}
\end{aligned}
$$

as it is formulated in the assertion of lemma.

Note that $\bar{N}_{2}(0, s)=0$. Then from inequality (2.2) for $\bar{v}=0$ we get the coercive inequality

$$
\begin{equation*}
\left\langle\bar{N}_{2}(\bar{u}, s), \bar{u}\right\rangle_{2} \geq 2 a_{0}\|\bar{u}\|_{E_{2}}^{2} \tag{2.3}
\end{equation*}
$$

As embeddings $E \subset E_{2}$ and $E_{2}^{*} \subset E^{*}$ are continuous, under the conditions of Lemma 2.2 the map $\bar{N}_{2}: E \times C([0, T], S) \rightarrow E^{*}$ is continuous and for any function $s \in C([0, T], S)$ the map $\bar{N}_{2}(\cdot, s): E \rightarrow E^{*}$ is monotone.

2.2. Properties of the operator U_{A}.

Lemmma 2.3. The map $U_{A}: E_{2} \rightarrow C([0, T], S)$ is completely continuous.
Proof. Since any bounded closed set in S is compact, by the Arzéla-Askoli theorem in order to prove the compactness of map under consideration it is sufficient to establish equicontinuity and uniform boundedness of the set of functions $U_{A}(u)$ for any bounded set of functions u from E_{2}. For any $t_{1}, t_{2} \in[0, T]$ and $x \in \Omega_{l}$

$$
\begin{aligned}
& \left|U_{A}(u)\left(t_{1}\right)-U_{A}(u)\left(t_{2}\right)\right| \\
& =K_{l} \int_{\Omega_{l}}\left[I\left(\int_{-\delta}^{T} \rho_{\delta}\left(t_{1}-\tau\right) P u(\tau, x) d \tau\right)-I\left(\int_{-\delta}^{T} \rho_{\delta}\left(t_{2}-\tau\right) P u(\tau, x) d \tau\right)\right] d x \\
& =K_{l} \int_{\Omega_{l}}\left[\left(\int_{-\delta}^{T} \rho_{\delta}\left(t_{1}-\tau\right) P \mathcal{E}_{i j}(u)(\tau, x) d \tau\right)^{2}\right. \\
& \left.-\left(\int_{-\delta}^{T} \rho_{\delta}\left(t_{2}-\tau\right) P \mathcal{E}_{i j}(u)(\tau, x) d \tau\right)^{2}\right] d x \\
& =K_{l} \int_{\Omega_{l}}\left(\int_{-\delta}^{T}\left(\rho_{\delta}\left(t_{1}-\tau\right)-\rho_{\delta}\left(t_{2}-\tau\right)\right) P \mathcal{E}_{i j}(u)(\tau, x) d \tau\right. \\
& \left.\int_{-\delta}^{T}\left(\rho_{\delta}\left(t_{1}-\tau\right)+\rho_{\delta}\left(t_{2}-\tau\right)\right) P \mathcal{E}_{i j}(u)(\tau, x) d \tau\right) d x \\
& \leq k_{l} \int_{\Omega_{l}}\left(\int_{-\delta}^{T}\left|\rho_{\delta}\left(t_{1}-\tau\right)-\rho_{\delta}\left(t_{2}-\tau\right)\right|\left|P \mathcal{E}_{i j}(u)(\tau, x)\right| d \tau\right. \\
& \left.\cdot \max _{\tau}\left|\rho_{\delta}\left(t_{1}-\tau\right)+\rho_{\delta}\left(t_{2}-\tau\right)\right| \int_{-\delta}^{T}\left|P \mathcal{E}_{i j}(u)(\tau, x)\right| d \tau\right) d x .
\end{aligned}
$$

As the function ρ_{δ} is bounded, applying the Hölder inequality we obtain

$$
\begin{aligned}
& \left|U_{A}(u)\left(t_{1}\right)-U_{A}(u)\left(t_{2}\right)\right| \\
& \quad \leq C_{1} k_{l}\left(\int_{-\delta}^{T}\left|\rho_{\delta}\left(t_{1}-\tau\right)-\rho_{\delta}\left(t_{2}-\tau\right)\right|^{2} d \tau\right)^{1 / 2} \int_{\Omega_{l}} \int_{-\delta}^{T}\left|P \mathcal{E}_{i j}(u)(\tau, x)\right|^{2} d \tau d x \\
& \quad \leq C_{2}\left(\int_{-\delta}^{T}\left|\rho_{\delta}\left(t_{1}-\tau\right)-\rho_{\delta}\left(t_{2}-\tau\right)\right|^{2} d \tau\right)^{1 / 2}\|P u\|_{E_{2}}^{2}
\end{aligned}
$$

It is easy to check that

$$
\int_{-\delta}^{T}\left|\rho_{\delta}\left(t_{1}-\tau\right)-\rho_{\delta}\left(t_{2}-\tau\right)\right|^{2} d \tau \rightarrow 0 \quad \text { at }\left|t_{1}-t_{2}\right| \rightarrow 0
$$

From this and from boundedness of the operator of prolongation P in $L_{2}\left(Q_{T}\right)$ it follows that the functions from the set $U_{A}(u)$ are uniformly continuous. Boundedness of the set $U_{A}(u)$ and continuity of the map U_{A} follow from continuity of U and Y whose composition forms U_{A}. The lemma follows.

The embedding map $E \subset E_{2}$ is continuous, therefore the map $U_{A}: E \rightarrow$ $C([0, T], S)$ is completely continuous.

2.3. Properties of the $\operatorname{map} \bar{K}$.

Lemma 2.4. The map $\bar{K}: E \rightarrow E^{*}$ is continuous and bounded. The map $\bar{K}: E_{2} \cap L_{4}\left(Q_{T}\right)^{n} \rightarrow E^{*}$ is continuous. The map $\bar{K}: W \rightarrow E^{*}$ is completely continuous. Besides, for any function $\bar{u} \in E$ the following estimate holds:

$$
\begin{equation*}
|\langle\bar{K}(\bar{u}), \bar{u}\rangle| \leq C\|\bar{u}\|_{E_{2}}\|\bar{u}\|_{L_{4}\left(Q_{T}\right)^{n}}^{2} \tag{2.4}
\end{equation*}
$$

with the constant $C=\rho e^{k T}$.
Proof. By definition of \bar{K} for $\bar{u}, \bar{h} \in E$

$$
\langle\bar{K}(\bar{u}), \bar{h}\rangle=\rho \int_{Q_{T}} \int e^{k t} \bar{u}_{j}(t) \frac{\partial \bar{u}_{i}(t)}{\partial x_{j}} \bar{h}_{i}(t) d x d t
$$

Then the continuity of the map $\bar{K}: E_{2} \cap L_{4}\left(Q_{T}\right)^{n} \rightarrow E^{*}$ follows from that of the map

$$
\bar{u} \mapsto \bar{u}_{j} \frac{\partial \bar{u}}{\partial x_{j}} \quad \text { from } \quad E_{2} \cap L_{4}\left(Q_{T}\right)^{n} \quad \text { to } \quad L_{4 / 3}\left((0, T), L_{4 / 3}(\Omega)^{n}\right)
$$

The continuity of embeddings $E \subset E_{2}, E \subset L_{4}\left(Q_{T}\right)^{n}$ causes the continuity of maps $\bar{K}: E \rightarrow E^{*}$ and $\bar{K}: W \rightarrow E^{*}$.

Applying the Hölder inequality we obtain the estimate

$$
\begin{aligned}
|\langle\bar{K}(\bar{u}), \bar{h}\rangle| & \leq \rho e^{k T} \int_{0}^{T}\left\|\bar{u}_{j}(t)\right\|_{L_{4}(\Omega)}\left\|\frac{\partial \bar{u}_{i}(t)}{\partial x_{j}}\right\|_{L_{2}(\Omega)}\left\|\bar{h}_{i}(t)\right\|_{L_{4}(\Omega)} d t \\
& \leq \rho e^{k T}\left\|\bar{u}_{j}\right\|_{L_{4}\left(Q_{T}\right)}\left\|\frac{\partial \bar{u}_{i}}{\partial x_{j}}\right\|_{L_{2}\left((0, T), L_{2}(\Omega)\right)}\left\|\bar{h}_{i}\right\|_{L_{4}\left(Q_{T}\right)} .
\end{aligned}
$$

From this it follows that the map \bar{K} is bounded and that for $\bar{h}=\bar{u}$ the next estimate holds:

$$
|\langle\bar{K}(\bar{u}), \bar{h}\rangle| \leq \rho e^{k T}\|\bar{u}\|_{E_{2}}\|\bar{u}\|_{L_{4}\left(Q_{T}\right)^{n}}^{2}
$$

Let us prove the compactness of $\bar{K}: W \rightarrow E^{*}$. Choose an arbitrary bounded sequence $\left\{\bar{u}_{l}\right\}, \bar{u}_{l} \in W$ such that $\bar{u}_{l} \rightharpoonup \bar{u}_{0}$ weakly in E. As the embedding $V \subset L_{4}(\Omega)^{n}$ is completely continuous for $n=2,3$, by Theorem 2.1 ([13, p. 217]) the embedding $W \subset L_{4}\left(Q_{T}\right)^{n}$ is completely continuous. Therefore, without loss of generality, we can assume that

$$
\bar{u}_{l} \rightarrow \bar{u}_{0} \quad \text { strongly in } L_{4}\left(Q_{T}\right)^{n}
$$

Similarly, as the embedding $V \subset L_{2}\left(\Gamma_{2}\right)^{n}$ is completely continuous, the embedding $W \subset L_{2}\left((0, T), L_{2}\left(\Gamma_{2}\right)^{n}\right)$ is completely continuous. Therefore let us assume that

$$
\left\|\bar{u}_{l}-\bar{u}_{0}\right\|_{L_{2}\left((0, T), L_{2}\left(\Gamma_{2}\right)^{n}\right)} \rightarrow 0 \quad \text { as } l \rightarrow \infty
$$

and show that under these assumptions $\bar{K}\left(\bar{u}_{l}\right) \rightarrow \bar{K}\left(\bar{u}_{0}\right)$ strongly in E^{*}.
Using the Green formula we obtain from the definition of \bar{K} :

$$
\begin{aligned}
\left\langle\bar{K}\left(\bar{u}_{l}\right)-\bar{K}\left(\bar{u}_{0}\right), \bar{h}\right\rangle= & \rho \iint_{Q_{T}} e^{k t}\left(\bar{u}_{l j}-\bar{u}_{0 j}\right)(t) \frac{\partial \bar{u}_{l i}(t)}{\partial x_{j}} \bar{h}_{i}(t) d x d t \\
& +\rho \iint_{Q_{T}} e^{k t} \bar{u}_{0 j}(t)\left(\frac{\partial \bar{u}_{l i}}{\partial x_{j}}-\frac{\partial \bar{u}_{0 i}}{\partial x_{j}}\right)(t) \bar{h}_{i}(t) d x d t \\
= & \rho \iint_{Q_{T}} e^{k t}\left(\bar{u}_{l j}-\bar{u}_{0 j}\right)(t) \frac{\partial \bar{u}_{l i}(t)}{\partial x_{j}} \bar{h}_{i}(t) d x d t \\
& -\rho \iint_{Q_{T}} e^{k t}\left(\bar{u}_{l i}-\bar{u}_{0 i}\right)(t) \frac{\partial \bar{u}_{0 j}(t)}{\partial x_{j}} \bar{h}_{i}(t) d x d t \\
& -\rho \iint_{Q_{T}} e^{k t} \bar{u}_{0 j}(t)\left(\bar{u}_{l i}-\bar{u}_{0 i}\right)(t) \frac{\partial \bar{h}_{i}(t)}{\partial x_{j}} d x d t \\
& +\rho \int_{0}^{T}\left(\int_{\Gamma_{2}} \bar{u}_{0 j}(t)\left(\bar{u}_{l i}-\bar{u}_{0 i}\right)(t) \bar{h}_{i}(t) \nu_{j} d \tau\right) e^{k t} d t,
\end{aligned}
$$

where ν is a unit external normal to Γ. Estimate each term in the above expression. For the first one we have:

$$
\begin{aligned}
&\left|\rho \iint_{Q_{T}} e^{k t}\left(\bar{u}_{l j}-\bar{u}_{0 j}\right)(t) \frac{\partial \bar{u}_{l i}(t)}{\partial x_{j}} \bar{h}_{i}(t) d x d t\right| \\
& \leq \rho e^{k T} \left\lvert\, \bar{u}_{l j}-\bar{u}_{0 j}\left\|_{L_{4}\left(Q_{T}\right)}\right\| \frac{\partial \bar{u}_{l i}}{\partial x_{j}}\left\|_{L_{2}\left(Q_{t}\right)}\right\| \bar{h}_{i}\right. \|_{L_{4}\left(Q_{T}\right)} .
\end{aligned}
$$

The second one is equal to zero, as $\bar{u}_{0}(t) \in V$ and $\operatorname{div} \bar{u}_{0}(t)=0$.
For the third term we have the estimate:

$$
\begin{aligned}
&\left|\rho \iint_{Q_{T}} e^{k t} \bar{u}_{0 j}(t)\left(\bar{u}_{l i}-\bar{u}_{0 i}\right)(t) \frac{\partial \bar{h}_{i}(t)}{\partial x_{j}} d x d t\right| \\
& \leq \rho e^{k T}\left\|\bar{u}_{0 j}\right\|_{L_{4}\left(Q_{T}\right)}\left\|\bar{u}_{l i}-\bar{u}_{0 i}\right\|_{L_{4}\left(Q_{T}\right)}\left\|\frac{\partial \bar{h}_{i}}{\partial x_{j}}\right\|_{L_{2}\left(Q_{T}\right)} .
\end{aligned}
$$

Estimate the fourth term:

$$
\begin{aligned}
& \left|\rho \int_{0}^{T}\left(\int_{\Gamma_{2}} \bar{u}_{0 j}(t)\left(\bar{u}_{l i}-\bar{u}_{0 i}\right)(t) \bar{h}_{i}(t) \nu_{j} d \tau\right) e^{k t} d t\right| \\
& \quad \leq \rho e^{k T}\left\|\bar{u}_{0 j}\right\|_{L_{4}\left((0, T), L_{4}\left(\Gamma_{2}\right)\right)}\left\|\bar{u}_{l i}-\bar{u}_{0 i}\right\|_{L_{2}\left((0, T), L_{2}\left(\Gamma_{2}\right)\right)}\left\|h_{i}\right\|_{L_{4}\left((0, T), L_{4}\left(\Gamma_{2}\right)\right)}
\end{aligned}
$$

due to continuity of embedding $E \subset L_{4}\left((0, T), L_{4}\left(\Gamma_{2}\right)^{n}\right)$.
All the norms in right-hand sides of the above estimates are uniformly bounded, then since we assume that we have chosen the sequence $\left\{\bar{u}_{l}\right\}$ tending in $L_{4}\left(Q_{T}\right)^{n}$ and $L_{2}\left((0, T), L_{2}\left(\Gamma_{2}\right)^{n}\right)$, each term tends to zero as $l \rightarrow \infty$ uniformly with respect to \bar{h} with $\|\bar{h}\|_{E} \leq 1$. This provides the strong convergence $\bar{K}\left(\bar{u}_{l}\right) \rightarrow$ $\bar{K}\left(\bar{u}_{0}\right)$ in E^{*}. The lemma is proved.

2.4. Properties of maps B and C.

Lemma 2.5. Let a matrix-function a satisfy conditions (1.15)-(1.17). Then the maps \bar{B} and \bar{C}, defined by (1.23), are continuous, bounded and for any $\bar{w} \in$ $L_{2}\left(Q_{T}\right)^{n}, \bar{u} \in E_{2}$, the following estimate holds

$$
\begin{equation*}
\left|\langle\bar{C}(\bar{w}, \bar{u}), \bar{u}\rangle_{2}\right| \leq C\left(1+\|\bar{w}\|_{L_{2}\left(Q_{T}\right)^{n}}+\|\bar{u}\|_{E_{2}}\right)\|\bar{u}\|_{E_{2}} \tag{2.5}
\end{equation*}
$$

with a constant C depending on characteristics $\mathcal{L}_{1}, \mathcal{L}_{2}$ and on T.
Proof. The operator \bar{C} can be presented as superposition of continuous integral operator and \bar{B}. Therefore it is sufficient to establish continuity and
boundedness of $\bar{B}: L_{2}\left(Q_{T}\right)^{n} \times E_{2} \rightarrow L_{2}\left(T_{d}, V^{*}\right)$ defined by the equality

$$
\begin{aligned}
\left(e^{-k \tau} B\left(t, \tau, e^{k \tau} \bar{w}(\tau), e^{k \tau} \bar{u}(\tau)\right), \bar{h}\right) & =(\bar{B}(t, \tau, \bar{w}(\tau), \bar{u}(\tau)), \bar{h}) \\
& =\int_{\Omega} a_{i j}\left(t, \tau, e^{k \tau} \bar{w}(\tau), e^{k \tau} D^{1} \bar{u}(\tau)\right) \frac{\partial \bar{h}_{i}}{\partial x_{j}} e^{-k \tau} d x
\end{aligned}
$$

for $\bar{w} \in L_{2}\left(Q_{T}\right)^{n}, \bar{u} \in E_{2}$ and $\bar{h} \in V$.
The continuity and the boundedness of \bar{B} follows from the continuity and boundedness of the maps

$$
\bar{a}_{i j}:(\bar{w}, \bar{u}) \mapsto a_{i j}\left(t, \tau, e^{k \tau} \bar{w}(\tau), e^{k \tau} D^{1} \bar{u}(\tau)\right) e^{-k \tau}
$$

from $L_{2}\left(Q_{T}\right)^{n} \times E_{2}$ in $L_{2}\left(Q_{d}\right)$. Conditions (1.16) and (1.17) cause the estimate

$$
\left|e^{-k \tau} a_{i j}\left(t, \tau, e^{k \tau} \bar{w}(\tau), e^{k \tau} D^{1} \bar{u}(\tau)\right)\right| \leq\left(e^{-k \tau} \mathcal{L}_{1}+\mathcal{L}_{2}\left(|\bar{w}(\tau)|+\left|D^{1} \bar{u}(\tau)\right|\right)\right)
$$

From this and from M. A. Krasnosel'skiu's theorem [12] of continuity of the superposition operator it follows that each map $\bar{a}_{i j}$ is continuous and bounded, and consequently this is valid for the map \bar{B}. Besides,

$$
\begin{aligned}
\|(\bar{B}(t, \tau, \bar{w}(\tau), \bar{u}(\tau)), \bar{h}) \mid \leq & \left(\left\|\mathcal{L}_{1}\right\|_{L_{2}(\Omega)}+\left\|\mathcal{L}_{2}\right\|_{L_{\infty}\left(Q_{d}\right)}\left(\|\bar{w}(\tau)\|_{L_{2}(\Omega)^{n}}\right.\right. \\
& \left.+\left\|D^{1} \bar{u}(\tau)\right\|_{L_{2}(\Omega)^{n}}\right)\left\|D^{1} h\right\|_{L_{2}(\Omega)^{n}} .
\end{aligned}
$$

From this fact and from the definition of \bar{C} we obtain for $\bar{w} \in L_{2}\left(Q_{T}\right)^{n}, \bar{u} \in E_{2}$:

$$
\begin{aligned}
|\langle\bar{C}(\bar{w}, \bar{u}), \bar{u}\rangle| \leq & \int_{0}^{T} \int_{0}^{t} e^{-k(t-\tau)}|(\bar{B}(t, \tau, \bar{w}(\tau), \bar{u}(\tau)), \bar{u}(t))| d \tau d t \\
\leq & \int_{0}^{T} \int_{0}^{t}\left(\left\|\mathcal{L}_{1}(t, \tau, \cdot)\right\|_{L_{2}(\Omega)}+\left\|\mathcal{L}_{2}\right\|_{L_{\infty}\left(Q_{d}\right)}\left(\|\bar{w}(\tau)\|_{L_{2}(\Omega)^{n}}\right.\right. \\
& \left.+\left\|D^{1} \bar{u}(\tau)\right\|_{\left.L_{2}(\Omega)^{n}\right)}\right) d \tau\left\|D^{1} u(t)\right\|_{L_{2}(\Omega)^{n}} d t \\
\leq & C\left(1+\|\bar{w}\|_{L_{2}\left(Q_{T}\right)^{n}}+\|\bar{u}\|_{E_{2}}\right)\|\bar{u}\|_{E_{2}}
\end{aligned}
$$

with a constant C, depending only on $\left\|\mathcal{L}_{1}\right\|_{L_{2}\left(Q_{d}\right)},\left\|\mathcal{L}_{2}\right\|_{L_{\infty}\left(Q_{d}\right)}$ and T.
The following statement is a reformulation of Lemma $2.5[9]$.
Lemma 2.6. Let a matrix-function a satisfy conditions (1.15)-(1.17), then for any functions $\bar{w} \in L_{2}\left(Q_{T}\right)^{n}, \bar{u}, \bar{v} \in E_{2}$, the following estimate holds

$$
\begin{equation*}
\langle\bar{C}(\bar{w}, \bar{u})-\bar{C}(\bar{w}, \bar{v}), \bar{u}-\bar{v}\rangle \leq \frac{C}{\sqrt{2 k}}\|\bar{u}-\bar{v}\|_{E_{2}}^{2} \tag{2.6}
\end{equation*}
$$

with a constant C independent of $k, \bar{u}, \bar{v}, \bar{w}$.

3. Approximating equations and their solvability

In order to construct a family of approximating equations for (1.24) introduce the operator

$$
N_{0}: V \rightarrow V^{*}, \quad\left(N_{0}(\bar{u}), h\right)=\int_{\Omega}\|\bar{u}\|_{V}^{2} \mathcal{E}_{i j}(\bar{u}) \mathcal{E}_{i j}(h) d x
$$

and for $\varepsilon>0$ consider the equation in the form:

$$
\begin{aligned}
& \left(3.1_{\varepsilon}\right) \quad \rho \bar{v}^{\prime}+\rho k \bar{v}+\bar{N}_{1}(\bar{v})+\bar{N}_{2}\left(\bar{v}, U_{A}\left(e^{k t} \bar{v}\right)\right) \\
& \quad+\varepsilon N_{0}(\bar{v})+\bar{K}(\bar{v})-\bar{C}(\bar{v}, \bar{v})=\bar{F}+\bar{f}
\end{aligned}
$$

In this section we show that for any k large enough each approximating equation $\left(3.1_{\varepsilon}\right)$ with $\varepsilon>0$ has a solution in W satisfying the initial conditions

$$
\begin{equation*}
\bar{v}(0)=v^{0} . \tag{3.2}
\end{equation*}
$$

3.1. Properties of the operator N_{0}.

Lemma 3.1. The map $N_{0}: E \rightarrow E^{*}$ is continuous, d-monotone and the following inequality holds

$$
\begin{equation*}
\left\|N_{0}(\bar{u})\right\|_{E^{*}} \leq\|\bar{u}\|_{E}^{3} \quad \text { for } \bar{u} \in E . \tag{3.3}
\end{equation*}
$$

By definition [11] the map $N_{0}: E \rightarrow E^{*}$ is called d-monotone, if for any $\bar{u}, \bar{v} \in E$ the following inequality takes place

$$
\left\langle N_{0}(\bar{u})-N_{0}(\bar{v}), \bar{u}-\bar{v}\right\rangle \geq\left(\alpha\left(\|\bar{u}\|_{E}\right)-\alpha\left(\|\bar{v}\|_{E}\right)\right)\left(\|\bar{u}\|_{E}-\|\bar{v}\|_{E}\right)
$$

for some strongly increasing function α on $[0, \infty)$.
Proof. Estimate (3.3) follows from the estimate $\left\|N_{0}(\bar{u})\right\|_{V^{*}} \leq\|\bar{u}\|^{3}$ for $\bar{u} \in V$. To prove the continuity of maps N_{0} it is sufficient to show that the maps $\Phi_{i j}: u \mapsto\|\bar{u}\|_{V} \mathcal{E}_{i j}(u)$ from E in $L_{4 / 3}\left((0, T), L_{2}(\Omega)\right)$ are continuous. The map $\Phi_{i j}$ is continuous as a product of continuous maps

$$
\begin{array}{ll}
\bar{u} \mapsto\|\bar{u}\|^{2} & \text { from } E \text { into } L_{2}((0, T)) \quad \text { and } \\
\bar{u} \mapsto \mathcal{E}_{i j}(\bar{u}) & \text { from } E \text { into } L_{4}\left((0, T), L_{2}(\Omega)\right) .
\end{array}
$$

Hence N_{0} is continuous.

Now let us show d-monotonicity of N_{0}. For $\bar{u}, \bar{v} \in V$ by the Hölder inequality we get

$$
\begin{aligned}
&\left(N_{0}(\bar{u})-N_{0}(\bar{v}), \bar{u}-\bar{v}\right)= \int_{\Omega}\left(\|\bar{u}\|^{2} \mathcal{E}_{i j}(\bar{u})-\|\bar{v}\|^{2} \mathcal{E}_{i j}(\bar{u})\right)\left(\mathcal{E}_{i j}(\bar{u})-\mathcal{E}_{i j}(\bar{v})\right) d x \\
&= \int_{\Omega}\left(\|\bar{u}\|^{2} \mathcal{E}^{2}(\bar{u})+\|\bar{v}\|^{2} \mathcal{E}^{2}(\bar{v})-\|\bar{u}\|^{2} \mathcal{E}_{i j}(\bar{u}) \mathcal{E}_{i j}(\bar{v})\right. \\
&\left.-\|\bar{v}\|^{2} \mathcal{E}_{i j}(\bar{u}) \mathcal{E}_{i j}(\bar{v})\right) d x \\
& \geq\|\bar{u}\|^{4}+\|\bar{v}\|^{4}-\|\bar{u}\|^{3}\|\bar{v}\|-\|\bar{v}\|^{3}\|\bar{u}\| .
\end{aligned}
$$

Hence, for $\bar{u}, \bar{v} \in E$ by the Hölder inequality,

$$
\begin{aligned}
\left\langle N_{0}(\bar{u})\right. & \left.-N_{0}(\bar{v}), \bar{u}-\bar{v}\right\rangle \\
& \geq \int_{0}^{T}\left(\|\bar{u}(t)\|^{4}+\|\bar{v}(t)\|^{4}-\|\bar{u}(t)\|^{3}\|\bar{v}(t)\|-\|\bar{v}(t)\|^{3}\|\bar{u}(t)\|\right) d t \\
& \left.=\|\bar{u}\|_{E}^{4}+\|\bar{v}\|_{E}^{4}-\int_{0}^{T}\|\bar{u}(t)\|^{3} \| \bar{v}(t)\right] d t-\int_{0}^{T}\|\bar{v}(t)\|^{3}\|\bar{u}(t)\| d t \\
& \geq\|\bar{u}\|_{E}^{4}+\|\bar{v}\|_{E}^{4}-\|\bar{u}\|_{E}^{3}\|\bar{v}\|_{E}-\|\bar{v}\|_{E}^{3}\|\bar{u}\|_{E} \\
& =\left(\|\bar{u}\|_{E}^{3}-\|\bar{v}\|_{E}^{3}\right)\left(\|\bar{u}\|_{E}-\|\bar{v}\|_{E}\right) .
\end{aligned}
$$

The inequality

$$
\begin{equation*}
\left\langle N_{0}(\bar{u})-N_{0}(\bar{v}), \bar{u}-\bar{v}\right\rangle \geq\left(\|\bar{u}\|_{E}^{3}-\|\bar{v}\|_{E}^{3}\right)\left(\|\bar{u}\|_{E}-\|\bar{v}\|_{E}\right) \tag{3.4}
\end{equation*}
$$

for $\bar{u}, \bar{v} \in E$ proves d-monotonicity of operator N_{0}.
3.2. The auxiliary problem. Specify the functions $s \in C([0, T], S), \bar{w} \in$ $L_{2}\left(Q_{T}\right)^{n}$ and consider the auxiliary problem

$$
\begin{gather*}
c \rho \bar{v}^{\prime}+\rho k \bar{v}+\bar{N}_{1}(\bar{v})+\bar{N}_{2}(\bar{v}, s)+\varepsilon N_{0}(\bar{v})-\bar{C}(\bar{w}, \bar{v})=\bar{g}, \\
\bar{v}(0)=v^{0}, \tag{3.5}
\end{gather*}
$$

where $\bar{g} \in E^{*}, v^{0} \in H, \varepsilon>0$. Denote by V_{k} the map

$$
\begin{gathered}
V_{k}: E \times C([0, T], S) \times L_{2}\left(Q_{T}\right)^{n} \rightarrow E^{*}, \\
V_{k}(\bar{v}, s, w)=\rho k \bar{v}+\bar{N}_{1}(\bar{v})+\bar{N}_{2}(\bar{v}, s)+\varepsilon N_{0}(\bar{v})-\bar{C}(\bar{w}, \bar{v}) .
\end{gathered}
$$

Then equation (3.5) is equivalent to

$$
\begin{equation*}
\rho \bar{v}^{\prime}+V_{k}(\bar{v}, s, \bar{w})=\bar{g} . \tag{3.6}
\end{equation*}
$$

Lemma 3.2. If conditions (1.9)-(1.17) are fulfilled, the map V_{k} is continuous and bounded. Besides, the operator $V_{k}(\cdot, s, \bar{w}): E \rightarrow E^{*}$ is d-monotone and coercive. Problem (3.6), (3.2) has a unique solution \bar{v} in W, and the correspondence $v^{0} \mapsto \bar{v}$ is continuous as a map from H into $C([0, T], H)$.

Proof. The map V_{k} is continuous and bounded since all the maps, whose sum forms V_{k}, are continuous and bounded. Now show d-monotonicity of operator $V_{k}(\cdot, s, \bar{w})$. Let \bar{u}, \bar{v} be arbitrary functions from E. Then

$$
\begin{align*}
& \left\langle V_{k}(\bar{u}, s, \bar{w})-V_{k}(\bar{v}, s, \bar{w}), \bar{u}-\bar{v}\right\rangle \tag{3.7}\\
& \quad= \\
& \quad \rho k \int_{0}^{T}\|\bar{u}(t)-\bar{v}(t)\|_{L_{2}(\Omega)^{n}}^{2} d t+\left\langle\bar{N}_{1}(\bar{u})-\bar{N}_{1}(\bar{v}), \bar{u}-\bar{v}\right\rangle \\
& \quad+\left\langle\bar{N}_{2}(\bar{u}, s)-\bar{N}_{2}(\bar{v}, s), \bar{u}-\bar{v}\right\rangle+\varepsilon\left\langle\bar{N}_{0}(\bar{u})-\bar{N}_{0}(\bar{v}), \bar{u}-\bar{v}\right\rangle \\
& \quad-\langle\bar{C}(\bar{u}, \bar{w})-\bar{C}(\bar{v}, \bar{w}), \bar{u}-\bar{v}\rangle .
\end{align*}
$$

By estimate (2.2)

$$
\left\langle\bar{N}_{2}(\bar{u}, s)-\bar{N}_{2}(\bar{v}, s), \bar{u}-\bar{v}\right\rangle \geq 2 a_{3}\|\bar{u}-\bar{v}\|_{E_{2}}^{2}
$$

and from estimate (2.6) it follows that

$$
|\langle\bar{C}(\bar{w}, \bar{u})-\bar{C}(\bar{w}, \bar{v}), \bar{u}-\bar{v}\rangle| \leq \frac{C}{\sqrt{2 k}}\|\bar{u}-\bar{v}\|_{E_{2}}^{2}
$$

Therefore, choosing k such that $C / \sqrt{2 k}<a_{3}$, we obtain
(3.8) $\left\langle\bar{N}_{2}(\bar{u}, s)-\overline{N_{2}}(\bar{v}, s), \bar{u}-\bar{v}\right\rangle-\langle\bar{C}(\bar{w}, \bar{u})-\bar{C}(\bar{w}, \bar{v}), \bar{u}-\bar{v}\rangle \geq a_{3}\|\bar{u}-\bar{v}\|_{E_{2}}^{2}$.

Note that the choice of k does not depend on s. Nonnegativity of the second and fourth summands in (3.7) follows from monotonicity of \bar{N}_{1} and N_{0}. Thus we obtain the following estimate

$$
\left\langle V_{k}(\bar{u}, s, \bar{w})-V_{k}(\bar{v}, s, \bar{w}), \bar{u}-\bar{v}\right\rangle \geq a_{3}\|\bar{u}-\bar{v}\|_{E_{2}}^{2} .
$$

Besides, from estimate (3.4), it follows that

$$
\begin{equation*}
\left\langle V_{k}(\bar{u}, s, \bar{w})-V_{k}(\bar{v}, s, \bar{w}), \bar{u}-\bar{v}\right\rangle \geq \varepsilon\left(\|\bar{u}\|_{E}^{3}-\|\bar{v}\|_{E}^{3}\right)\left(\|\bar{u}\|_{E}-\|\bar{v}\|_{E}\right) \tag{3.9}
\end{equation*}
$$

and that the operator $V_{k}(\cdot, s, \bar{w})$ is d-monotone. To prove coercivity of $V_{k}(\cdot, s, \bar{w})$ notice that $N_{0}(0)=\bar{N}_{1}(0)=\bar{N}_{2}(0, s)=0$. Repeating the above estimates for $\bar{u}=0$ and using estimates (2.1), (2.3), (2.6), (3.3) we obtain the inequality

$$
\left\langle V_{k}(\bar{v}, s, \bar{w}), \bar{v}\right\rangle \geq C_{1}\|\bar{v}\|_{E}^{4}-C_{0}-C\left(1+\|\bar{v}\|_{E_{2}}\right)\|\bar{v}\|_{E_{2}}
$$

Thus the coercivity inequality takes place

$$
\begin{equation*}
\left\langle V_{k}(\bar{v}, s, \bar{w}), \bar{v}\right\rangle \geq C_{1}\|\bar{v}\|_{E}^{4}-C\left(1+\|\bar{v}\|_{E}+\|\bar{v}\|_{E}^{2}\right) \tag{3.10}
\end{equation*}
$$

with some constant C.

The existence and uniqueness statement for the solution of problem (3.6), (3.2) and the continuous dependence of this solution on the initial conditions v^{0} follow from Theorem 1.1 ([11, p. 239]).

Let us introduce the map

$$
\begin{gathered}
L: W \times C([0, T], S) \times L_{2}\left(Q_{T}\right)^{n} \rightarrow E^{*} \times H, \\
L(\bar{u}, s, \bar{w})=\left(\rho \bar{u}^{\prime}+V_{k}(\bar{u}, s, \bar{w}), \bar{u}(0)\right) .
\end{gathered}
$$

Problem (3.6), (3.2) is equivalent to the equation

$$
\begin{equation*}
L(\bar{v}, s, \bar{w})=\left(\bar{g}, v^{0}\right) \tag{3.11}
\end{equation*}
$$

By Lemma 3.2 the last equation has a unique solution \bar{v} for fixed $s, \bar{w}, \bar{g}, v^{0}$. This means that the map L is invertible in variable \bar{v} for fixed s, w. Now we can formulate a statement describing properties of the inverse map.

Theorem 3.1. If conditions (1.9)-(1.17) are fulfilled, then for any functions $s \in C([0, T], S), \bar{w} \in L_{2}\left(Q_{T}\right)^{n}$ the map

$$
L(\cdot, s, \bar{w}): W \rightarrow E^{*} \times H
$$

is invertible. The inverse map

$$
\left(\bar{g}, v^{0}\right) \mapsto L^{-1}\left(\bar{g}, v^{0}, s, \bar{w}\right)
$$

is continuous as a map from $E^{*} \times H \times C([0, T], S) \times L_{2}\left(Q_{T}\right)^{n}$ into W.
Proof. As it is mentioned above, the existence of inverse map L^{-1} follows from the assertion of Lemma 3.2. We need to show continuity of L^{-1}. With this aim we choose arbitrary sequences

$$
\begin{aligned}
& \left\{\bar{g}_{l}\right\}: \bar{g}_{l} \in E^{*}, \bar{g}_{l} \rightarrow \bar{g}_{0} \quad \text { strongly in } E^{*}, \\
& \left\{v^{l}\right\}: v^{l} \in H, v^{l} \rightarrow v^{0} \quad \text { strongly in } H, \\
& \left\{s_{l}\right\}: s_{l} \in C([0, T], S), s_{l} \rightarrow s_{0} \quad \text { strongly in } C([0, T], S), \\
& \left\{\bar{w}_{l}\right\}: \bar{w}_{l} \in L_{2}\left(Q_{T}\right)^{n}, \bar{w}_{l} \rightarrow \bar{w}_{0} \quad \text { strongly in } L_{2}\left(Q_{T}\right)^{n} .
\end{aligned}
$$

Denote by \bar{v}_{l} a solution of equation

$$
\begin{equation*}
L\left(\bar{v}, s_{l}, \bar{w}_{l}\right)=\left(\bar{g}_{l}, v^{l}\right) \tag{l}
\end{equation*}
$$

Then $\bar{v}_{l}=L^{-1}\left(\bar{g}_{l}, v^{l}, s_{l}, \bar{w}_{l}\right)$. It is necessary to prove that $\left\{\bar{v}_{l}\right\}$ converges in W to a solution of equation $\left(3.11_{0}\right)$.

Show that the sequence $\left\{\bar{v}_{l}\right\}$ is bounded in the norm of space W. By definition \bar{v}_{l} is a solution of equation $\left(3.11_{l}\right)$, therefore

$$
\begin{equation*}
\rho \bar{v}_{l}^{\prime}+V_{k}\left(\bar{v}_{l}, s_{l}, \bar{w}_{l}\right)=\bar{g}_{l} \tag{3.12}
\end{equation*}
$$

Functionals from the equality can be applied to the function \bar{v}_{l}. We obtain

$$
\frac{1}{2} \rho\left\|\bar{v}_{l}(T)\right\|_{H}^{2}-\frac{1}{2} \rho\left\|\bar{v}_{l}(0)\right\|_{H}^{2}+\left\langle V_{k}\left(\bar{v}_{l}, s_{l}, \bar{w}_{l}\right), \bar{v}_{l}\right\rangle=\left\langle\bar{g}_{l}, \bar{v}_{l}\right\rangle .
$$

From estimate (3.10) and the equality $\bar{v}_{l}(0)=v^{l}$ it follows that

$$
\frac{1}{2} \rho\left\|\bar{v}_{l}(T)\right\|_{H}^{2}+C_{1}\left\|\bar{v}_{l}\right\|_{E}^{4} \leq \frac{1}{2} \rho\left\|v^{l}\right\|_{H}^{2}+C\left(1+\left\|\bar{v}_{l}\right\|_{E_{2}}+\left\|\bar{v}_{l}\right\|_{E_{2}}^{2}\right)+\left\|\bar{g}_{l}\right\|_{E^{*}}\left\|\bar{v}_{l}\right\|_{E}
$$

As $\left\|\bar{g}_{l}\right\|_{E^{*}},\left\|v^{l}\right\|_{H}$ are jointly bounded, we get in a routine way that

$$
\begin{equation*}
\left\|\bar{v}_{l}\right\|_{E} \leq C \tag{3.13}
\end{equation*}
$$

with a constant C, independent of l. From equality (3.12) it follows that

$$
\bar{v}_{l}^{\prime}=\frac{1}{\rho}\left(\bar{g}_{l}-V_{k}\left(\bar{v}_{l}, s_{l}, \bar{w}_{l}\right)\right),
$$

therefore the boundedness of $\left\|\bar{v}_{l}^{\prime}\right\|_{E^{*}}$ follows from estimate (3.13) and the boundedness of operator V_{k}. Hence, the sequence $\left\{\bar{v}_{l}\right\}$ is bounded in the norm of space W. Furthermore, without loss of generality we shall assume, that

$$
\bar{v}_{l} \rightharpoonup \bar{v}_{0} \quad \text { weakly in } E, \quad \bar{v}_{l}^{\prime} \rightharpoonup \bar{v}_{0}^{\prime} \quad \text { weakly in } E^{*} .
$$

Denote by \bar{g} the function defined by the equality

$$
\rho \bar{v}_{l}^{\prime}+V_{k}\left(\bar{v}_{0}, s_{0}, \bar{w}_{0}\right)=\bar{g} .
$$

Subtract this equality from (3.12); apply the functionals from this difference to the function $\bar{v}_{l}-\bar{v}_{0}$:

$$
\rho\left\langle\bar{v}_{l}^{\prime}-\bar{v}_{0}^{\prime}, \bar{v}_{l}-\bar{v}_{0}\right\rangle+\left\langle V_{k}\left(\bar{v}_{l}, s_{l}, \bar{w}_{l}\right)-V_{k}\left(\bar{v}_{0}, s_{0}, \bar{w}_{0}\right), \bar{v}_{0}-\bar{v}_{0}\right\rangle=\left\langle\bar{g}_{l}-\bar{g}, \bar{v}_{l}-\bar{v}_{0}\right\rangle .
$$

Transform the equality to the form:

$$
\begin{gathered}
\frac{1}{2} \rho\left\|\bar{v}_{l}(T)-\bar{v}_{0}(T)\right\|_{H}^{2}-\frac{1}{2} \rho\left\|\bar{v}_{l}(0)-\bar{v}_{0}(0)\right\|_{H}^{2}+\left\langle V_{k}\left(\bar{v}_{l}, s_{l}, \bar{w}_{l}\right)-V_{k}\left(\bar{v}_{0}, s_{l}, \bar{w}_{l}\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle \\
=\left\langle V_{k}\left(\bar{v}_{0}, s_{0}, \bar{w}_{0}\right)-V_{k}\left(\bar{v}_{0}, s_{l}, \bar{w}_{l}\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle+\left\langle\bar{g}_{l}-\bar{g}, \bar{v}_{l}-\bar{v}_{0}\right\rangle
\end{gathered}
$$

Using inequality (3.9) we get

$$
\begin{aligned}
\frac{1}{2} \rho\left\|\bar{v}_{l}(T)-\bar{v}_{0}(T)\right\|_{H}^{2}+ & \varepsilon\left(\left\|\bar{v}_{l}\right\|_{E}^{3}-\left\|\bar{v}_{0}\right\|_{E}^{3}\right)\left(\left\|\bar{v}_{l}\right\|_{E}-\left\|\bar{v}_{0}\right\|_{E}\right) \\
\leq & \frac{1}{2} \rho\left\|\bar{v}_{l}(0)-\bar{v}_{0}(0)\right\|_{H}^{2}+\left\langle V_{k}\left(\bar{v}_{0}, s_{0}, \bar{w}_{0}\right)\right. \\
& \left.\quad-V_{k}\left(\bar{v}_{0}, s_{l}, \bar{w}_{l}\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle+\left\langle\bar{g}_{l}-\bar{g}, \bar{v}_{l}-\bar{v}_{0}\right\rangle .
\end{aligned}
$$

Show that each term in the right-hand side of the inequality tends to zero. This implies $\left\|\bar{v}_{l}\right\|_{E} \rightarrow\left\|\bar{v}_{0}\right\|_{E}$ as $l \rightarrow \infty$, hence $\bar{v}_{l} \rightarrow \bar{v}_{0}$ strongly in E.

Consider $\left\|\bar{v}_{l}(0)-\bar{v}_{0}(0)\right\|_{H}$. Let $\chi(t) \in C^{1}([0, T])$ and $h \in V$. From the formula of integration by parts we get

$$
\begin{aligned}
\left\langle\left(\bar{v}_{l}-\bar{v}_{0}\right)^{\prime}, \chi(t) h\right\rangle+\left\langle\bar{v}_{l}-\right. & \left.\bar{v}_{0}, \chi^{\prime}(t) h\right\rangle \\
& =\left(\bar{v}_{l}(T)-\bar{v}_{0}(T), \chi(T) h\right)-\left(\bar{v}_{l}(0)-\bar{v}_{0}(0), \chi(0) h\right)
\end{aligned}
$$

Each term in left-hand side of the equality tends to zero: the first one due to the assumption that $\bar{v}_{l}^{\prime} \rightharpoonup \bar{v}_{0}^{\prime}$ weakly in E^{*}, the second one due to the assumption, that $\bar{v}_{l} \rightharpoonup \bar{v}_{0}$ weakly in E. Choosing a function $\chi(t)$ such that $\chi(T)=0$ and $\chi(0)=1$, we get: $\left(\bar{v}_{l}(0)-\bar{v}_{0}(0), h\right) \rightarrow 0$ as $l \rightarrow \infty$. This means that $\bar{v}_{l}(0) \rightharpoonup \bar{v}_{0}(0)$ weakly in V^{*}. But $\bar{v}_{l}(0)=\bar{v}^{l}$, and $\bar{v}^{l} \rightarrow v^{0}$. Hence, $\bar{v}_{0}(0)=v^{0}$ and $\bar{v}_{l}(0) \rightarrow \bar{v}_{0}(0)$ strongly in V^{*} and in H as $l \rightarrow \infty$.

As the map V_{k} is continuous, $V_{k}\left(\bar{v}_{0}, s_{l}, \bar{w}_{l}\right) \rightarrow V_{k}\left(\bar{v}_{0}, s_{0}, \bar{w}_{0}\right)$ strongly in E^{*}. From this fact and from weak convergence $\bar{v}_{l} \rightharpoonup \bar{v}_{0}$ in E it follows that

$$
\left\langle V_{k}\left(\bar{v}_{0}, s_{0}, \bar{w}_{0}\right)-V_{k}\left(\bar{v}_{0}, s_{l}, \bar{w}_{l}\right), \bar{v}_{l}-v_{0}\right\rangle \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

Similarly, the strong convergence $\bar{g}_{l} \rightarrow \bar{g}_{0}$ in E^{*} and weak convergence $\bar{v}_{l} \rightharpoonup$ \bar{v}_{0} in E provide convergence to zero of the expression $\left\langle\bar{g}_{l}-\bar{g}, \bar{v}_{l}-\bar{v}_{0}\right\rangle$. So, it is sufficient to present this expression in the form:

$$
\left\langle\bar{g}_{l}-\bar{g}, \bar{v}_{l}-\bar{v}_{0}\right\rangle=\left\langle\bar{g}_{l}-\bar{g}_{0}, \bar{v}_{l}-\bar{v}_{0}\right\rangle+\left\langle\bar{g}_{0}-\bar{g}, \bar{v}_{l}-\bar{v}_{0}\right\rangle .
$$

Thus, it is proved that $\bar{v}_{l} \rightarrow \bar{v}_{0}$ strongly in E. To finish the proof of the theorem, it is necessary to show that $\bar{v}_{l}^{\prime} \rightarrow \bar{v}_{0}^{\prime}$ strongly in E^{*}.

Due to the continuity of map V_{k} the right-hand sides of equalities

$$
\bar{v}_{l}^{\prime}=\frac{1}{\rho}\left(\bar{g}_{l}-V_{k}\left(\bar{v}_{l}, s_{l}, \bar{w}_{l}\right)\right)
$$

converge to $\left(\bar{g}_{0}-V_{k}\left(\bar{v}_{0}, s_{0}, \bar{w}_{0}\right)\right) / \rho$ strongly in E^{*}. Hence, the left-hand sides of equalities \bar{v}_{l}^{\prime} tend strongly in E^{*} too, and their limit is equal to the weak limit \bar{v}_{0}^{\prime}.
3.3. Solvability of approximating equations. Equation (3.1 $\varepsilon_{\varepsilon}$ can be written in form

$$
\begin{equation*}
\rho \bar{v}^{\prime}+V_{k}\left(\bar{v}, U_{A}\left(e^{k t} \bar{v}\right), \bar{v}\right)+\bar{K}(\bar{v})=\bar{F}+\bar{f} . \tag{3.14}
\end{equation*}
$$

Consider the family of operator equations

$$
\rho \bar{v}^{\prime}+V_{k}\left(\bar{v}, \eta U_{A}\left(e^{k t} \bar{v}\right), \eta \bar{v}\right)+\eta \bar{K}(\bar{v})=\bar{F}+\bar{f}, \quad \eta \in[0,1] .
$$

For $\eta=1$ the equation of the family coincides with (3.14).
Let us show that the set of solutions of the family of problems $\left(3.14_{\eta}\right),(3.2)$ is bounded if k is large enough.

Lemma 3.3. Let conditions (1.9)-(1.17) be fulfilled and k be large enough. Then there exists a constant C, such that each solution \bar{v} of problem (3.14 $)$, (3.2) satisfies the estimate

$$
\begin{equation*}
\|\bar{v}\|_{W} \leq C \tag{3.15}
\end{equation*}
$$

and the constant C does not depend on $\varepsilon \in[0,1]$ and $\eta \in[0,1]$.
Proof. Let \bar{v} be a solution of equation $\left(3.14_{\eta}\right)$ for some $\eta \in[0,1]$. Consider actions of functionals from equality $\left(3.14_{\eta}\right)$ on \bar{v} :

$$
\rho\left\langle\bar{v}^{\prime}, \bar{v}\right\rangle+\left\langle V_{k}\left(\bar{v}, \eta U_{A}\left(e^{k t} \bar{v}\right), \eta \bar{v}\right), \bar{v}\right\rangle+\eta\langle\bar{K}(\bar{v}), \bar{v}\rangle=\langle\bar{F}+\bar{f}, \bar{v}\rangle .
$$

From this and from estimate (3.10) we get:

$$
\begin{aligned}
\frac{1}{2} \rho\|\bar{v}(T)\|_{H}^{2}-\frac{1}{2} \rho\|\bar{v}(0)\|_{H}^{2}+C_{1}\|\bar{v}\|_{E}^{4}-C(1 & \left.+\|\bar{v}\|_{E_{2}}+\|\bar{v}\|_{E_{2}}^{2}\right) \\
& \leq\|\bar{F}+\bar{f}\|_{E^{*}}\|\bar{v}\|_{E}-\eta\langle\bar{K}(\bar{v}), \bar{v}\rangle
\end{aligned}
$$

Due to estimate (2.4) and the condition $\bar{v}(0)=v^{0}$ we have:

$$
\begin{aligned}
\frac{1}{2} \rho\|\bar{v}(T)\|_{H}^{2}+C_{1}\|\bar{v}\|_{E}^{4} \leq & \frac{1}{2} \rho\left\|v^{0}\right\|_{H}^{2}+C_{0}+C\left(1+\|\bar{v}\|_{E_{2}}\right)\|\bar{v}\|_{E_{2}} \\
& +\|\bar{F}+\bar{f}\|_{E^{*}}\|\bar{v}\|_{E}+\eta C_{2}\|\bar{v}\|_{E_{2}}\|\bar{v}\|_{L_{4}\left(Q_{T}\right)^{n}}^{2}
\end{aligned}
$$

As embeddings $E \subset E_{2} \subset L_{2}\left(Q_{T}\right)^{n}, E \subset L_{4}\left(Q_{T}\right)^{n}$ are continuous, transform the inequality to the form:

$$
\frac{1}{2} \rho\|\bar{v}(t)\|_{H}^{2}+C_{1}\|\bar{v}\|_{E}^{4} \leq \frac{1}{2} \rho\left\|v^{0}\right\|_{H}^{2}+C\left(1+\|\bar{v}\|_{E}+\|\bar{v}\|_{E}^{2}+\|\bar{v}\|_{E}^{3}\right)
$$

Thus it is easy to get the following inequality $\|\bar{v}\|_{E} \leq C$ with constant C depending on k and $\|\bar{F}+\bar{f}\|_{E^{*}}$ and independent of η and ε.

The estimate for $\left\|\bar{v}^{\prime}\right\|_{E^{*}}$ follows from the equality

$$
\bar{v}^{\prime}=\frac{1}{\rho}\left(\bar{F}+\bar{f}-V_{k}\left(\bar{v}, \eta U_{A}\left(e^{k t} \bar{v}\right), \eta \bar{v}\right)-\eta \bar{K}(\bar{v})\right)
$$

and boundedness of maps V_{k}, U_{A}, \bar{K} in E.
Now let us formulate the main statement of this section.
THEOREM 3.2. Let conditions (1.9)-(1.17) be fulfilled and k be large enough. Then for any functions $\bar{F}, \bar{f} \in E^{*}, v^{0} \in H$ and arbitrary $\varepsilon \in(0,1]$ the problem $\left(3.1_{\varepsilon}\right)$, (3.2) has at least one solution $\bar{v} \in W$, and this solution satisfies the estimate (3.15).

Proof. Replace the investigation of problem $\left(3.1_{\varepsilon}\right)$, (3.2) by that of equivalent operator equation

$$
L\left(\bar{v}, U_{A}\left(e^{k t} \bar{v}\right), \bar{v}\right)=\left(\bar{F}+\bar{f}-\bar{K}(\bar{v}), v^{0}\right)
$$

Apply the map, inverse to L, to both parts of the equality:

$$
\begin{equation*}
\bar{v}=L^{-1}\left(\bar{F}+\bar{f}-\bar{K}(v), v^{0}, U_{A}\left(e^{k t} \bar{v}\right), \bar{v}\right) \tag{3.16}
\end{equation*}
$$

Note that due to Lemma 2.4 the map $\bar{v} \mapsto \bar{F}+\bar{f}-\bar{K}(\bar{v})$ from W into E^{*} is completely continuous. Due to Lemma 2.3 the map $\bar{U}_{A}: \bar{v} \mapsto U_{A}\left(e^{k t} \bar{v}\right)$ from W into $C([0, T], S)$ is completely continuous. Besides, the embedding $W \subset L_{2}\left(Q_{T}\right)^{n}$ is completely continuous. Then the map

$$
G_{1}: W \rightarrow W, \quad G_{1}(\bar{v})=L^{-1}\left(\bar{F}+\bar{f}-\bar{K}(v), v^{0}, U_{A}\left(e^{k t} \bar{v}\right), \bar{v}\right)
$$

is completely continuous as the superposition of above-mentioned completely continuous maps and continuous map L^{-1}.

Represent equation (3.16) in the form

$$
\begin{equation*}
\bar{v}-G_{1}(\bar{v})=0 \tag{3.17}
\end{equation*}
$$

To investigate its solvability we apply the Leray-Schauder degree theory. Consider the auxiliary family of problems $\left(3.14_{\eta}\right),(3.2)$ and the family of equivalent operator equations

$$
L\left(\bar{v}, \eta U_{A}\left(e^{k t} \bar{v}\right), \eta \bar{v}\right)=\left(\bar{F}+\bar{f}-\eta \bar{K}(v), v^{0}\right), \quad \eta \in[0,1] .
$$

Transform it to the form

$$
\bar{v}=L^{-1}\left(\bar{F}+\bar{f}-\eta \bar{K}(v), v^{0}, \eta U_{A}\left(e^{k t} \bar{v}\right), \eta \bar{v}\right), \quad \eta \in[0,1] .
$$

This family generates the completely continuous homotopy

$$
G:[0,1] \times W \rightarrow W, \quad G(\eta, \bar{v})=L^{-1}\left(\bar{F}+\bar{f}-\eta \bar{K}(v), v^{0}, \eta U_{A}\left(e^{k t} \bar{v}\right), \eta \bar{v}\right)
$$

and can be written in the form

$$
\bar{v}-G(\eta, \bar{v})=0, \quad \eta \in[0,1] .
$$

Due to Lemma 3.3 all solutions of equations of the family satisfy a priori estimate (3.15). Therefore all equations of the family have no solutions on the boundary of the ball $B_{C+1} \subset W$ of radius $C+1$ with centre at zero. Hence, for any $\eta \in[0,1]$, the degree of map $\operatorname{deg}\left(I-G(\eta, \cdot), \bar{B}_{C+1}, 0\right)$ is well-posed.

As the degree of map is constant under completely continuous homotopies,

$$
\operatorname{deg}\left(I-G(1, \cdot), \bar{B}_{C+1}, 0\right)=\operatorname{deg}\left(I-G(0, \cdot), \bar{B}_{C+1}, 0\right)
$$

Note, that $G(0, \bar{v})=L^{-1}\left(\bar{F}+\bar{f}, v^{0}, 0,0\right)$ does not depend on \bar{v}. Denote this function by \bar{u}_{0}. Then

$$
\operatorname{deg}\left(I-G(0, \cdot), \bar{B}_{C+1}, 0\right)=\operatorname{deg}\left(I-\bar{u}_{0}, \bar{B}_{C+1}, 0\right)=\operatorname{deg}\left(I, \bar{B}_{C+1}, \bar{u}_{0}\right)
$$

As \bar{u}_{0} is a solution of $\left(3.17_{0}\right), \bar{u}_{0}$ satisfies a priori estimate (3.15) and so $\bar{u}_{0} \in$ B_{C+1}. Therefore $\operatorname{deg}\left(I, \bar{B}_{C+1}, \bar{u}_{0}\right)=1$ and

$$
\operatorname{deg}\left(I-\Phi(1, \cdot), \bar{B}_{C+1}, 0\right)=1
$$

Since this degree is not zero, there exists a solution of operator equation $\left(3.17_{1}\right)$ or (3.17), and so there exists a solution of problem $\left(3.1_{\varepsilon}\right),(3.2)$ for any $\varepsilon \in(0,1]$.

4. Of existence of a weak solution of the evolution problem

This section contains the main result of the paper, namely, the statement of existence of solution of the problem (1.24)-(1.25). This solution is a limit of solutions of approximating equations $\left(3.1_{\varepsilon}\right)$ as $\varepsilon \rightarrow 0$.

Theorem 4.1. Let conditions (1.9)-(1.17) be fulfilled, then for k large enough problem (1.24), (1.25) has at least one solution in W.

Proof. Let ε_{l} be any sequence of numbers $\varepsilon_{l} \in(0,1]$ tending to zero. Denote by \bar{v}_{l} the solution of approximating equation (3.1 $\varepsilon_{\varepsilon_{l}}$) with initial conditions (3.2). Due to Lemma 3.3 the set of solutions $\left\{\bar{v}_{l}\right\}$ is bounded. Therefore without loss of generality we may suppose that

$$
\bar{v}_{l} \rightharpoonup \bar{v}_{0} \quad \text { weakly in } E, \quad \bar{v}_{l}^{\prime} \rightharpoonup \bar{v}_{0}^{\prime} \quad \text { weakly in } E^{*} .
$$

Besides, suppose that

$$
\begin{aligned}
& \bar{v}_{l} \rightarrow \bar{v}_{0} \quad \text { strongly in } L_{4}\left(Q_{T}\right)^{n} \\
& \bar{K}\left(\bar{v}_{l}\right) \rightarrow y_{0} \quad \text { strongly in } E^{*} \\
& U_{A}\left(e^{k t} \bar{v}_{l}\right) \rightarrow y_{1} \quad \text { strongly in } C([0, T], S),
\end{aligned}
$$

since the embedding $W \subset L_{4}\left(Q_{T}\right)^{n}$ and the maps \bar{K}, U_{A} are completely continuous. Repeating the arguments of the proof of Theorem 3.1 we get that $\bar{v}_{0}(0)=v^{0}$.

Denote by \bar{g} the function defined by the equality:

$$
\rho \bar{v}_{0}^{\prime}+\rho k \bar{v}_{0}+\bar{N}_{1}\left(\bar{v}_{0}\right)+\bar{N}_{2}\left(\bar{v}_{0}, U_{A}\left(e^{k t} \bar{v}_{0}\right)\right)-\bar{C}\left(\bar{v}_{0}, \bar{v}_{0}\right)+\bar{K}\left(\bar{v}_{0}\right)=\bar{g} .
$$

Subtract this equality from the equality for \bar{v}_{l} :

$$
\rho \bar{v}_{l}^{\prime}+\rho k \bar{v}_{l}+\bar{N}_{1}\left(\bar{v}_{l}\right)+\bar{N}_{2}\left(\bar{v}_{l}, U_{A}\left(e^{k t} \bar{v}_{l}\right)\right)-\bar{C}\left(\bar{v}_{l}, \bar{v}_{l}\right)+\bar{K}\left(\bar{v}_{l}\right)+\varepsilon_{l} N_{0}\left(\bar{v}_{l}\right)=\bar{F}+\bar{f}
$$

then we get

$$
\begin{aligned}
\rho\left(\bar{v}_{l}^{\prime}-\bar{v}_{0}^{\prime}\right) & +\rho k\left(\bar{v}_{l}-\bar{v}_{0}\right)+\bar{N}_{1}\left(\bar{v}_{l}\right)-\bar{N}_{1}\left(\bar{v}_{0}\right)+\bar{K}\left(\bar{v}_{l}\right)-\bar{K}\left(\bar{v}_{0}\right)+\varepsilon_{l} N_{0}\left(\bar{v}_{l}\right) \\
& +\bar{N}_{2}\left(\bar{v}_{l}, U_{A}\left(e^{k t} \bar{v}_{l}\right)\right)-\bar{N}_{2}\left(\bar{v}_{0}, U_{A}\left(e^{k t} \bar{v}_{0}\right)\right)-\bar{C}\left(\bar{v}_{l}, \bar{v}_{l}\right)+\bar{C}\left(\bar{v}_{0}, \bar{v}_{0}\right) \\
= & \bar{F}+\bar{g} .
\end{aligned}
$$

Consider the action of obtained functionals on the function $\bar{v}_{l}-\bar{v}_{0}$:

$$
\begin{aligned}
\rho\left\langle\bar{v}_{l}^{\prime}-\bar{v}_{0}^{\prime}, \bar{v}_{l}-\bar{v}_{0}\right\rangle & +\rho k\left\langle\bar{v}_{l}-\bar{v}_{0}, \bar{v}_{l}-\bar{v}_{0}\right\rangle+\left\langle\bar{N}_{1}\left(\bar{v}_{l}\right)-\bar{N}_{1}\left(\bar{v}_{0}\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle \\
& +\left\langle\bar{N}_{2}\left(\bar{v}_{l}, U_{A}\left(e^{k t} \bar{v}_{l}\right)\right)-\bar{N}_{2}\left(\bar{v}_{0}, U_{A}\left(e^{k t} \bar{v}_{0}\right)\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle \\
& -\left\langle\bar{C}\left(\bar{v}_{l}, \bar{v}_{l}\right)-\bar{C}\left(\bar{v}_{0}, \bar{v}_{0}\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle+\left\langle\bar{K}\left(\bar{v}_{l}\right)-\bar{K}\left(\bar{v}_{0}\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle \\
& +\varepsilon_{l}\left\langle N_{0}\left(\bar{v}_{l}\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle=\left\langle\bar{F}+\bar{f}-g, \bar{v}_{l}-\bar{v}_{0}\right\rangle .
\end{aligned}
$$

Transform the equality as follows:

$$
\begin{align*}
\frac{1}{2} \rho \|\left(\bar{v}_{l}\right. & \left.-\bar{v}_{0}\right)(T)\left\|_{H}^{2}+\rho k\right\| \bar{v}_{l}-\bar{v}_{0} \|_{H}^{2}+\left\langle\bar{N}_{1}\left(\bar{v}_{l}\right)-\bar{N}_{1}\left(\bar{v}_{0}\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle \tag{4.1}\\
& +\left\langle\bar{N}_{2}\left(\bar{v}_{l}, U_{A}\left(e^{k t} \bar{v}_{l}\right)\right)-\bar{N}_{2}\left(\bar{v}_{0}, U_{A}\left(e^{k t} \bar{v}_{l}\right)\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle \\
& -\left\langle\bar{C}\left(\bar{v}_{l}, \bar{v}_{l}\right)-\bar{C}\left(\bar{v}_{l}, \bar{v}_{0}\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle=\left\langle\bar{F}+\bar{f}-g, \bar{v}_{l}-\bar{v}_{0}\right\rangle \\
& +\left\langle\bar{K}\left(\bar{v}_{0}\right)-\bar{K}\left(\bar{v}_{l}\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle+\varepsilon_{l}\left\langle\bar{N}_{0}\left(\bar{v}_{l}\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle \\
& +\left\langle\bar{N}_{2}\left(\bar{v}_{0}, U_{A}\left(e^{k t} \bar{v}_{0}\right)\right)-\bar{N}_{2}\left(\bar{v}_{0}, U_{A}\left(e^{k t} \bar{v}_{l}\right)\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle \\
& +\left\langle\bar{C}\left(\bar{v}_{l}, \bar{v}_{0}\right)-\bar{C}\left(\bar{v}_{0}, \bar{v}_{0}\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle .
\end{align*}
$$

Estimate the left-hand side of the equality. By Lemma 2.1 the map \bar{N}_{1} is monotone, therefore the third summand is nonnegative. Due to estimate (3.8)

$$
\begin{aligned}
\left\langle\bar{N}_{2}\left(\bar{v}_{l}, U_{A}\left(e^{k t} \bar{v}_{l}\right)\right)-\bar{N}_{2}(\right. & \bar{v}_{0}, \\
& \left.\left.U_{A}\left(e^{k t} \bar{v}_{l}\right)\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle \\
& \quad-\left\langle\bar{C}\left(\bar{v}_{l}, \bar{v}_{l}\right)-\bar{C}\left(\bar{v}_{l}, \bar{v}_{0}\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle \geq a_{3}\left\|\bar{v}_{l}-\bar{v}_{0}\right\|_{E_{2}}^{2}
\end{aligned}
$$

under the condition $C / \sqrt{2 k}<a_{3}$ for C from estimate (2.6). Thus the left-hand side of (4.1) is not less than $a_{3}\left\|\bar{v}_{l}-\bar{v}_{0}\right\|_{E_{2}}^{2}$.

Show that each term in the right-hand side of (4.1) converges to zero as $l \rightarrow \infty$. This will imply that $\bar{v}_{l} \rightarrow \bar{v}_{0}$ strongly in E_{2}.

The first term converges to zero by definition of weak convergence $\bar{v}_{l} \rightharpoonup \bar{v}_{0}$ in E. Rewrite the second one as follows

$$
\left\langle\bar{K}\left(\bar{v}_{0}\right)-\bar{K}\left(\bar{v}_{l}\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle=\left\langle y_{0}-\bar{K}\left(\bar{v}_{l}\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle+\left\langle\bar{K}\left(\bar{v}_{0}\right)-y_{0}, \bar{v}_{l}-\bar{v}_{0}\right\rangle .
$$

The convergence to zero of each obtained term is provided by the assumptions that $\bar{K}\left(\bar{v}_{l}\right) \rightarrow y_{0}$ strongly in E^{*} and $\bar{v}_{l} \rightharpoonup \bar{v}_{0}$ weakly in E.

In the third term in the right-hand side of (4.1) the factors $\left\langle N_{0}\left(\bar{v}_{l}\right), \bar{v}_{0}-\bar{v}_{l}\right\rangle$ are bounded, therefore as $\varepsilon_{l} \rightarrow 0$ the terms tend to zero.

Represent the fourth summand in the form

$$
\begin{aligned}
\left\langle\bar{N}_{2}\left(\bar{v}_{0}, U_{A}\left(e^{k t} \bar{v}_{0}\right)\right)\right. & \left.-\bar{N}_{2}\left(\bar{v}_{0}, U_{A}\left(e^{k t} \bar{v}_{l}\right)\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle \\
= & \left\langle\bar{N}_{2}\left(\bar{v}_{0}, U_{A}\left(e^{k t} \bar{v}_{0}\right)\right)-\bar{N}_{2}\left(\bar{v}_{0}, y_{1}\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle \\
& +\left\langle\bar{N}_{2}\left(\bar{v}_{0}, y_{1}\right)-\bar{N}_{2}\left(\bar{v}_{0}, U_{A}\left(e^{k t} \bar{v}_{l}\right)\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle .
\end{aligned}
$$

The first term here converges to zero by the definition of weak convergence $\bar{v}_{l} \rightharpoonup$ \bar{v}_{0} in E. Note, that from the assumption of strong convergence $U_{A}\left(e^{k t} \bar{v}_{l}\right) \rightarrow y_{1}$ in $C([0, T], S)$ we have

$$
\bar{N}_{2}\left(\bar{v}_{0}, U_{A}\left(e^{k t} \bar{v}_{l}\right)\right) \rightarrow \bar{N}_{2}\left(\bar{v}_{0}, y_{1}\right) \quad \text { strongly in } E^{*}
$$

due to continuity of map \bar{N}_{2}. From this and from the assumption of weak convergence $\bar{v}_{l} \rightharpoonup \bar{v}_{0}$ in E we get the convergence to zero of the second of obtained terms. So the convergence to zero of the fourth term in the first part of (4.1) is proved. The last term tends to zero due to the continuity of the map C. Hence the right-hand side converges to zero. Thus we have established that

$$
\begin{equation*}
\bar{v}_{l} \rightarrow \bar{v}_{0} \quad \text { strongly in } E_{2} . \tag{4.2}
\end{equation*}
$$

Transform equality (4.1) to the form:

$$
\begin{align*}
\frac{1}{2} \rho \|\left(\bar{v}_{l}\right. & \left.-\bar{v}_{0}\right)(T)\left\|_{H}^{2}+\rho k\right\| \bar{v}_{l}-\bar{v}_{0} \|_{H}^{2}+\left\langle\bar{N}_{1}\left(\bar{v}_{l}\right) \bar{N}_{1}\left(\bar{v}_{0}\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle \tag{4.3}\\
=\langle & \left\langle\bar{F}+\bar{f}-g, \bar{v}_{l}-\bar{v}_{0}\right\rangle+\left\langle\bar{K}\left(\bar{v}_{0}\right)-\bar{K}\left(\bar{v}_{l}\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle \\
& +\varepsilon_{l}\left\langle N_{0}\left(\bar{v}_{l}\right), \bar{v}_{0}-\bar{v}_{l}\right\rangle \\
& +\left\langle\bar{N}_{2}\left(\bar{v}_{0}, U_{A}\left(e^{k t} \bar{v}_{0}\right)\right)-\bar{N}_{2}\left(\bar{v}_{l}, U_{A}\left(e^{k t} \bar{v}_{l}\right)\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle \\
& +\left\langle\bar{C}\left(\bar{v}_{l}, \bar{v}_{l}\right)-\bar{C}\left(\bar{v}_{0}, \bar{v}_{0}\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle .
\end{align*}
$$

Show that each term in the right hand side of this equality converges to zero as $l \rightarrow \infty$. This will imply

$$
\begin{equation*}
\left\langle\bar{N}_{1}\left(\bar{v}_{l}\right)-\bar{N}_{1}\left(\bar{v}_{0}\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle \rightarrow 0 \quad \text { at } l \rightarrow \infty . \tag{4.4}
\end{equation*}
$$

Consider only the fourth and the fifth terms in the right-hand side of (4.3).
From convergence (4.2) and continuity of U_{A} in E_{2} it follows that

$$
U_{A}\left(e^{k t} \bar{v}_{l}\right) \rightarrow U_{A}\left(e^{k t} \bar{v}_{0}\right) \quad \text { strongly in } C([0, T], S)
$$

Then the continuity of map \bar{N}_{2} provides the convergence

$$
\begin{equation*}
\bar{N}_{2}\left(\bar{v}_{l}, U_{A}\left(e^{k t} \bar{v}_{l}\right)\right) \rightarrow \bar{N}_{2}\left(\bar{v}_{0}, U_{A}\left(e^{k t} \bar{v}_{0}\right)\right) \text { strongly in } E^{*} . \tag{4.5}
\end{equation*}
$$

From the continuity of map \bar{C} we get the convergence

$$
\begin{equation*}
\bar{C}\left(\bar{v}_{l}, \bar{v}_{l}\right) \rightarrow \bar{C}\left(\bar{v}_{0}, \bar{v}_{0}\right) \quad \text { strongly in } E^{*} . \tag{4.6}
\end{equation*}
$$

These convergences and the weak convergence $\bar{v}_{l} \rightharpoonup \bar{v}_{0}$ in E provide convergence to zero of the fourth and the fifth terms in the right-hand side of (4.3) and so of the entire right-hand side. So the convergence (4.4) is established.

Show that

$$
\begin{equation*}
\bar{N}_{1}\left(\bar{v}_{l}\right) \rightarrow \bar{N}_{1}\left(\bar{v}_{0}\right) \quad \text { weakly in } E^{*} . \tag{4.7}
\end{equation*}
$$

The sequence $\left\{\bar{v}_{l}\right\}$ and the map \bar{N}_{1} are bounded, therefore the sequence $\left\{\bar{N}_{1}\left(\bar{v}_{l}\right)\right\}$ is also bounded. Without loss of generality let us suppose that

$$
\begin{equation*}
\bar{N}_{1}\left(\bar{v}_{l}\right) \rightharpoonup y_{2} \quad \text { weakly in } E^{*} \tag{4.8}
\end{equation*}
$$

Consider the difference

$$
\begin{aligned}
\left\langle\bar{N}_{1}\left(\bar{v}_{l}\right), \bar{v}_{l}\right\rangle-\left\langle y_{2}, \bar{v}_{0}\right\rangle=\left\langle\bar{N}_{1}\left(\bar{v}_{l}\right)-\right. & \left.\bar{N}_{1}\left(\bar{v}_{0}\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle \\
& +\left\langle\bar{N}_{1}\left(\bar{v}_{0}\right), \bar{v}_{l}-\bar{v}_{0}\right\rangle+\left\langle\bar{N}_{1}\left(\bar{v}_{l}\right)-y_{2}, \bar{v}_{0}\right\rangle .
\end{aligned}
$$

In the right-hand side of the equality each term converges to zero: the first one due to (4.4), the second one by the definition of weak convergence $\bar{v}_{l} \rightharpoonup \bar{v}_{0}$ as $l \rightarrow \infty$, the third one by the assumption (4.8). Hence,

$$
\lim _{l \rightarrow \infty}\left\langle\bar{N}_{1}\left(\bar{v}_{l}\right), \bar{v}_{l}\right\rangle=\left\langle y_{2}, \bar{v}_{0}\right\rangle .
$$

Then, due to Lemma 1.3(c) ([11, p. 85]), we have $N_{1}\left(\bar{v}_{0}\right)=y_{2}$ and so (4.7) holds. Note also that from convergence (4.2) and the continuity of \bar{K} in E_{2} it follows that

$$
\begin{equation*}
\bar{K}\left(\bar{v}_{l}\right) \rightarrow \bar{K}\left(\bar{v}_{0}\right) \quad \text { strongly in } E^{*} . \tag{4.9}
\end{equation*}
$$

By definition \bar{v}_{l} the following equality
$\rho \bar{v}_{l}^{\prime}+\rho k \bar{v}_{l}+\bar{N}_{1}\left(\bar{v}_{l}\right)+\bar{N}_{2}\left(\bar{v}_{l}, U_{A}\left(e^{k t} \bar{v}_{l}\right)\right)-\bar{C}\left(\bar{v}_{l}, \bar{v}_{l}\right)+\bar{K}\left(\bar{v}_{l}\right)+\varepsilon_{l} N_{0}\left(\bar{v}_{l}\right)=\bar{F}+\bar{f}$
is fulfilled. Pass to the limit in the sense of weak convergence in E^{*} in each term of this equality. Taking into account (4.5)-(4.7) and (4.9), we receive

$$
\rho \bar{v}_{0}^{\prime}+\rho k \bar{v}_{0}+\bar{N}_{1}\left(\bar{v}_{0}\right)+\bar{N}_{2}\left(\bar{v}_{0}, U_{A}\left(e^{k t} \bar{v}_{0}\right)\right)-\bar{C}\left(\bar{v}_{0}, \bar{v}_{0}\right)+\bar{K}\left(\bar{v}_{0}\right)=\bar{F}+\bar{f} .
$$

As $\bar{v}(0)=v^{0}, \bar{v}$ is a required solution of problem (1.24)-(1.25).
Note, that if the terms responsible for the memory effect of a fluid were omitted, we would get in equality (1.2) W. G. Litvinov's constitutive relations from [4]. However, these relations do not include the averaging operator in variable x. The question whether it is possible to omit this operator was arisen in [4]. The suggested methods allow us to obtain the existence theorem of a weak solution of this problem also with replacing condition (1.14) by (1.18).

References

[1] L. D. Landau and E. M. Lifschitz, Hydrodynamics; Theoretical physics, vol. 6, Nauka, 1986.
[2] O. A. Ladyzhenskaya, Mathematical Questions of Dynamics of Viscous Noncompressed Fluid, Nauka, 1970.
[3] \qquad , On modifications of Navier-Stokes equations for high velocity gradients, Zap. Nauchn. Sem. LOMI 7 (1968), 126-154.
[4] W. G. Litvinov, Some models and problems for laminar and turbulent flows of viscous and nonlinear viscous fluids, J. Math. Phys. Sci. 30 (1996), 101-157.
[5] J. Oldroyd, Nonnewton flows of fluids and rigid bodies, Reologija, Theory and Applications, IL, 1962, pp. 757-793.
[6] Yu. A. Agranovich and P. E. Sobolevskĭ̆, Motion of nonlinear viscous-elastic fluid, DAN USSR 314 (1990), 521-525.
[7] N. D. Kopachevsky and S. G. Krein, On one problem of flow of viscous fluid, Z. Anal. Anwendungen 8 (1989), 557-561.
[8] N. A. Karazeeva, A. A. Kotsiolis and A. P. Splinters, Of dynamic systems, produced by initial-boundary value problems for equations of motion of linear viscouselastic fluids, Boundary Problems of Mathematical Physics, vol. 14, Proc. Steklov Inst. Math., CLXXXVIII, 1990, pp. 59-87.
[9] V. T. Dmitrienko and V. G. Zvyagin, Topological degree method in the equations of the Navier-Stokes type, Abstr. Appli. Anal. 1-2 (1997), 1-45.
[10] W. G. Litvinov, Motion of Nonlinear Viscous Fluid, Nauka, 1982.
[11] H. Gajewski, K. Gröger and K. Zacharias, Nonlinear Operator Equations and Operator Differential Equations, Mir, 1978.
[12] M. A. Krasnosel'skĬ, Topological Methods in Theory of Nonlinear Integrated Equations, Gostehizdat, 1956.
[13] R. Temam, The Navier-Stokes Equation. A Theory and Numerical Analysis, Mir, 1987.

Viktor G. Zvyagin
Lizyukova, 23-49
394053 Voronezh, RUSSIA
E-mail address: zvyagin@alg.vsu.ru

Vladimir T. Dmitrienko
Kurchatova, 7-143
349940 Severodonetsk, UKRAINE
E-mail address: vdmitr@sti.lg.ua

[^0]: 1991 Mathematics Subject Classification. 76D05, 35Q30.
 Key words and phrases. Nonlinear viscous elastic fluids, laminar and turbulent flows, initial boundary value problem, operator equations, week solution, degree theory.

 The research is supported by RFBR, grant N. 98-01-00029.

